Properties

Label 925.2.y.b.393.10
Level $925$
Weight $2$
Character 925.393
Analytic conductor $7.386$
Analytic rank $0$
Dimension $68$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [925,2,Mod(193,925)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("925.193"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(925, base_ring=CyclotomicField(12)) chi = DirichletCharacter(H, H._module([9, 1])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 925 = 5^{2} \cdot 37 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 925.y (of order \(12\), degree \(4\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [68] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.38616218697\)
Analytic rank: \(0\)
Dimension: \(68\)
Relative dimension: \(17\) over \(\Q(\zeta_{12})\)
Twist minimal: no (minimal twist has level 185)
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 393.10
Character \(\chi\) \(=\) 925.393
Dual form 925.2.y.b.732.10

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.305683 + 0.176486i) q^{2} +(-2.52485 - 0.676530i) q^{3} +(-0.937705 - 1.62415i) q^{4} +(-0.652403 - 0.652403i) q^{6} +(1.50833 + 0.404156i) q^{7} -1.36791i q^{8} +(3.31908 + 1.91627i) q^{9} -2.57054i q^{11} +(1.26877 + 4.73512i) q^{12} +(4.41433 - 2.54861i) q^{13} +(0.389743 + 0.389743i) q^{14} +(-1.63399 + 2.83016i) q^{16} +(0.342624 - 0.593443i) q^{17} +(0.676389 + 1.17154i) q^{18} +(4.59908 + 1.23232i) q^{19} +(-3.53488 - 2.04087i) q^{21} +(0.453664 - 0.785768i) q^{22} -5.83340i q^{23} +(-0.925433 + 3.45376i) q^{24} +1.79918 q^{26} +(-1.53879 - 1.53879i) q^{27} +(-0.757959 - 2.82874i) q^{28} +(-4.71673 - 4.71673i) q^{29} +(-1.40786 + 1.40786i) q^{31} +(-3.36826 + 1.94466i) q^{32} +(-1.73905 + 6.49021i) q^{33} +(0.209469 - 0.120937i) q^{34} -7.18758i q^{36} +(-4.74646 + 3.80409i) q^{37} +(1.18837 + 1.18837i) q^{38} +(-12.8697 + 3.44843i) q^{39} +(-6.82923 + 3.94286i) q^{41} +(-0.720368 - 1.24771i) q^{42} -2.28668i q^{43} +(-4.17495 + 2.41041i) q^{44} +(1.02951 - 1.78317i) q^{46} +(7.99119 - 7.99119i) q^{47} +(6.04027 - 6.04027i) q^{48} +(-3.95045 - 2.28080i) q^{49} +(-1.26656 + 1.26656i) q^{51} +(-8.27868 - 4.77970i) q^{52} +(-4.37275 + 1.17167i) q^{53} +(-0.198807 - 0.741957i) q^{54} +(0.552850 - 2.06326i) q^{56} +(-10.7783 - 6.22283i) q^{57} +(-0.609385 - 2.27426i) q^{58} +(-2.43277 - 9.07924i) q^{59} +(-2.49030 - 0.667274i) q^{61} +(-0.678826 + 0.181891i) q^{62} +(4.23180 + 4.23180i) q^{63} +5.16315 q^{64} +(-1.67703 + 1.67703i) q^{66} +(-0.100851 + 0.376380i) q^{67} -1.28512 q^{68} +(-3.94647 + 14.7284i) q^{69} +(0.0695659 + 0.120492i) q^{71} +(2.62128 - 4.54020i) q^{72} +(-6.70047 + 6.70047i) q^{73} +(-2.12228 + 0.325159i) q^{74} +(-2.31111 - 8.62517i) q^{76} +(1.03890 - 3.87723i) q^{77} +(-4.54265 - 1.21720i) q^{78} +(0.455083 + 0.121939i) q^{79} +(-2.90463 - 5.03097i) q^{81} -2.78343 q^{82} +(3.06472 - 0.821188i) q^{83} +7.65492i q^{84} +(0.403567 - 0.698999i) q^{86} +(8.71800 + 15.1000i) q^{87} -3.51627 q^{88} +(15.2422 - 4.08413i) q^{89} +(7.68831 - 2.06008i) q^{91} +(-9.47433 + 5.47001i) q^{92} +(4.50709 - 2.60217i) q^{93} +(3.85310 - 1.03243i) q^{94} +(9.81995 - 2.63125i) q^{96} -13.7731 q^{97} +(-0.805056 - 1.39440i) q^{98} +(4.92584 - 8.53181i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 68 q + 6 q^{2} + 4 q^{3} + 30 q^{4} - 8 q^{6} + 2 q^{7} + 10 q^{12} + 6 q^{13} - 26 q^{16} + 10 q^{17} + 8 q^{18} - 4 q^{19} - 12 q^{21} + 14 q^{22} - 24 q^{26} - 68 q^{27} - 14 q^{28} - 14 q^{29} - 24 q^{31}+ \cdots - 32 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/925\mathbb{Z}\right)^\times\).

\(n\) \(76\) \(852\)
\(\chi(n)\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.305683 + 0.176486i 0.216150 + 0.124794i 0.604166 0.796858i \(-0.293506\pi\)
−0.388016 + 0.921653i \(0.626840\pi\)
\(3\) −2.52485 0.676530i −1.45772 0.390595i −0.559018 0.829155i \(-0.688822\pi\)
−0.898702 + 0.438560i \(0.855489\pi\)
\(4\) −0.937705 1.62415i −0.468853 0.812077i
\(5\) 0 0
\(6\) −0.652403 0.652403i −0.266342 0.266342i
\(7\) 1.50833 + 0.404156i 0.570096 + 0.152757i 0.532341 0.846530i \(-0.321313\pi\)
0.0377554 + 0.999287i \(0.487979\pi\)
\(8\) 1.36791i 0.483629i
\(9\) 3.31908 + 1.91627i 1.10636 + 0.638756i
\(10\) 0 0
\(11\) 2.57054i 0.775046i −0.921860 0.387523i \(-0.873331\pi\)
0.921860 0.387523i \(-0.126669\pi\)
\(12\) 1.26877 + 4.73512i 0.366263 + 1.36691i
\(13\) 4.41433 2.54861i 1.22431 0.706858i 0.258480 0.966017i \(-0.416778\pi\)
0.965835 + 0.259158i \(0.0834451\pi\)
\(14\) 0.389743 + 0.389743i 0.104163 + 0.104163i
\(15\) 0 0
\(16\) −1.63399 + 2.83016i −0.408499 + 0.707540i
\(17\) 0.342624 0.593443i 0.0830986 0.143931i −0.821481 0.570236i \(-0.806852\pi\)
0.904579 + 0.426305i \(0.140185\pi\)
\(18\) 0.676389 + 1.17154i 0.159426 + 0.276135i
\(19\) 4.59908 + 1.23232i 1.05510 + 0.282714i 0.744358 0.667780i \(-0.232755\pi\)
0.310743 + 0.950494i \(0.399422\pi\)
\(20\) 0 0
\(21\) −3.53488 2.04087i −0.771374 0.445353i
\(22\) 0.453664 0.785768i 0.0967214 0.167526i
\(23\) 5.83340i 1.21635i −0.793804 0.608174i \(-0.791902\pi\)
0.793804 0.608174i \(-0.208098\pi\)
\(24\) −0.925433 + 3.45376i −0.188903 + 0.704996i
\(25\) 0 0
\(26\) 1.79918 0.352848
\(27\) −1.53879 1.53879i −0.296141 0.296141i
\(28\) −0.757959 2.82874i −0.143241 0.534582i
\(29\) −4.71673 4.71673i −0.875874 0.875874i 0.117231 0.993105i \(-0.462598\pi\)
−0.993105 + 0.117231i \(0.962598\pi\)
\(30\) 0 0
\(31\) −1.40786 + 1.40786i −0.252859 + 0.252859i −0.822142 0.569283i \(-0.807221\pi\)
0.569283 + 0.822142i \(0.307221\pi\)
\(32\) −3.36826 + 1.94466i −0.595429 + 0.343771i
\(33\) −1.73905 + 6.49021i −0.302729 + 1.12980i
\(34\) 0.209469 0.120937i 0.0359236 0.0207405i
\(35\) 0 0
\(36\) 7.18758i 1.19793i
\(37\) −4.74646 + 3.80409i −0.780314 + 0.625388i
\(38\) 1.18837 + 1.18837i 0.192779 + 0.192779i
\(39\) −12.8697 + 3.44843i −2.06080 + 0.552191i
\(40\) 0 0
\(41\) −6.82923 + 3.94286i −1.06655 + 0.615771i −0.927236 0.374478i \(-0.877822\pi\)
−0.139311 + 0.990249i \(0.544489\pi\)
\(42\) −0.720368 1.24771i −0.111155 0.192526i
\(43\) 2.28668i 0.348716i −0.984682 0.174358i \(-0.944215\pi\)
0.984682 0.174358i \(-0.0557850\pi\)
\(44\) −4.17495 + 2.41041i −0.629397 + 0.363383i
\(45\) 0 0
\(46\) 1.02951 1.78317i 0.151793 0.262914i
\(47\) 7.99119 7.99119i 1.16563 1.16563i 0.182412 0.983222i \(-0.441610\pi\)
0.983222 0.182412i \(-0.0583905\pi\)
\(48\) 6.04027 6.04027i 0.871838 0.871838i
\(49\) −3.95045 2.28080i −0.564351 0.325828i
\(50\) 0 0
\(51\) −1.26656 + 1.26656i −0.177353 + 0.177353i
\(52\) −8.27868 4.77970i −1.14805 0.662825i
\(53\) −4.37275 + 1.17167i −0.600643 + 0.160942i −0.546313 0.837581i \(-0.683969\pi\)
−0.0543303 + 0.998523i \(0.517302\pi\)
\(54\) −0.198807 0.741957i −0.0270542 0.100968i
\(55\) 0 0
\(56\) 0.552850 2.06326i 0.0738777 0.275715i
\(57\) −10.7783 6.22283i −1.42762 0.824235i
