Properties

Label 925.2.t.b.843.14
Level $925$
Weight $2$
Character 925.843
Analytic conductor $7.386$
Analytic rank $0$
Dimension $68$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [925,2,Mod(82,925)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(925, base_ring=CyclotomicField(12)) chi = DirichletCharacter(H, H._module([3, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("925.82"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 925 = 5^{2} \cdot 37 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 925.t (of order \(12\), degree \(4\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [68] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.38616218697\)
Analytic rank: \(0\)
Dimension: \(68\)
Relative dimension: \(17\) over \(\Q(\zeta_{12})\)
Twist minimal: no (minimal twist has level 185)
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 843.14
Character \(\chi\) \(=\) 925.843
Dual form 925.2.t.b.282.14

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.775482 + 1.34317i) q^{2} +(-0.832043 - 3.10523i) q^{3} +(-0.202746 + 0.351166i) q^{4} +(3.52563 - 3.52563i) q^{6} +(-1.07995 - 4.03042i) q^{7} +2.47303 q^{8} +(-6.35206 + 3.66736i) q^{9} -2.17031i q^{11} +(1.25914 + 0.337386i) q^{12} +(0.186020 - 0.322197i) q^{13} +(4.57608 - 4.57608i) q^{14} +(2.32328 + 4.02404i) q^{16} +(-2.61037 + 1.50709i) q^{17} +(-9.85182 - 5.68795i) q^{18} +(3.82515 - 1.02494i) q^{19} +(-11.6168 + 6.70696i) q^{21} +(2.91511 - 1.68304i) q^{22} -1.45449 q^{23} +(-2.05766 - 7.67931i) q^{24} +0.577022 q^{26} +(9.85364 + 9.85364i) q^{27} +(1.63430 + 0.437909i) q^{28} +(-1.83172 + 1.83172i) q^{29} +(-3.31971 - 3.31971i) q^{31} +(-1.13030 + 1.95773i) q^{32} +(-6.73931 + 1.80579i) q^{33} +(-4.04858 - 2.33745i) q^{34} -2.97417i q^{36} +(5.91963 + 1.39926i) q^{37} +(4.34301 + 4.34301i) q^{38} +(-1.15527 - 0.309554i) q^{39} +(-6.50835 - 3.75760i) q^{41} +(-18.0172 - 10.4023i) q^{42} -0.461635 q^{43} +(0.762140 + 0.440021i) q^{44} +(-1.12793 - 1.95363i) q^{46} +(-9.19431 + 9.19431i) q^{47} +(10.5625 - 10.5625i) q^{48} +(-9.01581 + 5.20528i) q^{49} +(6.85181 + 6.85181i) q^{51} +(0.0754296 + 0.130648i) q^{52} +(-0.0494320 + 0.184483i) q^{53} +(-5.59384 + 20.8765i) q^{54} +(-2.67074 - 9.96733i) q^{56} +(-6.36537 - 11.0251i) q^{57} +(-3.88079 - 1.03985i) q^{58} +(2.33219 - 8.70387i) q^{59} +(-0.701769 + 0.188038i) q^{61} +(1.88457 - 7.03332i) q^{62} +(21.6409 + 21.6409i) q^{63} +5.78701 q^{64} +(-7.65172 - 7.65172i) q^{66} +(10.5795 - 2.83478i) q^{67} -1.22223i q^{68} +(1.21020 + 4.51652i) q^{69} +(0.479804 - 0.831045i) q^{71} +(-15.7088 + 9.06949i) q^{72} +(3.33340 - 3.33340i) q^{73} +(2.71112 + 9.03621i) q^{74} +(-0.415606 + 1.55106i) q^{76} +(-8.74727 + 2.34382i) q^{77} +(-0.480107 - 1.79178i) q^{78} +(9.10924 - 2.44081i) q^{79} +(11.3970 - 19.7402i) q^{81} -11.6558i q^{82} +(2.62433 - 9.79413i) q^{83} -5.43923i q^{84} +(-0.357990 - 0.620057i) q^{86} +(7.21197 + 4.16383i) q^{87} -5.36724i q^{88} +(-6.62306 - 1.77464i) q^{89} +(-1.49948 - 0.401784i) q^{91} +(0.294891 - 0.510766i) q^{92} +(-7.54630 + 13.0706i) q^{93} +(-19.4796 - 5.21954i) q^{94} +(7.01966 + 1.88091i) q^{96} -3.12991i q^{97} +(-13.9832 - 8.07320i) q^{98} +(7.95933 + 13.7860i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 68 q + 4 q^{2} + 8 q^{3} - 30 q^{4} - 8 q^{6} + 2 q^{7} - 12 q^{8} - 14 q^{12} + 6 q^{13} - 26 q^{16} - 12 q^{17} - 18 q^{18} + 4 q^{19} - 12 q^{21} - 6 q^{22} + 12 q^{23} - 24 q^{26} + 68 q^{27} + 26 q^{28}+ \cdots + 32 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/925\mathbb{Z}\right)^\times\).

\(n\) \(76\) \(852\)
\(\chi(n)\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.775482 + 1.34317i 0.548349 + 0.949768i 0.998388 + 0.0567591i \(0.0180767\pi\)
−0.450039 + 0.893009i \(0.648590\pi\)
\(3\) −0.832043 3.10523i −0.480380 1.79280i −0.600019 0.799986i \(-0.704840\pi\)
0.119638 0.992818i \(-0.461826\pi\)
\(4\) −0.202746 + 0.351166i −0.101373 + 0.175583i
\(5\) 0 0
\(6\) 3.52563 3.52563i 1.43933 1.43933i
\(7\) −1.07995 4.03042i −0.408182 1.52335i −0.798111 0.602510i \(-0.794167\pi\)
0.389929 0.920845i \(-0.372499\pi\)
\(8\) 2.47303 0.874347
\(9\) −6.35206 + 3.66736i −2.11735 + 1.22245i
\(10\) 0 0
\(11\) 2.17031i 0.654374i −0.944960 0.327187i \(-0.893899\pi\)
0.944960 0.327187i \(-0.106101\pi\)
\(12\) 1.25914 + 0.337386i 0.363483 + 0.0973950i
\(13\) 0.186020 0.322197i 0.0515928 0.0893613i −0.839076 0.544015i \(-0.816904\pi\)
0.890668 + 0.454653i \(0.150237\pi\)
\(14\) 4.57608 4.57608i 1.22301 1.22301i
\(15\) 0 0
\(16\) 2.32328 + 4.02404i 0.580820 + 1.00601i
\(17\) −2.61037 + 1.50709i −0.633107 + 0.365524i −0.781954 0.623336i \(-0.785777\pi\)
0.148848 + 0.988860i \(0.452444\pi\)
\(18\) −9.85182 5.68795i −2.32210 1.34066i
\(19\) 3.82515 1.02494i 0.877549 0.235138i 0.208200 0.978086i \(-0.433240\pi\)
0.669349 + 0.742948i \(0.266573\pi\)
\(20\) 0 0
\(21\) −11.6168 + 6.70696i −2.53499 + 1.46358i
\(22\) 2.91511 1.68304i 0.621504 0.358825i
\(23\) −1.45449 −0.303282 −0.151641 0.988436i \(-0.548456\pi\)
−0.151641 + 0.988436i \(0.548456\pi\)
\(24\) −2.05766 7.67931i −0.420019 1.56753i
\(25\) 0 0
\(26\) 0.577022 0.113163
\(27\) 9.85364 + 9.85364i 1.89633 + 1.89633i
\(28\) 1.63430 + 0.437909i 0.308854 + 0.0827571i
\(29\) −1.83172 + 1.83172i −0.340142 + 0.340142i −0.856421 0.516279i \(-0.827317\pi\)
0.516279 + 0.856421i \(0.327317\pi\)
\(30\) 0 0
\(31\) −3.31971 3.31971i −0.596237 0.596237i 0.343072 0.939309i \(-0.388532\pi\)
−0.939309 + 0.343072i \(0.888532\pi\)
\(32\) −1.13030 + 1.95773i −0.199810 + 0.346082i
\(33\) −6.73931 + 1.80579i −1.17316 + 0.314348i
\(34\) −4.04858 2.33745i −0.694326 0.400870i
\(35\) 0 0
\(36\) 2.97417i 0.495695i
\(37\) 5.91963 + 1.39926i 0.973182 + 0.230037i
\(38\) 4.34301 + 4.34301i 0.704530 + 0.704530i
\(39\) −1.15527 0.309554i −0.184991 0.0495683i
\(40\) 0 0
\(41\) −6.50835 3.75760i −1.01643 0.586838i −0.103365 0.994644i \(-0.532961\pi\)
−0.913069 + 0.407805i \(0.866294\pi\)
\(42\) −18.0172 10.4023i −2.78012 1.60510i
\(43\) −0.461635 −0.0703987 −0.0351994 0.999380i \(-0.511207\pi\)
−0.0351994 + 0.999380i \(0.511207\pi\)
\(44\) 0.762140 + 0.440021i 0.114897 + 0.0663357i
\(45\) 0 0
\(46\) −1.12793 1.95363i −0.166304 0.288047i
\(47\) −9.19431 + 9.19431i −1.34113 + 1.34113i −0.446188 + 0.894939i \(0.647219\pi\)
−0.894939 + 0.446188i \(0.852781\pi\)
\(48\) 10.5625 10.5625i 1.52456 1.52456i
\(49\) −9.01581 + 5.20528i −1.28797 + 0.743611i
\(50\) 0 0
\(51\) 6.85181 + 6.85181i 0.959445 + 0.959445i
\(52\) 0.0754296 + 0.130648i 0.0104602 + 0.0181176i
\(53\) −0.0494320 + 0.184483i −0.00679000 + 0.0253406i −0.969238 0.246126i \(-0.920842\pi\)
0.962448 + 0.271467i \(0.0875088\pi\)
\(54\) −5.59384 + 20.8765i −0.761225 + 2.84093i
\(55\) 0 0
\(56\) −2.67074 9.96733i −0.356892 1.33194i
\(57\) −6.36537 11.0251i −0.843114 1.46032i
