Properties

Label 925.2.y.b.393.4
Level $925$
Weight $2$
Character 925.393
Analytic conductor $7.386$
Analytic rank $0$
Dimension $68$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [925,2,Mod(193,925)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(925, base_ring=CyclotomicField(12)) chi = DirichletCharacter(H, H._module([9, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("925.193"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 925 = 5^{2} \cdot 37 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 925.y (of order \(12\), degree \(4\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [68] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.38616218697\)
Analytic rank: \(0\)
Dimension: \(68\)
Relative dimension: \(17\) over \(\Q(\zeta_{12})\)
Twist minimal: no (minimal twist has level 185)
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 393.4
Character \(\chi\) \(=\) 925.393
Dual form 925.2.y.b.732.4

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.34317 - 0.775482i) q^{2} +(-3.10523 - 0.832043i) q^{3} +(0.202746 + 0.351166i) q^{4} +(3.52563 + 3.52563i) q^{6} +(4.03042 + 1.07995i) q^{7} +2.47303i q^{8} +(6.35206 + 3.66736i) q^{9} +2.17031i q^{11} +(-0.337386 - 1.25914i) q^{12} +(-0.322197 + 0.186020i) q^{13} +(-4.57608 - 4.57608i) q^{14} +(2.32328 - 4.02404i) q^{16} +(-1.50709 + 2.61037i) q^{17} +(-5.68795 - 9.85182i) q^{18} +(-3.82515 - 1.02494i) q^{19} +(-11.6168 - 6.70696i) q^{21} +(1.68304 - 2.91511i) q^{22} -1.45449i q^{23} +(2.05766 - 7.67931i) q^{24} +0.577022 q^{26} +(-9.85364 - 9.85364i) q^{27} +(0.437909 + 1.63430i) q^{28} +(1.83172 + 1.83172i) q^{29} +(-3.31971 + 3.31971i) q^{31} +(-1.95773 + 1.13030i) q^{32} +(1.80579 - 6.73931i) q^{33} +(4.04858 - 2.33745i) q^{34} +2.97417i q^{36} +(-1.39926 - 5.91963i) q^{37} +(4.34301 + 4.34301i) q^{38} +(1.15527 - 0.309554i) q^{39} +(-6.50835 + 3.75760i) q^{41} +(10.4023 + 18.0172i) q^{42} -0.461635i q^{43} +(-0.762140 + 0.440021i) q^{44} +(-1.12793 + 1.95363i) q^{46} +(-9.19431 + 9.19431i) q^{47} +(-10.5625 + 10.5625i) q^{48} +(9.01581 + 5.20528i) q^{49} +(6.85181 - 6.85181i) q^{51} +(-0.130648 - 0.0754296i) q^{52} +(0.184483 - 0.0494320i) q^{53} +(5.59384 + 20.8765i) q^{54} +(-2.67074 + 9.96733i) q^{56} +(11.0251 + 6.36537i) q^{57} +(-1.03985 - 3.88079i) q^{58} +(-2.33219 - 8.70387i) q^{59} +(-0.701769 - 0.188038i) q^{61} +(7.03332 - 1.88457i) q^{62} +(21.6409 + 21.6409i) q^{63} -5.78701 q^{64} +(-7.65172 + 7.65172i) q^{66} +(2.83478 - 10.5795i) q^{67} -1.22223 q^{68} +(-1.21020 + 4.51652i) q^{69} +(0.479804 + 0.831045i) q^{71} +(-9.06949 + 15.7088i) q^{72} +(-3.33340 + 3.33340i) q^{73} +(-2.71112 + 9.03621i) q^{74} +(-0.415606 - 1.55106i) q^{76} +(-2.34382 + 8.74727i) q^{77} +(-1.79178 - 0.480107i) q^{78} +(-9.10924 - 2.44081i) q^{79} +(11.3970 + 19.7402i) q^{81} +11.6558 q^{82} +(-9.79413 + 2.62433i) q^{83} -5.43923i q^{84} +(-0.357990 + 0.620057i) q^{86} +(-4.16383 - 7.21197i) q^{87} -5.36724 q^{88} +(6.62306 - 1.77464i) q^{89} +(-1.49948 + 0.401784i) q^{91} +(0.510766 - 0.294891i) q^{92} +(13.0706 - 7.54630i) q^{93} +(19.4796 - 5.21954i) q^{94} +(7.01966 - 1.88091i) q^{96} +3.12991 q^{97} +(-8.07320 - 13.9832i) q^{98} +(-7.95933 + 13.7860i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 68 q + 6 q^{2} + 4 q^{3} + 30 q^{4} - 8 q^{6} + 2 q^{7} + 10 q^{12} + 6 q^{13} - 26 q^{16} + 10 q^{17} + 8 q^{18} - 4 q^{19} - 12 q^{21} + 14 q^{22} - 24 q^{26} - 68 q^{27} - 14 q^{28} - 14 q^{29} - 24 q^{31}+ \cdots - 32 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/925\mathbb{Z}\right)^\times\).

\(n\) \(76\) \(852\)
\(\chi(n)\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.34317 0.775482i −0.949768 0.548349i −0.0567591 0.998388i \(-0.518077\pi\)
−0.893009 + 0.450039i \(0.851410\pi\)
\(3\) −3.10523 0.832043i −1.79280 0.480380i −0.799986 0.600019i \(-0.795160\pi\)
−0.992818 + 0.119638i \(0.961826\pi\)
\(4\) 0.202746 + 0.351166i 0.101373 + 0.175583i
\(5\) 0 0
\(6\) 3.52563 + 3.52563i 1.43933 + 1.43933i
\(7\) 4.03042 + 1.07995i 1.52335 + 0.408182i 0.920845 0.389929i \(-0.127501\pi\)
0.602510 + 0.798111i \(0.294167\pi\)
\(8\) 2.47303i 0.874347i
\(9\) 6.35206 + 3.66736i 2.11735 + 1.22245i
\(10\) 0 0
\(11\) 2.17031i 0.654374i 0.944960 + 0.327187i \(0.106101\pi\)
−0.944960 + 0.327187i \(0.893899\pi\)
\(12\) −0.337386 1.25914i −0.0973950 0.363483i
\(13\) −0.322197 + 0.186020i −0.0893613 + 0.0515928i −0.544015 0.839076i \(-0.683096\pi\)
0.454653 + 0.890668i \(0.349763\pi\)
\(14\) −4.57608 4.57608i −1.22301 1.22301i
\(15\) 0 0
\(16\) 2.32328 4.02404i 0.580820 1.00601i
\(17\) −1.50709 + 2.61037i −0.365524 + 0.633107i −0.988860 0.148848i \(-0.952444\pi\)
0.623336 + 0.781954i \(0.285777\pi\)
\(18\) −5.68795 9.85182i −1.34066 2.32210i
\(19\) −3.82515 1.02494i −0.877549 0.235138i −0.208200 0.978086i \(-0.566760\pi\)
−0.669349 + 0.742948i \(0.733427\pi\)
\(20\) 0 0
\(21\) −11.6168 6.70696i −2.53499 1.46358i
\(22\) 1.68304 2.91511i 0.358825 0.621504i
\(23\) 1.45449i 0.303282i −0.988436 0.151641i \(-0.951544\pi\)
0.988436 0.151641i \(-0.0484557\pi\)
\(24\) 2.05766 7.67931i 0.420019 1.56753i
\(25\) 0 0
\(26\) 0.577022 0.113163
\(27\) −9.85364 9.85364i −1.89633 1.89633i
\(28\) 0.437909 + 1.63430i 0.0827571 + 0.308854i
\(29\) 1.83172 + 1.83172i 0.340142 + 0.340142i 0.856421 0.516279i \(-0.172683\pi\)
−0.516279 + 0.856421i \(0.672683\pi\)
\(30\) 0 0
\(31\) −3.31971 + 3.31971i −0.596237 + 0.596237i −0.939309 0.343072i \(-0.888532\pi\)
0.343072 + 0.939309i \(0.388532\pi\)
\(32\) −1.95773 + 1.13030i −0.346082 + 0.199810i
\(33\) 1.80579 6.73931i 0.314348 1.17316i
\(34\) 4.04858 2.33745i 0.694326 0.400870i
\(35\) 0 0
\(36\) 2.97417i 0.495695i
\(37\) −1.39926 5.91963i −0.230037 0.973182i
\(38\) 4.34301 + 4.34301i 0.704530 + 0.704530i
\(39\) 1.15527 0.309554i 0.184991 0.0495683i
\(40\) 0 0
\(41\) −6.50835 + 3.75760i −1.01643 + 0.586838i −0.913069 0.407805i \(-0.866294\pi\)
−0.103365 + 0.994644i \(0.532961\pi\)
\(42\) 10.4023 + 18.0172i 1.60510 + 2.78012i
\(43\) 0.461635i 0.0703987i −0.999380 0.0351994i \(-0.988793\pi\)
0.999380 0.0351994i \(-0.0112066\pi\)
\(44\) −0.762140 + 0.440021i −0.114897 + 0.0663357i
\(45\) 0 0
\(46\) −1.12793 + 1.95363i −0.166304 + 0.288047i
\(47\) −9.19431 + 9.19431i −1.34113 + 1.34113i −0.446188 + 0.894939i \(0.647219\pi\)
−0.894939 + 0.446188i \(0.852781\pi\)
\(48\) −10.5625 + 10.5625i −1.52456 + 1.52456i
\(49\) 9.01581 + 5.20528i 1.28797 + 0.743611i
\(50\) 0 0
\(51\) 6.85181 6.85181i 0.959445 0.959445i
\(52\) −0.130648 0.0754296i −0.0181176 0.0104602i
\(53\) 0.184483 0.0494320i 0.0253406 0.00679000i −0.246126 0.969238i \(-0.579158\pi\)
0.271467 + 0.962448i \(0.412491\pi\)
\(54\) 5.59384 + 20.8765i 0.761225 + 2.84093i
\(55\) 0 0
\(56\) −2.67074 + 9.96733i −0.356892 + 1.33194i
\(57\) 11.0251 + 6.36537i 1.46032 + 0.843114i