\(58\) −0.609385 2.27426i −0.0800162 0.298624i
\(59\) −2.43277 9.07924i −0.316720 1.18202i −0.922377 0.386290i \(-0.873756\pi\)
0.605657 0.795726i \(-0.292910\pi\)
\(60\) 0 0
\(61\) −2.49030 0.667274i −0.318850 0.0854357i 0.0958442 0.995396i \(-0.469445\pi\)
−0.414695 + 0.909961i \(0.636112\pi\)
\(62\) −0.678826 + 0.181891i −0.0862110 + 0.0231002i
\(63\) 4.23180 + 4.23180i 0.533156 + 0.533156i
\(64\) 5.16315 0.645394
\(65\) 0 0
\(66\) −1.67703 + 1.67703i −0.206428 + 0.206428i
\(67\) −0.100851 + 0.376380i −0.0123209 + 0.0459822i −0.971813 0.235755i \(-0.924244\pi\)
0.959492 + 0.281737i \(0.0909105\pi\)
\(68\) −1.28512 −0.155844
\(69\) −3.94647 + 14.7284i −0.475099 + 1.77309i
\(70\) 0 0
\(71\) 0.0695659 + 0.120492i 0.00825595 + 0.0142997i 0.870124 0.492833i \(-0.164039\pi\)
−0.861868 + 0.507133i \(0.830705\pi\)
\(72\) 2.62128 4.54020i 0.308921 0.535067i
\(73\) −6.70047 + 6.70047i −0.784231 + 0.784231i −0.980542 0.196311i \(-0.937104\pi\)
0.196311 + 0.980542i \(0.437104\pi\)
\(74\) −2.12228 + 0.325159i −0.246710 + 0.0377989i
\(75\) 0 0
\(76\) −2.31111 8.62517i −0.265102 0.989374i
\(77\) 1.03890 3.87723i 0.118394 0.441851i
\(78\) −4.54265 1.21720i −0.514353 0.137821i
\(79\) 0.455083 + 0.121939i 0.0512008 + 0.0137192i 0.284329 0.958727i \(-0.408229\pi\)
−0.233128 + 0.972446i \(0.574896\pi\)
\(80\) 0 0
\(81\) −2.90463 5.03097i −0.322737 0.558997i
\(82\) −2.78343 −0.307379
\(83\) 3.06472 0.821188i 0.336396 0.0901371i −0.0866667 0.996237i \(-0.527622\pi\)
0.423063 + 0.906100i \(0.360955\pi\)
\(84\) 7.65492i 0.835220i
\(85\) 0 0
\(86\) 0.403567 0.698999i 0.0435178 0.0753750i
\(87\) 8.71800 + 15.1000i 0.934667 + 1.61889i
\(88\) −3.51627 −0.374835
\(89\) 15.2422 4.08413i 1.61567 0.432917i 0.665944 0.746002i \(-0.268029\pi\)
0.949725 + 0.313084i \(0.101362\pi\)
\(90\) 0 0
\(91\) 7.68831 2.06008i 0.805954 0.215955i
\(92\) −9.47433 + 5.47001i −0.987768 + 0.570288i
\(93\) 4.50709 2.60217i 0.467364 0.269832i
\(94\) 3.85310 1.03243i 0.397417 0.106487i
\(95\) 0 0
\(96\) 9.81995 2.63125i 1.00224 0.268551i
\(97\) −13.7731 −1.39845 −0.699224 0.714902i \(-0.746471\pi\)
−0.699224 + 0.714902i \(0.746471\pi\)
\(98\) −0.805056 1.39440i −0.0813230 0.140856i
\(99\) 4.92584 8.53181i 0.495066 0.857479i
\(100\) 0 0
\(101\) 12.9947i 1.29302i −0.762904 0.646512i \(-0.776227\pi\)
0.762904 0.646512i \(-0.223773\pi\)
\(102\) −0.610693 + 0.163635i −0.0604676 + 0.0162023i
\(103\) −15.5723 −1.53439 −0.767194 0.641415i \(-0.778348\pi\)
−0.767194 + 0.641415i \(0.778348\pi\)
\(104\) −3.48628 6.03841i −0.341858 0.592115i
\(105\) 0 0
\(106\) −1.54346 0.413568i −0.149914 0.0401693i
\(107\) 15.0746 + 4.03924i 1.45732 + 0.390488i 0.898564 0.438843i \(-0.144612\pi\)
0.558758 + 0.829331i \(0.311278\pi\)
\(108\) −1.05630 + 3.94217i −0.101643 + 0.379335i
\(109\) 4.41374 + 16.4723i 0.422760 + 1.57776i 0.768767 + 0.639530i \(0.220871\pi\)
−0.346007 + 0.938232i \(0.612463\pi\)
\(110\) 0 0
\(111\) 14.5577 6.39360i 1.38175 0.606854i
\(112\) −3.60843 + 3.60843i −0.340965 + 0.340965i
\(113\) −4.95674 + 8.58533i −0.466291 + 0.807640i −0.999259 0.0384957i \(-0.987743\pi\)
0.532968 + 0.846136i \(0.321077\pi\)
\(114\) −2.19649 3.80442i −0.205720 0.356317i
\(115\) 0 0
\(116\) −3.23779 + 12.0836i −0.300621 + 1.12193i
\(117\) 19.5353 1.80604
\(118\) 0.858701 3.20471i 0.0790498 0.295018i
\(119\) 0.756635 0.756635i 0.0693606 0.0693606i
\(120\) 0 0
\(121\) 4.39234 0.399303
\(122\) −0.643477 0.643477i −0.0582577 0.0582577i
\(123\) 19.9102 5.33493i 1.79524 0.481034i
\(124\) 3.60674 + 0.966423i 0.323895 + 0.0867874i
\(125\) 0 0
\(126\) 0.546734 + 2.04044i 0.0487069 + 0.181777i
\(127\) −3.49690 13.0506i −0.310299 1.15805i −0.928287 0.371865i \(-0.878718\pi\)
0.617987 0.786188i \(-0.287948\pi\)
\(128\) 8.31480 + 4.80055i 0.734931 + 0.424313i
\(129\) −1.54701 + 5.77352i −0.136207 + 0.508330i
\(130\) 0 0
\(131\) 2.35244 + 8.77941i 0.205533 + 0.767061i 0.989286 + 0.145988i \(0.0466362\pi\)
−0.783753 + 0.621073i \(0.786697\pi\)
\(132\) 12.1718 3.26143i 1.05942 0.283871i
\(133\) 6.43889 + 3.71750i 0.558323 + 0.322348i
\(134\) −0.0972542 + 0.0972542i −0.00840148 + 0.00840148i
\(135\) 0 0
\(136\) −0.811777 0.468680i −0.0696093 0.0401889i
\(137\) 3.39738 3.39738i 0.290258 0.290258i −0.546924 0.837182i \(-0.684201\pi\)
0.837182 + 0.546924i \(0.184201\pi\)
\(138\) −3.80573 + 3.80573i −0.323965 + 0.323965i
\(139\) 5.14118 8.90478i 0.436069 0.755293i −0.561313 0.827603i \(-0.689704\pi\)
0.997382 + 0.0723099i \(0.0230371\pi\)
\(140\) 0 0
\(141\) −25.5828 + 14.7702i −2.15446 + 1.24388i
\(142\) 0.0491096i 0.00412119i
\(143\) −6.55131 11.3472i −0.547848 0.948901i
\(144\) −10.8467 + 6.26234i −0.903891 + 0.521862i
\(145\) 0 0
\(146\) −3.23075 + 0.865678i −0.267379 + 0.0716440i
\(147\) 8.43126 + 8.43126i 0.695398 + 0.695398i
\(148\) 10.6292 + 4.14187i 0.873715 + 0.340460i
\(149\) 13.8216i 1.13231i −0.824298 0.566156i \(-0.808430\pi\)
0.824298 0.566156i \(-0.191570\pi\)
\(150\) 0 0
\(151\) −18.7800 + 10.8426i −1.52829 + 0.882359i −0.528857 + 0.848711i \(0.677379\pi\)
−0.999434 + 0.0336485i \(0.989287\pi\)
\(152\) 1.68570 6.29113i 0.136729 0.510278i
\(153\) 2.27439 1.31312i 0.183874 0.106160i
\(154\) 1.00185 1.00185i 0.0807313 0.0807313i
\(155\) 0 0
\(156\) 17.6688 + 17.6688i 1.41463 + 1.41463i
\(157\) 2.49678 + 9.31810i 0.199265 + 0.743665i 0.991122 + 0.132959i \(0.0424478\pi\)
−0.791857 + 0.610706i \(0.790886\pi\)
\(158\) 0.117590 + 0.117590i 0.00935498 + 0.00935498i
\(159\) 11.8332 0.938433
\(160\) 0 0
\(161\) 2.35761 8.79870i 0.185805 0.693435i
\(162\) 2.05051i 0.161103i
\(163\) 9.72549 16.8451i 0.761760 1.31941i −0.180183 0.983633i \(-0.557669\pi\)
0.941943 0.335773i \(-0.108998\pi\)
\(164\) 12.8076 + 7.39448i 1.00011 + 0.577412i
\(165\) 0 0
\(166\) 1.08176 + 0.289856i 0.0839607 + 0.0224972i
\(167\) 2.03581 + 3.52613i 0.157536 + 0.272860i 0.933980 0.357326i \(-0.116312\pi\)
−0.776444 + 0.630187i \(0.782978\pi\)
\(168\) −2.79172 + 4.83540i −0.215386 + 0.373059i
\(169\) 6.49087 11.2425i 0.499297 0.864809i
\(170\) 0 0
\(171\) 12.9032 + 12.9032i 0.986735 + 0.986735i
\(172\) −3.71392 + 2.14423i −0.283184 + 0.163496i
\(173\) 0.919404 + 3.43126i 0.0699010 + 0.260874i 0.992029 0.126011i \(-0.0402176\pi\)
−0.922128 + 0.386885i \(0.873551\pi\)
\(174\) 6.15441i 0.466565i
\(175\) 0 0
\(176\) 7.27504 + 4.20024i 0.548376 + 0.316605i
\(177\) 24.5695i 1.84676i
\(178\) 5.38006 + 1.44158i 0.403253 + 0.108051i
\(179\) −5.13938 5.13938i −0.384135 0.384135i 0.488454 0.872590i \(-0.337561\pi\)
−0.872590 + 0.488454i \(0.837561\pi\)
\(180\) 0 0
\(181\) 4.66518 + 8.08032i 0.346760 + 0.600606i 0.985672 0.168674i \(-0.0539485\pi\)
−0.638912 + 0.769280i \(0.720615\pi\)
\(182\) 2.71376 + 0.727149i 0.201157 + 0.0538999i
\(183\) 5.83620 + 3.36953i 0.431424 + 0.249083i
\(184\) −7.97957 −0.588261
\(185\) 0 0
\(186\) 1.83699 0.134694
\(187\) −1.52547 0.880729i −0.111553 0.0644053i