\(58\) −3.88079 1.03985i −0.509572 0.136539i
\(59\) 2.33219 8.70387i 0.303626 1.13315i −0.630496 0.776192i \(-0.717148\pi\)
0.934122 0.356954i \(-0.116185\pi\)
\(60\) 0 0
\(61\) −0.701769 + 0.188038i −0.0898523 + 0.0240758i −0.303465 0.952843i \(-0.598144\pi\)
0.213613 + 0.976918i \(0.431477\pi\)
\(62\) 1.88457 7.03332i 0.239341 0.893233i
\(63\) 21.6409 + 21.6409i 2.72650 + 2.72650i
\(64\) 5.78701 0.723377
\(65\) 0 0
\(66\) −7.65172 7.65172i −0.941861 0.941861i
\(67\) 10.5795 2.83478i 1.29250 0.346323i 0.453888 0.891059i \(-0.350037\pi\)
0.838608 + 0.544735i \(0.183370\pi\)
\(68\) 1.22223i 0.148217i
\(69\) 1.21020 + 4.51652i 0.145691 + 0.543725i
\(70\) 0 0
\(71\) 0.479804 0.831045i 0.0569423 0.0986269i −0.836149 0.548502i \(-0.815198\pi\)
0.893091 + 0.449875i \(0.148532\pi\)
\(72\) −15.7088 + 9.06949i −1.85130 + 1.06885i
\(73\) 3.33340 3.33340i 0.390145 0.390145i −0.484594 0.874739i \(-0.661033\pi\)
0.874739 + 0.484594i \(0.161033\pi\)
\(74\) 2.71112 + 9.03621i 0.315161 + 1.05044i
\(75\) 0 0
\(76\) −0.415606 + 1.55106i −0.0476733 + 0.177919i
\(77\) −8.74727 + 2.34382i −0.996844 + 0.267104i
\(78\) −0.480107 1.79178i −0.0543614 0.202880i
\(79\) 9.10924 2.44081i 1.02487 0.274613i 0.293040 0.956100i \(-0.405333\pi\)
0.731830 + 0.681487i \(0.238667\pi\)
\(80\) 0 0
\(81\) 11.3970 19.7402i 1.26634 2.19336i
\(82\) 11.6558i 1.28717i
\(83\) 2.62433 9.79413i 0.288058 1.07505i −0.658518 0.752565i \(-0.728817\pi\)
0.946576 0.322481i \(-0.104517\pi\)
\(84\) 5.43923i 0.593469i
\(85\) 0 0
\(86\) −0.357990 0.620057i −0.0386030 0.0668624i
\(87\) 7.21197 + 4.16383i 0.773205 + 0.446410i
\(88\) 5.36724i 0.572150i
\(89\) −6.62306 1.77464i −0.702043 0.188112i −0.109897 0.993943i \(-0.535052\pi\)
−0.592145 + 0.805831i \(0.701719\pi\)
\(90\) 0 0
\(91\) −1.49948 0.401784i −0.157188 0.0421184i
\(92\) 0.294891 0.510766i 0.0307445 0.0532511i
\(93\) −7.54630 + 13.0706i −0.782515 + 1.35536i
\(94\) −19.4796 5.21954i −2.00917 0.538354i
\(95\) 0 0
\(96\) 7.01966 + 1.88091i 0.716441 + 0.191970i
\(97\) 3.12991i 0.317794i −0.987295 0.158897i \(-0.949206\pi\)
0.987295 0.158897i \(-0.0507938\pi\)
\(98\) −13.9832 8.07320i −1.41252 0.815517i
\(99\) 7.95933 + 13.7860i 0.799943 + 1.38554i
\(100\) 0 0
\(101\) 0.106640i 0.0106111i −0.999986 0.00530554i \(-0.998311\pi\)
0.999986 0.00530554i \(-0.00168881\pi\)
\(102\) −3.88972 + 14.5166i −0.385140 + 1.43736i
\(103\) 10.4126i 1.02599i −0.858392 0.512994i \(-0.828536\pi\)
0.858392 0.512994i \(-0.171464\pi\)
\(104\) 0.460033 0.796801i 0.0451100 0.0781328i
\(105\) 0 0
\(106\) −0.286126 + 0.0766672i −0.0277910 + 0.00744658i
\(107\) −1.85691 6.93007i −0.179514 0.669955i −0.995739 0.0922203i \(-0.970604\pi\)
0.816225 0.577734i \(-0.196063\pi\)
\(108\) −5.45804 + 1.46248i −0.525200 + 0.140727i
\(109\) 3.37101 12.5808i 0.322884 1.20502i −0.593538 0.804806i \(-0.702269\pi\)
0.916422 0.400213i \(-0.131064\pi\)
\(110\) 0 0
\(111\) −0.580363 19.5461i −0.0550856 1.85523i
\(112\) 13.7095 13.7095i 1.29543 1.29543i
\(113\) 7.00421 4.04388i 0.658901 0.380417i −0.132957 0.991122i \(-0.542447\pi\)
0.791858 + 0.610705i \(0.209114\pi\)
\(114\) 9.87247 17.0996i 0.924641 1.60153i
\(115\) 0 0
\(116\) −0.271864 1.01461i −0.0252419 0.0942042i
\(117\) 2.72882i 0.252279i
\(118\) 13.4994 3.61715i 1.24272 0.332986i
\(119\) 8.89328 + 8.89328i 0.815246 + 0.815246i
\(120\) 0 0
\(121\) 6.28974 0.571795
\(122\) −0.796778 0.796778i −0.0721369 0.0721369i
\(123\) −6.25297 + 23.3364i −0.563811 + 2.10417i
\(124\) 1.83882 0.492711i 0.165131 0.0442468i
\(125\) 0 0
\(126\) −12.2854 + 45.8497i −1.09447 + 4.08461i
\(127\) 9.70404 + 2.60019i 0.861094 + 0.230729i 0.662233 0.749298i \(-0.269609\pi\)
0.198861 + 0.980028i \(0.436276\pi\)
\(128\) 6.74832 + 11.6884i 0.596473 + 1.03312i
\(129\) 0.384100 + 1.43348i 0.0338182 + 0.126211i
\(130\) 0 0
\(131\) −3.80218 + 14.1899i −0.332198 + 1.23978i 0.574677 + 0.818381i \(0.305128\pi\)
−0.906875 + 0.421400i \(0.861539\pi\)
\(132\) 0.732234 2.73273i 0.0637328 0.237854i
\(133\) −8.26191 14.3101i −0.716399 1.24084i
\(134\) 12.0118 + 12.0118i 1.03767 + 1.03767i
\(135\) 0 0
\(136\) −6.45550 + 3.72709i −0.553555 + 0.319595i
\(137\) −4.80375 + 4.80375i −0.410412 + 0.410412i −0.881882 0.471470i \(-0.843724\pi\)
0.471470 + 0.881882i \(0.343724\pi\)
\(138\) −5.12799 + 5.12799i −0.436523 + 0.436523i
\(139\) 11.5314 + 19.9729i 0.978077 + 1.69408i 0.669384 + 0.742917i \(0.266558\pi\)
0.308693 + 0.951162i \(0.400108\pi\)
\(140\) 0 0
\(141\) 36.2005 + 20.9003i 3.04863 + 1.76013i
\(142\) 1.48832 0.124897
\(143\) −0.699268 0.403722i −0.0584757 0.0337610i
\(144\) −29.5152 17.0406i −2.45960 1.42005i
\(145\) 0 0
\(146\) 7.06234 + 1.89235i 0.584483 + 0.156612i
\(147\) 23.6651 + 23.6651i 1.95187 + 1.95187i
\(148\) −1.69155 + 1.79508i −0.139045 + 0.147555i
\(149\) 11.1717i 0.915220i 0.889153 + 0.457610i \(0.151294\pi\)
−0.889153 + 0.457610i \(0.848706\pi\)
\(150\) 0 0
\(151\) −2.37742 1.37260i −0.193472 0.111701i 0.400135 0.916456i \(-0.368963\pi\)
−0.593607 + 0.804755i \(0.702297\pi\)
\(152\) 9.45969 2.53472i 0.767282 0.205593i
\(153\) 11.0541 19.1463i 0.893674 1.54789i
\(154\) −9.93152 9.93152i −0.800305 0.800305i
\(155\) 0 0
\(156\) 0.342931 0.342931i 0.0274564 0.0274564i
\(157\) −6.93834 1.85912i −0.553740 0.148374i −0.0289111 0.999582i \(-0.509204\pi\)
−0.524829 + 0.851208i \(0.675871\pi\)
\(158\) 10.3425 + 10.3425i 0.822804 + 0.822804i
\(159\) 0.613990 0.0486926
\(160\) 0 0
\(161\) 1.57077 + 5.86220i 0.123794 + 0.462006i
\(162\) 35.3528 2.77758
\(163\) 0.140611 0.0811818i 0.0110135 0.00635865i −0.494483 0.869187i \(-0.664643\pi\)
0.505497 + 0.862829i \(0.331309\pi\)
\(164\) 2.63908 1.52367i 0.206077 0.118979i
\(165\) 0 0
\(166\) 15.1903 4.07024i 1.17900 0.315912i
\(167\) −11.9802 6.91676i −0.927055 0.535235i −0.0411758 0.999152i \(-0.513110\pi\)
−0.885879 + 0.463917i \(0.846444\pi\)
\(168\) −28.7287 + 16.5865i −2.21646 + 1.27968i
\(169\) 6.43079 + 11.1385i 0.494676 + 0.856805i
\(170\) 0 0
\(171\) −20.5387 + 20.5387i −1.57064 + 1.57064i
\(172\) 0.0935945 0.162110i 0.00713652 0.0123608i
\(173\) 15.4610 + 4.14277i 1.17548 + 0.314969i 0.793132 0.609050i \(-0.208449\pi\)
0.382347 + 0.924019i \(0.375116\pi\)
\(174\) 12.9159i 0.979153i
\(175\) 0 0
\(176\) 8.73342 5.04224i 0.658307 0.380073i
\(177\) −28.9680 −2.17737
\(178\) −2.75241 10.2721i −0.206302 0.769929i
\(179\) 10.4070 10.4070i 0.777858 0.777858i −0.201608 0.979466i \(-0.564617\pi\)
0.979466 + 0.201608i \(0.0646168\pi\)
\(180\) 0 0
\(181\) 11.4850 19.8925i 0.853670 1.47860i −0.0242033 0.999707i \(-0.507705\pi\)
0.877873 0.478893i \(-0.158962\pi\)
\(182\) −0.623153 2.32564i −0.0461912 0.172388i
\(183\) 1.16780 + 2.02270i 0.0863265 + 0.149522i
\(184\) −3.59699 −0.265174
\(185\) 0 0
\(186\) −23.4081 −1.71637
\(187\) 3.27087 + 5.66531i 0.239190 + 0.414288i
\(188\) −1.36462 5.09283i −0.0995251 0.371433i
