Properties

Label 925.2.y.b.193.14
Level $925$
Weight $2$
Character 925.193
Analytic conductor $7.386$
Analytic rank $0$
Dimension $68$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [925,2,Mod(193,925)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("925.193"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(925, base_ring=CyclotomicField(12)) chi = DirichletCharacter(H, H._module([9, 1])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 925 = 5^{2} \cdot 37 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 925.y (of order \(12\), degree \(4\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [68] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.38616218697\)
Analytic rank: \(0\)
Dimension: \(68\)
Relative dimension: \(17\) over \(\Q(\zeta_{12})\)
Twist minimal: no (minimal twist has level 185)
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 193.14
Character \(\chi\) \(=\) 925.193
Dual form 925.2.y.b.532.14

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.72086 - 0.993536i) q^{2} +(-0.630160 - 2.35179i) q^{3} +(0.974229 - 1.68741i) q^{4} +(-3.42100 - 3.42100i) q^{6} +(-0.704548 - 2.62941i) q^{7} +0.102418i q^{8} +(-2.53574 + 1.46401i) q^{9} -1.67944i q^{11} +(-4.58237 - 1.22784i) q^{12} +(-4.82119 - 2.78351i) q^{13} +(-3.82484 - 3.82484i) q^{14} +(2.05021 + 3.55107i) q^{16} +(3.48387 + 6.03425i) q^{17} +(-2.90910 + 5.03870i) q^{18} +(-1.39201 - 5.19504i) q^{19} +(-5.73984 + 3.31390i) q^{21} +(-1.66858 - 2.89007i) q^{22} -2.29976i q^{23} +(0.240865 - 0.0645396i) q^{24} -11.0621 q^{26} +(-0.123920 - 0.123920i) q^{27} +(-5.12329 - 1.37278i) q^{28} +(0.561787 + 0.561787i) q^{29} +(-0.512854 + 0.512854i) q^{31} +(6.87885 + 3.97151i) q^{32} +(-3.94969 + 1.05832i) q^{33} +(11.9905 + 6.92271i) q^{34} +5.70513i q^{36} +(-6.06955 + 0.400637i) q^{37} +(-7.55690 - 7.55690i) q^{38} +(-3.50812 + 13.0925i) q^{39} +(7.49700 + 4.32839i) q^{41} +(-6.58496 + 11.4055i) q^{42} -4.49647i q^{43} +(-2.83391 - 1.63616i) q^{44} +(-2.28490 - 3.95756i) q^{46} +(3.51508 - 3.51508i) q^{47} +(7.05942 - 7.05942i) q^{48} +(-0.355227 + 0.205090i) q^{49} +(11.9959 - 11.9959i) q^{51} +(-9.39388 + 5.42356i) q^{52} +(-0.0327168 + 0.122101i) q^{53} +(-0.336369 - 0.0901297i) q^{54} +(0.269298 - 0.0721582i) q^{56} +(-11.3405 + 6.54742i) q^{57} +(1.52491 + 0.408598i) q^{58} +(9.18809 + 2.46194i) q^{59} +(-1.77087 - 6.60897i) q^{61} +(-0.373008 + 1.39209i) q^{62} +(5.63603 + 5.63603i) q^{63} +7.58249 q^{64} +(-5.74537 + 5.74537i) q^{66} +(8.44910 - 2.26393i) q^{67} +13.5764 q^{68} +(-5.40856 + 1.44922i) q^{69} +(-4.91365 + 8.51069i) q^{71} +(-0.149941 - 0.259705i) q^{72} +(0.804857 - 0.804857i) q^{73} +(-10.0468 + 6.71976i) q^{74} +(-10.1223 - 2.71227i) q^{76} +(-4.41593 + 1.18324i) q^{77} +(6.97089 + 26.0157i) q^{78} +(-2.57773 - 9.62023i) q^{79} +(-4.60538 + 7.97675i) q^{81} +17.2017 q^{82} +(1.88989 - 7.05316i) q^{83} +12.9140i q^{84} +(-4.46741 - 7.73777i) q^{86} +(0.967189 - 1.67522i) q^{87} +0.172004 q^{88} +(1.12526 - 4.19952i) q^{89} +(-3.92224 + 14.6380i) q^{91} +(-3.88065 - 2.24050i) q^{92} +(1.52931 + 0.882945i) q^{93} +(2.55659 - 9.54131i) q^{94} +(5.00537 - 18.6803i) q^{96} +9.54307 q^{97} +(-0.407529 + 0.705861i) q^{98} +(2.45872 + 4.25862i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 68 q + 6 q^{2} + 4 q^{3} + 30 q^{4} - 8 q^{6} + 2 q^{7} + 10 q^{12} + 6 q^{13} - 26 q^{16} + 10 q^{17} + 8 q^{18} - 4 q^{19} - 12 q^{21} + 14 q^{22} - 24 q^{26} - 68 q^{27} - 14 q^{28} - 14 q^{29} - 24 q^{31}+ \cdots - 32 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/925\mathbb{Z}\right)^\times\).