\(188\) −20.4723 5.48553i −1.49310 0.400074i
\(189\) −1.69910 2.94292i −0.123591 0.214066i
\(190\) 0 0
\(191\) 1.71277 + 1.71277i 0.123932 + 0.123932i 0.766352 0.642420i \(-0.222070\pi\)
−0.642420 + 0.766352i \(0.722070\pi\)
\(192\) −13.0362 3.49303i −0.940804 0.252088i
\(193\) 9.20371i 0.662498i 0.943543 + 0.331249i \(0.107470\pi\)
−0.943543 + 0.331249i \(0.892530\pi\)
\(194\) −4.21020 2.43076i −0.302275 0.174518i
\(195\) 0 0
\(196\) 8.55486i 0.611061i
\(197\) 0.594910 + 2.22023i 0.0423856 + 0.158185i 0.983875 0.178857i \(-0.0572401\pi\)
−0.941489 + 0.337043i \(0.890573\pi\)
\(198\) 3.01149 1.73868i 0.214017 0.123563i
\(199\) −13.0048 13.0048i −0.921884 0.921884i 0.0752787 0.997163i \(-0.476015\pi\)
−0.997163 + 0.0752787i \(0.976015\pi\)
\(200\) 0 0
\(201\) 0.509266 0.882074i 0.0359208 0.0622167i
\(202\) 2.29339 3.97226i 0.161362 0.279487i
\(203\) −5.20810 9.02069i −0.365537 0.633128i
\(204\) 3.24474 + 0.869425i 0.227177 + 0.0608719i
\(205\) 0 0
\(206\) −4.76019 2.74830i −0.331658 0.191483i
\(207\) 11.1784 19.3615i 0.776950 1.34572i
\(208\) 16.6577i 1.15500i
\(209\) 3.16773 11.8221i 0.219116 0.817753i
\(210\) 0 0
\(211\) 18.9546 1.30489 0.652445 0.757836i \(-0.273744\pi\)
0.652445 + 0.757836i \(0.273744\pi\)
\(212\) 6.00333 + 6.00333i 0.412310 + 0.412310i
\(213\) −0.0941269 0.351286i −0.00644947 0.0240697i
\(214\) 3.89519 + 3.89519i 0.266270 + 0.266270i
\(215\) 0 0
\(216\) −2.10493 + 2.10493i −0.143222 + 0.143222i
\(217\) −2.69252 + 1.55453i −0.182780 + 0.105528i
\(218\) −1.55793 + 5.81426i −0.105516 + 0.393792i
\(219\) 21.4507 12.3846i 1.44951 0.836872i
\(220\) 0 0
\(221\) 3.49287i 0.234956i
\(222\) 5.57841 + 0.614811i 0.374398 + 0.0412634i
\(223\) −12.6125 12.6125i −0.844597 0.844597i 0.144856 0.989453i \(-0.453728\pi\)
−0.989453 + 0.144856i \(0.953728\pi\)
\(224\) −5.86640 + 1.57190i −0.391965 + 0.105027i
\(225\) 0 0
\(226\) −3.03038 + 1.74959i −0.201578 + 0.116381i
\(227\) −7.55203 13.0805i −0.501246 0.868183i −0.999999 0.00143883i \(-0.999542\pi\)
0.498753 0.866744i \(-0.333791\pi\)
\(228\) 23.3407i 1.54578i
\(229\) −17.9565 + 10.3672i −1.18660 + 0.685083i −0.957532 0.288328i \(-0.906901\pi\)
−0.229067 + 0.973411i \(0.573567\pi\)
\(230\) 0 0
\(231\) −5.24612 + 9.08655i −0.345169 + 0.597851i
\(232\) −6.45206 + 6.45206i −0.423598 + 0.423598i
\(233\) 0.0618698 0.0618698i 0.00405322 0.00405322i −0.705077 0.709130i \(-0.749088\pi\)
0.709130 + 0.705077i \(0.249088\pi\)
\(234\) 5.97161 + 3.44771i 0.390376 + 0.225384i
\(235\) 0 0
\(236\) −12.4648 + 12.4648i −0.811393 + 0.811393i
\(237\) −1.06652 0.615754i −0.0692778 0.0399975i
\(238\) 0.364826 0.0977547i 0.0236481 0.00633650i
\(239\) 3.92002 + 14.6297i 0.253565 + 0.946318i 0.968883 + 0.247519i \(0.0796152\pi\)
−0.715318 + 0.698799i \(0.753718\pi\)
\(240\) 0 0
\(241\) 3.24330 12.1042i 0.208919 0.779697i −0.779300 0.626651i \(-0.784425\pi\)
0.988219 0.153046i \(-0.0489083\pi\)
\(242\) 1.34266 + 0.775185i 0.0863095 + 0.0498308i
\(243\) 5.61986 + 20.9736i 0.360514 + 1.34546i
\(244\) 1.25141 + 4.67034i 0.0801135 + 0.298988i
\(245\) 0 0
\(246\) 7.02774 + 1.88308i 0.448072 + 0.120061i
\(247\) 23.4426 6.28142i 1.49161 0.399677i
\(248\) 1.92583 + 1.92583i 0.122290 + 0.122290i
\(249\) −8.29350 −0.525579
\(250\) 0 0
\(251\) 0.772329 0.772329i 0.0487490 0.0487490i −0.682312 0.731061i \(-0.739025\pi\)
0.731061 + 0.682312i \(0.239025\pi\)
\(252\) 2.90491 10.8413i 0.182992 0.682935i
\(253\) −14.9950 −0.942726
\(254\) 1.23431 4.60649i 0.0774472 0.289037i
\(255\) 0 0
\(256\) −3.46869 6.00795i −0.216793 0.375497i
\(257\) −0.226136 + 0.391679i −0.0141060 + 0.0244322i −0.872992 0.487734i \(-0.837824\pi\)
0.858886 + 0.512166i \(0.171157\pi\)
\(258\) −1.49184 + 1.49184i −0.0928778 + 0.0928778i
\(259\) −8.69669 + 3.81951i −0.540386 + 0.237333i
\(260\) 0 0
\(261\) −6.61665 24.6937i −0.409561 1.52850i
\(262\) −0.830344 + 3.09889i −0.0512988 + 0.191450i
\(263\) 14.5598 + 3.90128i 0.897794 + 0.240563i 0.678069 0.734999i \(-0.262817\pi\)
0.219725 + 0.975562i \(0.429484\pi\)
\(264\) 8.87803 + 2.37886i 0.546405 + 0.146409i
\(265\) 0 0
\(266\) 1.31217 + 2.27275i 0.0804544 + 0.139351i
\(267\) −41.2472 −2.52429
\(268\) 0.705868 0.189137i 0.0431177 0.0115534i
\(269\) 17.7593i 1.08280i −0.840764 0.541402i \(-0.817894\pi\)
0.840764 0.541402i \(-0.182106\pi\)
\(270\) 0 0
\(271\) 5.45528 9.44882i 0.331385 0.573975i −0.651399 0.758735i \(-0.725818\pi\)
0.982784 + 0.184760i \(0.0591509\pi\)
\(272\) 1.11969 + 1.93936i 0.0678913 + 0.117591i
\(273\) −20.8055 −1.25921
\(274\) 1.63811 0.438930i 0.0989618 0.0265167i
\(275\) 0 0
\(276\) 27.6219 7.40125i 1.66264 0.445503i
\(277\) −11.1460 + 6.43516i −0.669700 + 0.386652i −0.795963 0.605345i \(-0.793035\pi\)
0.126263 + 0.991997i \(0.459702\pi\)
\(278\) 3.14314 1.81469i 0.188513 0.108838i
\(279\) −7.37063 + 1.97496i −0.441268 + 0.118238i
\(280\) 0 0
\(281\) −25.0501 + 6.71215i −1.49436 + 0.400413i −0.911208 0.411947i \(-0.864849\pi\)
−0.583155 + 0.812361i \(0.698182\pi\)
\(282\) −10.4269 −0.620916
\(283\) −2.54545 4.40886i −0.151312 0.262079i 0.780398 0.625283i \(-0.215016\pi\)
−0.931710 + 0.363203i \(0.881683\pi\)
\(284\) 0.130465 0.225971i 0.00774165 0.0134089i
\(285\) 0 0
\(286\) 4.62485i 0.273473i
\(287\) −11.8943 + 3.18706i −0.702097 + 0.188126i
\(288\) −14.9060 −0.878344
\(289\) 8.26522 + 14.3158i 0.486189 + 0.842104i
\(290\) 0 0
\(291\) 34.7750 + 9.31793i 2.03855 + 0.546227i
\(292\) 17.1657 + 4.59952i 1.00454 + 0.269167i
\(293\) 6.05444 22.5955i 0.353704 1.32004i −0.528403 0.848993i \(-0.677209\pi\)
0.882108 0.471048i \(-0.156124\pi\)
\(294\) 1.08929 + 4.06529i 0.0635287 + 0.237092i
\(295\) 0 0
\(296\) 5.20365 + 6.49274i 0.302456 + 0.377383i
\(297\) −3.95552 + 3.95552i −0.229523 + 0.229523i
\(298\) 2.43932 4.22503i 0.141306 0.244749i
\(299\) −14.8671 25.7505i −0.859785 1.48919i
\(300\) 0 0
\(301\) 0.924177 3.44908i 0.0532687 0.198801i
\(302\) −7.65427 −0.440454
\(303\) −8.79133 + 32.8097i −0.505049 + 1.88487i
\(304\) −11.0025 + 11.0025i −0.631039 + 0.631039i
\(305\) 0 0
\(306\) 0.926989 0.0529925
\(307\) 2.66991 + 2.66991i 0.152380 + 0.152380i 0.779180 0.626800i \(-0.215636\pi\)
−0.626800 + 0.779180i \(0.715636\pi\)
\(308\) −7.27139 + 1.94836i −0.414326 + 0.111018i
\(309\) 39.3177 + 10.5352i 2.23671 + 0.599324i
\(310\) 0 0
\(311\) −2.32734 8.68575i −0.131971 0.492524i 0.868021 0.496528i \(-0.165392\pi\)
−0.999992 + 0.00400430i \(0.998725\pi\)
\(312\) 4.71714 + 17.6046i 0.267056 + 0.996665i
\(313\) −1.29441 0.747326i −0.0731642 0.0422414i 0.462972 0.886373i \(-0.346783\pi\)
−0.536136 + 0.844132i \(0.680117\pi\)
\(314\) −0.881292 + 3.28903i −0.0497342 + 0.185610i
\(315\) 0 0
\(316\) −0.228686 0.853467i −0.0128646 0.0480113i
\(317\) 18.1650 4.86730i 1.02025 0.273375i 0.290343 0.956923i \(-0.406230\pi\)
0.729906 + 0.683548i \(0.239564\pi\)
\(318\) 3.61720 + 2.08839i 0.202842 + 0.117111i