\(189\) 29.0729 50.3557i 2.11474 3.66284i
\(190\) 0 0
\(191\) −6.64661 + 6.64661i −0.480931 + 0.480931i −0.905429 0.424498i \(-0.860451\pi\)
0.424498 + 0.905429i \(0.360451\pi\)
\(192\) −4.81505 17.9700i −0.347496 1.29687i
\(193\) −13.5429 −0.974841 −0.487420 0.873167i \(-0.662062\pi\)
−0.487420 + 0.873167i \(0.662062\pi\)
\(194\) 4.20401 2.42719i 0.301830 0.174262i
\(195\) 0 0
\(196\) 4.22139i 0.301528i
\(197\) 11.4478 + 3.06743i 0.815623 + 0.218546i 0.642432 0.766343i \(-0.277926\pi\)
0.173191 + 0.984888i \(0.444592\pi\)
\(198\) −12.3446 + 21.3815i −0.877295 + 1.51952i
\(199\) 7.49425 7.49425i 0.531253 0.531253i −0.389692 0.920945i \(-0.627419\pi\)
0.920945 + 0.389692i \(0.127419\pi\)
\(200\) 0 0
\(201\) −17.6053 30.4932i −1.24178 2.15083i
\(202\) 0.143236 0.0826974i 0.0100781 0.00581857i
\(203\) 9.36076 + 5.40444i 0.656996 + 0.379317i
\(204\) −3.79529 + 1.01695i −0.265724 + 0.0712005i
\(205\) 0 0
\(206\) 13.9860 8.07481i 0.974450 0.562599i
\(207\) 9.23900 5.33414i 0.642155 0.370748i
\(208\) 1.72871 0.119864
\(209\) −2.22445 8.30177i −0.153869 0.574245i
\(210\) 0 0
\(211\) −14.6599 −1.00923 −0.504616 0.863344i \(-0.668366\pi\)
−0.504616 + 0.863344i \(0.668366\pi\)
\(212\) −0.0547618 0.0547618i −0.00376106 0.00376106i
\(213\) −2.97980 0.798435i −0.204173 0.0547079i
\(214\) 7.86829 7.86829i 0.537865 0.537865i
\(215\) 0 0
\(216\) 24.3683 + 24.3683i 1.65805 + 1.65805i
\(217\) −9.79470 + 16.9649i −0.664908 + 1.15165i
\(218\) 19.5123 5.22831i 1.32154 0.354106i
\(219\) −13.1245 7.57744i −0.886872 0.512036i
\(220\) 0 0
\(221\) 1.12140i 0.0754336i
\(222\) 25.8037 15.9371i 1.73183 1.06963i
\(223\) −3.77596 3.77596i −0.252857 0.252857i 0.569284 0.822141i \(-0.307221\pi\)
−0.822141 + 0.569284i \(0.807221\pi\)
\(224\) 9.11115 + 2.44132i 0.608764 + 0.163118i
\(225\) 0 0
\(226\) 10.8633 + 6.27192i 0.722615 + 0.417202i
\(227\) 10.2511 + 5.91849i 0.680391 + 0.392824i 0.800002 0.599997i \(-0.204832\pi\)
−0.119611 + 0.992821i \(0.538165\pi\)
\(228\) 5.16221 0.341875
\(229\) −10.1713 5.87243i −0.672141 0.388061i 0.124746 0.992189i \(-0.460188\pi\)
−0.796887 + 0.604128i \(0.793522\pi\)
\(230\) 0 0
\(231\) 14.5562 + 25.2121i 0.957728 + 1.65883i
\(232\) −4.52989 + 4.52989i −0.297402 + 0.297402i
\(233\) 15.5975 15.5975i 1.02183 1.02183i 0.0220706 0.999756i \(-0.492974\pi\)
0.999756 0.0220706i \(-0.00702585\pi\)
\(234\) −3.66528 + 2.11615i −0.239607 + 0.138337i
\(235\) 0 0
\(236\) 2.58366 + 2.58366i 0.168182 + 0.168182i
\(237\) −15.1586 26.2554i −0.984654 1.70547i
\(238\) −5.04865 + 18.8418i −0.327255 + 1.22133i
\(239\) −4.07548 + 15.2099i −0.263621 + 0.983846i 0.699468 + 0.714663i \(0.253420\pi\)
−0.963089 + 0.269183i \(0.913247\pi\)
\(240\) 0 0
\(241\) 2.51727 + 9.39459i 0.162152 + 0.605159i 0.998386 + 0.0567867i \(0.0180855\pi\)
−0.836235 + 0.548372i \(0.815248\pi\)
\(242\) 4.87758 + 8.44822i 0.313543 + 0.543072i
\(243\) −30.3998 8.14560i −1.95015 0.522540i
\(244\) 0.0762479 0.284561i 0.00488127 0.0182172i
\(245\) 0 0
\(246\) −36.1939 + 9.69813i −2.30764 + 0.618330i
\(247\) 0.381321 1.42311i 0.0242629 0.0905503i
\(248\) −8.20972 8.20972i −0.521318 0.521318i
\(249\) −32.5966 −2.06572
\(250\) 0 0
\(251\) −21.3201 21.3201i −1.34571 1.34571i −0.890263 0.455447i \(-0.849479\pi\)
−0.455447 0.890263i \(-0.650521\pi\)
\(252\) −11.9871 + 3.21195i −0.755119 + 0.202334i
\(253\) 3.15670i 0.198460i
\(254\) 4.03280 + 15.0506i 0.253040 + 0.944360i
\(255\) 0 0
\(256\) −4.67940 + 8.10495i −0.292462 + 0.506559i
\(257\) 5.04941 2.91528i 0.314974 0.181850i −0.334176 0.942511i \(-0.608458\pi\)
0.649150 + 0.760660i \(0.275125\pi\)
\(258\) −1.62755 + 1.62755i −0.101327 + 0.101327i
\(259\) −0.753280 25.3697i −0.0468066 1.57640i
\(260\) 0 0
\(261\) 4.91761 18.3528i 0.304393 1.13601i
\(262\) −22.0081 + 5.89705i −1.35966 + 0.364321i
\(263\) −5.19979 19.4059i −0.320633 1.19662i −0.918630 0.395120i \(-0.870703\pi\)
0.597997 0.801498i \(-0.295964\pi\)
\(264\) −16.6665 + 4.46578i −1.02575 + 0.274850i
\(265\) 0 0
\(266\) 12.8139 22.1944i 0.785673 1.36083i
\(267\) 22.0427i 1.34899i
\(268\) −1.14948 + 4.28991i −0.0702155 + 0.262048i
\(269\) 0.930688i 0.0567450i 0.999597 + 0.0283725i \(0.00903246\pi\)
−0.999597 + 0.0283725i \(0.990968\pi\)
\(270\) 0 0
\(271\) 7.15555 + 12.3938i 0.434669 + 0.752868i 0.997269 0.0738613i \(-0.0235322\pi\)
−0.562600 + 0.826729i \(0.690199\pi\)
\(272\) −12.1292 7.00281i −0.735442 0.424607i
\(273\) 4.99053i 0.302040i
\(274\) −10.1775 2.72705i −0.614845 0.164747i
\(275\) 0 0
\(276\) −1.83141 0.490724i −0.110238 0.0295381i
\(277\) 1.89779 3.28707i 0.114027 0.197501i −0.803363 0.595489i \(-0.796958\pi\)
0.917391 + 0.397988i \(0.130292\pi\)
\(278\) −17.8847 + 30.9772i −1.07265 + 1.85789i
\(279\) 33.2616 + 8.91241i 1.99132 + 0.533572i
\(280\) 0 0
\(281\) 4.91815 + 1.31781i 0.293392 + 0.0786142i 0.402513 0.915414i \(-0.368137\pi\)
−0.109121 + 0.994029i \(0.534804\pi\)
\(282\) 64.8314i 3.86065i
\(283\) 12.9217 + 7.46035i 0.768115 + 0.443472i 0.832202 0.554473i \(-0.187080\pi\)
−0.0640865 + 0.997944i \(0.520413\pi\)
\(284\) 0.194556 + 0.336982i 0.0115448 + 0.0199962i
\(285\) 0 0
\(286\) 1.25232i 0.0740511i
\(287\) −8.11601 + 30.2894i −0.479073 + 1.78793i
\(288\) 16.5809i 0.977036i
\(289\) −3.95733 + 6.85430i −0.232784 + 0.403194i
\(290\) 0 0
\(291\) −9.71907 + 2.60422i −0.569742 + 0.152662i
\(292\) 0.494744 + 1.84641i 0.0289527 + 0.108053i
\(293\) 1.46228 0.391817i 0.0854275 0.0228902i −0.215852 0.976426i \(-0.569253\pi\)
0.301280 + 0.953536i \(0.402586\pi\)
\(294\) −13.4345 + 50.1383i −0.783516 + 2.92412i
\(295\) 0 0
\(296\) 14.6394 + 3.46041i 0.850899 + 0.201132i
\(297\) 21.3855 21.3855i 1.24091 1.24091i
\(298\) −15.0055 + 8.66344i −0.869246 + 0.501860i
\(299\) −0.270564 + 0.468631i −0.0156471 + 0.0271017i
\(300\) 0 0
\(301\) 0.498542 + 1.86058i 0.0287355 + 0.107242i
\(302\) 4.25772i 0.245004i
\(303\) −0.331141 + 0.0887290i −0.0190236 + 0.00509735i
\(304\) 13.0113 + 13.0113i 0.746249 + 0.746249i
\(305\) 0 0
\(306\) 34.2891 1.96018
\(307\) −21.0899 21.0899i −1.20366 1.20366i −0.973044 0.230621i \(-0.925924\pi\)
−0.230621 0.973044i \(-0.574076\pi\)
\(308\) 0.950400 3.54694i 0.0541541 0.202106i
\(309\) −32.3336 + 8.66376i −1.83939 + 0.492864i
\(310\) 0 0
\(311\) 3.03440 11.3245i 0.172065 0.642156i −0.824968 0.565180i \(-0.808807\pi\)
0.997033 0.0769762i \(-0.0245265\pi\)
\(312\) −2.85702 0.765535i −0.161747 0.0433399i
\(313\) 3.22812 + 5.59126i 0.182464 + 0.316037i 0.942719 0.333588i \(-0.108259\pi\)
−0.760255 + 0.649625i \(0.774926\pi\)
\(314\) −2.88343 10.7611i −0.162722 0.607285i
\(315\) 0 0
\(316\) −0.989728 + 3.69372i −0.0556766 + 0.207788i
\(317\) −5.73743 + 21.4124i −0.322246 + 1.20264i 0.594805 + 0.803870i \(0.297229\pi\)
−0.917051 + 0.398769i \(0.869438\pi\)
\(318\) 0.476138 + 0.824696i 0.0267005 + 0.0462466i
\(319\) 3.97540 + 3.97540i 0.222580 + 0.222580i