\(n\) \(76\) \(852\)
\(\chi(n)\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.72086 0.993536i 1.21683 0.702536i 0.252590 0.967573i \(-0.418718\pi\)
0.964238 + 0.265037i \(0.0853842\pi\)
\(3\) −0.630160 2.35179i −0.363823 1.35781i −0.869009 0.494796i \(-0.835243\pi\)
0.505186 0.863011i \(-0.331424\pi\)
\(4\) 0.974229 1.68741i 0.487115 0.843707i
\(5\) 0 0
\(6\) −3.42100 3.42100i −1.39662 1.39662i
\(7\) −0.704548 2.62941i −0.266294 0.993823i −0.961453 0.274968i \(-0.911333\pi\)
0.695159 0.718856i \(-0.255334\pi\)
\(8\) 0.102418i 0.0362101i
\(9\) −2.53574 + 1.46401i −0.845247 + 0.488004i
\(10\) 0 0
\(11\) 1.67944i 0.506370i −0.967418 0.253185i \(-0.918522\pi\)
0.967418 0.253185i \(-0.0814781\pi\)
\(12\) −4.58237 1.22784i −1.32281 0.354447i
\(13\) −4.82119 2.78351i −1.33716 0.772008i −0.350772 0.936461i \(-0.614081\pi\)
−0.986385 + 0.164453i \(0.947414\pi\)
\(14\) −3.82484 3.82484i −1.02223 1.02223i
\(15\) 0 0
\(16\) 2.05021 + 3.55107i 0.512553 + 0.887769i
\(17\) 3.48387 + 6.03425i 0.844964 + 1.46352i 0.885653 + 0.464348i \(0.153711\pi\)
−0.0406892 + 0.999172i \(0.512955\pi\)
\(18\) −2.90910 + 5.03870i −0.685680 + 1.18763i
\(19\) −1.39201 5.19504i −0.319348 1.19182i −0.919873 0.392217i \(-0.871708\pi\)
0.600524 0.799606i \(-0.294959\pi\)
\(20\) 0 0
\(21\) −5.73984 + 3.31390i −1.25254 + 0.723152i
\(22\) −1.66858 2.89007i −0.355743 0.616165i
\(23\) 2.29976i 0.479534i −0.970830 0.239767i \(-0.922929\pi\)
0.970830 0.239767i \(-0.0770710\pi\)
\(24\) 0.240865 0.0645396i 0.0491664 0.0131741i
\(25\) 0 0
\(26\) −11.0621 −2.16945
\(27\) −0.123920 0.123920i −0.0238485 0.0238485i
\(28\) −5.12329 1.37278i −0.968211 0.259431i
\(29\) 0.561787 + 0.561787i 0.104321 + 0.104321i 0.757341 0.653020i \(-0.226498\pi\)
−0.653020 + 0.757341i \(0.726498\pi\)
\(30\) 0 0
\(31\) −0.512854 + 0.512854i −0.0921113 + 0.0921113i −0.751661 0.659550i \(-0.770747\pi\)
0.659550 + 0.751661i \(0.270747\pi\)
\(32\) 6.87885 + 3.97151i 1.21602 + 0.702070i
\(33\) −3.94969 + 1.05832i −0.687552 + 0.184229i
\(34\) 11.9905 + 6.92271i 2.05635 + 1.18724i
\(35\) 0 0
\(36\) 5.70513i 0.950854i
\(37\) −6.06955 + 0.400637i −0.997829 + 0.0658643i
\(38\) −7.55690 7.55690i −1.22589 1.22589i
\(39\) −3.50812 + 13.0925i −0.561749 + 2.09648i
\(40\) 0 0
\(41\) 7.49700 + 4.32839i 1.17083 + 0.675982i 0.953877 0.300199i \(-0.0970532\pi\)
0.216958 + 0.976181i \(0.430387\pi\)
\(42\) −6.58496 + 11.4055i −1.01608 + 1.75990i