\(319\) −12.1245 + 12.1245i −0.678843 + 0.678843i
\(320\) 0 0
\(321\) −35.3285 20.3969i −1.97184 1.13844i
\(322\) 2.27353 2.27353i 0.126699 0.126699i
\(323\) 2.30707 2.30707i 0.128369 0.128369i
\(324\) −5.44738 + 9.43514i −0.302632 + 0.524175i
\(325\) 0 0
\(326\) 5.94583 3.43282i 0.329309 0.190127i
\(327\) 44.5761i 2.46506i
\(328\) 5.39348 + 9.34178i 0.297805 + 0.515813i
\(329\) 15.2831 8.82367i 0.842582 0.486465i
\(330\) 0 0
\(331\) −3.69837 + 0.990975i −0.203281 + 0.0544689i −0.359023 0.933329i \(-0.616890\pi\)
0.155742 + 0.987798i \(0.450223\pi\)
\(332\) −4.20754 4.20754i −0.230919 0.230919i
\(333\) −23.0435 + 3.53055i −1.26278 + 0.193473i
\(334\) 1.43717i 0.0786384i
\(335\) 0 0
\(336\) 11.5520 6.66952i 0.630211 0.363852i
\(337\) 1.37651 5.13720i 0.0749832 0.279841i −0.918246 0.396010i \(-0.870395\pi\)
0.993230 + 0.116169i \(0.0370613\pi\)
\(338\) 3.96829 2.29109i 0.215846 0.124619i
\(339\) 18.3232 18.3232i 0.995182 0.995182i
\(340\) 0 0
\(341\) 3.61896 + 3.61896i 0.195978 + 0.195978i
\(342\) 1.66705 + 6.22153i 0.0901440 + 0.336422i
\(343\) −12.7660 12.7660i −0.689301 0.689301i
\(344\) −3.12798 −0.168649
\(345\) 0 0
\(346\) −0.324524 + 1.21114i −0.0174465 + 0.0651112i
\(347\) 17.6817i 0.949201i −0.880201 0.474600i \(-0.842593\pi\)
0.880201 0.474600i \(-0.157407\pi\)
\(348\) 16.3498 28.3187i 0.876443 1.51804i
\(349\) −12.9795 7.49374i −0.694779 0.401131i 0.110621 0.993863i \(-0.464716\pi\)
−0.805400 + 0.592732i \(0.798049\pi\)
\(350\) 0 0
\(351\) −10.7145 2.87095i −0.571899 0.153240i
\(352\) 4.99883 + 8.65823i 0.266439 + 0.461485i
\(353\) 5.89156 10.2045i 0.313576 0.543130i −0.665558 0.746347i \(-0.731806\pi\)
0.979134 + 0.203216i \(0.0651395\pi\)
\(354\) −4.33617 + 7.51047i −0.230465 + 0.399177i
\(355\) 0 0
\(356\) −20.9260 20.9260i −1.10907 1.10907i
\(357\) −2.42227 + 1.39850i −0.128200 + 0.0740165i
\(358\) −0.663991 2.47805i −0.0350930 0.130969i
\(359\) 3.55034i 0.187380i 0.995601 + 0.0936900i \(0.0298663\pi\)
−0.995601 + 0.0936900i \(0.970134\pi\)
\(360\) 0 0
\(361\) 3.17845 + 1.83508i 0.167287 + 0.0965831i
\(362\) 3.29335i 0.173095i
\(363\) −11.0900 2.97155i −0.582072 0.155966i
\(364\) −10.5553 10.5553i −0.553246 0.553246i
\(365\) 0 0
\(366\) 1.18935 + 2.06001i 0.0621683 + 0.107679i
\(367\) 5.68539 + 1.52339i 0.296775 + 0.0795206i 0.404134 0.914700i \(-0.367573\pi\)
−0.107359 + 0.994220i \(0.534240\pi\)
\(368\) 16.5095 + 9.53174i 0.860615 + 0.496876i
\(369\) −30.2223 −1.57331
\(370\) 0 0
\(371\) −7.06910 −0.367009
\(372\) −8.45265 4.88014i −0.438249 0.253023i
\(373\) 25.7256 + 6.89317i 1.33202 + 0.356915i 0.853469 0.521143i \(-0.174494\pi\)
0.478554 + 0.878058i \(0.341161\pi\)
\(374\) −0.310872 0.538447i −0.0160748 0.0278424i
\(375\) 0 0
\(376\) −10.9312 10.9312i −0.563735 0.563735i
\(377\) −32.8423 8.80007i −1.69146 0.453226i
\(378\) 1.19947i 0.0616939i
\(379\) 21.5060 + 12.4165i 1.10469 + 0.637793i 0.937449 0.348123i \(-0.113181\pi\)
0.167241 + 0.985916i \(0.446514\pi\)
\(380\) 0 0
\(381\) 35.3165i 1.80932i
\(382\) 0.221284 + 0.825845i 0.0113219 + 0.0422539i
\(383\) 0.836267 0.482819i 0.0427312 0.0246709i −0.478482 0.878097i \(-0.658813\pi\)
0.521213 + 0.853426i \(0.325480\pi\)
\(384\) −17.7459 17.7459i −0.905590 0.905590i
\(385\) 0 0
\(386\) −1.62433 + 2.81341i −0.0826760 + 0.143199i
\(387\) 4.38190 7.58967i 0.222744 0.385805i
\(388\) 12.9151 + 22.3697i 0.655666 + 1.13565i
\(389\) 17.1704 + 4.60080i 0.870574 + 0.233270i 0.666336 0.745651i \(-0.267862\pi\)
0.204238 + 0.978921i \(0.434528\pi\)
\(390\) 0 0
\(391\) −3.46179 1.99866i −0.175070 0.101077i
\(392\) −3.11992 + 5.40387i −0.157580 + 0.272937i
\(393\) 23.7582i 1.19844i
\(394\) −0.209986 + 0.783680i −0.0105790 + 0.0394812i
\(395\) 0 0
\(396\) −18.4760 −0.928452
\(397\) 24.5436 + 24.5436i 1.23181 + 1.23181i 0.963268 + 0.268541i \(0.0865414\pi\)
0.268541 + 0.963268i \(0.413459\pi\)
\(398\) −1.68017 6.27049i −0.0842194 0.314311i
\(399\) −13.7422 13.7422i −0.687971 0.687971i
\(400\) 0 0
\(401\) −12.2360 + 12.2360i −0.611036 + 0.611036i −0.943216 0.332180i \(-0.892216\pi\)
0.332180 + 0.943216i \(0.392216\pi\)
\(402\) 0.311347 0.179756i 0.0155286 0.00896543i
\(403\) −2.62667 + 9.80285i −0.130844 + 0.488315i
\(404\) −21.1054 + 12.1852i −1.05003 + 0.606238i
\(405\) 0 0
\(406\) 3.67662i 0.182468i
\(407\) 9.77855 + 12.2010i 0.484705 + 0.604780i
\(408\) 1.73254 + 1.73254i 0.0857733 + 0.0857733i
\(409\) 32.7833 8.78426i 1.62103 0.434354i 0.669727 0.742608i \(-0.266411\pi\)
0.951304 + 0.308254i \(0.0997446\pi\)
\(410\) 0 0
\(411\) −10.8763 + 6.27943i −0.536488 + 0.309742i
\(412\) 14.6023 + 25.2919i 0.719402 + 1.24604i
\(413\) 14.6777i 0.722244i
\(414\) 6.83406 3.94565i 0.335876 0.193918i
\(415\) 0 0
\(416\) −9.91240 + 17.1688i −0.485995 + 0.841769i
\(417\) −19.0050 + 19.0050i −0.930680 + 0.930680i
\(418\) 3.05475 3.05475i 0.149413 0.149413i
\(419\) 18.2797 + 10.5538i 0.893023 + 0.515587i 0.874930 0.484249i \(-0.160907\pi\)
0.0180930 + 0.999836i \(0.494241\pi\)
\(420\) 0 0
\(421\) 21.7979 21.7979i 1.06237 1.06237i 0.0644457 0.997921i \(-0.479472\pi\)
0.997921 0.0644457i \(-0.0205279\pi\)
\(422\) 5.79409 + 3.34522i 0.282052 + 0.162843i
\(423\) 41.8366 11.2101i 2.03417 0.545053i
\(424\) 1.60275 + 5.98153i 0.0778362 + 0.290489i
\(425\) 0 0
\(426\) 0.0332241 0.123994i 0.00160971 0.00600754i
\(427\) −3.48652 2.01294i −0.168725 0.0974131i
\(428\) −7.57523 28.2712i −0.366163 1.36654i
\(429\) 8.86432 + 33.0821i 0.427973 + 1.59722i
\(430\) 0 0
\(431\) 30.9974 + 8.30574i 1.49309 + 0.400073i 0.910781 0.412891i \(-0.135481\pi\)
0.582314 + 0.812964i \(0.302147\pi\)
\(432\) 6.86941 1.84065i 0.330504 0.0885584i
\(433\) −6.59714 6.59714i −0.317038 0.317038i 0.530590 0.847628i \(-0.321970\pi\)
−0.847628 + 0.530590i \(0.821970\pi\)
\(434\) −1.09741 −0.0526772
\(435\) 0 0
\(436\) 22.6148 22.6148i 1.08305 1.08305i
\(437\) 7.18861 26.8283i 0.343878 1.28337i
\(438\) 8.74281 0.417748
\(439\) −1.83248 + 6.83892i −0.0874597 + 0.326404i −0.995769 0.0918961i \(-0.970707\pi\)
0.908309 + 0.418300i \(0.137374\pi\)
\(440\) 0 0
\(441\) −8.74124 15.1403i −0.416249 0.720965i
\(442\) 0.616442 1.06771i 0.0293212 0.0507857i
\(443\) −18.7004 + 18.7004i −0.888481 + 0.888481i −0.994377 0.105896i \(-0.966229\pi\)
0.105896 + 0.994377i \(0.466229\pi\)
\(444\) −24.0350 17.6486i −1.14065 0.837564i
\(445\) 0 0
\(446\) −1.62950 6.08136i −0.0771588 0.287961i
\(447\) −9.35075 + 34.8975i −0.442275 + 1.65059i
\(448\) 7.78775 + 2.08672i 0.367937 + 0.0985883i
\(449\) −14.0578 3.76677i −0.663427 0.177765i −0.0886349 0.996064i \(-0.528250\pi\)
−0.574792 + 0.818299i \(0.694917\pi\)
\(450\) 0 0
\(451\) 10.1353 + 17.5548i 0.477251 + 0.826623i
\(452\) 18.5919 0.874488
\(453\) 54.7518 14.6707i 2.57247 0.689290i
\(454\) 5.33130i 0.250210i
\(455\) 0 0
\(456\) −8.51228 + 14.7437i −0.398624 + 0.690437i
\(457\) −8.63291 14.9526i −0.403831 0.699455i 0.590354 0.807145i \(-0.298988\pi\)