\(320\) 0 0
\(321\) −19.9744 + 11.5322i −1.11486 + 0.643666i
\(322\) −6.65585 + 6.65585i −0.370916 + 0.370916i
\(323\) −8.44034 + 8.44034i −0.469633 + 0.469633i
\(324\) 4.62140 + 8.00449i 0.256744 + 0.444694i
\(325\) 0 0
\(326\) 0.218083 + 0.125910i 0.0120785 + 0.00697352i
\(327\) −41.8710 −2.31547
\(328\) −16.0953 9.29264i −0.888716 0.513100i
\(329\) 46.9863 + 27.1275i 2.59044 + 1.49559i
\(330\) 0 0
\(331\) 8.07555 + 2.16384i 0.443873 + 0.118935i 0.473831 0.880616i \(-0.342871\pi\)
−0.0299583 + 0.999551i \(0.509537\pi\)
\(332\) 2.90729 + 2.90729i 0.159558 + 0.159558i
\(333\) −42.7335 + 12.8213i −2.34178 + 0.702600i
\(334\) 21.4553i 1.17398i
\(335\) 0 0
\(336\) −53.9782 31.1643i −2.94475 1.70015i
\(337\) 7.82004 2.09537i 0.425985 0.114142i −0.0394559 0.999221i \(-0.512562\pi\)
0.465441 + 0.885079i \(0.345896\pi\)
\(338\) −9.97393 + 17.2754i −0.542510 + 0.939656i
\(339\) −18.3850 18.3850i −0.998535 0.998535i
\(340\) 0 0
\(341\) −7.20480 + 7.20480i −0.390162 + 0.390162i
\(342\) −43.5145 11.6597i −2.35299 0.630483i
\(343\) 10.0628 + 10.0628i 0.543338 + 0.543338i
\(344\) −1.14164 −0.0615529
\(345\) 0 0
\(346\) 6.42528 + 23.9795i 0.345425 + 1.28915i
\(347\) 26.0269 1.39720 0.698599 0.715513i \(-0.253807\pi\)
0.698599 + 0.715513i \(0.253807\pi\)
\(348\) −2.92439 + 1.68840i −0.156764 + 0.0905077i
\(349\) −2.63616 + 1.52199i −0.141110 + 0.0814701i −0.568893 0.822412i \(-0.692628\pi\)
0.427783 + 0.903882i \(0.359295\pi\)
\(350\) 0 0
\(351\) 5.00779 1.34183i 0.267296 0.0716217i
\(352\) 4.24889 + 2.45310i 0.226467 + 0.130751i
\(353\) 5.98486 3.45536i 0.318542 0.183910i −0.332200 0.943209i \(-0.607791\pi\)
0.650743 + 0.759298i \(0.274458\pi\)
\(354\) −22.4641 38.9090i −1.19396 2.06799i
\(355\) 0 0
\(356\) 1.96599 1.96599i 0.104197 0.104197i
\(357\) 20.2161 35.0152i 1.06995 1.85320i
\(358\) 22.0489 + 5.90799i 1.16532 + 0.312247i
\(359\) 13.2822i 0.701008i −0.936561 0.350504i \(-0.886010\pi\)
0.936561 0.350504i \(-0.113990\pi\)
\(360\) 0 0
\(361\) −2.87325 + 1.65887i −0.151224 + 0.0873090i
\(362\) 35.6255 1.87244
\(363\) −5.23333 19.5311i −0.274679 1.02512i
\(364\) 0.445106 0.445106i 0.0233299 0.0233299i
\(365\) 0 0
\(366\) −1.81122 + 3.13713i −0.0946741 + 0.163980i
\(367\) −5.20590 19.4287i −0.271746 1.01417i −0.957991 0.286799i \(-0.907409\pi\)
0.686245 0.727370i \(-0.259258\pi\)
\(368\) −3.37918 5.85292i −0.176152 0.305104i
\(369\) 55.1219 2.86953
\(370\) 0 0
\(371\) 0.796926 0.0413743
\(372\) −3.05996 5.30001i −0.158652 0.274793i
\(373\) 0.271365 + 1.01275i 0.0140507 + 0.0524380i 0.972595 0.232505i \(-0.0746921\pi\)
−0.958545 + 0.284943i \(0.908025\pi\)
\(374\) −5.07300 + 8.78670i −0.262319 + 0.454349i
\(375\) 0 0
\(376\) −22.7378 + 22.7378i −1.17261 + 1.17261i
\(377\) 0.249437 + 0.930911i 0.0128467 + 0.0479444i
\(378\) 90.1820 4.63846
\(379\) 13.4701 7.77696i 0.691912 0.399476i −0.112416 0.993661i \(-0.535859\pi\)
0.804328 + 0.594186i \(0.202526\pi\)
\(380\) 0 0
\(381\) 32.2967i 1.65461i
\(382\) −14.0819 3.77323i −0.720492 0.193055i
\(383\) 2.12027 3.67241i 0.108341 0.187651i −0.806758 0.590883i \(-0.798780\pi\)
0.915098 + 0.403231i \(0.132113\pi\)
\(384\) 30.6804 30.6804i 1.56565 1.56565i
\(385\) 0 0
\(386\) −10.5023 18.1905i −0.534553 0.925872i
\(387\) 2.93234 1.69298i 0.149059 0.0860593i
\(388\) 1.09912 + 0.634575i 0.0557992 + 0.0322157i
\(389\) −14.7360 + 3.94851i −0.747146 + 0.200197i −0.612252 0.790663i \(-0.709736\pi\)
−0.134894 + 0.990860i \(0.543069\pi\)
\(390\) 0 0
\(391\) 3.79675 2.19205i 0.192010 0.110857i
\(392\) −22.2963 + 12.8728i −1.12613 + 0.650174i
\(393\) 47.2266 2.38226
\(394\) 4.75748 + 17.7552i 0.239678 + 0.894492i
\(395\) 0 0
\(396\) −6.45488 −0.324370
\(397\) 6.05031 + 6.05031i 0.303657 + 0.303657i 0.842443 0.538786i \(-0.181117\pi\)
−0.538786 + 0.842443i \(0.681117\pi\)
\(398\) 15.8777 + 4.25443i 0.795879 + 0.213255i
\(399\) −37.5617 + 37.5617i −1.88044 + 1.88044i
\(400\) 0 0
\(401\) −8.64655 8.64655i −0.431788 0.431788i 0.457448 0.889236i \(-0.348764\pi\)
−0.889236 + 0.457448i \(0.848764\pi\)
\(402\) 27.3051 47.2939i 1.36186 2.35880i
\(403\) −1.68713 + 0.452066i −0.0840420 + 0.0225190i
\(404\) 0.0374483 + 0.0216208i 0.00186312 + 0.00107567i
\(405\) 0 0
\(406\) 16.7642i 0.831992i
\(407\) 3.03684 12.8475i 0.150530 0.636825i
\(408\) 16.9447 + 16.9447i 0.838888 + 0.838888i
\(409\) 4.20165 + 1.12583i 0.207758 + 0.0556686i 0.361197 0.932490i \(-0.382368\pi\)
−0.153439 + 0.988158i \(0.549035\pi\)
\(410\) 0 0
\(411\) 18.9137 + 10.9198i 0.932942 + 0.538634i
\(412\) 3.65656 + 2.11112i 0.180146 + 0.104007i
\(413\) −37.5989 −1.85012
\(414\) 14.3294 + 8.27306i 0.704250 + 0.406599i
\(415\) 0 0
\(416\) 0.420517 + 0.728356i 0.0206175 + 0.0357106i
\(417\) 52.4258 52.4258i 2.56730 2.56730i
\(418\) 9.42570 9.42570i 0.461026 0.461026i
\(419\) 2.15841 1.24616i 0.105445 0.0608788i −0.446350 0.894858i \(-0.647276\pi\)
0.551795 + 0.833980i \(0.313943\pi\)
\(420\) 0 0
\(421\) −13.5065 13.5065i −0.658265 0.658265i 0.296704 0.954969i \(-0.404112\pi\)
−0.954969 + 0.296704i \(0.904112\pi\)
\(422\) −11.3685 19.6909i −0.553411 0.958536i
\(423\) 24.6839 92.1217i 1.20017 4.47911i
\(424\) −0.122247 + 0.456230i −0.00593682 + 0.0221565i
\(425\) 0 0
\(426\) −1.23835 4.62157i −0.0599980 0.223916i
\(427\) 1.51575 + 2.62535i 0.0733521 + 0.127050i
\(428\) 2.81008 + 0.752959i 0.135830 + 0.0363956i
\(429\) −0.671829 + 2.50730i −0.0324362 + 0.121054i
\(430\) 0 0
\(431\) 25.9052 6.94129i 1.24781 0.334350i 0.426321 0.904572i \(-0.359809\pi\)
0.821491 + 0.570222i \(0.193143\pi\)
\(432\) −16.7587 + 62.5442i −0.806301 + 3.00916i
\(433\) 12.4207 + 12.4207i 0.596902 + 0.596902i 0.939487 0.342585i \(-0.111302\pi\)
−0.342585 + 0.939487i \(0.611302\pi\)
\(434\) −30.3825 −1.45841
\(435\) 0 0
\(436\) 3.73448 + 3.73448i 0.178849 + 0.178849i
\(437\) −5.56363 + 1.49077i −0.266145 + 0.0713132i
\(438\) 23.5047i 1.12310i
\(439\) −3.38942 12.6495i −0.161768 0.603727i −0.998430 0.0560075i \(-0.982163\pi\)
0.836662 0.547719i \(-0.184504\pi\)
\(440\) 0 0
\(441\) 38.1793 66.1285i 1.81806 3.14898i
\(442\) −1.50624 + 0.869627i −0.0716444 + 0.0413639i
\(443\) −0.485132 + 0.485132i −0.0230493 + 0.0230493i −0.718538 0.695488i \(-0.755188\pi\)
0.695488 + 0.718538i \(0.255188\pi\)
\(444\) 6.98157 + 3.75907i 0.331331 + 0.178398i
\(445\) 0 0
\(446\) 2.14359 7.99997i 0.101502 0.378810i
\(447\) 34.6906 9.29532i 1.64081 0.439653i
\(448\) −6.24967 23.3241i −0.295269 1.10196i
\(449\) −14.3950 + 3.85712i −0.679341 + 0.182029i −0.581959 0.813218i \(-0.697714\pi\)
−0.0973822 + 0.995247i \(0.531047\pi\)
\(450\) 0 0
\(451\) −8.15516 + 14.1252i −0.384012 + 0.665128i
\(452\) 3.27952i 0.154256i
\(453\) −2.28413 + 8.52449i −0.107318 + 0.400515i
\(454\) 18.3587i 0.861618i
\(455\) 0 0
\(456\) −15.7417 27.2655i −0.737174 1.27682i
\(457\) −16.3157 9.41987i −0.763216 0.440643i 0.0672332 0.997737i \(-0.478583\pi\)