\(58\) −1.03985 3.88079i −0.136539 0.509572i
\(59\) −2.33219 8.70387i −0.303626 1.13315i −0.934122 0.356954i \(-0.883815\pi\)
0.630496 0.776192i \(-0.282852\pi\)
\(60\) 0 0
\(61\) −0.701769 0.188038i −0.0898523 0.0240758i 0.213613 0.976918i \(-0.431477\pi\)
−0.303465 + 0.952843i \(0.598144\pi\)
\(62\) 7.03332 1.88457i 0.893233 0.239341i
\(63\) 21.6409 + 21.6409i 2.72650 + 2.72650i
\(64\) −5.78701 −0.723377
\(65\) 0 0
\(66\) −7.65172 + 7.65172i −0.941861 + 0.941861i
\(67\) 2.83478 10.5795i 0.346323 1.29250i −0.544735 0.838608i \(-0.683370\pi\)
0.891059 0.453888i \(-0.149963\pi\)
\(68\) −1.22223 −0.148217
\(69\) −1.21020 + 4.51652i −0.145691 + 0.543725i
\(70\) 0 0
\(71\) 0.479804 + 0.831045i 0.0569423 + 0.0986269i 0.893091 0.449875i \(-0.148532\pi\)
−0.836149 + 0.548502i \(0.815198\pi\)
\(72\) −9.06949 + 15.7088i −1.06885 + 1.85130i
\(73\) −3.33340 + 3.33340i −0.390145 + 0.390145i −0.874739 0.484594i \(-0.838967\pi\)
0.484594 + 0.874739i \(0.338967\pi\)
\(74\) −2.71112 + 9.03621i −0.315161 + 1.05044i
\(75\) 0 0
\(76\) −0.415606 1.55106i −0.0476733 0.177919i
\(77\) −2.34382 + 8.74727i −0.267104 + 0.996844i
\(78\) −1.79178 0.480107i −0.202880 0.0543614i
\(79\) −9.10924 2.44081i −1.02487 0.274613i −0.293040 0.956100i \(-0.594667\pi\)
−0.731830 + 0.681487i \(0.761333\pi\)
\(80\) 0 0
\(81\) 11.3970 + 19.7402i 1.26634 + 2.19336i
\(82\) 11.6558 1.28717
\(83\) −9.79413 + 2.62433i −1.07505 + 0.288058i −0.752565 0.658518i \(-0.771183\pi\)
−0.322481 + 0.946576i \(0.604517\pi\)
\(84\) 5.43923i 0.593469i
\(85\) 0 0
\(86\) −0.357990 + 0.620057i −0.0386030 + 0.0668624i
\(87\) −4.16383 7.21197i −0.446410 0.773205i
\(88\) −5.36724 −0.572150
\(89\) 6.62306 1.77464i 0.702043 0.188112i 0.109897 0.993943i \(-0.464948\pi\)
0.592145 + 0.805831i \(0.298281\pi\)
\(90\) 0 0
\(91\) −1.49948 + 0.401784i −0.157188 + 0.0421184i
\(92\) 0.510766 0.294891i 0.0532511 0.0307445i
\(93\) 13.0706 7.54630i 1.35536 0.782515i
\(94\) 19.4796 5.21954i 2.00917 0.538354i
\(95\) 0 0
\(96\) 7.01966 1.88091i 0.716441 0.191970i
\(97\) 3.12991 0.317794 0.158897 0.987295i \(-0.449206\pi\)
0.158897 + 0.987295i \(0.449206\pi\)
\(98\) −8.07320 13.9832i −0.815517 1.41252i
\(99\) −7.95933 + 13.7860i −0.799943 + 1.38554i
\(100\) 0 0
\(101\) 0.106640i 0.0106111i 0.999986 + 0.00530554i \(0.00168881\pi\)
−0.999986 + 0.00530554i \(0.998311\pi\)
\(102\) −14.5166 + 3.88972i −1.43736 + 0.385140i
\(103\) −10.4126 −1.02599 −0.512994 0.858392i \(-0.671464\pi\)
−0.512994 + 0.858392i \(0.671464\pi\)
\(104\) −0.460033 0.796801i −0.0451100 0.0781328i
\(105\) 0 0
\(106\) −0.286126 0.0766672i −0.0277910 0.00744658i
\(107\) 6.93007 + 1.85691i 0.669955 + 0.179514i 0.577734 0.816225i \(-0.303937\pi\)
0.0922203 + 0.995739i \(0.470604\pi\)
\(108\) 1.46248 5.45804i 0.140727 0.525200i
\(109\) −3.37101 12.5808i −0.322884 1.20502i −0.916422 0.400213i \(-0.868936\pi\)
0.593538 0.804806i \(-0.297731\pi\)
\(110\) 0 0
\(111\) −0.580363 + 19.5461i −0.0550856 + 1.85523i
\(112\) 13.7095 13.7095i 1.29543 1.29543i
\(113\) −4.04388 + 7.00421i −0.380417 + 0.658901i −0.991122 0.132957i \(-0.957553\pi\)
0.610705 + 0.791858i \(0.290886\pi\)
\(114\) −9.87247 17.0996i −0.924641 1.60153i
\(115\) 0 0
\(116\) −0.271864 + 1.01461i −0.0252419 + 0.0942042i
\(117\) −2.72882 −0.252279
\(118\) −3.61715 + 13.4994i −0.332986 + 1.24272i
\(119\) −8.89328 + 8.89328i −0.815246 + 0.815246i
\(120\) 0 0
\(121\) 6.28974 0.571795
\(122\) 0.796778 + 0.796778i 0.0721369 + 0.0721369i
\(123\) 23.3364 6.25297i 2.10417 0.563811i
\(124\) −1.83882 0.492711i −0.165131 0.0442468i
\(125\) 0 0
\(126\) −12.2854 45.8497i −1.09447 4.08461i
\(127\) −2.60019 9.70404i −0.230729 0.861094i −0.980028 0.198861i \(-0.936276\pi\)
0.749298 0.662233i \(-0.230391\pi\)
\(128\) 11.6884 + 6.74832i 1.03312 + 0.596473i
\(129\) −0.384100 + 1.43348i −0.0338182 + 0.126211i
\(130\) 0 0
\(131\) −3.80218 14.1899i −0.332198 1.23978i −0.906875 0.421400i \(-0.861539\pi\)
0.574677 0.818381i \(-0.305128\pi\)
\(132\) 2.73273 0.732234i 0.237854 0.0637328i
\(133\) −14.3101 8.26191i −1.24084 0.716399i
\(134\) −12.0118 + 12.0118i −1.03767 + 1.03767i
\(135\) 0 0
\(136\) −6.45550 3.72709i −0.553555 0.319595i
\(137\) −4.80375 + 4.80375i −0.410412 + 0.410412i −0.881882 0.471470i \(-0.843724\pi\)
0.471470 + 0.881882i \(0.343724\pi\)
\(138\) 5.12799 5.12799i 0.436523 0.436523i
\(139\) −11.5314 + 19.9729i −0.978077 + 1.69408i −0.308693 + 0.951162i \(0.599892\pi\)
−0.669384 + 0.742917i \(0.733442\pi\)
\(140\) 0 0
\(141\) 36.2005 20.9003i 3.04863 1.76013i
\(142\) 1.48832i 0.124897i
\(143\) −0.403722 0.699268i −0.0337610 0.0584757i
\(144\) 29.5152 17.0406i 2.45960 1.42005i
\(145\) 0 0
\(146\) 7.06234 1.89235i 0.584483 0.156612i
\(147\) −23.6651 23.6651i −1.95187 1.95187i
\(148\) 1.79508 1.69155i 0.147555 0.139045i
\(149\) 11.1717i 0.915220i 0.889153 + 0.457610i \(0.151294\pi\)
−0.889153 + 0.457610i \(0.848706\pi\)
\(150\) 0 0
\(151\) −2.37742 + 1.37260i −0.193472 + 0.111701i −0.593607 0.804755i \(-0.702297\pi\)
0.400135 + 0.916456i \(0.368963\pi\)
\(152\) 2.53472 9.45969i 0.205593 0.767282i
\(153\) −19.1463 + 11.0541i −1.54789 + 0.893674i
\(154\) 9.93152 9.93152i 0.800305 0.800305i
\(155\) 0 0
\(156\) 0.342931 + 0.342931i 0.0274564 + 0.0274564i
\(157\) 1.85912 + 6.93834i 0.148374 + 0.553740i 0.999582 + 0.0289111i \(0.00920397\pi\)
−0.851208 + 0.524829i \(0.824129\pi\)
\(158\) 10.3425 + 10.3425i 0.822804 + 0.822804i
\(159\) −0.613990 −0.0486926
\(160\) 0 0
\(161\) 1.57077 5.86220i 0.123794 0.462006i
\(162\) 35.3528i 2.77758i
\(163\) −0.0811818 + 0.140611i −0.00635865 + 0.0110135i −0.869187 0.494483i \(-0.835357\pi\)
0.862829 + 0.505497i \(0.168691\pi\)
\(164\) −2.63908 1.52367i −0.206077 0.118979i
\(165\) 0 0
\(166\) 15.1903 + 4.07024i 1.17900 + 0.315912i
\(167\) 6.91676 + 11.9802i 0.535235 + 0.927055i 0.999152 + 0.0411758i \(0.0131104\pi\)
−0.463917 + 0.885879i \(0.653556\pi\)
\(168\) 16.5865 28.7287i 1.27968 2.21646i
\(169\) −6.43079 + 11.1385i −0.494676 + 0.856805i
\(170\) 0 0
\(171\) −20.5387 20.5387i −1.57064 1.57064i
\(172\) 0.162110 0.0935945i 0.0123608 0.00713652i
\(173\) 4.14277 + 15.4610i 0.314969 + 1.17548i 0.924019 + 0.382347i \(0.124884\pi\)
−0.609050 + 0.793132i \(0.708449\pi\)
\(174\) 12.9159i 0.979153i
\(175\) 0 0
\(176\) 8.73342 + 5.04224i 0.658307 + 0.380073i
\(177\) 28.9680i 2.17737i
\(178\) −10.2721 2.75241i −0.769929 0.206302i
\(179\) −10.4070 10.4070i −0.777858 0.777858i 0.201608 0.979466i \(-0.435383\pi\)
−0.979466 + 0.201608i \(0.935383\pi\)
\(180\) 0 0
\(181\) 11.4850 + 19.8925i 0.853670 + 1.47860i 0.877873 + 0.478893i \(0.158962\pi\)
−0.0242033 + 0.999707i \(0.507705\pi\)
\(182\) 2.32564 + 0.623153i 0.172388 + 0.0461912i
\(183\) 2.02270 + 1.16780i 0.149522 + 0.0863265i
\(184\) 3.59699 0.265174
\(185\) 0 0
\(186\) −23.4081 −1.71637
\(187\) −5.66531 3.27087i −0.414288 0.239190i