−0.994185 + 0.107689i \(0.965655\pi\)
\(458\) −7.31865 −0.341978
\(459\) −1.44041 + 0.385958i −0.0672327 + 0.0180150i
\(460\) 0 0
\(461\) −12.8182 + 3.43463i −0.597004 + 0.159967i −0.544652 0.838662i \(-0.683338\pi\)
−0.0523519 + 0.998629i \(0.516672\pi\)
\(462\) −3.20729 + 1.85173i −0.149217 + 0.0861504i
\(463\) 20.6820 11.9408i 0.961176 0.554935i 0.0646411 0.997909i \(-0.479410\pi\)
0.896535 + 0.442973i \(0.146076\pi\)
\(464\) 21.0562 5.64199i 0.977509 0.261923i
\(465\) 0 0
\(466\) 0.0298317 0.00799337i 0.00138192 0.000370286i
\(467\) 20.4259 0.945199 0.472600 0.881277i \(-0.343316\pi\)
0.472600 + 0.881277i \(0.343316\pi\)
\(468\) −18.3184 31.7284i −0.846767 1.46664i
\(469\) −0.304233 + 0.526947i −0.0140482 + 0.0243322i
\(470\) 0 0
\(471\) 25.2159i 1.16189i
\(472\) −12.4196 + 3.32782i −0.571658 + 0.153175i
\(473\) −5.87800 −0.270271
\(474\) −0.217344 0.376451i −0.00998293 0.0172910i
\(475\) 0 0
\(476\) −1.93839 0.519391i −0.0888461 0.0238062i
\(477\) −16.7587 4.49049i −0.767329 0.205605i
\(478\) −1.38366 + 5.16388i −0.0632870 + 0.236190i
\(479\) −3.51612 13.1223i −0.160655 0.599574i −0.998554 0.0537489i \(-0.982883\pi\)
0.837899 0.545825i \(-0.183784\pi\)
\(480\) 0 0
\(481\) −11.2573 + 28.8894i −0.513289 + 1.31724i
\(482\) 3.12763 3.12763i 0.142460 0.142460i
\(483\) −11.9052 + 20.6204i −0.541704 + 0.938259i
\(484\) −4.11872 7.13383i −0.187214 0.324265i
\(485\) 0 0
\(486\) −1.98365 + 7.40309i −0.0899802 + 0.335811i
\(487\) 30.9463 1.40231 0.701154 0.713009i \(-0.252668\pi\)
0.701154 + 0.713009i \(0.252668\pi\)
\(488\) −0.912772 + 3.40651i −0.0413192 + 0.154205i
\(489\) −35.9516 + 35.9516i −1.62579 + 1.62579i
\(490\) 0 0
\(491\) 9.00052 0.406188 0.203094 0.979159i \(-0.434900\pi\)
0.203094 + 0.979159i \(0.434900\pi\)
\(492\) −27.3347 27.3347i −1.23234 1.23234i
\(493\) −4.41517 + 1.18304i −0.198849 + 0.0532815i
\(494\) 8.27456 + 2.21716i 0.372290 + 0.0997549i
\(495\) 0 0
\(496\) −1.68404 6.28491i −0.0756154 0.282201i
\(497\) 0.0562310 + 0.209857i 0.00252231 + 0.00941337i
\(498\) −2.53518 1.46368i −0.113604 0.0655893i
\(499\) −11.3719 + 42.4404i −0.509075 + 1.89989i −0.0795648 + 0.996830i \(0.525353\pi\)
−0.429510 + 0.903062i \(0.641314\pi\)
\(500\) 0 0
\(501\) −2.75458 10.2802i −0.123066 0.459287i
\(502\) 0.372393 0.0997823i 0.0166207 0.00445350i
\(503\) 0.523159 + 0.302046i 0.0233265 + 0.0134676i 0.511618 0.859213i \(-0.329046\pi\)
−0.488291 + 0.872681i \(0.662380\pi\)
\(504\) 5.78872 5.78872i 0.257850 0.257850i
\(505\) 0 0
\(506\) −4.58370 2.64640i −0.203770 0.117647i
\(507\) −23.9943 + 23.9943i −1.06563 + 1.06563i
\(508\) −17.9171 + 17.9171i −0.794943 + 0.794943i
\(509\) −8.77913 + 15.2059i −0.389128 + 0.673990i −0.992333 0.123597i \(-0.960557\pi\)
0.603204 + 0.797587i \(0.293890\pi\)
\(510\) 0 0
\(511\) −12.8146 + 7.39850i −0.566883 + 0.327290i
\(512\) 21.6509i 0.956844i
\(513\) −5.18075 8.97331i −0.228735 0.396181i
\(514\) −0.138252 + 0.0798196i −0.00609801 + 0.00352069i
\(515\) 0 0
\(516\) 10.8277 2.90128i 0.476664 0.127722i
\(517\) −20.5416 20.5416i −0.903421 0.903421i
\(518\) −3.33252 0.367285i −0.146422 0.0161376i
\(519\) 9.28541i 0.407584i
\(520\) 0 0
\(521\) −19.5517 + 11.2882i −0.856576 + 0.494545i −0.862864 0.505436i \(-0.831332\pi\)
0.00628804 + 0.999980i \(0.497998\pi\)
\(522\) 2.33549 8.71617i 0.102222 0.381497i
\(523\) 11.0610 6.38608i 0.483665 0.279244i −0.238278 0.971197i \(-0.576583\pi\)
0.721942 + 0.691953i \(0.243250\pi\)
\(524\) 12.0532 12.0532i 0.526547 0.526547i
\(525\) 0 0
\(526\) 3.76215 + 3.76215i 0.164037 + 0.164037i
\(527\) 0.353117 + 1.31785i 0.0153820 + 0.0574065i
\(528\) −15.5267 15.5267i −0.675715 0.675715i
\(529\) −11.0285 −0.479501
\(530\) 0 0
\(531\) 9.32370 34.7965i 0.404614 1.51004i
\(532\) 13.9437i 0.604535i
\(533\) −20.0976 + 34.8101i −0.870526 + 1.50779i
\(534\) −12.6086 7.27955i −0.545626 0.315017i
\(535\) 0 0
\(536\) 0.514855 + 0.137955i 0.0222383 + 0.00595874i
\(537\) 9.49919 + 16.4531i 0.409920 + 0.710003i
\(538\) 3.13427 5.42871i 0.135128 0.234048i
\(539\) −5.86287 + 10.1548i −0.252532 + 0.437398i
\(540\) 0 0
\(541\) 20.2821 + 20.2821i 0.871996 + 0.871996i 0.992690 0.120694i \(-0.0385120\pi\)
−0.120694 + 0.992690i \(0.538512\pi\)
\(542\) 3.33517 1.92556i 0.143258 0.0827099i
\(543\) −6.31227 23.5577i −0.270885 1.01096i
\(544\) 2.66516i 0.114268i
\(545\) 0 0
\(546\) −6.35988 3.67188i −0.272178 0.157142i
\(547\) 1.42392i 0.0608826i 0.999537 + 0.0304413i \(0.00969126\pi\)
−0.999537 + 0.0304413i \(0.990309\pi\)
\(548\) −8.70361 2.33213i −0.371800 0.0996235i
\(549\) −6.98682 6.98682i −0.298190 0.298190i
\(550\) 0 0
\(551\) −15.8801 27.5051i −0.676514 1.17176i
\(552\) 20.1472 + 5.39842i 0.857521 + 0.229772i
\(553\) 0.637133 + 0.367849i 0.0270937 + 0.0156425i
\(554\) −4.54286 −0.193008
\(555\) 0 0
\(556\) −19.2836 −0.817808
\(557\) −20.2319 11.6809i −0.857251 0.494934i 0.00583957 0.999983i \(-0.498141\pi\)
−0.863091 + 0.505049i \(0.831475\pi\)
\(558\) −2.60163 0.697104i −0.110136 0.0295107i
\(559\) −5.82787 10.0942i −0.246493 0.426938i
\(560\) 0 0
\(561\) 3.25573 + 3.25573i 0.137457 + 0.137457i
\(562\) −8.84197 2.36920i −0.372976 0.0999387i
\(563\) 33.5056i 1.41209i 0.708166 + 0.706045i \(0.249523\pi\)
−0.708166 + 0.706045i \(0.750477\pi\)
\(564\) 47.9782 + 27.7003i 2.02025 + 1.16639i
\(565\) 0 0
\(566\) 1.79695i 0.0755313i
\(567\) −2.34785 8.76231i −0.0986005 0.367982i
\(568\) 0.164822 0.0951599i 0.00691577 0.00399282i
\(569\) −28.8255 28.8255i −1.20843 1.20843i −0.971536 0.236893i \(-0.923871\pi\)
−0.236893 0.971536i \(-0.576129\pi\)
\(570\) 0 0
\(571\) 15.6780 27.1551i 0.656105 1.13641i −0.325510 0.945538i \(-0.605536\pi\)
0.981616 0.190869i \(-0.0611306\pi\)
\(572\) −12.2864 + 21.2807i −0.513720 + 0.889789i
\(573\) −3.16574 5.48323i −0.132251 0.229065i
\(574\) −4.19834 1.12494i −0.175236 0.0469542i
\(575\) 0 0
\(576\) 17.1369 + 9.89399i 0.714037 + 0.412250i
\(577\) 2.25843 3.91171i 0.0940195 0.162847i −0.815179 0.579208i \(-0.803362\pi\)
0.909199 + 0.416362i \(0.136695\pi\)
\(578\) 5.83478i 0.242695i
\(579\) 6.22659 23.2379i 0.258768 0.965736i
\(580\) 0 0
\(581\) 4.95450 0.205547
\(582\) 8.98562 + 8.98562i 0.372466 + 0.372466i
\(583\) 3.01183 + 11.2403i 0.124737 + 0.465526i
\(584\) 9.16564 + 9.16564i 0.379277 + 0.379277i
\(585\) 0 0
\(586\) 5.83852 5.83852i 0.241187 0.241187i
\(587\) 8.52007 4.91907i 0.351661 0.203032i −0.313756 0.949504i \(-0.601587\pi\)
0.665417 + 0.746472i \(0.268254\pi\)
\(588\) 5.78762 21.5997i 0.238677 0.890756i
\(589\) −8.20980 + 4.73993i −0.338279 + 0.195305i
\(590\) 0 0
\(591\) 6.00822i 0.247145i
\(592\) −3.01048 19.6491i −0.123730 0.807574i
\(593\) −30.7170 30.7170i −1.26139 1.26139i −0.950417 0.310977i \(-0.899344\pi\)
−0.310977 0.950417i \(-0.600656\pi\)
\(594\) −1.90723 + 0.511040i −0.0782545 + 0.0209682i
\(595\) 0 0
\(596\) −22.4484 + 12.9606i −0.919524 + 0.530887i