−0.830449 + 0.557094i \(0.811916\pi\)
\(458\) 18.2158i 0.851171i
\(459\) −40.5720 10.8712i −1.89374 0.507425i
\(460\) 0 0
\(461\) 12.4218 + 3.32842i 0.578542 + 0.155020i 0.536211 0.844084i \(-0.319855\pi\)
0.0423309 + 0.999104i \(0.486522\pi\)
\(462\) −22.5762 + 39.1031i −1.05034 + 1.81924i
\(463\) −18.9998 + 32.9086i −0.882996 + 1.52939i −0.0350030 + 0.999387i \(0.511144\pi\)
−0.847993 + 0.530007i \(0.822189\pi\)
\(464\) −11.6265 3.11531i −0.539747 0.144625i
\(465\) 0 0
\(466\) 33.0458 + 8.85459i 1.53082 + 0.410181i
\(467\) 24.7489i 1.14524i 0.819820 + 0.572622i \(0.194074\pi\)
−0.819820 + 0.572622i \(0.805926\pi\)
\(468\) −0.958267 0.553256i −0.0442959 0.0255743i
\(469\) −22.8507 39.5786i −1.05515 1.82757i
\(470\) 0 0
\(471\) 23.0920i 1.06402i
\(472\) 5.76758 21.5249i 0.265474 0.990764i
\(473\) 1.00189i 0.0460671i
\(474\) 23.5104 40.7212i 1.07987 1.87039i
\(475\) 0 0
\(476\) −4.92609 + 1.31994i −0.225787 + 0.0604994i
\(477\) −0.362570 1.35313i −0.0166009 0.0619556i
\(478\) −23.5900 + 6.32092i −1.07898 + 0.289112i
\(479\) −6.64188 + 24.7878i −0.303475 + 1.13259i 0.630775 + 0.775966i \(0.282737\pi\)
−0.934250 + 0.356619i \(0.883929\pi\)
\(480\) 0 0
\(481\) 1.55201 1.64700i 0.0707656 0.0750965i
\(482\) −10.6665 + 10.6665i −0.485845 + 0.485845i
\(483\) 16.8965 9.75520i 0.768818 0.443877i
\(484\) −1.27522 + 2.20874i −0.0579644 + 0.100397i
\(485\) 0 0
\(486\) −12.6335 47.1490i −0.573069 2.13872i
\(487\) 21.8694i 0.990998i 0.868608 + 0.495499i \(0.165015\pi\)
−0.868608 + 0.495499i \(0.834985\pi\)
\(488\) −1.73549 + 0.465024i −0.0785621 + 0.0210506i
\(489\) −0.369082 0.369082i −0.0166905 0.0166905i
\(490\) 0 0
\(491\) −13.2615 −0.598483 −0.299242 0.954177i \(-0.596734\pi\)
−0.299242 + 0.954177i \(0.596734\pi\)
\(492\) −6.92718 6.92718i −0.312301 0.312301i
\(493\) 2.02088 7.54203i 0.0910159 0.339676i
\(494\) 2.20719 0.591416i 0.0993063 0.0266091i
\(495\) 0 0
\(496\) 5.64602 21.0712i 0.253514 0.946127i
\(497\) −3.86762 1.03633i −0.173487 0.0464856i
\(498\) −25.2780 43.7829i −1.13274 1.96196i
\(499\) 9.23613 + 34.4697i 0.413466 + 1.54308i 0.787888 + 0.615818i \(0.211174\pi\)
−0.374422 + 0.927258i \(0.622159\pi\)
\(500\) 0 0
\(501\) −11.5101 + 42.9562i −0.514233 + 1.91914i
\(502\) 12.1032 45.1699i 0.540194 2.01603i
\(503\) 13.4680 + 23.3272i 0.600508 + 1.04011i 0.992744 + 0.120246i \(0.0383682\pi\)
−0.392236 + 0.919865i \(0.628298\pi\)
\(504\) 53.5185 + 53.5185i 2.38391 + 2.38391i
\(505\) 0 0
\(506\) −4.23999 + 2.44796i −0.188491 + 0.108825i
\(507\) 29.2367 29.2367i 1.29845 1.29845i
\(508\) −2.88055 + 2.88055i −0.127804 + 0.127804i
\(509\) 3.92018 + 6.78995i 0.173759 + 0.300959i 0.939731 0.341914i \(-0.111075\pi\)
−0.765972 + 0.642874i \(0.777742\pi\)
\(510\) 0 0
\(511\) −17.0349 9.83511i −0.753580 0.435080i
\(512\) 12.4781 0.551461
\(513\) 47.7910 + 27.5922i 2.11003 + 1.21822i
\(514\) 7.83146 + 4.52150i 0.345431 + 0.199435i
\(515\) 0 0
\(516\) −0.581264 0.155749i −0.0255887 0.00685648i
\(517\) 19.9545 + 19.9545i 0.877599 + 0.877599i
\(518\) 33.4918 20.6856i 1.47155 0.908872i
\(519\) 51.4569i 2.25871i
\(520\) 0 0
\(521\) 8.21305 + 4.74181i 0.359820 + 0.207742i 0.669002 0.743261i \(-0.266722\pi\)
−0.309182 + 0.951003i \(0.600055\pi\)
\(522\) 28.4645 7.62704i 1.24586 0.333827i
\(523\) 9.49329 16.4429i 0.415113 0.718996i −0.580328 0.814383i \(-0.697076\pi\)
0.995440 + 0.0953869i \(0.0304088\pi\)
\(524\) −4.21214 4.21214i −0.184008 0.184008i
\(525\) 0 0
\(526\) 22.0331 22.0331i 0.960691 0.960691i
\(527\) 13.6688 + 3.66253i 0.595421 + 0.159542i
\(528\) −22.9239 22.9239i −0.997635 0.997635i
\(529\) −20.8845 −0.908020
\(530\) 0 0
\(531\) 17.1060 + 63.8405i 0.742338 + 2.77044i
\(532\) 6.70027 0.290493
\(533\) −2.42137 + 1.39798i −0.104881 + 0.0605532i
\(534\) −29.6072 + 17.0937i −1.28123 + 0.739717i
\(535\) 0 0
\(536\) 26.1635 7.01048i 1.13009 0.302807i
\(537\) −40.9753 23.6571i −1.76821 1.02088i
\(538\) −1.25008 + 0.721732i −0.0538946 + 0.0311161i
\(539\) 11.2971 + 19.5671i 0.486600 + 0.842816i
\(540\) 0 0
\(541\) 27.2508 27.2508i 1.17160 1.17160i 0.189775 0.981828i \(-0.439224\pi\)
0.981828 0.189775i \(-0.0607760\pi\)
\(542\) −11.0980 + 19.2223i −0.476700 + 0.825668i
\(543\) −71.3268 19.1120i −3.06093 0.820173i
\(544\) 6.81386i 0.292142i
\(545\) 0 0
\(546\) −6.70315 + 3.87006i −0.286868 + 0.165623i
\(547\) −35.5804 −1.52131 −0.760653 0.649158i \(-0.775121\pi\)
−0.760653 + 0.649158i \(0.775121\pi\)
\(548\) −0.712973 2.66085i −0.0304567 0.113666i
\(549\) 3.76807 3.76807i 0.160817 0.160817i
\(550\) 0 0
\(551\) −5.12918 + 8.88401i −0.218511 + 0.378471i
\(552\) 2.99285 + 11.1695i 0.127384 + 0.475404i
\(553\) −19.6750 34.0781i −0.836666 1.44915i
\(554\) 5.88682 0.250107
\(555\) 0 0
\(556\) −9.35173 −0.396602
\(557\) 22.1651 + 38.3911i 0.939165 + 1.62668i 0.767033 + 0.641608i \(0.221732\pi\)
0.172132 + 0.985074i \(0.444934\pi\)
\(558\) 13.8228 + 51.5875i 0.585167 + 2.18387i
\(559\) −0.0858735 + 0.148737i −0.00363206 + 0.00629092i
\(560\) 0 0
\(561\) 14.8706 14.8706i 0.627836 0.627836i
\(562\) 2.04388 + 7.62787i 0.0862160 + 0.321762i
\(563\) −27.6526 −1.16542 −0.582710 0.812680i \(-0.698008\pi\)
−0.582710 + 0.812680i \(0.698008\pi\)
\(564\) −14.6790 + 8.47491i −0.618096 + 0.356858i
\(565\) 0 0
\(566\) 23.1415i 0.972709i
\(567\) −91.8696 24.6164i −3.85816 1.03379i
\(568\) 1.18657 2.05520i 0.0497873 0.0862341i
\(569\) 8.31252 8.31252i 0.348479 0.348479i −0.511064 0.859543i \(-0.670748\pi\)
0.859543 + 0.511064i \(0.170748\pi\)
\(570\) 0 0
\(571\) −3.99555 6.92050i −0.167209 0.289614i 0.770229 0.637768i \(-0.220142\pi\)
−0.937437 + 0.348154i \(0.886809\pi\)
\(572\) 0.283547 0.163706i 0.0118557 0.00684489i
\(573\) 26.1695 + 15.1090i 1.09325 + 0.631186i
\(574\) −46.9778 + 12.5877i −1.96081 + 0.525398i
\(575\) 0 0
\(576\) −36.7595 + 21.2231i −1.53164 + 0.884296i
\(577\) 15.1952 8.77295i 0.632584 0.365223i −0.149168 0.988812i \(-0.547660\pi\)
0.781752 + 0.623589i \(0.214326\pi\)
\(578\) −12.2754 −0.510588
\(579\) 11.2683 + 42.0538i 0.468294 + 1.74770i
\(580\) 0 0
\(581\) −42.3086 −1.75526
\(582\) −11.0349 11.0349i −0.457411 0.457411i
\(583\) 0.400385 + 0.107283i 0.0165823 + 0.00444320i
\(584\) 8.24359 8.24359i 0.341122 0.341122i
\(585\) 0 0
\(586\) 1.66025 + 1.66025i 0.0685844 + 0.0685844i
\(587\) −1.89900 + 3.28916i −0.0783800 + 0.135758i −0.902551 0.430583i \(-0.858308\pi\)
0.824171 + 0.566341i \(0.191641\pi\)
\(588\) −13.1084 + 3.51238i −0.540580 + 0.144848i
\(589\) −16.1009 9.29585i −0.663425 0.383029i
\(590\) 0 0
\(591\) 38.1003i 1.56724i
\(592\) 8.12228 + 27.0717i 0.333824 + 1.11264i
\(593\) 13.7978 + 13.7978i 0.566606 + 0.566606i 0.931176 0.364570i \(-0.118784\pi\)
−0.364570 + 0.931176i \(0.618784\pi\)
\(594\) 45.3085 + 12.1404i 1.85903 + 0.498126i
\(595\) 0 0
\(596\) −3.92311 2.26501i −0.160697 0.0927784i