\(43\) 4.49647i 0.685705i −0.939389 0.342853i \(-0.888607\pi\)
0.939389 0.342853i \(-0.111393\pi\)
\(44\) −2.83391 1.63616i −0.427228 0.246660i
\(45\) 0 0
\(46\) −2.28490 3.95756i −0.336890 0.583510i
\(47\) 3.51508 3.51508i 0.512728 0.512728i −0.402634 0.915361i \(-0.631905\pi\)
0.915361 + 0.402634i \(0.131905\pi\)
\(48\) 7.05942 7.05942i 1.01894 1.01894i
\(49\) −0.355227 + 0.205090i −0.0507467 + 0.0292986i
\(50\) 0 0
\(51\) 11.9959 11.9959i 1.67976 1.67976i
\(52\) −9.39388 + 5.42356i −1.30270 + 0.752112i
\(53\) −0.0327168 + 0.122101i −0.00449400 + 0.0167718i −0.968136 0.250423i \(-0.919430\pi\)
0.963642 + 0.267195i \(0.0860969\pi\)
\(54\) −0.336369 0.0901297i −0.0457740 0.0122651i
\(55\) 0 0
\(56\) 0.269298 0.0721582i 0.0359865 0.00964254i
\(57\) −11.3405 + 6.54742i −1.50208 + 0.867227i
\(58\) 1.52491 + 0.408598i 0.200230 + 0.0536516i
\(59\) 9.18809 + 2.46194i 1.19619 + 0.320517i 0.801329 0.598224i \(-0.204127\pi\)
0.394859 + 0.918742i \(0.370794\pi\)
\(60\) 0 0
\(61\) −1.77087 6.60897i −0.226736 0.846192i −0.981701 0.190427i \(-0.939013\pi\)
0.754965 0.655765i \(-0.227654\pi\)
\(62\) −0.373008 + 1.39209i −0.0473721 + 0.176795i
\(63\) 5.63603 + 5.63603i 0.710074 + 0.710074i
\(64\) 7.58249 0.947811
\(65\) 0 0
\(66\) −5.74537 + 5.74537i −0.707206 + 0.707206i
\(67\) 8.44910 2.26393i 1.03222 0.276583i 0.297335 0.954773i \(-0.403902\pi\)
0.734886 + 0.678190i \(0.237235\pi\)
\(68\) 13.5764 1.64638
\(69\) −5.40856 + 1.44922i −0.651114 + 0.174466i
\(70\) 0 0
\(71\) −4.91365 + 8.51069i −0.583143 + 1.01003i 0.411961 + 0.911201i \(0.364844\pi\)
−0.995104 + 0.0988320i \(0.968489\pi\)
\(72\) −0.149941 0.259705i −0.0176707 0.0306065i
\(73\) 0.804857 0.804857i 0.0942014 0.0942014i −0.658436 0.752637i \(-0.728782\pi\)
0.752637 + 0.658436i \(0.228782\pi\)
\(74\) −10.0468 + 6.71976i −1.16791 + 0.781156i
\(75\) 0 0
\(76\) −10.1223 2.71227i −1.16111 0.311118i
\(77\) −4.41593 + 1.18324i −0.503242 + 0.134843i
\(78\) 6.97089 + 26.0157i 0.789298 + 2.94570i
\(79\) −2.57773 9.62023i −0.290018 1.08236i −0.945094 0.326798i \(-0.894030\pi\)
0.655076 0.755563i \(-0.272636\pi\)
\(80\) 0 0
\(81\) −4.60538 + 7.97675i −0.511709 + 0.886305i
\(82\) 17.2017 1.89961
\(83\) 1.88989 7.05316i 0.207442 0.774185i −0.781249 0.624219i \(-0.785417\pi\)
0.988691 0.149965i \(-0.0479162\pi\)
\(84\) 12.9140i 1.40903i
\(85\) 0 0
\(86\) −4.46741 7.73777i −0.481733 0.834386i
