L(s) = 1 | + (0.305 + 0.176i)2-s + (−2.52 − 0.676i)3-s + (−0.937 − 1.62i)4-s + (−0.652 − 0.652i)6-s + (1.50 + 0.404i)7-s − 1.36i·8-s + (3.31 + 1.91i)9-s − 2.57i·11-s + (1.26 + 4.73i)12-s + (4.41 − 2.54i)13-s + (0.389 + 0.389i)14-s + (−1.63 + 2.83i)16-s + (0.342 − 0.593i)17-s + (0.676 + 1.17i)18-s + (4.59 + 1.23i)19-s + ⋯ |
L(s) = 1 | + (0.216 + 0.124i)2-s + (−1.45 − 0.390i)3-s + (−0.468 − 0.812i)4-s + (−0.266 − 0.266i)6-s + (0.570 + 0.152i)7-s − 0.483i·8-s + (1.10 + 0.638i)9-s − 0.775i·11-s + (0.366 + 1.36i)12-s + (1.22 − 0.706i)13-s + (0.104 + 0.104i)14-s + (−0.408 + 0.707i)16-s + (0.0830 − 0.143i)17-s + (0.159 + 0.276i)18-s + (1.05 + 0.282i)19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 925 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.781 + 0.623i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 925 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.781 + 0.623i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.262066 - 0.748602i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.262066 - 0.748602i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 5 | \( 1 \) |
| 37 | \( 1 + (4.74 - 3.80i)T \) |
good | 2 | \( 1 + (-0.305 - 0.176i)T + (1 + 1.73i)T^{2} \) |
| 3 | \( 1 + (2.52 + 0.676i)T + (2.59 + 1.5i)T^{2} \) |
| 7 | \( 1 + (-1.50 - 0.404i)T + (6.06 + 3.5i)T^{2} \) |
| 11 | \( 1 + 2.57iT - 11T^{2} \) |
| 13 | \( 1 + (-4.41 + 2.54i)T + (6.5 - 11.2i)T^{2} \) |
| 17 | \( 1 + (-0.342 + 0.593i)T + (-8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (-4.59 - 1.23i)T + (16.4 + 9.5i)T^{2} \) |
| 23 | \( 1 + 5.83iT - 23T^{2} \) |
| 29 | \( 1 + (4.71 + 4.71i)T + 29iT^{2} \) |
| 31 | \( 1 + (1.40 - 1.40i)T - 31iT^{2} \) |
| 41 | \( 1 + (6.82 - 3.94i)T + (20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + 2.28iT - 43T^{2} \) |
| 47 | \( 1 + (-7.99 + 7.99i)T - 47iT^{2} \) |
| 53 | \( 1 + (4.37 - 1.17i)T + (45.8 - 26.5i)T^{2} \) |
| 59 | \( 1 + (2.43 + 9.07i)T + (-51.0 + 29.5i)T^{2} \) |
| 61 | \( 1 + (2.49 + 0.667i)T + (52.8 + 30.5i)T^{2} \) |
| 67 | \( 1 + (0.100 - 0.376i)T + (-58.0 - 33.5i)T^{2} \) |
| 71 | \( 1 + (-0.0695 - 0.120i)T + (-35.5 + 61.4i)T^{2} \) |
| 73 | \( 1 + (6.70 - 6.70i)T - 73iT^{2} \) |
| 79 | \( 1 + (-0.455 - 0.121i)T + (68.4 + 39.5i)T^{2} \) |
| 83 | \( 1 + (-3.06 + 0.821i)T + (71.8 - 41.5i)T^{2} \) |
| 89 | \( 1 + (-15.2 + 4.08i)T + (77.0 - 44.5i)T^{2} \) |
| 97 | \( 1 + 13.7T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.06963502072256398876830703810, −8.866487381994117394605993204884, −8.064048173249940981574832664726, −6.80820546626769313818501478286, −6.04509684647292115319911953549, −5.49672984952491818312410134685, −4.84263444012563386262186157595, −3.55152304612546889850042156442, −1.48856480591521096347570564042, −0.48256584388106861749892128907,
1.51780286683293953238111956946, 3.45804912673155865850484413702, 4.30970286823963364723218108333, 5.09579919265844630315532520776, 5.81470719538216728163189076715, 7.02677774832309794091535343500, 7.69619078482517594829734419627, 8.913064888919257806329655766044, 9.562201520589889571164209371474, 10.75772482853968257654967274037