\(188\) −5.09283 1.36462i −0.371433 0.0995251i
\(189\) −29.0729 50.3557i −2.11474 3.66284i
\(190\) 0 0
\(191\) −6.64661 6.64661i −0.480931 0.480931i 0.424498 0.905429i \(-0.360451\pi\)
−0.905429 + 0.424498i \(0.860451\pi\)
\(192\) 17.9700 + 4.81505i 1.29687 + 0.347496i
\(193\) 13.5429i 0.974841i −0.873167 0.487420i \(-0.837938\pi\)
0.873167 0.487420i \(-0.162062\pi\)
\(194\) −4.20401 2.42719i −0.301830 0.174262i
\(195\) 0 0
\(196\) 4.22139i 0.301528i
\(197\) −3.06743 11.4478i −0.218546 0.815623i −0.984888 0.173191i \(-0.944592\pi\)
0.766343 0.642432i \(-0.222074\pi\)
\(198\) 21.3815 12.3446i 1.51952 0.877295i
\(199\) −7.49425 7.49425i −0.531253 0.531253i 0.389692 0.920945i \(-0.372581\pi\)
−0.920945 + 0.389692i \(0.872581\pi\)
\(200\) 0 0
\(201\) −17.6053 + 30.4932i −1.24178 + 2.15083i
\(202\) 0.0826974 0.143236i 0.00581857 0.0100781i
\(203\) 5.40444 + 9.36076i 0.379317 + 0.656996i
\(204\) 3.79529 + 1.01695i 0.265724 + 0.0712005i
\(205\) 0 0
\(206\) 13.9860 + 8.07481i 0.974450 + 0.562599i
\(207\) 5.33414 9.23900i 0.370748 0.642155i
\(208\) 1.72871i 0.119864i
\(209\) 2.22445 8.30177i 0.153869 0.574245i
\(210\) 0 0
\(211\) −14.6599 −1.00923 −0.504616 0.863344i \(-0.668366\pi\)
−0.504616 + 0.863344i \(0.668366\pi\)
\(212\) 0.0547618 + 0.0547618i 0.00376106 + 0.00376106i
\(213\) −0.798435 2.97980i −0.0547079 0.204173i
\(214\) −7.86829 7.86829i −0.537865 0.537865i
\(215\) 0 0
\(216\) 24.3683 24.3683i 1.65805 1.65805i
\(217\) −16.9649 + 9.79470i −1.15165 + 0.664908i
\(218\) −5.22831 + 19.5123i −0.354106 + 1.32154i
\(219\) 13.1245 7.57744i 0.886872 0.512036i
\(220\) 0 0
\(221\) 1.12140i 0.0754336i
\(222\) 15.9371 25.8037i 1.06963 1.73183i
\(223\) −3.77596 3.77596i −0.252857 0.252857i 0.569284 0.822141i \(-0.307221\pi\)
−0.822141 + 0.569284i \(0.807221\pi\)
\(224\) −9.11115 + 2.44132i −0.608764 + 0.163118i
\(225\) 0 0
\(226\) 10.8633 6.27192i 0.722615 0.417202i
\(227\) −5.91849 10.2511i −0.392824 0.680391i 0.599997 0.800002i \(-0.295168\pi\)
−0.992821 + 0.119611i \(0.961835\pi\)
\(228\) 5.16221i 0.341875i
\(229\) 10.1713 5.87243i 0.672141 0.388061i −0.124746 0.992189i \(-0.539812\pi\)
0.796887 + 0.604128i \(0.206478\pi\)
\(230\) 0 0
\(231\) 14.5562 25.2121i 0.957728 1.65883i
\(232\) −4.52989 + 4.52989i −0.297402 + 0.297402i
\(233\) −15.5975 + 15.5975i −1.02183 + 1.02183i −0.0220706 + 0.999756i \(0.507026\pi\)
−0.999756 + 0.0220706i \(0.992974\pi\)
\(234\) 3.66528 + 2.11615i 0.239607 + 0.138337i
\(235\) 0 0
\(236\) 2.58366 2.58366i 0.168182 0.168182i
\(237\) 26.2554 + 15.1586i 1.70547 + 0.984654i
\(238\) 18.8418 5.04865i 1.22133 0.327255i
\(239\) 4.07548 + 15.2099i 0.263621 + 0.983846i 0.963089 + 0.269183i \(0.0867535\pi\)
−0.699468 + 0.714663i \(0.746580\pi\)
\(240\) 0 0
\(241\) 2.51727 9.39459i 0.162152 0.605159i −0.836235 0.548372i \(-0.815248\pi\)
0.998386 0.0567867i \(-0.0180855\pi\)
\(242\) −8.44822 4.87758i −0.543072 0.313543i
\(243\) −8.14560 30.3998i −0.522540 1.95015i
\(244\) −0.0762479 0.284561i −0.00488127 0.0182172i
\(245\) 0 0
\(246\) −36.1939 9.69813i −2.30764 0.618330i
\(247\) 1.42311 0.381321i 0.0905503 0.0242629i
\(248\) −8.20972 8.20972i −0.521318 0.521318i
\(249\) 32.5966 2.06572
\(250\) 0 0
\(251\) −21.3201 + 21.3201i −1.34571 + 1.34571i −0.455447 + 0.890263i \(0.650521\pi\)
−0.890263 + 0.455447i \(0.849479\pi\)
\(252\) −3.21195 + 11.9871i −0.202334 + 0.755119i
\(253\) 3.15670 0.198460
\(254\) −4.03280 + 15.0506i −0.253040 + 0.944360i
\(255\) 0 0
\(256\) −4.67940 8.10495i −0.292462 0.506559i
\(257\) 2.91528 5.04941i 0.181850 0.314974i −0.760660 0.649150i \(-0.775125\pi\)
0.942511 + 0.334176i \(0.108458\pi\)
\(258\) 1.62755 1.62755i 0.101327 0.101327i
\(259\) 0.753280 25.3697i 0.0468066 1.57640i
\(260\) 0 0
\(261\) 4.91761 + 18.3528i 0.304393 + 1.13601i
\(262\) −5.89705 + 22.0081i −0.364321 + 1.35966i
\(263\) −19.4059 5.19979i −1.19662 0.320633i −0.395120 0.918630i \(-0.629297\pi\)
−0.801498 + 0.597997i \(0.795964\pi\)
\(264\) 16.6665 + 4.46578i 1.02575 + 0.274850i
\(265\) 0 0
\(266\) 12.8139 + 22.1944i 0.785673 + 1.36083i
\(267\) −22.0427 −1.34899
\(268\) 4.28991 1.14948i 0.262048 0.0702155i
\(269\) 0.930688i 0.0567450i 0.999597 + 0.0283725i \(0.00903246\pi\)
−0.999597 + 0.0283725i \(0.990968\pi\)
\(270\) 0 0
\(271\) 7.15555 12.3938i 0.434669 0.752868i −0.562600 0.826729i \(-0.690199\pi\)
0.997269 + 0.0738613i \(0.0235322\pi\)
\(272\) 7.00281 + 12.1292i 0.424607 + 0.735442i
\(273\) 4.99053 0.302040
\(274\) 10.1775 2.72705i 0.614845 0.164747i
\(275\) 0 0
\(276\) −1.83141 + 0.490724i −0.110238 + 0.0295381i
\(277\) 3.28707 1.89779i 0.197501 0.114027i −0.397988 0.917391i \(-0.630292\pi\)
0.595489 + 0.803363i \(0.296958\pi\)
\(278\) 30.9772 17.8847i 1.85789 1.07265i
\(279\) −33.2616 + 8.91241i −1.99132 + 0.533572i
\(280\) 0 0
\(281\) 4.91815 1.31781i 0.293392 0.0786142i −0.109121 0.994029i \(-0.534804\pi\)
0.402513 + 0.915414i \(0.368137\pi\)
\(282\) −64.8314 −3.86065
\(283\) 7.46035 + 12.9217i 0.443472 + 0.768115i 0.997944 0.0640865i \(-0.0204134\pi\)
−0.554473 + 0.832202i \(0.687080\pi\)
\(284\) −0.194556 + 0.336982i −0.0115448 + 0.0199962i
\(285\) 0 0
\(286\) 1.25232i 0.0740511i
\(287\) −30.2894 + 8.11601i −1.78793 + 0.479073i
\(288\) −16.5809 −0.977036
\(289\) 3.95733 + 6.85430i 0.232784 + 0.403194i
\(290\) 0 0
\(291\) −9.71907 2.60422i −0.569742 0.152662i
\(292\) −1.84641 0.494744i −0.108053 0.0289527i
\(293\) −0.391817 + 1.46228i −0.0228902 + 0.0854275i −0.976426 0.215852i \(-0.930747\pi\)
0.953536 + 0.301280i \(0.0974137\pi\)
\(294\) 13.4345 + 50.1383i 0.783516 + 2.92412i
\(295\) 0 0
\(296\) 14.6394 3.46041i 0.850899 0.201132i
\(297\) 21.3855 21.3855i 1.24091 1.24091i
\(298\) 8.66344 15.0055i 0.501860 0.869246i
\(299\) 0.270564 + 0.468631i 0.0156471 + 0.0271017i
\(300\) 0 0
\(301\) 0.498542 1.86058i 0.0287355 0.107242i
\(302\) 4.25772 0.245004
\(303\) 0.0887290 0.331141i 0.00509735 0.0190236i
\(304\) −13.0113 + 13.0113i −0.746249 + 0.746249i
\(305\) 0 0
\(306\) 34.2891 1.96018
\(307\) 21.0899 + 21.0899i 1.20366 + 1.20366i 0.973044 + 0.230621i \(0.0740758\pi\)
0.230621 + 0.973044i \(0.425924\pi\)
\(308\) −3.54694 + 0.950400i −0.202106 + 0.0541541i
\(309\) 32.3336 + 8.66376i 1.83939 + 0.492864i
\(310\) 0 0
\(311\) 3.03440 + 11.3245i 0.172065 + 0.642156i 0.997033 + 0.0769762i \(0.0245265\pi\)
−0.824968 + 0.565180i \(0.808807\pi\)
\(312\) 0.765535 + 2.85702i 0.0433399 + 0.161747i
\(313\) 5.59126 + 3.22812i 0.316037 + 0.182464i 0.649625 0.760255i \(-0.274926\pi\)
−0.333588 + 0.942719i \(0.608259\pi\)
\(314\) 2.88343 10.7611i 0.162722 0.607285i
\(315\) 0 0
\(316\) −0.989728 3.69372i −0.0556766 0.207788i
\(317\) −21.4124 + 5.73743i −1.20264 + 0.322246i −0.803870 0.594805i \(-0.797229\pi\)
−0.398769 + 0.917051i \(0.630562\pi\)
\(318\) 0.824696 + 0.476138i 0.0462466 + 0.0267005i
\(319\) −3.97540 + 3.97540i −0.222580 + 0.222580i