\(87\) 0.967189 1.67522i 0.103694 0.179603i
\(88\) 0.172004 0.0183357
\(89\) 1.12526 4.19952i 0.119277 0.445148i −0.880294 0.474428i \(-0.842655\pi\)
0.999571 + 0.0292801i \(0.00932149\pi\)
\(90\) 0 0
\(91\) −3.92224 + 14.6380i −0.411162 + 1.53448i
\(92\) −3.88065 2.24050i −0.404586 0.233588i
\(93\) 1.52931 + 0.882945i 0.158582 + 0.0915571i
\(94\) 2.55659 9.54131i 0.263692 0.984111i
\(95\) 0 0
\(96\) 5.00537 18.6803i 0.510859 1.90655i
\(97\) 9.54307 0.968952 0.484476 0.874805i \(-0.339010\pi\)
0.484476 + 0.874805i \(0.339010\pi\)
\(98\) −0.407529 + 0.705861i −0.0411667 + 0.0713027i
\(99\) 2.45872 + 4.25862i 0.247110 + 0.428007i
\(100\) 0 0
\(101\) 16.8321i 1.67486i −0.546548 0.837428i \(-0.684059\pi\)
0.546548 0.837428i \(-0.315941\pi\)
\(102\) 8.72484 32.5615i 0.863888 3.22407i
\(103\) −7.86111 −0.774579 −0.387289 0.921958i \(-0.626589\pi\)
−0.387289 + 0.921958i \(0.626589\pi\)
\(104\) 0.285081 0.493775i 0.0279545 0.0484186i
\(105\) 0 0
\(106\) 0.0650107 + 0.242623i 0.00631440 + 0.0235657i
\(107\) −0.746535 2.78611i −0.0721703 0.269343i 0.920407 0.390963i \(-0.127858\pi\)
−0.992577 + 0.121620i \(0.961191\pi\)
\(108\) −0.329832 + 0.0883782i −0.0317381 + 0.00850419i
\(109\) 0.520227 + 0.139395i 0.0498288 + 0.0133516i 0.283647 0.958929i \(-0.408456\pi\)
−0.233819 + 0.972280i \(0.575122\pi\)
\(110\) 0 0
\(111\) 4.76701 + 14.0219i 0.452464 + 1.33090i
\(112\) 7.89275 7.89275i 0.745795 0.745795i
\(113\) 8.29122 + 14.3608i 0.779973 + 1.35095i 0.931957 + 0.362569i \(0.118100\pi\)
−0.151984 + 0.988383i \(0.548566\pi\)
\(114\) −13.0102 + 22.5343i −1.21852 + 2.11053i
\(115\) 0 0
\(116\) 1.49528 0.400658i 0.138833 0.0372002i
\(117\) 16.3004 1.50697
\(118\) 18.2574 4.89206i 1.68073 0.450350i
\(119\) 13.4119 13.4119i 1.22947 1.22947i
\(120\) 0 0
\(121\) 8.17949 0.743590
\(122\) −9.61366 9.61366i −0.870380 0.870380i
\(123\) 5.45517 20.3590i 0.491876 1.83571i
\(124\) 0.365760 + 1.36503i 0.0328462 + 0.122584i
\(125\) 0 0
\(126\) 15.2984 + 4.09920i 1.36289 + 0.365185i
\(127\) −18.1341 4.85902i −1.60914 0.431168i −0.661355 0.750073i \(-0.730018\pi\)
−0.947787 + 0.318904i \(0.896685\pi\)
\(128\) −0.709335 + 0.409535i −0.0626970 + 0.0361981i
\(129\) −10.5748 + 2.83350i −0.931055 + 0.249475i
\(130\) 0 0
\(131\) 6.02317 + 1.61390i 0.526247 + 0.141007i 0.512155 0.858893i \(-0.328847\pi\)
0.0140923 + 0.999901i \(0.495514\pi\)
\(132\) −2.06208 + 7.69580i −0.179481 + 0.669833i