\(597\) −29.5069 17.0358i −1.20764 0.697229i
\(598\) −0.839272 −0.0343204
\(599\) 31.9153 + 18.4263i 1.30403 + 0.752879i 0.981092 0.193543i \(-0.0619978\pi\)
0.322933 + 0.946422i \(0.395331\pi\)
\(600\) 0 0
\(601\) −4.55733 7.89352i −0.185897 0.321983i 0.757981 0.652276i \(-0.226186\pi\)
−0.943878 + 0.330293i \(0.892852\pi\)
\(602\) −2.11248 + 2.11248i −0.0860982 + 0.0860982i
\(603\) −56.8057 + 56.8057i −2.31331 + 2.31331i
\(604\) 0.964022 0.556578i 0.0392255 0.0226469i
\(605\) 0 0
\(606\) −0.375973 0.375973i −0.0152728 0.0152728i
\(607\) 7.51612 + 13.0183i 0.305070 + 0.528396i 0.977277 0.211967i \(-0.0679869\pi\)
−0.672207 + 0.740363i \(0.734654\pi\)
\(608\) −2.31699 + 8.64711i −0.0939662 + 0.350687i
\(609\) 8.99344 33.5640i 0.364433 1.36008i
\(610\) 0 0
\(611\) 1.25205 + 4.67270i 0.0506524 + 0.189037i
\(612\) 4.48235 + 7.76367i 0.181188 + 0.313828i
\(613\) −8.97541 2.40495i −0.362513 0.0971352i 0.0729646 0.997335i \(-0.476754\pi\)
−0.435478 + 0.900199i \(0.643421\pi\)
\(614\) 11.9726 44.6823i 0.483174 1.80323i
\(615\) 0 0
\(616\) −21.6322 + 5.79634i −0.871588 + 0.233541i
\(617\) −3.77320 + 14.0818i −0.151903 + 0.566911i 0.847447 + 0.530880i \(0.178138\pi\)
−0.999351 + 0.0360316i \(0.988528\pi\)
\(618\) −36.7111 36.7111i −1.47674 1.47674i
\(619\) 26.2648 1.05567 0.527837 0.849346i \(-0.323003\pi\)
0.527837 + 0.849346i \(0.323003\pi\)
\(620\) 0 0
\(621\) −14.3320 14.3320i −0.575123 0.575123i
\(622\) 17.5640 4.70625i 0.704251 0.188703i
\(623\) 28.6102i 1.14624i
\(624\) −1.43836 5.36803i −0.0575805 0.214893i
\(625\) 0 0
\(626\) −5.00669 + 8.67185i −0.200108 + 0.346597i
\(627\) −23.9280 + 13.8149i −0.955593 + 0.551712i
\(628\) 2.05958 2.05958i 0.0821861 0.0821861i
\(629\) −17.5612 + 5.26886i −0.700212 + 0.210083i
\(630\) 0 0
\(631\) −5.87855 + 21.9390i −0.234021 + 0.873379i 0.744566 + 0.667549i \(0.232656\pi\)
−0.978588 + 0.205831i \(0.934010\pi\)
\(632\) 22.5274 6.03620i 0.896091 0.240107i
\(633\) 12.1977 + 45.5224i 0.484815 + 1.80935i
\(634\) −33.2098 + 8.89855i −1.31893 + 0.353406i
\(635\) 0 0
\(636\) −0.124484 + 0.215612i −0.00493610 + 0.00854958i
\(637\) 3.87315i 0.153460i
\(638\) −2.25681 + 8.42252i −0.0893479 + 0.333451i
\(639\) 7.03847i 0.278437i
\(640\) 0 0
\(641\) 14.2444 + 24.6721i 0.562622 + 0.974490i 0.997267 + 0.0738875i \(0.0235406\pi\)
−0.434645 + 0.900602i \(0.643126\pi\)
\(642\) −30.9796 17.8861i −1.22267 0.705907i
\(643\) 31.7473i 1.25199i −0.779826 0.625996i \(-0.784693\pi\)
0.779826 0.625996i \(-0.215307\pi\)
\(644\) −2.37707 0.636934i −0.0936697 0.0250987i
\(645\) 0 0
\(646\) −17.8822 4.79152i −0.703565 0.188520i
\(647\) 11.7748 20.3945i 0.462915 0.801792i −0.536190 0.844097i \(-0.680137\pi\)
0.999105 + 0.0423052i \(0.0134702\pi\)
\(648\) 28.1852 48.8181i 1.10722 1.91776i
\(649\) −18.8901 5.06159i −0.741502 0.198685i
\(650\) 0 0
\(651\) 60.8295 + 16.2992i 2.38410 + 0.638817i
\(652\) 0.0658370i 0.00257838i
\(653\) −31.1291 17.9724i −1.21818 0.703315i −0.253649 0.967296i \(-0.581631\pi\)
−0.964528 + 0.263982i \(0.914964\pi\)
\(654\) −32.4702 56.2400i −1.26969 2.19916i
\(655\) 0 0
\(656\) 34.9198i 1.36339i
\(657\) −8.94918 + 33.3988i −0.349141 + 1.30301i
\(658\) 84.1477i 3.28042i
\(659\) −15.7744 + 27.3220i −0.614483 + 1.06432i 0.375992 + 0.926623i \(0.377302\pi\)
−0.990475 + 0.137692i \(0.956031\pi\)
\(660\) 0 0
\(661\) −25.7696 + 6.90493i −1.00232 + 0.268571i −0.722417 0.691458i \(-0.756969\pi\)
−0.279903 + 0.960028i \(0.590302\pi\)
\(662\) 3.35604 + 12.5249i 0.130436 + 0.486794i
\(663\) 3.48221 0.933054i 0.135238 0.0362368i
\(664\) 6.49004 24.2211i 0.251862 0.939963i
\(665\) 0 0
\(666\) −50.3602 47.4559i −1.95142 1.83888i
\(667\) 2.66421 2.66421i 0.103159 0.103159i
\(668\) 4.85786 2.80469i 0.187956 0.108517i
\(669\) −8.58346 + 14.8670i −0.331856 + 0.574791i
\(670\) 0 0
\(671\) 0.408102 + 1.52306i 0.0157546 + 0.0587970i
\(672\) 30.3235i 1.16975i
\(673\) 17.6421 4.72719i 0.680054 0.182220i 0.0977743 0.995209i \(-0.468828\pi\)
0.582279 + 0.812989i \(0.302161\pi\)
\(674\) 8.87876 + 8.87876i 0.341997 + 0.341997i
\(675\) 0 0
\(676\) −5.21526 −0.200587
\(677\) 4.45728 + 4.45728i 0.171307 + 0.171307i 0.787554 0.616246i \(-0.211347\pi\)
−0.616246 + 0.787554i \(0.711347\pi\)
\(678\) 10.4370 38.9515i 0.400831 1.49592i
\(679\) −12.6148 + 3.38013i −0.484113 + 0.129718i
\(680\) 0 0
\(681\) 9.84887 36.7565i 0.377410 1.40851i
\(682\) −15.2645 4.09011i −0.584508 0.156619i
\(683\) 0.0832112 + 0.144126i 0.00318399 + 0.00551483i 0.867613 0.497240i \(-0.165653\pi\)
−0.864429 + 0.502755i \(0.832320\pi\)
\(684\) −3.04836 11.3766i −0.116557 0.434996i
\(685\) 0 0
\(686\) −5.71255 + 21.3195i −0.218106 + 0.813983i
\(687\) −9.77222 + 36.4704i −0.372834 + 1.39143i
\(688\) −1.07251 1.85764i −0.0408890 0.0708218i
\(689\) 0.0502443 + 0.0502443i 0.00191416 + 0.00191416i
\(690\) 0 0
\(691\) 4.32835 2.49897i 0.164658 0.0950654i −0.415407 0.909636i \(-0.636361\pi\)
0.580065 + 0.814571i \(0.303027\pi\)
\(692\) −4.58945 + 4.58945i −0.174465 + 0.174465i
\(693\) 46.9675 46.9675i 1.78415 1.78415i
\(694\) 20.1834 + 34.9587i 0.766152 + 1.32701i
\(695\) 0 0
\(696\) 17.8354 + 10.2973i 0.676049 + 0.390317i
\(697\) 22.6522 0.858014
\(698\) −4.08859 2.36055i −0.154755 0.0893481i
\(699\) −61.4116 35.4560i −2.32280 1.34107i
\(700\) 0 0
\(701\) 16.1194 + 4.31919i 0.608822 + 0.163133i 0.550041 0.835137i \(-0.314612\pi\)
0.0587810 + 0.998271i \(0.481279\pi\)
\(702\) 5.68576 + 5.68576i 0.214595 + 0.214595i
\(703\) 24.0776 0.714915i 0.908105 0.0269635i
\(704\) 12.5596i 0.473359i
\(705\) 0 0
\(706\) 9.28231 + 5.35914i 0.349344 + 0.201694i
\(707\) −0.429804 + 0.115166i −0.0161644 + 0.00433125i
\(708\) 5.87313 10.1726i 0.220726 0.382308i
\(709\) 1.78823 + 1.78823i 0.0671583 + 0.0671583i 0.739888 0.672730i \(-0.234878\pi\)
−0.672730 + 0.739888i \(0.734878\pi\)
\(710\) 0 0
\(711\) −48.9111 + 48.9111i −1.83431 + 1.83431i
\(712\) −16.3790 4.38874i −0.613829 0.164475i
\(713\) 4.82848 + 4.82848i 0.180828 + 0.180828i
\(714\) 62.7088 2.34682
\(715\) 0 0
\(716\) 1.54461 + 5.76457i 0.0577249 + 0.215432i
\(717\) 50.6211 1.89048
\(718\) 17.8403 10.3001i 0.665795 0.384397i
\(719\) 37.0250 21.3764i 1.38080 0.797205i 0.388546 0.921429i \(-0.372978\pi\)
0.992254 + 0.124224i \(0.0396442\pi\)
\(720\) 0 0
\(721\) −41.9673 + 11.2451i −1.56294 + 0.418789i
\(722\) −4.45631 2.57285i −0.165847 0.0957516i
\(723\) 27.0778 15.6334i 1.00704 0.581412i
\(724\) 4.65705 + 8.06625i 0.173078 + 0.299780i
\(725\) 0 0
\(726\) 22.1753 22.1753i 0.823002 0.823002i
\(727\) 20.6361 35.7427i 0.765349 1.32562i −0.174713 0.984619i \(-0.555900\pi\)
0.940062 0.341004i \(-0.110767\pi\)
\(728\) −3.70825 0.993623i −0.137437 0.0368261i
\(729\) 32.7935i 1.21458i
\(730\) 0 0
\(731\) 1.20504 0.695728i 0.0445699 0.0257324i
\(732\) −0.947068 −0.0350046
\(733\) 11.5672 + 43.1692i 0.427243 + 1.59449i 0.758976 + 0.651118i \(0.225700\pi\)