\(597\) 24.0369 + 41.6332i 0.983765 + 1.70393i
\(598\) 10.4953i 0.429186i
\(599\) −19.3744 + 11.1858i −0.791617 + 0.457040i −0.840532 0.541763i \(-0.817757\pi\)
0.0489144 + 0.998803i \(0.484424\pi\)
\(600\) 0 0
\(601\) −1.50390 + 2.60484i −0.0613456 + 0.106254i −0.895067 0.445931i \(-0.852872\pi\)
0.833722 + 0.552185i \(0.186206\pi\)
\(602\) 0.891218 0.891218i 0.0363233 0.0363233i
\(603\) −1.05598 + 1.05598i −0.0430027 + 0.0430027i
\(604\) 35.2201 + 20.3344i 1.43309 + 0.827393i
\(605\) 0 0
\(606\) −8.47780 + 8.47780i −0.344387 + 0.344387i
\(607\) 14.0611 + 8.11816i 0.570721 + 0.329506i 0.757437 0.652908i \(-0.226451\pi\)
−0.186716 + 0.982414i \(0.559784\pi\)
\(608\) −17.8873 + 4.79290i −0.725427 + 0.194378i
\(609\) 7.04687 + 26.2993i 0.285554 + 1.06570i
\(610\) 0 0
\(611\) 14.9093 55.6422i 0.603165 2.25104i
\(612\) −4.26542 2.46264i −0.172419 0.0995464i
\(613\) 7.57761 + 28.2800i 0.306057 + 1.14222i 0.932032 + 0.362377i \(0.118035\pi\)
−0.625975 + 0.779843i \(0.715299\pi\)
\(614\) 0.344943 + 1.28735i 0.0139208 + 0.0519531i
\(615\) 0 0
\(616\) −5.30370 1.42112i −0.213692 0.0572586i
\(617\) 22.8600 6.12531i 0.920307 0.246596i 0.232591 0.972575i \(-0.425280\pi\)
0.687717 + 0.725979i \(0.258613\pi\)
\(618\) 10.1594 + 10.1594i 0.408673 + 0.408673i
\(619\) 29.6822 1.19303 0.596514 0.802603i \(-0.296552\pi\)
0.596514 + 0.802603i \(0.296552\pi\)
\(620\) 0 0
\(621\) −8.97639 + 8.97639i −0.360210 + 0.360210i
\(622\) 0.821485 3.06583i 0.0329386 0.122928i
\(623\) 24.6409 0.987218
\(624\) 11.2694 42.0581i 0.451138 1.68367i
\(625\) 0 0
\(626\) −0.263785 0.456889i −0.0105430 0.0182610i
\(627\) −15.9960 + 27.7059i −0.638820 + 1.10647i
\(628\) 12.7928 12.7928i 0.510488 0.510488i
\(629\) 0.631253 + 4.12013i 0.0251697 + 0.164280i
\(630\) 0 0
\(631\) 2.72026 + 10.1521i 0.108292 + 0.404151i 0.998698 0.0510167i \(-0.0162462\pi\)
−0.890406 + 0.455167i \(0.849579\pi\)
\(632\) 0.166802 0.622512i 0.00663501 0.0247622i
\(633\) −47.8575 12.8234i −1.90216 0.509683i
\(634\) 6.41174 + 1.71802i 0.254643 + 0.0682313i
\(635\) 0 0
\(636\) −11.0960 19.2189i −0.439987 0.762080i
\(637\) −23.2515 −0.921257
\(638\) −5.84606 + 1.56645i −0.231448 + 0.0620163i
\(639\) 0.533228i 0.0210942i
\(640\) 0 0
\(641\) 2.73142 4.73096i 0.107885 0.186862i −0.807028 0.590513i \(-0.798926\pi\)
0.914913 + 0.403651i \(0.132259\pi\)
\(642\) −7.19953 12.4700i −0.284143 0.492150i
\(643\) 11.2760 0.444683 0.222341 0.974969i \(-0.428630\pi\)
0.222341 + 0.974969i \(0.428630\pi\)
\(644\) −16.5012 + 4.42148i −0.650238 + 0.174231i
\(645\) 0 0
\(646\) 1.11240 0.298066i 0.0437666 0.0117272i
\(647\) −13.5603 + 7.82906i −0.533112 + 0.307792i −0.742283 0.670087i \(-0.766257\pi\)
0.209171 + 0.977879i \(0.432923\pi\)
\(648\) −6.88192 + 3.97328i −0.270347 + 0.156085i
\(649\) −23.3385 + 6.25354i −0.916117 + 0.245473i
\(650\) 0 0
\(651\) 7.84987 2.10337i 0.307661 0.0824375i
\(652\) −36.4786 −1.42861
\(653\) 13.0781 + 22.6519i 0.511784 + 0.886436i 0.999907 + 0.0136613i \(0.00434865\pi\)
−0.488122 + 0.872775i \(0.662318\pi\)
\(654\) 7.86705 13.6261i 0.307626 0.532824i
\(655\) 0 0
\(656\) 25.7704i 1.00617i
\(657\) −35.0793 + 9.39946i −1.36857 + 0.366708i
\(658\) 6.22902 0.242832
\(659\) −12.9748 22.4730i −0.505425 0.875422i −0.999980 0.00627593i \(-0.998002\pi\)
0.494555 0.869146i \(-0.335331\pi\)
\(660\) 0 0
\(661\) 20.5645 + 5.51024i 0.799866 + 0.214324i 0.635525 0.772080i \(-0.280784\pi\)
0.164341 + 0.986404i \(0.447450\pi\)
\(662\) −1.30542 0.349786i −0.0507366 0.0135948i
\(663\) −2.36303 + 8.81896i −0.0917726 + 0.342500i
\(664\) −1.12331 4.19226i −0.0435930 0.162691i
\(665\) 0 0
\(666\) −7.66709 2.98763i −0.297094 0.115768i
\(667\) −27.5145 + 27.5145i −1.06537 + 1.06537i
\(668\) 3.81799 6.61295i 0.147722 0.255863i
\(669\) 23.3119 + 40.3774i 0.901291 + 1.56108i
\(670\) 0 0
\(671\) −1.71525 + 6.40142i −0.0662166 + 0.247124i
\(672\) 15.8752 0.612399
\(673\) 5.01583 18.7193i 0.193346 0.721577i −0.799343 0.600875i \(-0.794819\pi\)
0.992689 0.120702i \(-0.0385145\pi\)
\(674\) 1.32742 1.32742i 0.0511303 0.0511303i
\(675\) 0 0
\(676\) −24.3461 −0.936388
\(677\) −16.3844 16.3844i −0.629705 0.629705i 0.318289 0.947994i \(-0.396892\pi\)
−0.947994 + 0.318289i \(0.896892\pi\)
\(678\) 8.83489 2.36730i 0.339302 0.0909157i
\(679\) −20.7744 5.56649i −0.797250 0.213622i
\(680\) 0 0
\(681\) 10.2183 + 38.1354i 0.391568 + 1.46135i
\(682\) 0.467557 + 1.74495i 0.0179037 + 0.0668175i
\(683\) 6.50589 + 3.75618i 0.248941 + 0.143726i 0.619279 0.785171i \(-0.287425\pi\)
−0.370338 + 0.928897i \(0.620758\pi\)
\(684\) 8.85740 33.0563i 0.338671 1.26394i
\(685\) 0 0
\(686\) −1.64933 6.15538i −0.0629716 0.235013i
\(687\) 52.3511 14.0274i 1.99732 0.535180i
\(688\) 6.47168 + 3.73643i 0.246730 + 0.142450i
\(689\) −16.3166 + 16.3166i −0.621613 + 0.621613i
\(690\) 0 0
\(691\) −2.18961 1.26417i −0.0832966 0.0480913i 0.457773 0.889069i \(-0.348647\pi\)
−0.541070 + 0.840978i \(0.681981\pi\)
\(692\) 4.71077 4.71077i 0.179077 0.179077i
\(693\) 10.8780 10.8780i 0.413221 0.413221i
\(694\) 3.12056 5.40497i 0.118455 0.205170i
\(695\) 0 0
\(696\) 20.6555 11.9254i 0.782943 0.452033i
\(697\) 5.40368i 0.204679i
\(698\) −2.64508 4.58141i −0.100118 0.173409i
\(699\) −0.198068 + 0.114355i −0.00749164 + 0.00432530i
\(700\) 0 0
\(701\) 2.22557 0.596340i 0.0840587 0.0225235i −0.216545 0.976273i \(-0.569479\pi\)
0.300603 + 0.953749i \(0.402812\pi\)
\(702\) −2.76856 2.76856i −0.104493 0.104493i
\(703\) −26.5172 + 11.6461i −1.00012 + 0.439242i
\(704\) 13.2721i 0.500210i
\(705\) 0 0
\(706\) 3.60190 2.07956i 0.135559 0.0782651i
\(707\) 5.25190 19.6004i 0.197518 0.737148i
\(708\) 39.9047 23.0390i 1.49971 0.865857i
\(709\) −19.7666 + 19.7666i −0.742350 + 0.742350i −0.973030 0.230680i \(-0.925905\pi\)
0.230680 + 0.973030i \(0.425905\pi\)
\(710\) 0 0
\(711\) 1.27679 + 1.27679i 0.0478832 + 0.0478832i
\(712\) −5.58673 20.8500i −0.209372 0.781385i
\(713\) 8.21261 + 8.21261i 0.307565 + 0.307565i
\(714\) −0.987262 −0.0369474
\(715\) 0 0
\(716\) −3.52792 + 13.1664i −0.131844 + 0.492050i
\(717\) 39.5898i 1.47851i
\(718\) −0.626586 + 1.08528i −0.0233840 + 0.0405022i
\(719\) −19.1043 11.0299i −0.712469 0.411344i 0.0995054 0.995037i \(-0.468274\pi\)
−0.811975 + 0.583693i \(0.801607\pi\)
\(720\) 0 0
\(721\) −23.4883 6.29366i −0.874748 0.234388i
\(722\) 0.647731 + 1.12190i 0.0241060 + 0.0417529i
\(723\) −16.3777 + 28.3669i −0.609092 + 1.05498i
\(724\) 8.74913 15.1539i 0.325159 0.563191i
\(725\) 0 0
\(726\) −2.86557 2.86557i −0.106351 0.106351i
\(727\) 30.8570 17.8153i 1.14442 0.660734i 0.196902 0.980423i \(-0.436912\pi\)
0.947522 + 0.319689i \(0.103579\pi\)
\(728\) −2.81800 10.5169i −0.104442 0.389783i
\(729\) 39.3293i 1.45664i
\(730\) 0 0
\(731\) −1.35702 0.783473i −0.0501910 0.0289778i
\(732\) 12.6385i 0.467133i
\(733\) 14.3167 + 3.83616i 0.528801 + 0.141692i 0.513335 0.858189i \(-0.328410\pi\)
0.0154665 + 0.999880i \(0.495077\pi\)