\(133\) −12.6791 + 7.32031i −1.09942 + 0.634751i
\(134\) 12.2904 12.2904i 1.06173 1.06173i
\(135\) 0 0
\(136\) −0.618014 + 0.356810i −0.0529942 + 0.0305962i
\(137\) −6.73698 + 6.73698i −0.575579 + 0.575579i −0.933682 0.358103i \(-0.883424\pi\)
0.358103 + 0.933682i \(0.383424\pi\)
\(138\) −7.86750 + 7.86750i −0.669726 + 0.669726i
\(139\) −6.78219 11.7471i −0.575258 0.996376i −0.996014 0.0892018i \(-0.971568\pi\)
0.420756 0.907174i \(-0.361765\pi\)
\(140\) 0 0
\(141\) −10.4818 6.05167i −0.882727 0.509643i
\(142\) 19.5276i 1.63872i
\(143\) −4.67474 + 8.09689i −0.390921 + 0.677096i
\(144\) −10.3976 6.00307i −0.866468 0.500256i
\(145\) 0 0
\(146\) 0.585388 2.18470i 0.0484470 0.180807i
\(147\) 0.706179 + 0.706179i 0.0582447 + 0.0582447i
\(148\) −5.23710 + 10.6322i −0.430487 + 0.873958i
\(149\) 6.46606i 0.529721i 0.964287 + 0.264860i \(0.0853259\pi\)
−0.964287 + 0.264860i \(0.914674\pi\)
\(150\) 0 0
\(151\) 9.73455 + 5.62024i 0.792186 + 0.457369i 0.840732 0.541452i \(-0.182125\pi\)
−0.0485454 + 0.998821i \(0.515459\pi\)
\(152\) 0.532064 0.142566i 0.0431561 0.0115636i
\(153\) −17.6684 10.2009i −1.42841 0.824691i
\(154\) −6.42358 + 6.42358i −0.517627 + 0.517627i
\(155\) 0 0
\(156\) 18.6747 + 18.6747i 1.49518 + 1.49518i
\(157\) 9.24841 + 2.47810i 0.738103 + 0.197774i 0.608235 0.793757i \(-0.291878\pi\)
0.129868 + 0.991531i \(0.458545\pi\)
\(158\) −13.9940 13.9940i −1.11330 1.11330i
\(159\) 0.307772 0.0244079
\(160\) 0 0
\(161\) −6.04702 + 1.62029i −0.476572 + 0.127697i
\(162\) 18.3024i 1.43798i
\(163\) 4.93862 + 8.55394i 0.386823 + 0.669997i 0.992020 0.126079i \(-0.0402392\pi\)
−0.605198 + 0.796075i \(0.706906\pi\)
\(164\) 14.6076 8.43369i 1.14066 0.658561i
\(165\) 0 0
\(166\) −3.75534 14.0151i −0.291471 1.08779i
\(167\) 8.35752 14.4757i 0.646725 1.12016i −0.337176 0.941442i \(-0.609472\pi\)
0.983900 0.178718i \(-0.0571950\pi\)
\(168\) −0.339402 0.587861i −0.0261854 0.0453545i
\(169\) 8.99590 + 15.5814i 0.691992 + 1.19857i
\(170\) 0 0
\(171\) 11.1354 + 11.1354i 0.851542 + 0.851542i
\(172\) −7.58741 4.38059i −0.578534 0.334017i
\(173\) 18.6858 + 5.00685i 1.42066 + 0.380664i 0.885717 0.464226i \(-0.153668\pi\)
0.534940 + 0.844890i \(0.320334\pi\)
\(174\) 3.84375i 0.291394i
\(175\) 0 0
\(176\) 5.96381 3.44321i 0.449539 0.259542i
\(177\) 23.1599i 1.74080i
\(178\) −2.23597 8.34475i −0.167593 0.625465i