−0.331734 + 0.943373i \(0.607634\pi\)
\(734\) 22.0590 22.0590i 0.814214 0.814214i
\(735\) 0 0
\(736\) 1.64401 2.84750i 0.0605988 0.104960i
\(737\) −6.15236 22.9609i −0.226625 0.845776i
\(738\) 42.7461 + 74.0384i 1.57350 + 2.72539i
\(739\) −19.7035 −0.724803 −0.362402 0.932022i \(-0.618043\pi\)
−0.362402 + 0.932022i \(0.618043\pi\)
\(740\) 0 0
\(741\) −4.73636 −0.173994
\(742\) 0.618002 + 1.07041i 0.0226876 + 0.0392960i
\(743\) 0.144780 + 0.540326i 0.00531146 + 0.0198226i 0.968531 0.248894i \(-0.0800671\pi\)
−0.963219 + 0.268717i \(0.913400\pi\)
\(744\) −18.6622 + 32.3239i −0.684190 + 1.18505i
\(745\) 0 0
\(746\) −1.14986 + 1.14986i −0.0420993 + 0.0420993i
\(747\) 19.2487 + 71.8373i 0.704275 + 2.62839i
\(748\) −2.65262 −0.0969893
\(749\) −25.9257 + 14.9682i −0.947305 + 0.546927i
\(750\) 0 0
\(751\) 13.6763i 0.499056i 0.968368 + 0.249528i \(0.0802755\pi\)
−0.968368 + 0.249528i \(0.919725\pi\)
\(752\) −58.3592 15.6373i −2.12814 0.570233i
\(753\) −48.4644 + 83.9428i −1.76614 + 3.05905i
\(754\) −1.05694 + 1.05694i −0.0384916 + 0.0384916i
\(755\) 0 0
\(756\) 11.7888 + 20.4188i 0.428754 + 0.742624i
\(757\) −26.0809 + 15.0578i −0.947926 + 0.547285i −0.892436 0.451174i \(-0.851005\pi\)
−0.0554901 + 0.998459i \(0.517672\pi\)
\(758\) 20.8916 + 12.0618i 0.758818 + 0.438104i
\(759\) 9.80226 2.62651i 0.355799 0.0953362i
\(760\) 0 0
\(761\) −25.1569 + 14.5244i −0.911938 + 0.526507i −0.881054 0.473015i \(-0.843165\pi\)
−0.0308836 + 0.999523i \(0.509832\pi\)
\(762\) 43.3801 25.0455i 1.57150 0.907304i
\(763\) −54.3463 −1.96747
\(764\) −0.986490 3.68163i −0.0356899 0.133197i
\(765\) 0 0
\(766\) 6.57692 0.237634
\(767\) −2.37052 2.37052i −0.0855946 0.0855946i
\(768\) 29.0612 + 7.78692i 1.04865 + 0.280986i
\(769\) −8.36905 + 8.36905i −0.301796 + 0.301796i −0.841716 0.539920i \(-0.818454\pi\)
0.539920 + 0.841716i \(0.318454\pi\)
\(770\) 0 0
\(771\) −13.2539 13.2539i −0.477329 0.477329i
\(772\) 2.74577 4.75581i 0.0988223 0.171165i
\(773\) −11.6490 + 3.12135i −0.418987 + 0.112267i −0.462152 0.886801i \(-0.652923\pi\)
0.0431651 + 0.999068i \(0.486256\pi\)
\(774\) 4.54795 + 2.62576i 0.163473 + 0.0943810i
\(775\) 0 0
\(776\) 7.74034i 0.277862i
\(777\) −78.1520 + 23.4478i −2.80369 + 0.841186i
\(778\) −16.7311 16.7311i −0.599838 0.599838i
\(779\) −28.7467 7.70266i −1.02996 0.275976i
\(780\) 0 0
\(781\) −1.80363 1.04133i −0.0645389 0.0372615i
\(782\) 5.88862 + 3.39980i 0.210577 + 0.121576i
\(783\) −36.0982 −1.29004
\(784\) −41.8925 24.1866i −1.49616 0.863809i
\(785\) 0 0
\(786\) 36.6234 + 63.4335i 1.30631 + 2.26260i
\(787\) −25.9763 + 25.9763i −0.925955 + 0.925955i −0.997442 0.0714865i \(-0.977226\pi\)
0.0714865 + 0.997442i \(0.477226\pi\)
\(788\) −3.39817 + 3.39817i −0.121055 + 0.121055i
\(789\) −55.9332 + 32.2931i −1.99128 + 1.14966i
\(790\) 0 0
\(791\) −23.8627 23.8627i −0.848461 0.848461i
\(792\) 19.6836 + 34.0931i 0.699428 + 1.21144i
\(793\) −0.0699579 + 0.261087i −0.00248428 + 0.00927145i
\(794\) −3.43472 + 12.8185i −0.121894 + 0.454913i
\(795\) 0 0
\(796\) 1.11230 + 4.15115i 0.0394243 + 0.147134i
\(797\) 13.6517 + 23.6455i 0.483569 + 0.837566i 0.999822 0.0188700i \(-0.00600687\pi\)
−0.516253 + 0.856436i \(0.672674\pi\)
\(798\) −79.5804 21.3235i −2.81711 0.754843i
\(799\) 10.1438 37.8572i 0.358862 1.33929i
\(800\) 0 0
\(801\) 48.5783 13.0165i 1.71643 0.459916i
\(802\) 4.90858 18.3191i 0.173328 0.646869i
\(803\) −7.23453 7.23453i −0.255301 0.255301i
\(804\) 14.2776 0.503531
\(805\) 0 0
\(806\) −1.91554 1.91554i −0.0674722 0.0674722i
\(807\) 2.89000 0.774372i 0.101733 0.0272592i
\(808\) 0.263723i 0.00927776i
\(809\) 2.23198 + 8.32987i 0.0784723 + 0.292863i 0.993998 0.109396i \(-0.0348918\pi\)
−0.915526 + 0.402259i \(0.868225\pi\)
\(810\) 0 0
\(811\) 5.24640 9.08703i 0.184226 0.319089i −0.759089 0.650986i \(-0.774356\pi\)
0.943315 + 0.331898i \(0.107689\pi\)
\(812\) −3.79570 + 2.19145i −0.133203 + 0.0769049i
\(813\) 32.5317 32.5317i 1.14094 1.14094i
\(814\) 19.6114 5.88397i 0.687379 0.206233i
\(815\) 0 0
\(816\) −11.6533 + 43.4906i −0.407946 + 1.52248i
\(817\) −1.76582 + 0.473151i −0.0617783 + 0.0165534i
\(818\) 1.74612 + 6.51661i 0.0610516 + 0.227848i
\(819\) 10.9983 2.94698i 0.384311 0.102976i
\(820\) 0 0
\(821\) −11.4849 + 19.8924i −0.400824 + 0.694248i −0.993826 0.110953i \(-0.964610\pi\)
0.593001 + 0.805202i \(0.297943\pi\)
\(822\) 33.8725i 1.18144i
\(823\) −14.1702 + 52.8840i −0.493943 + 1.84342i 0.0419300 + 0.999121i \(0.486649\pi\)
−0.535873 + 0.844299i \(0.680017\pi\)
\(824\) 25.7507i 0.897069i
\(825\) 0 0
\(826\) −29.1573 50.5019i −1.01451 1.75718i
\(827\) −12.7147 7.34082i −0.442133 0.255265i 0.262369 0.964968i \(-0.415496\pi\)
−0.704502 + 0.709702i \(0.748830\pi\)
\(828\) 4.32589i 0.150335i
\(829\) 20.7635 + 5.56356i 0.721146 + 0.193231i 0.600683 0.799487i \(-0.294895\pi\)
0.120463 + 0.992718i \(0.461562\pi\)
\(830\) 0 0
\(831\) −11.7862 3.15809i −0.408857 0.109553i
\(832\) 1.07650 1.86456i 0.0373210 0.0646419i
\(833\) 15.6897 27.1754i 0.543616 0.941570i
\(834\) 111.072 + 29.7617i 3.84612 + 1.03056i
\(835\) 0 0
\(836\) 3.36629 + 0.901996i 0.116426 + 0.0311962i
\(837\) 65.4224i 2.26133i
\(838\) 3.34762 + 1.93275i 0.115641 + 0.0667656i
\(839\) −10.8636 18.8162i −0.375052 0.649609i 0.615283 0.788306i \(-0.289042\pi\)
−0.990335 + 0.138697i \(0.955708\pi\)
\(840\) 0 0
\(841\) 22.2896i 0.768607i
\(842\) 7.66752 28.6156i 0.264240 0.986158i
\(843\) 16.3684i 0.563759i
\(844\) 2.97224 5.14807i 0.102309 0.177204i
\(845\) 0 0
\(846\) 142.877 38.2839i 4.91223 1.31623i
\(847\) −6.79259 25.3503i −0.233396 0.871046i
\(848\) −0.857209 + 0.229689i −0.0294367 + 0.00788754i
\(849\) 12.4147 46.3321i 0.426070 1.59012i
\(850\) 0 0
\(851\) −8.61004 2.03521i −0.295148 0.0697661i
\(852\) 0.884525 0.884525i 0.0303033 0.0303033i
\(853\) −39.0120 + 22.5236i −1.33575 + 0.771194i −0.986174 0.165715i \(-0.947007\pi\)
−0.349573 + 0.936909i \(0.613673\pi\)
\(854\) −2.35087 + 4.07182i −0.0804451 + 0.139335i
\(855\) 0 0
\(856\) −4.59218 17.1382i −0.156957 0.585773i
\(857\) 30.2373i 1.03289i −0.856321 0.516444i \(-0.827256\pi\)
0.856321 0.516444i \(-0.172744\pi\)
\(858\) −3.88873 + 1.04198i −0.132759 + 0.0355727i
\(859\) 4.95333 + 4.95333i 0.169005 + 0.169005i 0.786542 0.617537i \(-0.211869\pi\)
−0.617537 + 0.786542i \(0.711869\pi\)
\(860\) 0 0
\(861\) 100.808 3.43554
\(862\) 29.4124 + 29.4124i 1.00179 + 1.00179i
\(863\) 2.02516 7.55800i 0.0689372 0.257277i −0.922853 0.385152i \(-0.874149\pi\)
0.991790 + 0.127875i \(0.0408156\pi\)
\(864\) −30.4283 + 8.15325i −1.03519 + 0.277379i
\(865\) 0 0
\(866\) −7.05116 + 26.3153i −0.239608 + 0.894229i
\(867\) 24.5768 + 6.58534i 0.834672 + 0.223650i
\(868\) −3.97166 6.87913i −0.134807 0.233493i
\(869\) −5.29733 19.7699i −0.179700 0.670648i
\(870\) 0 0
\(871\) 1.05465 3.93602i 0.0357356 0.133367i
\(872\) 8.33659 31.1126i 0.282313 1.05360i