\(734\) 1.46907 + 1.46907i 0.0542242 + 0.0542242i
\(735\) 0 0
\(736\) 11.3440 + 19.6484i 0.418145 + 0.724249i
\(737\) 0.967500 + 0.259241i 0.0356383 + 0.00954926i
\(738\) −9.23843 5.33381i −0.340071 0.196340i
\(739\) 2.13171 0.0784161 0.0392080 0.999231i \(-0.487516\pi\)
0.0392080 + 0.999231i \(0.487516\pi\)
\(740\) 0 0
\(741\) −63.4384 −2.33047
\(742\) −2.16090 1.24760i −0.0793291 0.0458007i
\(743\) 3.71803 + 0.996243i 0.136401 + 0.0365486i 0.326374 0.945241i \(-0.394173\pi\)
−0.189972 + 0.981789i \(0.560840\pi\)
\(744\) −3.55954 6.16530i −0.130499 0.226031i
\(745\) 0 0
\(746\) 6.64733 + 6.64733i 0.243376 + 0.243376i
\(747\) 11.7456 + 3.14724i 0.429751 + 0.115151i
\(748\) 3.30346i 0.120786i
\(749\) 21.1051 + 12.1850i 0.771163 + 0.445231i
\(750\) 0 0
\(751\) 1.28407i 0.0468564i 0.999726 + 0.0234282i \(0.00745811\pi\)
−0.999726 + 0.0234282i \(0.992542\pi\)
\(752\) 9.55879 + 35.6739i 0.348573 + 1.30089i
\(753\) −2.47252 + 1.42751i −0.0901035 + 0.0520213i
\(754\) −8.48623 8.48623i −0.309050 0.309050i
\(755\) 0 0
\(756\) −3.18651 + 5.51919i −0.115892 + 0.200731i
\(757\) −6.93453 + 12.0110i −0.252040 + 0.436546i −0.964087 0.265586i \(-0.914435\pi\)
0.712047 + 0.702131i \(0.247768\pi\)
\(758\) 4.38267 + 7.59101i 0.159186 + 0.275718i
\(759\) 37.8600 + 10.1446i 1.37423 + 0.368224i
\(760\) 0 0
\(761\) 9.48381 + 5.47548i 0.343788 + 0.198486i 0.661946 0.749552i \(-0.269731\pi\)
−0.318158 + 0.948038i \(0.603064\pi\)
\(762\) −6.23286 + 10.7956i −0.225793 + 0.391085i
\(763\) 26.6296i 0.964055i
\(764\) 1.17573 4.38788i 0.0425364 0.158748i
\(765\) 0 0
\(766\) 0.340843 0.0123152
\(767\) −33.8785 33.8785i −1.22328 1.22328i
\(768\) 4.69335 + 17.5158i 0.169357 + 0.632048i
\(769\) 9.51657 + 9.51657i 0.343176 + 0.343176i 0.857560 0.514384i \(-0.171979\pi\)
−0.514384 + 0.857560i \(0.671979\pi\)
\(770\) 0 0
\(771\) 0.835940 0.835940i 0.0301057 0.0301057i
\(772\) 14.9482 8.63037i 0.537999 0.310614i
\(773\) 0.370532 1.38284i 0.0133271 0.0497374i −0.958942 0.283602i \(-0.908471\pi\)
0.972269 + 0.233865i \(0.0751372\pi\)
\(774\) 2.67894 1.54669i 0.0962925 0.0555945i
\(775\) 0 0
\(776\) 18.8404i 0.676331i
\(777\) 24.5418 3.76010i 0.880433 0.134893i
\(778\) 4.43672 + 4.43672i 0.159064 + 0.159064i
\(779\) −36.2670 + 9.71772i −1.29940 + 0.348174i
\(780\) 0 0
\(781\) 0.309728 0.178822i 0.0110830 0.00639875i
\(782\) −0.705472 1.22191i −0.0252276 0.0436955i
\(783\) 14.5161i 0.518764i
\(784\) 12.9100 7.45361i 0.461073 0.266200i
\(785\) 0 0
\(786\) 4.19298 7.26245i 0.149559 0.259043i
\(787\) −2.47029 + 2.47029i −0.0880563 + 0.0880563i −0.749763 0.661707i \(-0.769832\pi\)
0.661707 + 0.749763i \(0.269832\pi\)
\(788\) 3.04815 3.04815i 0.108586 0.108586i
\(789\) −34.1218 19.7003i −1.21477 0.701348i
\(790\) 0 0
\(791\) −10.9462 + 10.9462i −0.389203 + 0.389203i
\(792\) −11.6708 6.73811i −0.414702 0.239428i
\(793\) −12.6936 + 3.40125i −0.450764 + 0.120782i
\(794\) 3.17095 + 11.8342i 0.112533 + 0.419979i
\(795\) 0 0
\(796\) −8.92710 + 33.3164i −0.316413 + 1.18087i
\(797\) 20.6121 + 11.9004i 0.730119 + 0.421534i 0.818466 0.574555i \(-0.194825\pi\)
−0.0883467 + 0.996090i \(0.528158\pi\)
\(798\) −1.77545 6.62606i −0.0628501 0.234560i
\(799\) −2.00434 7.48029i −0.0709083 0.264634i
\(800\) 0 0
\(801\) 58.4163 + 15.6526i 2.06404 + 0.553057i
\(802\) −5.89980 + 1.58085i −0.208329 + 0.0558217i
\(803\) 17.2238 + 17.2238i 0.607815 + 0.607815i
\(804\) −1.91016 −0.0673663
\(805\) 0 0
\(806\) −2.53299 + 2.53299i −0.0892208 + 0.0892208i
\(807\) −12.0147 + 44.8395i −0.422938 + 1.57842i
\(808\) −17.7756 −0.625344
\(809\) −1.72550 + 6.43967i −0.0606655 + 0.226407i −0.989602 0.143832i \(-0.954057\pi\)
0.928937 + 0.370239i \(0.120724\pi\)
\(810\) 0 0
\(811\) 22.7108 + 39.3363i 0.797486 + 1.38129i 0.921249 + 0.388974i \(0.127170\pi\)
−0.123763 + 0.992312i \(0.539496\pi\)
\(812\) −9.76732 + 16.9175i −0.342766 + 0.593688i
\(813\) −20.1662 + 20.1662i −0.707258 + 0.707258i
\(814\) 0.835833 + 5.45540i 0.0292959 + 0.191212i
\(815\) 0 0
\(816\) −1.51501 5.65410i −0.0530360 0.197933i
\(817\) 2.81792 10.5166i 0.0985867 0.367931i
\(818\) 11.5716 + 3.10060i 0.404591 + 0.108410i
\(819\) 29.4658 + 7.89532i 1.02962 + 0.275885i
\(820\) 0 0
\(821\) 9.75300 + 16.8927i 0.340382 + 0.589559i 0.984504 0.175364i \(-0.0561103\pi\)
−0.644122 + 0.764923i \(0.722777\pi\)
\(822\) −4.43292 −0.154616
\(823\) −22.7385 + 6.09277i −0.792616 + 0.212381i −0.632339 0.774691i \(-0.717905\pi\)
−0.160276 + 0.987072i \(0.551239\pi\)
\(824\) 21.3016i 0.742075i
\(825\) 0 0
\(826\) 2.59041 4.48672i 0.0901319 0.156113i
\(827\) 13.6805 + 23.6954i 0.475719 + 0.823970i 0.999613 0.0278138i \(-0.00885455\pi\)
−0.523894 + 0.851783i \(0.675521\pi\)
\(828\) −41.9280 −1.45710
\(829\) 29.7958 7.98376i 1.03485 0.277287i 0.298873 0.954293i \(-0.403389\pi\)
0.735978 + 0.677006i \(0.236723\pi\)
\(830\) 0 0
\(831\) 32.4956 8.70717i 1.12726 0.302048i
\(832\) 22.7919 13.1589i 0.790165 0.456202i
\(833\) −2.70704 + 1.56291i −0.0937935 + 0.0541517i
\(834\) −9.16362 + 2.45539i −0.317310 + 0.0850231i
\(835\) 0 0
\(836\) −22.1713 + 5.94079i −0.766811 + 0.205466i
\(837\) 4.33281 0.149764
\(838\) 3.72520 + 6.45223i 0.128685 + 0.222889i
\(839\) 20.9908 36.3572i 0.724684 1.25519i −0.234420 0.972135i \(-0.575319\pi\)
0.959104 0.283054i \(-0.0913476\pi\)
\(840\) 0 0
\(841\) 15.4950i 0.534311i
\(842\) 10.5103 2.81622i 0.362208 0.0970534i
\(843\) 67.7886 2.33476
\(844\) −17.7738 30.7852i −0.611801 1.05967i
\(845\) 0 0
\(846\) 14.7671 + 3.95684i 0.507705 + 0.136039i
\(847\) 6.62510 + 1.77519i 0.227641 + 0.0609963i
\(848\) 3.82902 14.2901i 0.131489 0.490724i
\(849\) 3.44415 + 12.8538i 0.118203 + 0.441140i
\(850\) 0 0
\(851\) 22.1907 + 27.6880i 0.760689 + 0.949133i
\(852\) −0.482280 + 0.482280i −0.0165226 + 0.0165226i
\(853\) −7.35019 + 12.7309i −0.251666 + 0.435898i −0.963985 0.265958i \(-0.914312\pi\)
0.712319 + 0.701856i \(0.247645\pi\)
\(854\) −0.710512 1.23064i −0.0243132 0.0421117i
\(855\) 0 0
\(856\) 5.52532 20.6208i 0.188852 0.704804i
\(857\) 39.5459 1.35086 0.675431 0.737424i \(-0.263958\pi\)
0.675431 + 0.737424i \(0.263958\pi\)
\(858\) −3.12885 + 11.6770i −0.106817 + 0.398648i
\(859\) 12.0746 12.0746i 0.411980 0.411980i −0.470448 0.882428i \(-0.655908\pi\)
0.882428 + 0.470448i \(0.155908\pi\)
\(860\) 0 0
\(861\) 32.1874 1.09694
\(862\) 8.00953 + 8.00953i 0.272806 + 0.272806i
\(863\) 2.69662 0.722557i 0.0917940 0.0245961i −0.212630 0.977133i \(-0.568203\pi\)
0.304424 + 0.952537i \(0.401536\pi\)
\(864\) 8.17548 + 2.19061i 0.278136 + 0.0745262i
\(865\) 0 0
\(866\) −0.852328 3.18093i −0.0289633 0.108092i
\(867\) −11.1833 41.7368i −0.379806 1.41746i
\(868\) 5.04958 + 2.91537i 0.171394 + 0.0989543i
\(869\) 0.313449 1.16981i 0.0106330 0.0396830i
\(870\) 0 0
\(871\) 0.514060 + 1.91850i 0.0174182 + 0.0650058i
\(872\) 22.5327 6.03761i 0.763052 0.204459i
\(873\) −45.7140 26.3930i −1.54719 0.893268i