\(179\) 0.796965 + 0.796965i 0.0595680 + 0.0595680i 0.736263 0.676695i \(-0.236589\pi\)
−0.676695 + 0.736263i \(0.736589\pi\)
\(180\) 0 0
\(181\) 3.50696 6.07423i 0.260670 0.451494i −0.705750 0.708461i \(-0.749390\pi\)
0.966420 + 0.256967i \(0.0827232\pi\)
\(182\) 7.79377 + 29.0868i 0.577713 + 2.15605i
\(183\) −14.4270 + 8.32942i −1.06647 + 0.615729i
\(184\) 0.235536 0.0173640
\(185\) 0 0
\(186\) 3.50895 0.257289
\(187\) 10.1341 5.85095i 0.741082 0.427864i
\(188\) −2.50691 9.35590i −0.182835 0.682349i
\(189\) −0.238530 + 0.413145i −0.0173505 + 0.0300519i
\(190\) 0 0
\(191\) 8.62975 + 8.62975i 0.624427 + 0.624427i 0.946660 0.322233i \(-0.104434\pi\)
−0.322233 + 0.946660i \(0.604434\pi\)
\(192\) −4.77818 17.8324i −0.344836 1.28694i
\(193\) 9.26626i 0.667000i −0.942750 0.333500i \(-0.891770\pi\)
0.942750 0.333500i \(-0.108230\pi\)
\(194\) 16.4222 9.48138i 1.17905 0.680724i
\(195\) 0 0
\(196\) 0.799219i 0.0570871i
\(197\) −20.4415 5.47729i −1.45640 0.390241i −0.558154 0.829737i \(-0.688490\pi\)
−0.898244 + 0.439496i \(0.855157\pi\)
\(198\) 8.46219 + 4.88565i 0.601382 + 0.347208i
\(199\) −10.0796 10.0796i −0.714524 0.714524i 0.252954 0.967478i \(-0.418598\pi\)
−0.967478 + 0.252954i \(0.918598\pi\)
\(200\) 0 0
\(201\) −10.6486 18.4439i −0.751092 1.30093i
\(202\) −16.7233 28.9656i −1.17665 2.03801i
\(203\) 1.08136 1.87297i 0.0758967 0.131457i
\(204\) −8.55529 31.9288i −0.598990 2.23546i
\(205\) 0 0
\(206\) −13.5278 + 7.81030i −0.942529 + 0.544170i
\(207\) 3.36688 + 5.83160i 0.234014 + 0.405324i
\(208\) 22.8272i 1.58278i
\(209\) −8.72475 + 2.33779i −0.603503 + 0.161708i
\(210\) 0 0
\(211\) 9.16134 0.630693 0.315346 0.948977i \(-0.397879\pi\)
0.315346 + 0.948977i \(0.397879\pi\)
\(212\) 0.174161 + 0.174161i 0.0119614 + 0.0119614i
\(213\) 23.1118 + 6.19278i 1.58359 + 0.424322i
\(214\) −4.05278 4.05278i −0.277042 0.277042i
\(215\) 0 0
\(216\) 0.0126916 0.0126916i 0.000863557 0.000863557i
\(217\) 1.70983 + 0.987173i 0.116071 + 0.0670136i
\(218\) 1.03373 0.276987i 0.0700130 0.0187599i
\(219\) −2.40004 1.38567i −0.162180 0.0936346i
\(220\) 0 0
\(221\) 38.7897i 2.60927i
\(222\) 22.1346 + 19.3934i 1.48557 + 1.30160i
\(223\) 7.67262 + 7.67262i 0.513796 + 0.513796i 0.915688 0.401891i \(-0.131647\pi\)
−0.401891 + 0.915688i \(0.631647\pi\)
\(224\) 5.59623 20.8854i 0.373914 1.39547i
\(225\) 0 0
\(226\) 28.5360 + 16.4753i 1.89819 + 1.09592i
\(227\) −6.09924 + 10.5642i −0.404821 + 0.701171i −0.994301 0.106613i \(-0.966000\pi\)