\(320\) 0 0
\(321\) −19.9744 11.5322i −1.11486 0.643666i
\(322\) −6.65585 + 6.65585i −0.370916 + 0.370916i
\(323\) 8.44034 8.44034i 0.469633 0.469633i
\(324\) −4.62140 + 8.00449i −0.256744 + 0.444694i
\(325\) 0 0
\(326\) 0.218083 0.125910i 0.0120785 0.00697352i
\(327\) 41.8710i 2.31547i
\(328\) −9.29264 16.0953i −0.513100 0.888716i
\(329\) −46.9863 + 27.1275i −2.59044 + 1.49559i
\(330\) 0 0
\(331\) 8.07555 2.16384i 0.443873 0.118935i −0.0299583 0.999551i \(-0.509537\pi\)
0.473831 + 0.880616i \(0.342871\pi\)
\(332\) −2.90729 2.90729i −0.159558 0.159558i
\(333\) 12.8213 42.7335i 0.702600 2.34178i
\(334\) 21.4553i 1.17398i
\(335\) 0 0
\(336\) −53.9782 + 31.1643i −2.94475 + 1.70015i
\(337\) 2.09537 7.82004i 0.114142 0.425985i −0.885079 0.465441i \(-0.845896\pi\)
0.999221 + 0.0394559i \(0.0125625\pi\)
\(338\) 17.2754 9.97393i 0.939656 0.542510i
\(339\) 18.3850 18.3850i 0.998535 0.998535i
\(340\) 0 0
\(341\) −7.20480 7.20480i −0.390162 0.390162i
\(342\) 11.6597 + 43.5145i 0.630483 + 2.35299i
\(343\) 10.0628 + 10.0628i 0.543338 + 0.543338i
\(344\) 1.14164 0.0615529
\(345\) 0 0
\(346\) 6.42528 23.9795i 0.345425 1.28915i
\(347\) 26.0269i 1.39720i −0.715513 0.698599i \(-0.753807\pi\)
0.715513 0.698599i \(-0.246193\pi\)
\(348\) 1.68840 2.92439i 0.0905077 0.156764i
\(349\) 2.63616 + 1.52199i 0.141110 + 0.0814701i 0.568893 0.822412i \(-0.307372\pi\)
−0.427783 + 0.903882i \(0.640705\pi\)
\(350\) 0 0
\(351\) 5.00779 + 1.34183i 0.267296 + 0.0716217i
\(352\) −2.45310 4.24889i −0.130751 0.226467i
\(353\) −3.45536 + 5.98486i −0.183910 + 0.318542i −0.943209 0.332200i \(-0.892209\pi\)
0.759298 + 0.650743i \(0.225542\pi\)
\(354\) 22.4641 38.9090i 1.19396 2.06799i
\(355\) 0 0
\(356\) 1.96599 + 1.96599i 0.104197 + 0.104197i
\(357\) 35.0152 20.2161i 1.85320 1.06995i
\(358\) 5.90799 + 22.0489i 0.312247 + 1.16532i
\(359\) 13.2822i 0.701008i −0.936561 0.350504i \(-0.886010\pi\)
0.936561 0.350504i \(-0.113990\pi\)
\(360\) 0 0
\(361\) −2.87325 1.65887i −0.151224 0.0873090i
\(362\) 35.6255i 1.87244i
\(363\) −19.5311 5.23333i −1.02512 0.274679i
\(364\) −0.445106 0.445106i −0.0233299 0.0233299i
\(365\) 0 0
\(366\) −1.81122 3.13713i −0.0946741 0.163980i
\(367\) 19.4287 + 5.20590i 1.01417 + 0.271746i 0.727370 0.686245i \(-0.240742\pi\)
0.286799 + 0.957991i \(0.407409\pi\)
\(368\) −5.85292 3.37918i −0.305104 0.176152i
\(369\) −55.1219 −2.86953
\(370\) 0 0
\(371\) 0.796926 0.0413743
\(372\) 5.30001 + 3.05996i 0.274793 + 0.158652i
\(373\) 1.01275 + 0.271365i 0.0524380 + 0.0140507i 0.284943 0.958545i \(-0.408025\pi\)
−0.232505 + 0.972595i \(0.574692\pi\)
\(374\) 5.07300 + 8.78670i 0.262319 + 0.454349i
\(375\) 0 0
\(376\) −22.7378 22.7378i −1.17261 1.17261i
\(377\) −0.930911 0.249437i −0.0479444 0.0128467i
\(378\) 90.1820i 4.63846i
\(379\) −13.4701 7.77696i −0.691912 0.399476i 0.112416 0.993661i \(-0.464141\pi\)
−0.804328 + 0.594186i \(0.797474\pi\)
\(380\) 0 0
\(381\) 32.2967i 1.65461i
\(382\) 3.77323 + 14.0819i 0.193055 + 0.720492i
\(383\) −3.67241 + 2.12027i −0.187651 + 0.108341i −0.590883 0.806758i \(-0.701220\pi\)
0.403231 + 0.915098i \(0.367887\pi\)
\(384\) −30.6804 30.6804i −1.56565 1.56565i
\(385\) 0 0
\(386\) −10.5023 + 18.1905i −0.534553 + 0.925872i
\(387\) 1.69298 2.93234i 0.0860593 0.149059i
\(388\) 0.634575 + 1.09912i 0.0322157 + 0.0557992i
\(389\) 14.7360 + 3.94851i 0.747146 + 0.200197i 0.612252 0.790663i \(-0.290264\pi\)
0.134894 + 0.990860i \(0.456931\pi\)
\(390\) 0 0
\(391\) 3.79675 + 2.19205i 0.192010 + 0.110857i
\(392\) −12.8728 + 22.2963i −0.650174 + 1.12613i
\(393\) 47.2266i 2.38226i
\(394\) −4.75748 + 17.7552i −0.239678 + 0.894492i
\(395\) 0 0
\(396\) −6.45488 −0.324370
\(397\) −6.05031 6.05031i −0.303657 0.303657i 0.538786 0.842443i \(-0.318883\pi\)
−0.842443 + 0.538786i \(0.818883\pi\)
\(398\) 4.25443 + 15.8777i 0.213255 + 0.795879i
\(399\) 37.5617 + 37.5617i 1.88044 + 1.88044i
\(400\) 0 0
\(401\) −8.64655 + 8.64655i −0.431788 + 0.431788i −0.889236 0.457448i \(-0.848764\pi\)
0.457448 + 0.889236i \(0.348764\pi\)
\(402\) 47.2939 27.3051i 2.35880 1.36186i
\(403\) 0.452066 1.68713i 0.0225190 0.0840420i
\(404\) −0.0374483 + 0.0216208i −0.00186312 + 0.00107567i
\(405\) 0 0
\(406\) 16.7642i 0.831992i
\(407\) 12.8475 3.03684i 0.636825 0.150530i
\(408\) 16.9447 + 16.9447i 0.838888 + 0.838888i
\(409\) −4.20165 + 1.12583i −0.207758 + 0.0556686i −0.361197 0.932490i \(-0.617632\pi\)
0.153439 + 0.988158i \(0.450965\pi\)
\(410\) 0 0
\(411\) 18.9137 10.9198i 0.932942 0.538634i
\(412\) −2.11112 3.65656i −0.104007 0.180146i
\(413\) 37.5989i 1.85012i
\(414\) −14.3294 + 8.27306i −0.704250 + 0.406599i
\(415\) 0 0
\(416\) 0.420517 0.728356i 0.0206175 0.0357106i
\(417\) 52.4258 52.4258i 2.56730 2.56730i
\(418\) −9.42570 + 9.42570i −0.461026 + 0.461026i
\(419\) −2.15841 1.24616i −0.105445 0.0608788i 0.446350 0.894858i \(-0.352724\pi\)
−0.551795 + 0.833980i \(0.686057\pi\)
\(420\) 0 0
\(421\) −13.5065 + 13.5065i −0.658265 + 0.658265i −0.954969 0.296704i \(-0.904112\pi\)
0.296704 + 0.954969i \(0.404112\pi\)
\(422\) 19.6909 + 11.3685i 0.958536 + 0.553411i
\(423\) −92.1217 + 24.6839i −4.47911 + 1.20017i
\(424\) 0.122247 + 0.456230i 0.00593682 + 0.0221565i
\(425\) 0 0
\(426\) −1.23835 + 4.62157i −0.0599980 + 0.223916i
\(427\) −2.62535 1.51575i −0.127050 0.0733521i
\(428\) 0.752959 + 2.81008i 0.0363956 + 0.135830i
\(429\) 0.671829 + 2.50730i 0.0324362 + 0.121054i
\(430\) 0 0
\(431\) 25.9052 + 6.94129i 1.24781 + 0.334350i 0.821491 0.570222i \(-0.193143\pi\)
0.426321 + 0.904572i \(0.359809\pi\)
\(432\) −62.5442 + 16.7587i −3.00916 + 0.806301i
\(433\) 12.4207 + 12.4207i 0.596902 + 0.596902i 0.939487 0.342585i \(-0.111302\pi\)
−0.342585 + 0.939487i \(0.611302\pi\)
\(434\) 30.3825 1.45841
\(435\) 0 0
\(436\) 3.73448 3.73448i 0.178849 0.178849i
\(437\) −1.49077 + 5.56363i −0.0713132 + 0.266145i
\(438\) −23.5047 −1.12310
\(439\) 3.38942 12.6495i 0.161768 0.603727i −0.836662 0.547719i \(-0.815496\pi\)
0.998430 0.0560075i \(-0.0178371\pi\)
\(440\) 0 0
\(441\) 38.1793 + 66.1285i 1.81806 + 3.14898i
\(442\) −0.869627 + 1.50624i −0.0413639 + 0.0716444i
\(443\) 0.485132 0.485132i 0.0230493 0.0230493i −0.695488 0.718538i \(-0.744812\pi\)
0.718538 + 0.695488i \(0.244812\pi\)
\(444\) −6.98157 + 3.75907i −0.331331 + 0.178398i
\(445\) 0 0
\(446\) 2.14359 + 7.99997i 0.101502 + 0.378810i
\(447\) 9.29532 34.6906i 0.439653 1.64081i
\(448\) −23.3241 6.24967i −1.10196 0.295269i
\(449\) 14.3950 + 3.85712i 0.679341 + 0.182029i 0.581959 0.813218i \(-0.302286\pi\)
0.0973822 + 0.995247i \(0.468953\pi\)
\(450\) 0 0
\(451\) −8.15516 14.1252i −0.384012 0.665128i
\(452\) −3.27952 −0.154256
\(453\) 8.52449 2.28413i 0.400515 0.107318i
\(454\) 18.3587i 0.861618i
\(455\) 0 0
\(456\) −15.7417 + 27.2655i −0.737174 + 1.27682i
\(457\) 9.41987 + 16.3157i 0.440643 + 0.763216i 0.997737 0.0672332i \(-0.0214171\pi\)