\(874\) 6.93224 6.93224i 0.234487 0.234487i
\(875\) 0 0
\(876\) −40.2289 23.2262i −1.35921 0.784740i
\(877\) −19.2511 + 19.2511i −0.650064 + 0.650064i −0.953008 0.302944i \(-0.902030\pi\)
0.302944 + 0.953008i \(0.402030\pi\)
\(878\) −1.76713 + 1.76713i −0.0596378 + 0.0596378i
\(879\) −30.5730 + 52.9541i −1.03120 + 1.78610i
\(880\) 0 0
\(881\) 43.1969 24.9397i 1.45534 0.840241i 0.456564 0.889691i \(-0.349080\pi\)
0.998777 + 0.0494498i \(0.0157468\pi\)
\(882\) 6.17082i 0.207782i
\(883\) −22.8298 39.5424i −0.768285 1.33071i −0.938492 0.345300i \(-0.887777\pi\)
0.170207 0.985408i \(-0.445556\pi\)
\(884\) −5.67296 + 3.27528i −0.190802 + 0.110160i
\(885\) 0 0
\(886\) −9.01672 + 2.41602i −0.302923 + 0.0811679i
\(887\) −4.12526 4.12526i −0.138513 0.138513i 0.634451 0.772963i \(-0.281226\pi\)
−0.772963 + 0.634451i \(0.781226\pi\)
\(888\) −8.74588 19.9136i −0.293492 0.668256i
\(889\) 21.0979i 0.707602i
\(890\) 0 0
\(891\) −12.9323 + 7.46647i −0.433249 + 0.250136i
\(892\) −8.65784 + 32.3115i −0.289886 + 1.08187i
\(893\) 46.5998 26.9044i 1.55940 0.900322i
\(894\) −9.01727 + 9.01727i −0.301583 + 0.301583i
\(895\) 0 0
\(896\) 10.6013 + 10.6013i 0.354165 + 0.354165i
\(897\) 20.1161 + 75.0742i 0.671656 + 2.50665i
\(898\) −3.63243 3.63243i −0.121216 0.121216i
\(899\) 13.2810 0.442946
\(900\) 0 0
\(901\) −0.802889 + 2.99642i −0.0267481 + 0.0998253i
\(902\) 7.15492i 0.238233i
\(903\) −4.66681 + 8.08315i −0.155302 + 0.268990i
\(904\) 11.7440 + 6.78038i 0.390598 + 0.225512i
\(905\) 0 0
\(906\) 19.3259 + 5.17835i 0.642058 + 0.172039i
\(907\) 2.05682 + 3.56252i 0.0682957 + 0.118292i 0.898151 0.439687i \(-0.144911\pi\)
−0.829855 + 0.557978i \(0.811577\pi\)
\(908\) −14.1632 + 24.5313i −0.470021 + 0.814100i
\(909\) 24.9014 43.1305i 0.825927 1.43055i
\(910\) 0 0
\(911\) 23.6772 + 23.6772i 0.784460 + 0.784460i 0.980580 0.196120i \(-0.0628341\pi\)
−0.196120 + 0.980580i \(0.562834\pi\)
\(912\) 35.2232 20.3361i 1.16636 0.673397i
\(913\) −2.11090 7.87797i −0.0698605 0.260723i
\(914\) 6.09435i 0.201583i
\(915\) 0 0
\(916\) 33.6758 + 19.4427i 1.11268 + 0.642406i
\(917\) 14.1930i 0.468695i
\(918\) −0.508425 0.136232i −0.0167805 0.00449633i
\(919\) 37.5747 + 37.5747i 1.23947 + 1.23947i 0.960216 + 0.279258i \(0.0900884\pi\)
0.279258 + 0.960216i \(0.409912\pi\)
\(920\) 0 0
\(921\) −4.93484 8.54739i −0.162608 0.281646i
\(922\) −4.52447 1.21233i −0.149006 0.0399259i
\(923\) 0.614173 + 0.354593i 0.0202158 + 0.0116716i
\(924\) 19.6773 0.647334
\(925\) 0 0
\(926\) 8.42952 0.277011
\(927\) −51.6857 29.8408i −1.69758 0.980100i
\(928\) 25.0596 + 6.71470i 0.822622 + 0.220421i
\(929\) 1.68883 + 2.92515i 0.0554088 + 0.0959709i 0.892399 0.451246i \(-0.149020\pi\)
−0.836991 + 0.547217i \(0.815687\pi\)
\(930\) 0 0
\(931\) −15.3578 15.3578i −0.503331 0.503331i
\(932\) −0.158502 0.0424704i −0.00519189 0.00139116i
\(933\) 23.5047i 0.769509i
\(934\) 6.24385 + 3.60489i 0.204305 + 0.117956i
\(935\) 0 0
\(936\) 26.7226i 0.873455i
\(937\) 13.6061 + 50.7787i 0.444492 + 1.65887i 0.717275 + 0.696791i \(0.245389\pi\)
−0.272783 + 0.962076i \(0.587944\pi\)
\(938\) −0.185997 + 0.107386i −0.00607303 + 0.00350627i
\(939\) 2.76259 + 2.76259i 0.0901537 + 0.0901537i
\(940\) 0 0
\(941\) 15.5502 26.9338i 0.506924 0.878017i −0.493044 0.870004i \(-0.664116\pi\)
0.999968 0.00801323i \(-0.00255072\pi\)
\(942\) 4.45025 7.70806i 0.144997 0.251142i
\(943\) 23.0003 + 39.8376i 0.748991 + 1.29729i
\(944\) 29.6708 + 7.95028i 0.965703 + 0.258759i
\(945\) 0 0
\(946\) −1.79680 1.03738i −0.0584191 0.0337283i
\(947\) 11.3518 19.6619i 0.368884 0.638926i −0.620507 0.784201i \(-0.713073\pi\)
0.989391 + 0.145275i \(0.0464065\pi\)
\(948\) 2.30958i 0.0750118i
\(949\) −12.5012 + 46.6550i −0.405805 + 1.51448i
\(950\) 0 0
\(951\) −49.1568 −1.59402
\(952\) −1.03501 1.03501i −0.0335448 0.0335448i
\(953\) −4.34551 16.2177i −0.140765 0.525342i −0.999907 0.0136055i \(-0.995669\pi\)
0.859142 0.511736i \(-0.170998\pi\)
\(954\) −4.33034 4.33034i −0.140200 0.140200i
\(955\) 0 0
\(956\) 20.0851 20.0851i 0.649598 0.649598i
\(957\) 38.8152 22.4099i 1.25472 0.724410i
\(958\) 1.24109 4.63181i 0.0400978 0.149647i
\(959\) 6.49745 3.75131i 0.209814 0.121136i
\(960\) 0 0
\(961\) 27.0359i 0.872124i
\(962\) −8.53973 + 6.84423i −0.275332 + 0.220667i
\(963\) 42.2936 + 42.2936i 1.36289 + 1.36289i
\(964\) −22.7003 + 6.08252i −0.731126 + 0.195905i
\(965\) 0 0
\(966\) −7.27841 + 4.20219i −0.234179 + 0.135203i
\(967\) −18.4488 31.9542i −0.593272 1.02758i −0.993788 0.111288i \(-0.964502\pi\)
0.400516 0.916290i \(-0.368831\pi\)
\(968\) 6.00832i 0.193115i
\(969\) −7.38579 + 4.26419i −0.237266 + 0.136986i
\(970\) 0 0
\(971\) −11.0965 + 19.2197i −0.356103 + 0.616788i −0.987306 0.158829i \(-0.949228\pi\)
0.631203 + 0.775618i \(0.282561\pi\)
\(972\) 28.7946 28.7946i 0.923586 0.923586i
\(973\) 11.3535 11.3535i 0.363977 0.363977i
\(974\) 9.45973 + 5.46158i 0.303109 + 0.175000i
\(975\) 0 0
\(976\) 5.95763 5.95763i 0.190699 0.190699i
\(977\) 25.8120 + 14.9026i 0.825798 + 0.476775i 0.852412 0.522871i \(-0.175139\pi\)
−0.0266135 + 0.999646i \(0.508472\pi\)
\(978\) −17.3347 + 4.64482i −0.554303 + 0.148525i
\(979\) −10.4984 39.1806i −0.335531 1.25222i
\(980\) 0 0
\(981\) −16.9158 + 63.1308i −0.540081 + 2.01561i
\(982\) 2.75130 + 1.58846i 0.0877975 + 0.0506899i
\(983\) −1.36230 5.08418i −0.0434507 0.162160i 0.940792 0.338986i \(-0.110084\pi\)
−0.984242 + 0.176825i \(0.943417\pi\)
\(984\) −7.29770 27.2354i −0.232642 0.868233i
\(985\) 0 0
\(986\) −1.55843 0.417580i −0.0496306 0.0132985i
\(987\) −44.5568 + 11.9390i −1.41826 + 0.380021i
\(988\) −32.1842 32.1842i −1.02392 1.02392i
\(989\) −13.3391 −0.424160
\(990\) 0 0
\(991\) −12.3261 + 12.3261i −0.391550 + 0.391550i −0.875240 0.483690i \(-0.839296\pi\)
0.483690 + 0.875240i \(0.339296\pi\)
\(992\) 2.00422 7.47985i 0.0636341 0.237486i
\(993\) 10.0082 0.317602
\(994\) −0.0198480 + 0.0740736i −0.000629539 + 0.00234947i
\(995\) 0 0
\(996\) 7.77686 + 13.4699i 0.246419 + 0.426810i
\(997\) 25.5597 44.2707i 0.809484 1.40207i −0.103738 0.994605i \(-0.533080\pi\)
0.913222 0.407462i \(-0.133586\pi\)
\(998\) −10.9663 + 10.9663i −0.347132 + 0.347132i
\(999\) 13.1575 + 1.45012i 0.416286 + 0.0458799i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 925.2.y.b.393.10 68
5.2 odd 4 925.2.t.b.282.8 68
5.3 odd 4 185.2.p.a.97.10 68
5.4 even 2 185.2.u.a.23.8 yes 68
37.29 odd 12 925.2.t.b.843.8 68
185.29 odd 12 185.2.p.a.103.10 yes 68
185.103 even 12 185.2.u.a.177.8 yes 68
185.177 even 12 inner 925.2.y.b.732.10 68
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
185.2.p.a.97.10 68 5.3 odd 4
185.2.p.a.103.10 yes 68 185.29 odd 12
185.2.u.a.23.8 yes 68 5.4 even 2
185.2.u.a.177.8 yes 68 185.103 even 12
925.2.t.b.282.8 68 5.2 odd 4
925.2.t.b.843.8 68 37.29 odd 12
925.2.y.b.393.10 68 1.1 even 1 trivial
925.2.y.b.732.10 68 185.177 even 12 inner