\(873\) 11.4785 + 19.8814i 0.388489 + 0.672882i
\(874\) −6.31686 6.31686i −0.213671 0.213671i
\(875\) 0 0
\(876\) 5.32187 3.07258i 0.179809 0.103813i
\(877\) −28.3951 + 28.3951i −0.958835 + 0.958835i −0.999186 0.0403503i \(-0.987153\pi\)
0.0403503 + 0.999186i \(0.487153\pi\)
\(878\) 14.3620 14.3620i 0.484695 0.484695i
\(879\) −2.43336 4.21471i −0.0820753 0.142159i
\(880\) 0 0
\(881\) 47.4583 + 27.4000i 1.59891 + 0.923131i 0.991698 + 0.128590i \(0.0410452\pi\)
0.607211 + 0.794540i \(0.292288\pi\)
\(882\) 118.430 3.98773
\(883\) 11.6623 + 6.73321i 0.392467 + 0.226591i 0.683228 0.730205i \(-0.260575\pi\)
−0.290762 + 0.956795i \(0.593909\pi\)
\(884\) −0.393798 0.227359i −0.0132448 0.00764692i
\(885\) 0 0
\(886\) −1.02783 0.275406i −0.0345306 0.00925245i
\(887\) −21.5186 21.5186i −0.722524 0.722524i 0.246594 0.969119i \(-0.420688\pi\)
−0.969119 + 0.246594i \(0.920688\pi\)
\(888\) −1.43525 48.3379i −0.0481640 1.62211i
\(889\) 41.9194i 1.40593i
\(890\) 0 0
\(891\) −42.8425 24.7351i −1.43528 0.828658i
\(892\) 2.09155 0.560429i 0.0700302 0.0187645i
\(893\) −25.7459 + 44.5932i −0.861554 + 1.49226i
\(894\) 39.3872 + 39.3872i 1.31730 + 1.31730i
\(895\) 0 0
\(896\) 39.8215 39.8215i 1.33034 1.33034i
\(897\) 1.68033 + 0.450243i 0.0561045 + 0.0150332i
\(898\) −16.3438 16.3438i −0.545401 0.545401i
\(899\) 12.1615 0.405610
\(900\) 0 0
\(901\) −0.148997 0.556066i −0.00496382 0.0185252i
\(902\) −25.2967 −0.842289
\(903\) 5.36272 3.09617i 0.178460 0.103034i
\(904\) 17.3216 10.0006i 0.576108 0.332616i
\(905\) 0 0
\(906\) −13.2212 + 3.54260i −0.439244 + 0.117695i
\(907\) 44.5758 + 25.7359i 1.48012 + 0.854545i 0.999746 0.0225216i \(-0.00716946\pi\)
0.480369 + 0.877067i \(0.340503\pi\)
\(908\) −4.15674 + 2.39989i −0.137946 + 0.0796433i
\(909\) 0.391088 + 0.677384i 0.0129716 + 0.0224674i
\(910\) 0 0
\(911\) −30.2208 + 30.2208i −1.00126 + 1.00126i −0.00125893 + 0.999999i \(0.500401\pi\)
−0.999999 + 0.00125893i \(0.999599\pi\)
\(912\) 29.5771 51.2290i 0.979395 1.69636i
\(913\) −21.2563 5.69562i −0.703482 0.188497i
\(914\) 29.2198i 0.966504i
\(915\) 0 0
\(916\) 4.12439 2.38122i 0.136274 0.0786776i
\(917\) 61.2975 2.02422
\(918\) −16.8609 62.9257i −0.556492 2.07686i
\(919\) 22.2439 22.2439i 0.733760 0.733760i −0.237603 0.971362i \(-0.576362\pi\)
0.971362 + 0.237603i \(0.0763616\pi\)
\(920\) 0 0
\(921\) −47.9412 + 83.0367i −1.57972 + 2.73615i
\(922\) 5.16226 + 19.2658i 0.170010 + 0.634486i
\(923\) −0.178507 0.309183i −0.00587562 0.0101769i
\(924\) −11.8048 −0.388350
\(925\) 0 0
\(926\) −58.9361 −1.93676
\(927\) 38.1869 + 66.1417i 1.25422 + 2.17238i
\(928\) −1.51563 5.65641i −0.0497530 0.185681i
\(929\) 17.4258 30.1824i 0.571723 0.990253i −0.424667 0.905350i \(-0.639609\pi\)
0.996389 0.0849029i \(-0.0270580\pi\)
\(930\) 0 0
\(931\) −29.1517 + 29.1517i −0.955407 + 0.955407i
\(932\) 2.31498 + 8.63964i 0.0758298 + 0.283001i
\(933\) −37.6900 −1.23392
\(934\) −33.2421 + 19.1924i −1.08772 + 0.627993i
\(935\) 0 0
\(936\) 6.74844i 0.220580i
\(937\) 42.8463 + 11.4806i 1.39973 + 0.375056i 0.878247 0.478207i \(-0.158713\pi\)
0.521481 + 0.853263i \(0.325380\pi\)
\(938\) 35.4406 61.3849i 1.15718 2.00429i
\(939\) 14.6762 14.6762i 0.478940 0.478940i
\(940\) 0 0
\(941\) 11.4650 + 19.8579i 0.373748 + 0.647350i 0.990139 0.140090i \(-0.0447392\pi\)
−0.616391 + 0.787440i \(0.711406\pi\)
\(942\) −31.0166 + 17.9074i −1.01057 + 0.583456i
\(943\) 9.46632 + 5.46538i 0.308266 + 0.177977i
\(944\) 40.4430 10.8367i 1.31631 0.352704i
\(945\) 0 0
\(946\) −1.34572 + 0.776950i −0.0437530 + 0.0252608i
\(947\) 19.1624 11.0634i 0.622693 0.359512i −0.155224 0.987879i \(-0.549610\pi\)
0.777917 + 0.628367i \(0.216276\pi\)
\(948\) 12.2933 0.399269
\(949\) −0.453931 1.69409i −0.0147352 0.0549925i
\(950\) 0 0
\(951\) 71.2641 2.31090
\(952\) 21.9933 + 21.9933i 0.712808 + 0.712808i
\(953\) 10.3263 + 2.76692i 0.334501 + 0.0896293i 0.422160 0.906521i \(-0.361272\pi\)
−0.0876591 + 0.996151i \(0.527939\pi\)
\(954\) 1.53632 1.53632i 0.0497403 0.0497403i
\(955\) 0 0
\(956\) −4.51491 4.51491i −0.146023 0.146023i
\(957\) 9.03683 15.6522i 0.292119 0.505965i
\(958\) −38.4451 + 10.3013i −1.24210 + 0.332821i
\(959\) 24.5489 + 14.1733i 0.792726 + 0.457680i
\(960\) 0 0
\(961\) 8.95909i 0.289003i
\(962\) 3.41576 + 0.807405i 0.110128 + 0.0260318i
\(963\) 37.2103 + 37.2103i 1.19908 + 1.19908i
\(964\) −3.80942 1.02073i −0.122693 0.0328756i
\(965\) 0 0
\(966\) 26.2059 + 15.1300i 0.843160 + 0.486799i
\(967\) −20.9493 12.0951i −0.673684 0.388951i 0.123787 0.992309i \(-0.460496\pi\)
−0.797471 + 0.603357i \(0.793829\pi\)
\(968\) 15.5547 0.499947
\(969\) 33.2319 + 19.1864i 1.06756 + 0.616357i
\(970\) 0 0
\(971\) −3.56909 6.18184i −0.114537 0.198385i 0.803057 0.595902i \(-0.203205\pi\)
−0.917595 + 0.397517i \(0.869872\pi\)
\(972\) 9.02388 9.02388i 0.289441 0.289441i
\(973\) 68.0459 68.0459i 2.18145 2.18145i
\(974\) −29.3745 + 16.9594i −0.941218 + 0.543413i
\(975\) 0 0
\(976\) −2.38708 2.38708i −0.0764085 0.0764085i
\(977\) −24.3556 42.1852i −0.779205 1.34962i −0.932400 0.361427i \(-0.882290\pi\)
0.153195 0.988196i \(-0.451044\pi\)
\(978\) 0.209525 0.781959i 0.00669988 0.0250043i
\(979\) −3.85153 + 14.3741i −0.123096 + 0.459399i
\(980\) 0 0
\(981\) 24.7254 + 92.2765i 0.789422 + 2.94616i
\(982\) −10.2841 17.8125i −0.328178 0.568420i
\(983\) 7.90875 + 2.11914i 0.252250 + 0.0675902i 0.382728 0.923861i \(-0.374985\pi\)
−0.130478 + 0.991451i \(0.541651\pi\)
\(984\) −15.4638 + 57.7115i −0.492966 + 1.83978i
\(985\) 0 0
\(986\) 11.6974 3.13432i 0.372522 0.0998169i
\(987\) 45.1425 168.474i 1.43690 5.36260i
\(988\) 0.422436 + 0.422436i 0.0134395 + 0.0134395i
\(989\) 0.671443 0.0213507
\(990\) 0 0
\(991\) 36.8837 + 36.8837i 1.17165 + 1.17165i 0.981816 + 0.189834i \(0.0607948\pi\)
0.189834 + 0.981816i \(0.439205\pi\)
\(992\) 10.2514 2.74684i 0.325481 0.0872124i
\(993\) 26.8768i 0.852910i
\(994\) −1.60731 5.99855i −0.0509806 0.190262i
\(995\) 0 0
\(996\) 6.60881 11.4468i 0.209408 0.362705i
\(997\) −30.2437 + 17.4612i −0.957828 + 0.553002i −0.895504 0.445054i \(-0.853184\pi\)
−0.0623238 + 0.998056i \(0.519851\pi\)
\(998\) −39.1364 + 39.1364i −1.23884 + 1.23884i
\(999\) 44.5421 + 72.1177i 1.40925 + 2.28170i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 925.2.t.b.843.14 68
5.2 odd 4 925.2.y.b.732.4 68
5.3 odd 4 185.2.u.a.177.14 yes 68
5.4 even 2 185.2.p.a.103.4 yes 68
37.23 odd 12 925.2.y.b.393.4 68
185.23 even 12 185.2.p.a.97.4 68
185.97 even 12 inner 925.2.t.b.282.14 68
185.134 odd 12 185.2.u.a.23.14 yes 68
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
185.2.p.a.97.4 68 185.23 even 12
185.2.p.a.103.4 yes 68 5.4 even 2
185.2.u.a.23.14 yes 68 185.134 odd 12
185.2.u.a.177.14 yes 68 5.3 odd 4
925.2.t.b.282.14 68 185.97 even 12 inner
925.2.t.b.843.14 68 1.1 even 1 trivial
925.2.y.b.393.4 68 37.23 odd 12
925.2.y.b.732.4 68 5.2 odd 4