−0.557094 + 0.830449i \(0.688084\pi\)
\(458\) −18.2158 −0.851171
\(459\) 40.5720 10.8712i 1.89374 0.507425i
\(460\) 0 0
\(461\) 12.4218 3.32842i 0.578542 0.155020i 0.0423309 0.999104i \(-0.486522\pi\)
0.536211 + 0.844084i \(0.319855\pi\)
\(462\) −39.1031 + 22.5762i −1.81924 + 1.05034i
\(463\) 32.9086 18.9998i 1.52939 0.882996i 0.530007 0.847993i \(-0.322189\pi\)
0.999387 0.0350030i \(-0.0111441\pi\)
\(464\) 11.6265 3.11531i 0.539747 0.144625i
\(465\) 0 0
\(466\) 33.0458 8.85459i 1.53082 0.410181i
\(467\) −24.7489 −1.14524 −0.572622 0.819820i \(-0.694074\pi\)
−0.572622 + 0.819820i \(0.694074\pi\)
\(468\) −0.553256 0.958267i −0.0255743 0.0442959i
\(469\) 22.8507 39.5786i 1.05515 1.82757i
\(470\) 0 0
\(471\) 23.0920i 1.06402i
\(472\) 21.5249 5.76758i 0.990764 0.265474i
\(473\) 1.00189 0.0460671
\(474\) −23.5104 40.7212i −1.07987 1.87039i
\(475\) 0 0
\(476\) −4.92609 1.31994i −0.225787 0.0604994i
\(477\) 1.35313 + 0.362570i 0.0619556 + 0.0166009i
\(478\) 6.32092 23.5900i 0.289112 1.07898i
\(479\) 6.64188 + 24.7878i 0.303475 + 1.13259i 0.934250 + 0.356619i \(0.116071\pi\)
−0.630775 + 0.775966i \(0.717263\pi\)
\(480\) 0 0
\(481\) 1.55201 + 1.64700i 0.0707656 + 0.0750965i
\(482\) −10.6665 + 10.6665i −0.485845 + 0.485845i
\(483\) −9.75520 + 16.8965i −0.443877 + 0.768818i
\(484\) 1.27522 + 2.20874i 0.0579644 + 0.100397i
\(485\) 0 0
\(486\) −12.6335 + 47.1490i −0.573069 + 2.13872i
\(487\) −21.8694 −0.990998 −0.495499 0.868608i \(-0.665015\pi\)
−0.495499 + 0.868608i \(0.665015\pi\)
\(488\) 0.465024 1.73549i 0.0210506 0.0785621i
\(489\) 0.369082 0.369082i 0.0166905 0.0166905i
\(490\) 0 0
\(491\) −13.2615 −0.598483 −0.299242 0.954177i \(-0.596734\pi\)
−0.299242 + 0.954177i \(0.596734\pi\)
\(492\) 6.92718 + 6.92718i 0.312301 + 0.312301i
\(493\) −7.54203 + 2.02088i −0.339676 + 0.0910159i
\(494\) −2.20719 0.591416i −0.0993063 0.0266091i
\(495\) 0 0
\(496\) 5.64602 + 21.0712i 0.253514 + 0.946127i
\(497\) 1.03633 + 3.86762i 0.0464856 + 0.173487i
\(498\) −43.7829 25.2780i −1.96196 1.13274i
\(499\) −9.23613 + 34.4697i −0.413466 + 1.54308i 0.374422 + 0.927258i \(0.377841\pi\)
−0.787888 + 0.615818i \(0.788826\pi\)
\(500\) 0 0
\(501\) −11.5101 42.9562i −0.514233 1.91914i
\(502\) 45.1699 12.1032i 2.01603 0.540194i
\(503\) 23.3272 + 13.4680i 1.04011 + 0.600508i 0.919865 0.392236i \(-0.128298\pi\)
0.120246 + 0.992744i \(0.461632\pi\)
\(504\) −53.5185 + 53.5185i −2.38391 + 2.38391i
\(505\) 0 0
\(506\) −4.23999 2.44796i −0.188491 0.108825i
\(507\) 29.2367 29.2367i 1.29845 1.29845i
\(508\) 2.88055 2.88055i 0.127804 0.127804i
\(509\) −3.92018 + 6.78995i −0.173759 + 0.300959i −0.939731 0.341914i \(-0.888925\pi\)
0.765972 + 0.642874i \(0.222258\pi\)
\(510\) 0 0
\(511\) −17.0349 + 9.83511i −0.753580 + 0.435080i
\(512\) 12.4781i 0.551461i
\(513\) 27.5922 + 47.7910i 1.21822 + 2.11003i
\(514\) −7.83146 + 4.52150i −0.345431 + 0.199435i
\(515\) 0 0
\(516\) −0.581264 + 0.155749i −0.0255887 + 0.00685648i
\(517\) −19.9545 19.9545i −0.877599 0.877599i
\(518\) −20.6856 + 33.4918i −0.908872 + 1.47155i
\(519\) 51.4569i 2.25871i
\(520\) 0 0
\(521\) 8.21305 4.74181i 0.359820 0.207742i −0.309182 0.951003i \(-0.600055\pi\)
0.669002 + 0.743261i \(0.266722\pi\)
\(522\) 7.62704 28.4645i 0.333827 1.24586i
\(523\) −16.4429 + 9.49329i −0.718996 + 0.415113i −0.814383 0.580328i \(-0.802924\pi\)
0.0953869 + 0.995440i \(0.469591\pi\)
\(524\) 4.21214 4.21214i 0.184008 0.184008i
\(525\) 0 0
\(526\) 22.0331 + 22.0331i 0.960691 + 0.960691i
\(527\) −3.66253 13.6688i −0.159542 0.595421i
\(528\) −22.9239 22.9239i −0.997635 0.997635i
\(529\) 20.8845 0.908020
\(530\) 0 0
\(531\) 17.1060 63.8405i 0.742338 2.77044i
\(532\) 6.70027i 0.290493i
\(533\) 1.39798 2.42137i 0.0605532 0.104881i
\(534\) 29.6072 + 17.0937i 1.28123 + 0.739717i
\(535\) 0 0
\(536\) 26.1635 + 7.01048i 1.13009 + 0.302807i
\(537\) 23.6571 + 40.9753i 1.02088 + 1.76821i
\(538\) 0.721732 1.25008i 0.0311161 0.0538946i
\(539\) −11.2971 + 19.5671i −0.486600 + 0.842816i
\(540\) 0 0
\(541\) 27.2508 + 27.2508i 1.17160 + 1.17160i 0.981828 + 0.189775i \(0.0607760\pi\)
0.189775 + 0.981828i \(0.439224\pi\)
\(542\) −19.2223 + 11.0980i −0.825668 + 0.476700i
\(543\) −19.1120 71.3268i −0.820173 3.06093i
\(544\) 6.81386i 0.292142i
\(545\) 0 0
\(546\) −6.70315 3.87006i −0.286868 0.165623i
\(547\) 35.5804i 1.52131i 0.649158 + 0.760653i \(0.275121\pi\)
−0.649158 + 0.760653i \(0.724879\pi\)
\(548\) −2.66085 0.712973i −0.113666 0.0304567i
\(549\) −3.76807 3.76807i −0.160817 0.160817i
\(550\) 0 0
\(551\) −5.12918 8.88401i −0.218511 0.378471i
\(552\) −11.1695 2.99285i −0.475404 0.127384i
\(553\) −34.0781 19.6750i −1.44915 0.836666i
\(554\) −5.88682 −0.250107
\(555\) 0 0
\(556\) −9.35173 −0.396602
\(557\) −38.3911 22.1651i −1.62668 0.939165i −0.985074 0.172132i \(-0.944934\pi\)
−0.641608 0.767033i \(-0.721732\pi\)
\(558\) 51.5875 + 13.8228i 2.18387 + 0.585167i
\(559\) 0.0858735 + 0.148737i 0.00363206 + 0.00629092i
\(560\) 0 0
\(561\) 14.8706 + 14.8706i 0.627836 + 0.627836i
\(562\) −7.62787 2.04388i −0.321762 0.0862160i
\(563\) 27.6526i 1.16542i −0.812680 0.582710i \(-0.801992\pi\)
0.812680 0.582710i \(-0.198008\pi\)
\(564\) 14.6790 + 8.47491i 0.618096 + 0.356858i
\(565\) 0 0
\(566\) 23.1415i 0.972709i
\(567\) 24.6164 + 91.8696i 1.03379 + 3.85816i
\(568\) −2.05520 + 1.18657i −0.0862341 + 0.0497873i
\(569\) −8.31252 8.31252i −0.348479 0.348479i 0.511064 0.859543i \(-0.329252\pi\)
−0.859543 + 0.511064i \(0.829252\pi\)
\(570\) 0 0
\(571\) −3.99555 + 6.92050i −0.167209 + 0.289614i −0.937437 0.348154i \(-0.886809\pi\)
0.770229 + 0.637768i \(0.220142\pi\)
\(572\) 0.163706 0.283547i 0.00684489 0.0118557i
\(573\) 15.1090 + 26.1695i 0.631186 + 1.09325i
\(574\) 46.9778 + 12.5877i 1.96081 + 0.525398i
\(575\) 0 0
\(576\) −36.7595 21.2231i −1.53164 0.884296i
\(577\) 8.77295 15.1952i 0.365223 0.632584i −0.623589 0.781752i \(-0.714326\pi\)
0.988812 + 0.149168i \(0.0476595\pi\)
\(578\) 12.2754i 0.510588i
\(579\) −11.2683 + 42.0538i −0.468294 + 1.74770i
\(580\) 0 0
\(581\) −42.3086 −1.75526
\(582\) 11.0349 + 11.0349i 0.457411 + 0.457411i
\(583\) 0.107283 + 0.400385i 0.00444320 + 0.0165823i
\(584\) −8.24359 8.24359i −0.341122 0.341122i
\(585\) 0 0
\(586\) 1.66025 1.66025i 0.0685844 0.0685844i
\(587\) −3.28916 + 1.89900i −0.135758 + 0.0783800i −0.566341 0.824171i \(-0.691641\pi\)
0.430583 + 0.902551i \(0.358308\pi\)
\(588\) 3.51238 13.1084i 0.144848 0.540580i
\(589\) 16.1009 9.29585i 0.663425 0.383029i
\(590\) 0 0
\(591\) 38.1003i 1.56724i
\(592\) −27.0717 8.12228i −1.11264 0.333824i
\(593\) 13.7978 + 13.7978i 0.566606 + 0.566606i 0.931176 0.364570i \(-0.118784\pi\)
−0.364570 + 0.931176i \(0.618784\pi\)
\(594\) −45.3085 + 12.1404i −1.85903 + 0.498126i
\(595\) 0 0
\(596\) −3.92311 + 2.26501i −0.160697 + 0.0927784i
\(597\) 17.0358 + 29.5069i 0.697229 + 1.20764i