0.589480 + 0.807783i \(0.299333\pi\)
\(228\) 25.5147i 1.68975i
\(229\) −6.92938 4.00068i −0.457906 0.264372i 0.253257 0.967399i \(-0.418498\pi\)
−0.711163 + 0.703027i \(0.751831\pi\)
\(230\) 0 0
\(231\) 5.56549 + 9.63971i 0.366182 + 0.634246i
\(232\) −0.0575369 + 0.0575369i −0.00377748 + 0.00377748i
\(233\) −12.4980 + 12.4980i −0.818769 + 0.818769i −0.985930 0.167160i \(-0.946540\pi\)
0.167160 + 0.985930i \(0.446540\pi\)
\(234\) 28.0506 16.1950i 1.83372 1.05870i
\(235\) 0 0
\(236\) 13.1056 13.1056i 0.853103 0.853103i
\(237\) −21.0004 + 12.1246i −1.36412 + 0.787576i
\(238\) 9.75477 36.4053i 0.632308 2.35980i
\(239\) 21.0290 + 5.63471i 1.36025 + 0.364479i 0.863910 0.503647i \(-0.168009\pi\)
0.496344 + 0.868126i \(0.334675\pi\)
\(240\) 0 0
\(241\) 2.79110 0.747874i 0.179791 0.0481748i −0.167800 0.985821i \(-0.553666\pi\)
0.347591 + 0.937646i \(0.387000\pi\)
\(242\) 14.0757 8.12662i 0.904821 0.522399i
\(243\) 21.1539 + 5.66818i 1.35703 + 0.363614i
\(244\) −12.8773 3.45046i −0.824385 0.220893i
\(245\) 0 0
\(246\) −10.8398 40.4547i −0.691121 2.57930i
\(247\) −7.74934 + 28.9209i −0.493079 + 1.84019i
\(248\) −0.0525253 0.0525253i −0.00333536 0.00333536i
\(249\) −17.7785 −1.12667
\(250\) 0 0
\(251\) −8.78658 + 8.78658i −0.554604 + 0.554604i −0.927766 0.373162i \(-0.878273\pi\)
0.373162 + 0.927766i \(0.378273\pi\)
\(252\) 15.0011 4.01954i 0.944981 0.253207i
\(253\) −3.86231 −0.242821
\(254\) −36.0338 + 9.65523i −2.26096 + 0.605823i
\(255\) 0 0
\(256\) −8.39626 + 14.5428i −0.524766 + 0.908922i
\(257\) −8.05916 13.9589i −0.502717 0.870731i −0.999995 0.00313967i \(-0.999001\pi\)
0.497279 0.867591i \(-0.334333\pi\)
\(258\) −15.3824 + 15.3824i −0.957669 + 0.957669i
\(259\) 5.32973 + 15.6771i 0.331173 + 0.974126i
\(260\) 0 0
\(261\) −2.24701 0.602084i −0.139086 0.0372681i
\(262\) 11.9685 3.20695i 0.739415 0.198126i
\(263\) 2.31155 + 8.62681i 0.142536 + 0.531952i 0.999853 + 0.0171624i \(0.00546324\pi\)
−0.857317 + 0.514789i \(0.827870\pi\)
\(264\) −0.108390 0.404518i −0.00667096 0.0248964i
\(265\) 0 0
\(266\) −14.5460 + 25.1944i −0.891872 + 1.54477i
\(267\) −10.5855 −0.647821
\(268\) 4.41117 16.4627i 0.269455 1.00562i
\(269\) 4.45940i 0.271895i −0.990716 0.135947i \(-0.956592\pi\)
0.990716 0.135947i \(-0.0434078\pi\)
\(270\) 0 0
\(271\) 12.8742 + 22.2987i 0.782050 + 1.35455i 0.930746 + 0.365667i \(0.119159\pi\)