\(598\) 0.839272i 0.0343204i
\(599\) −31.9153 + 18.4263i −1.30403 + 0.752879i −0.981092 0.193543i \(-0.938002\pi\)
−0.322933 + 0.946422i \(0.604669\pi\)
\(600\) 0 0
\(601\) −4.55733 + 7.89352i −0.185897 + 0.321983i −0.943878 0.330293i \(-0.892852\pi\)
0.757981 + 0.652276i \(0.226186\pi\)
\(602\) −2.11248 + 2.11248i −0.0860982 + 0.0860982i
\(603\) 56.8057 56.8057i 2.31331 2.31331i
\(604\) −0.964022 0.556578i −0.0392255 0.0226469i
\(605\) 0 0
\(606\) −0.375973 + 0.375973i −0.0152728 + 0.0152728i
\(607\) −13.0183 7.51612i −0.528396 0.305070i 0.211967 0.977277i \(-0.432013\pi\)
−0.740363 + 0.672207i \(0.765346\pi\)
\(608\) 8.64711 2.31699i 0.350687 0.0939662i
\(609\) −8.99344 33.5640i −0.364433 1.36008i
\(610\) 0 0
\(611\) 1.25205 4.67270i 0.0506524 0.189037i
\(612\) −7.76367 4.48235i −0.313828 0.181188i
\(613\) −2.40495 8.97541i −0.0971352 0.362513i 0.900199 0.435478i \(-0.143421\pi\)
−0.997335 + 0.0729646i \(0.976754\pi\)
\(614\) −11.9726 44.6823i −0.483174 1.80323i
\(615\) 0 0
\(616\) −21.6322 5.79634i −0.871588 0.233541i
\(617\) −14.0818 + 3.77320i −0.566911 + 0.151903i −0.530880 0.847447i \(-0.678138\pi\)
−0.0360316 + 0.999351i \(0.511472\pi\)
\(618\) −36.7111 36.7111i −1.47674 1.47674i
\(619\) −26.2648 −1.05567 −0.527837 0.849346i \(-0.676997\pi\)
−0.527837 + 0.849346i \(0.676997\pi\)
\(620\) 0 0
\(621\) −14.3320 + 14.3320i −0.575123 + 0.575123i
\(622\) 4.70625 17.5640i 0.188703 0.704251i
\(623\) 28.6102 1.14624
\(624\) 1.43836 5.36803i 0.0575805 0.214893i
\(625\) 0 0
\(626\) −5.00669 8.67185i −0.200108 0.346597i
\(627\) −13.8149 + 23.9280i −0.551712 + 0.955593i
\(628\) −2.05958 + 2.05958i −0.0821861 + 0.0821861i
\(629\) 17.5612 + 5.26886i 0.700212 + 0.210083i
\(630\) 0 0
\(631\) −5.87855 21.9390i −0.234021 0.873379i −0.978588 0.205831i \(-0.934010\pi\)
0.744566 0.667549i \(-0.232656\pi\)
\(632\) 6.03620 22.5274i 0.240107 0.896091i
\(633\) 45.5224 + 12.1977i 1.80935 + 0.484815i
\(634\) 33.2098 + 8.89855i 1.31893 + 0.353406i
\(635\) 0 0
\(636\) −0.124484 0.215612i −0.00493610 0.00854958i
\(637\) −3.87315 −0.153460
\(638\) 8.42252 2.25681i 0.333451 0.0893479i
\(639\) 7.03847i 0.278437i
\(640\) 0 0
\(641\) 14.2444 24.6721i 0.562622 0.974490i −0.434645 0.900602i \(-0.643126\pi\)
0.997267 0.0738875i \(-0.0235406\pi\)
\(642\) 17.8861 + 30.9796i 0.705907 + 1.22267i
\(643\) −31.7473 −1.25199 −0.625996 0.779826i \(-0.715307\pi\)
−0.625996 + 0.779826i \(0.715307\pi\)
\(644\) 2.37707 0.636934i 0.0936697 0.0250987i
\(645\) 0 0
\(646\) −17.8822 + 4.79152i −0.703565 + 0.188520i
\(647\) 20.3945 11.7748i 0.801792 0.462915i −0.0423052 0.999105i \(-0.513470\pi\)
0.844097 + 0.536190i \(0.180137\pi\)
\(648\) −48.8181 + 28.1852i −1.91776 + 1.10722i
\(649\) 18.8901 5.06159i 0.741502 0.198685i
\(650\) 0 0
\(651\) 60.8295 16.2992i 2.38410 0.638817i
\(652\) −0.0658370 −0.00257838
\(653\) −17.9724 31.1291i −0.703315 1.21818i −0.967296 0.253649i \(-0.918369\pi\)
0.263982 0.964528i \(-0.414964\pi\)
\(654\) 32.4702 56.2400i 1.26969 2.19916i
\(655\) 0 0
\(656\) 34.9198i 1.36339i
\(657\) −33.3988 + 8.94918i −1.30301 + 0.349141i
\(658\) 84.1477 3.28042
\(659\) 15.7744 + 27.3220i 0.614483 + 1.06432i 0.990475 + 0.137692i \(0.0439685\pi\)
−0.375992 + 0.926623i \(0.622698\pi\)
\(660\) 0 0
\(661\) −25.7696 6.90493i −1.00232 0.268571i −0.279903 0.960028i \(-0.590302\pi\)
−0.722417 + 0.691458i \(0.756969\pi\)
\(662\) −12.5249 3.35604i −0.486794 0.130436i
\(663\) −0.933054 + 3.48221i −0.0362368 + 0.135238i
\(664\) −6.49004 24.2211i −0.251862 0.939963i
\(665\) 0 0
\(666\) −50.3602 + 47.4559i −1.95142 + 1.83888i
\(667\) 2.66421 2.66421i 0.103159 0.103159i
\(668\) −2.80469 + 4.85786i −0.108517 + 0.187956i
\(669\) 8.58346 + 14.8670i 0.331856 + 0.574791i
\(670\) 0 0
\(671\) 0.408102 1.52306i 0.0157546 0.0587970i
\(672\) 30.3235 1.16975
\(673\) −4.72719 + 17.6421i −0.182220 + 0.680054i 0.812989 + 0.582279i \(0.197839\pi\)
−0.995209 + 0.0977743i \(0.968828\pi\)
\(674\) −8.87876 + 8.87876i −0.341997 + 0.341997i
\(675\) 0 0
\(676\) −5.21526 −0.200587
\(677\) −4.45728 4.45728i −0.171307 0.171307i 0.616246 0.787554i \(-0.288653\pi\)
−0.787554 + 0.616246i \(0.788653\pi\)
\(678\) −38.9515 + 10.4370i −1.49592 + 0.400831i
\(679\) 12.6148 + 3.38013i 0.484113 + 0.129718i
\(680\) 0 0
\(681\) 9.84887 + 36.7565i 0.377410 + 1.40851i
\(682\) 4.09011 + 15.2645i 0.156619 + 0.584508i
\(683\) 0.144126 + 0.0832112i 0.00551483 + 0.00318399i 0.502755 0.864429i \(-0.332320\pi\)
−0.497240 + 0.867613i \(0.665653\pi\)
\(684\) 3.04836 11.3766i 0.116557 0.434996i
\(685\) 0 0
\(686\) −5.71255 21.3195i −0.218106 0.813983i
\(687\) −36.4704 + 9.77222i −1.39143 + 0.372834i
\(688\) −1.85764 1.07251i −0.0708218 0.0408890i
\(689\) −0.0502443 + 0.0502443i −0.00191416 + 0.00191416i
\(690\) 0 0
\(691\) 4.32835 + 2.49897i 0.164658 + 0.0950654i 0.580065 0.814571i \(-0.303027\pi\)
−0.415407 + 0.909636i \(0.636361\pi\)
\(692\) −4.58945 + 4.58945i −0.174465 + 0.174465i
\(693\) −46.9675 + 46.9675i −1.78415 + 1.78415i
\(694\) −20.1834 + 34.9587i −0.766152 + 1.32701i
\(695\) 0 0
\(696\) 17.8354 10.2973i 0.676049 0.390317i
\(697\) 22.6522i 0.858014i
\(698\) −2.36055 4.08859i −0.0893481 0.154755i
\(699\) 61.4116 35.4560i 2.32280 1.34107i
\(700\) 0 0
\(701\) 16.1194 4.31919i 0.608822 0.163133i 0.0587810 0.998271i \(-0.481279\pi\)
0.550041 + 0.835137i \(0.314612\pi\)
\(702\) −5.68576 5.68576i −0.214595 0.214595i
\(703\) −0.714915 + 24.0776i −0.0269635 + 0.908105i
\(704\) 12.5596i 0.473359i
\(705\) 0 0
\(706\) 9.28231 5.35914i 0.349344 0.201694i
\(707\) −0.115166 + 0.429804i −0.00433125 + 0.0161644i
\(708\) −10.1726 + 5.87313i −0.382308 + 0.220726i
\(709\) −1.78823 + 1.78823i −0.0671583 + 0.0671583i −0.739888 0.672730i \(-0.765122\pi\)
0.672730 + 0.739888i \(0.265122\pi\)
\(710\) 0 0
\(711\) −48.9111 48.9111i −1.83431 1.83431i
\(712\) 4.38874 + 16.3790i 0.164475 + 0.613829i
\(713\) 4.82848 + 4.82848i 0.180828 + 0.180828i
\(714\) −62.7088 −2.34682
\(715\) 0 0
\(716\) 1.54461 5.76457i 0.0577249 0.215432i
\(717\) 50.6211i 1.89048i
\(718\) −10.3001 + 17.8403i −0.384397 + 0.665795i
\(719\) −37.0250 21.3764i −1.38080 0.797205i −0.388546 0.921429i \(-0.627022\pi\)
−0.992254 + 0.124224i \(0.960356\pi\)
\(720\) 0 0
\(721\) −41.9673 11.2451i −1.56294 0.418789i
\(722\) 2.57285 + 4.45631i 0.0957516 + 0.165847i
\(723\) −15.6334 + 27.0778i −0.581412 + 1.00704i
\(724\) −4.65705 + 8.06625i −0.173078 + 0.299780i
\(725\) 0 0
\(726\) 22.1753 + 22.1753i 0.823002 + 0.823002i
\(727\) 35.7427 20.6361i 1.32562 0.765349i 0.341004 0.940062i \(-0.389233\pi\)
0.984619 + 0.174713i \(0.0558998\pi\)
\(728\) −0.993623 3.70825i −0.0368261 0.137437i
\(729\) 32.7935i 1.21458i
\(730\) 0 0
\(731\) 1.20504 + 0.695728i 0.0445699 + 0.0257324i
\(732\) 0.947068i 0.0350046i
\(733\) 43.1692 + 11.5672i 1.59449 + 0.427243i 0.943373 0.331734i \(-0.107634\pi\)
0.651118 + 0.758976i \(0.274300\pi\)
\(734\) −22.0590 22.0590i −0.814214 0.814214i
\(735\) 0 0
\(736\) 1.64401 + 2.84750i 0.0605988 + 0.104960i
\(737\) 22.9609 + 6.15236i 0.845776 + 0.226625i
\(738\) 74.0384 + 42.7461i 2.72539 + 1.57350i
\(739\) 19.7035 0.724803 0.362402 0.932022i \(-0.381957\pi\)
0.362402 + 0.932022i \(0.381957\pi\)
\(740\) 0 0
\(741\) −4.73636 −0.173994
\(742\) −1.07041 0.618002i −0.0392960 0.0226876i
\(743\) 0.540326 + 0.144780i 0.0198226 + 0.00531146i 0.268717 0.963219i \(-0.413400\pi\)
−0.248894 + 0.968531i \(0.580067\pi\)
\(744\) 18.6622 + 32.3239i 0.684190 + 1.18505i
\(745\) 0 0
\(746\) −1.14986 1.14986i −0.0420993 0.0420993i
\(747\) −71.8373 19.2487i −2.62839 0.704275i
\(748\) 2.65262i 0.0969893i
\(749\) 25.9257 + 14.9682i 0.947305 + 0.546927i
\(750\) 0 0
\(751\) 13.6763i 0.499056i −0.968368 0.249528i \(-0.919725\pi\)
0.968368 0.249528i \(-0.0802755\pi\)
\(752\) 15.6373 + 58.3592i 0.570233 + 2.12814i
\(753\) 83.9428 48.4644i 3.05905 1.76614i
\(754\) 1.05694 + 1.05694i 0.0384916 + 0.0384916i
\(755\) 0 0
\(756\) 11.7888 20.4188i 0.428754 0.742624i
\(757\) −15.0578 + 26.0809i −0.547285 + 0.947926i 0.451174 + 0.892436i \(0.351005\pi\)
−0.998459 + 0.0554901i \(0.982328\pi\)
\(758\) 12.0618 + 20.8916i 0.438104 + 0.758818i
\(759\) −9.80226 2.62651i −0.355799 0.0953362i
\(760\) 0 0
\(761\) −25.1569 14.5244i −0.911938 0.526507i −0.0308836 0.999523i \(-0.509832\pi\)
−0.881054 + 0.473015i \(0.843165\pi\)
\(762\) 25.0455 43.3801i 0.907304 1.57150i
\(763\) 54.3463i 1.96747i
\(764\) 0.986490 3.68163i 0.0356899 0.133197i
\(765\) 0 0
\(766\) 6.57692 0.237634
\(767\) 2.37052 + 2.37052i 0.0855946 + 0.0855946i
\(768\) 7.78692 + 29.0612i 0.280986 + 1.04865i
\(769\) 8.36905 + 8.36905i 0.301796 + 0.301796i 0.841716 0.539920i \(-0.181546\pi\)
−0.539920 + 0.841716i \(0.681546\pi\)
\(770\) 0 0
\(771\) −13.2539 + 13.2539i −0.477329 + 0.477329i
\(772\) 4.75581 2.74577i 0.171165 0.0988223i
\(773\) 3.12135 11.6490i 0.112267 0.418987i −0.886801 0.462152i \(-0.847077\pi\)
0.999068 + 0.0431651i \(0.0137442\pi\)
\(774\) −4.54795 + 2.62576i −0.163473 + 0.0943810i
\(775\) 0 0
\(776\) 7.74034i 0.277862i
\(777\) −23.4478 + 78.1520i −0.841186 + 2.80369i
\(778\) −16.7311 16.7311i −0.599838 0.599838i
\(779\) 28.7467 7.70266i 1.02996 0.275976i
\(780\) 0 0
\(781\) −1.80363 + 1.04133i −0.0645389 + 0.0372615i
\(782\) −3.39980 5.88862i −0.121576 0.210577i
\(783\) 36.0982i 1.29004i
\(784\) 41.8925 24.1866i 1.49616 0.863809i
\(785\) 0 0
\(786\) 36.6234 63.4335i 1.30631 2.26260i
\(787\) −25.9763 + 25.9763i −0.925955 + 0.925955i −0.997442 0.0714865i \(-0.977226\pi\)
0.0714865 + 0.997442i \(0.477226\pi\)
\(788\) 3.39817 3.39817i 0.121055 0.121055i
\(789\) 55.9332 + 32.2931i 1.99128 + 1.14966i
\(790\) 0 0
\(791\) −23.8627 + 23.8627i −0.848461 + 0.848461i
\(792\) −34.0931 19.6836i −1.21144 0.699428i
\(793\) 0.261087 0.0699579i 0.00927145 0.00248428i
\(794\) 3.43472 + 12.8185i 0.121894 + 0.454913i
\(795\) 0 0
\(796\) 1.11230 4.15115i 0.0394243 0.147134i
\(797\) −23.6455 13.6517i −0.837566 0.483569i 0.0188700 0.999822i \(-0.493993\pi\)
−0.856436 + 0.516253i \(0.827326\pi\)
\(798\) −21.3235 79.5804i −0.754843 2.81711i
\(799\) −10.1438 37.8572i −0.358862 1.33929i
\(800\) 0 0
\(801\) 48.5783 + 13.0165i 1.71643 + 0.459916i
\(802\) 18.3191 4.90858i 0.646869 0.173328i
\(803\) −7.23453 7.23453i −0.255301 0.255301i
\(804\) −14.2776 −0.503531
\(805\) 0 0
\(806\) −1.91554 + 1.91554i −0.0674722 + 0.0674722i
\(807\) 0.774372 2.89000i 0.0272592 0.101733i
\(808\) −0.263723 −0.00927776
\(809\) −2.23198 + 8.32987i −0.0784723 + 0.292863i −0.993998 0.109396i \(-0.965108\pi\)
0.915526 + 0.402259i \(0.131775\pi\)
\(810\) 0 0
\(811\) 5.24640 + 9.08703i 0.184226 + 0.319089i 0.943315 0.331898i \(-0.107689\pi\)
−0.759089 + 0.650986i \(0.774356\pi\)
\(812\) −2.19145 + 3.79570i −0.0769049 + 0.133203i
\(813\) −32.5317 + 32.5317i −1.14094 + 1.14094i
\(814\) −19.6114 5.88397i −0.687379 0.206233i
\(815\) 0 0
\(816\) −11.6533 43.4906i −0.407946 1.52248i
\(817\) −0.473151 + 1.76582i −0.0165534 + 0.0617783i
\(818\) 6.51661 + 1.74612i 0.227848 + 0.0610516i
\(819\) −10.9983 2.94698i −0.384311 0.102976i
\(820\) 0 0
\(821\) −11.4849 19.8924i −0.400824 0.694248i 0.593001 0.805202i \(-0.297943\pi\)
−0.993826 + 0.110953i \(0.964610\pi\)
\(822\) −33.8725 −1.18144
\(823\) 52.8840 14.1702i 1.84342 0.493943i 0.844299 0.535873i \(-0.180017\pi\)
0.999121 + 0.0419300i \(0.0133506\pi\)
\(824\) 25.7507i 0.897069i
\(825\) 0 0
\(826\) −29.1573 + 50.5019i −1.01451 + 1.75718i
\(827\) 7.34082 + 12.7147i 0.255265 + 0.442133i 0.964968 0.262369i \(-0.0845038\pi\)
−0.709702 + 0.704502i \(0.751170\pi\)
\(828\) 4.32589 0.150335
\(829\) −20.7635 + 5.56356i −0.721146 + 0.193231i −0.600683 0.799487i \(-0.705105\pi\)
−0.120463 + 0.992718i \(0.538438\pi\)
\(830\) 0 0
\(831\) −11.7862 + 3.15809i −0.408857 + 0.109553i
\(832\) 1.86456 1.07650i 0.0646419 0.0373210i
\(833\) −27.1754 + 15.6897i −0.941570 + 0.543616i
\(834\) −111.072 + 29.7617i −3.84612 + 1.03056i
\(835\) 0 0
\(836\) 3.36629 0.901996i 0.116426 0.0311962i
\(837\) 65.4224 2.26133
\(838\) 1.93275 + 3.34762i 0.0667656 + 0.115641i
\(839\) 10.8636 18.8162i 0.375052 0.649609i −0.615283 0.788306i \(-0.710958\pi\)
0.990335 + 0.138697i \(0.0442916\pi\)
\(840\) 0 0
\(841\) 22.2896i 0.768607i
\(842\) 28.6156 7.66752i 0.986158 0.264240i
\(843\) −16.3684 −0.563759
\(844\) −2.97224 5.14807i −0.102309 0.177204i
\(845\) 0 0
\(846\) 142.877 + 38.2839i 4.91223 + 1.31623i
\(847\) 25.3503 + 6.79259i 0.871046 + 0.233396i
\(848\) 0.229689 0.857209i 0.00788754 0.0294367i
\(849\) −12.4147 46.3321i −0.426070 1.59012i
\(850\) 0 0
\(851\) −8.61004 + 2.03521i −0.295148 + 0.0697661i
\(852\) 0.884525 0.884525i 0.0303033 0.0303033i
\(853\) 22.5236 39.0120i 0.771194 1.33575i −0.165715 0.986174i \(-0.552993\pi\)
0.936909 0.349573i \(-0.113673\pi\)
\(854\) 2.35087 + 4.07182i 0.0804451 + 0.139335i
\(855\) 0 0
\(856\) −4.59218 + 17.1382i −0.156957 + 0.585773i
\(857\) 30.2373 1.03289 0.516444 0.856321i \(-0.327256\pi\)
0.516444 + 0.856321i \(0.327256\pi\)
\(858\) 1.04198 3.88873i 0.0355727 0.132759i
\(859\) −4.95333 + 4.95333i −0.169005 + 0.169005i −0.786542 0.617537i \(-0.788131\pi\)
0.617537 + 0.786542i \(0.288131\pi\)
\(860\) 0 0
\(861\) 100.808 3.43554
\(862\) −29.4124 29.4124i −1.00179 1.00179i
\(863\) −7.55800 + 2.02516i −0.257277 + 0.0689372i −0.385152 0.922853i \(-0.625851\pi\)
0.127875 + 0.991790i \(0.459184\pi\)
\(864\) 30.4283 + 8.15325i 1.03519 + 0.277379i
\(865\) 0 0
\(866\) −7.05116 26.3153i −0.239608 0.894229i
\(867\) −6.58534 24.5768i −0.223650 0.834672i
\(868\) −6.87913 3.97166i −0.233493 0.134807i
\(869\) 5.29733 19.7699i 0.179700 0.670648i
\(870\) 0 0
\(871\) 1.05465 + 3.93602i 0.0357356 + 0.133367i
\(872\) 31.1126 8.33659i 1.05360 0.282313i
\(873\) 19.8814 + 11.4785i 0.672882 + 0.388489i
\(874\) 6.31686 6.31686i 0.213671 0.213671i
\(875\) 0 0
\(876\) 5.32187 + 3.07258i 0.179809 + 0.103813i
\(877\) −28.3951 + 28.3951i −0.958835 + 0.958835i −0.999186 0.0403503i \(-0.987153\pi\)
0.0403503 + 0.999186i \(0.487153\pi\)
\(878\) −14.3620 + 14.3620i −0.484695 + 0.484695i
\(879\) 2.43336 4.21471i 0.0820753 0.142159i
\(880\) 0 0
\(881\) 47.4583 27.4000i 1.59891 0.923131i 0.607211 0.794540i \(-0.292288\pi\)
0.991698 0.128590i \(-0.0410452\pi\)
\(882\) 118.430i 3.98773i
\(883\) 6.73321 + 11.6623i 0.226591 + 0.392467i 0.956795 0.290762i \(-0.0939087\pi\)
−0.730205 + 0.683228i \(0.760575\pi\)
\(884\) 0.393798 0.227359i 0.0132448 0.00764692i
\(885\) 0 0
\(886\) −1.02783 + 0.275406i −0.0345306 + 0.00925245i
\(887\) 21.5186 + 21.5186i 0.722524 + 0.722524i 0.969119 0.246594i \(-0.0793115\pi\)
−0.246594 + 0.969119i \(0.579312\pi\)
\(888\) −48.3379 1.43525i −1.62211 0.0481640i
\(889\) 41.9194i 1.40593i
\(890\) 0 0
\(891\) −42.8425 + 24.7351i −1.43528 + 0.828658i
\(892\) 0.560429 2.09155i 0.0187645 0.0700302i
\(893\) 44.5932 25.7459i 1.49226 0.861554i
\(894\) −39.3872 + 39.3872i −1.31730 + 1.31730i
\(895\) 0 0
\(896\) 39.8215 + 39.8215i 1.33034 + 1.33034i
\(897\) −0.450243 1.68033i −0.0150332 0.0561045i
\(898\) −16.3438 16.3438i −0.545401 0.545401i
\(899\) −12.1615 −0.405610
\(900\) 0 0
\(901\) −0.148997 + 0.556066i −0.00496382 + 0.0185252i
\(902\) 25.2967i 0.842289i
\(903\) −3.09617 + 5.36272i −0.103034 + 0.178460i
\(904\) −17.3216 10.0006i −0.576108 0.332616i
\(905\) 0 0
\(906\) −13.2212 3.54260i −0.439244 0.117695i
\(907\) −25.7359 44.5758i −0.854545 1.48012i −0.877067 0.480369i \(-0.840503\pi\)
0.0225216 0.999746i \(-0.492831\pi\)
\(908\) 2.39989 4.15674i 0.0796433 0.137946i
\(909\) −0.391088 + 0.677384i −0.0129716 + 0.0224674i
\(910\) 0 0
\(911\) −30.2208 30.2208i −1.00126 1.00126i −0.999999 0.00125893i \(-0.999599\pi\)
−0.00125893 0.999999i \(-0.500401\pi\)
\(912\) 51.2290 29.5771i 1.69636 0.979395i
\(913\) −5.69562 21.2563i −0.188497 0.703482i
\(914\) 29.2198i 0.966504i
\(915\) 0 0
\(916\) 4.12439 + 2.38122i 0.136274 + 0.0786776i
\(917\) 61.2975i 2.02422i
\(918\) −62.9257 16.8609i −2.07686 0.556492i
\(919\) −22.2439 22.2439i −0.733760 0.733760i 0.237603 0.971362i \(-0.423638\pi\)
−0.971362 + 0.237603i \(0.923638\pi\)
\(920\) 0 0
\(921\) −47.9412 83.0367i −1.57972 2.73615i
\(922\) −19.2658 5.16226i −0.634486 0.170010i
\(923\) −0.309183 0.178507i −0.0101769 0.00587562i
\(924\) 11.8048 0.388350
\(925\) 0 0
\(926\) −58.9361 −1.93676
\(927\) −66.1417 38.1869i −2.17238 1.25422i
\(928\) −5.65641 1.51563i −0.185681 0.0497530i
\(929\) −17.4258 30.1824i −0.571723 0.990253i −0.996389 0.0849029i \(-0.972942\pi\)
0.424667 0.905350i \(-0.360391\pi\)
\(930\) 0 0
\(931\) −29.1517 29.1517i −0.955407 0.955407i
\(932\) −8.63964 2.31498i −0.283001 0.0758298i
\(933\) 37.6900i 1.23392i
\(934\) 33.2421 + 19.1924i 1.08772 + 0.627993i
\(935\) 0 0
\(936\) 6.74844i 0.220580i
\(937\) −11.4806 42.8463i −0.375056 1.39973i −0.853263 0.521481i \(-0.825380\pi\)
0.478207 0.878247i \(-0.341287\pi\)
\(938\) −61.3849 + 35.4406i −2.00429 + 1.15718i
\(939\) −14.6762 14.6762i −0.478940 0.478940i
\(940\) 0 0
\(941\) 11.4650 19.8579i 0.373748 0.647350i −0.616391 0.787440i \(-0.711406\pi\)
0.990139 + 0.140090i \(0.0447392\pi\)
\(942\) −17.9074 + 31.0166i −0.583456 + 1.01057i
\(943\) 5.46538 + 9.46632i 0.177977 + 0.308266i
\(944\) −40.4430 10.8367i −1.31631 0.352704i
\(945\) 0 0
\(946\) −1.34572 0.776950i −0.0437530 0.0252608i
\(947\) 11.0634 19.1624i 0.359512 0.622693i −0.628367 0.777917i \(-0.716276\pi\)
0.987879 + 0.155224i \(0.0496098\pi\)
\(948\) 12.2933i 0.399269i
\(949\) 0.453931 1.69409i 0.0147352 0.0549925i
\(950\) 0 0
\(951\) 71.2641 2.31090
\(952\) −21.9933 21.9933i −0.712808 0.712808i
\(953\) 2.76692 + 10.3263i 0.0896293 + 0.334501i 0.996151 0.0876591i \(-0.0279386\pi\)
−0.906521 + 0.422160i \(0.861272\pi\)
\(954\) −1.53632 1.53632i −0.0497403 0.0497403i
\(955\) 0 0
\(956\) −4.51491 + 4.51491i −0.146023 + 0.146023i
\(957\) 15.6522 9.03683i 0.505965 0.292119i
\(958\) 10.3013 38.4451i 0.332821 1.24210i
\(959\) −24.5489 + 14.1733i −0.792726 + 0.457680i
\(960\) 0 0
\(961\) 8.95909i 0.289003i
\(962\) −0.807405 3.41576i −0.0260318 0.110128i
\(963\) 37.2103 + 37.2103i 1.19908 + 1.19908i
\(964\) 3.80942 1.02073i 0.122693 0.0328756i
\(965\) 0 0
\(966\) 26.2059 15.1300i 0.843160 0.486799i
\(967\) 12.0951 + 20.9493i 0.388951 + 0.673684i 0.992309 0.123787i \(-0.0395041\pi\)
−0.603357 + 0.797471i \(0.706171\pi\)
\(968\) 15.5547i 0.499947i
\(969\) −33.2319 + 19.1864i −1.06756 + 0.616357i
\(970\) 0 0
\(971\) −3.56909 + 6.18184i −0.114537 + 0.198385i −0.917595 0.397517i \(-0.869872\pi\)
0.803057 + 0.595902i \(0.203205\pi\)
\(972\) 9.02388 9.02388i 0.289441 0.289441i
\(973\) −68.0459 + 68.0459i −2.18145 + 2.18145i
\(974\) 29.3745 + 16.9594i 0.941218 + 0.543413i
\(975\) 0 0
\(976\) −2.38708 + 2.38708i −0.0764085 + 0.0764085i
\(977\) 42.1852 + 24.3556i 1.34962 + 0.779205i 0.988196 0.153195i \(-0.0489562\pi\)
0.361427 + 0.932400i \(0.382290\pi\)
\(978\) −0.781959 + 0.209525i −0.0250043 + 0.00669988i
\(979\) 3.85153 + 14.3741i 0.123096 + 0.459399i
\(980\) 0 0
\(981\) 24.7254 92.2765i 0.789422 2.94616i
\(982\) 17.8125 + 10.2841i 0.568420 + 0.328178i
\(983\) 2.11914 + 7.90875i 0.0675902 + 0.252250i 0.991451 0.130478i \(-0.0416512\pi\)
−0.923861 + 0.382728i \(0.874985\pi\)
\(984\) 15.4638 + 57.7115i 0.492966 + 1.83978i
\(985\) 0 0
\(986\) 11.6974 + 3.13432i 0.372522 + 0.0998169i
\(987\) 168.474 45.1425i 5.36260 1.43690i
\(988\) 0.422436 + 0.422436i 0.0134395 + 0.0134395i
\(989\) −0.671443 −0.0213507
\(990\) 0 0
\(991\) 36.8837 36.8837i 1.17165 1.17165i 0.189834 0.981816i \(-0.439205\pi\)
0.981816 0.189834i \(-0.0607948\pi\)
\(992\) 2.74684 10.2514i 0.0872124 0.325481i
\(993\) −26.8768 −0.852910
\(994\) 1.60731 5.99855i 0.0509806 0.190262i
\(995\) 0 0
\(996\) 6.60881 + 11.4468i 0.209408 + 0.362705i
\(997\) −17.4612 + 30.2437i −0.553002 + 0.957828i 0.445054 + 0.895504i \(0.353184\pi\)
−0.998056 + 0.0623238i \(0.980149\pi\)
\(998\) 39.1364 39.1364i 1.23884 1.23884i
\(999\) −44.5421 + 72.1177i −1.40925 + 2.28170i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 925.2.y.b.393.4 68
5.2 odd 4 925.2.t.b.282.14 68
5.3 odd 4 185.2.p.a.97.4 68
5.4 even 2 185.2.u.a.23.14 yes 68
37.29 odd 12 925.2.t.b.843.14 68
185.29 odd 12 185.2.p.a.103.4 yes 68
185.103 even 12 185.2.u.a.177.14 yes 68
185.177 even 12 inner 925.2.y.b.732.4 68
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
185.2.p.a.97.4 68 5.3 odd 4
185.2.p.a.103.4 yes 68 185.29 odd 12
185.2.u.a.23.14 yes 68 5.4 even 2
185.2.u.a.177.14 yes 68 185.103 even 12
925.2.t.b.282.14 68 5.2 odd 4
925.2.t.b.843.14 68 37.29 odd 12
925.2.y.b.393.4 68 1.1 even 1 trivial
925.2.y.b.732.4 68 185.177 even 12 inner