−0.148696 + 0.988883i \(0.547507\pi\)
\(272\) −14.2854 + 24.7430i −0.866178 + 1.50026i
\(273\) 36.8971 2.23312
\(274\) −4.89993 + 18.2868i −0.296016 + 1.10475i
\(275\) 0 0
\(276\) −2.82374 + 10.5384i −0.169969 + 0.634334i
\(277\) 25.1190 + 14.5025i 1.50925 + 0.871368i 0.999942 + 0.0107863i \(0.00343344\pi\)
0.509312 + 0.860582i \(0.329900\pi\)
\(278\) −23.3423 13.4767i −1.39998 0.808279i
\(279\) 0.549641 2.05129i 0.0329062 0.122807i
\(280\) 0 0
\(281\) 1.36182 5.08238i 0.0812394 0.303190i −0.913336 0.407207i \(-0.866503\pi\)
0.994576 + 0.104017i \(0.0331696\pi\)
\(282\) −24.0502 −1.43217
\(283\) −7.95697 + 13.7819i −0.472993 + 0.819248i −0.999522 0.0309093i \(-0.990160\pi\)
0.526529 + 0.850157i \(0.323493\pi\)
\(284\) 9.57404 + 16.5827i 0.568115 + 0.984004i
\(285\) 0 0
\(286\) 18.5781i 1.09855i
\(287\) 6.09912 22.7622i 0.360020 1.34361i
\(288\) −23.2573 −1.37045
\(289\) −15.7748 + 27.3227i −0.927927 + 1.60722i
\(290\) 0 0
\(291\) −6.01366 22.4433i −0.352527 1.31565i
\(292\) −0.574012 2.14224i −0.0335915 0.125365i
\(293\) −20.4696 + 5.48481i −1.19585 + 0.320426i −0.801194 0.598405i \(-0.795801\pi\)
−0.394651 + 0.918831i \(0.629135\pi\)
\(294\) 1.91685 + 0.513617i 0.111793 + 0.0299548i
\(295\) 0 0
\(296\) −0.0410323 0.621630i −0.00238495 0.0361315i
\(297\) −0.208117 + 0.208117i −0.0120762 + 0.0120762i
\(298\) 6.42427 + 11.1272i 0.372148 + 0.644579i
\(299\) −6.40142 + 11.0876i −0.370204 + 0.641212i
\(300\) 0 0
\(301\) −11.8231 + 3.16798i −0.681470 + 0.182599i
\(302\) 22.3357 1.28527
\(303\) −39.5855 + 10.6069i −2.27413 + 0.609351i
\(304\) 15.5941 15.5941i 0.894381 0.894381i
\(305\) 0 0
\(306\) −40.5397 −2.31750
\(307\) 18.3419 + 18.3419i 1.04683 + 1.04683i 0.998848 + 0.0479805i \(0.0152785\pi\)
0.0479805 + 0.998848i \(0.484721\pi\)
\(308\) −2.30550 + 8.60425i −0.131368 + 0.490273i
\(309\) 4.95376 + 18.4877i 0.281810 + 1.05173i
\(310\) 0 0
\(311\) −5.37036 1.43898i −0.304525 0.0815973i 0.103321 0.994648i \(-0.467053\pi\)
−0.407846 + 0.913051i \(0.633720\pi\)
\(312\) −1.34090 0.359294i −0.0759136 0.0203410i
\(313\) −5.29504 + 3.05709i −0.299294 + 0.172797i −0.642125 0.766600i \(-0.721947\pi\)
0.342832 + 0.939397i \(0.388614\pi\)
\(314\) 18.3773 4.92417i 1.03709 0.277887i
\(315\) 0 0
\(316\) −18.7446 5.02261i −1.05447 0.282544i
\(317\) −6.99103 + 26.0909i −0.392655 + 1.46541i 0.433082 + 0.901354i \(0.357426\pi\)
−0.825737 + 0.564055i \(0.809241\pi\)
\(318\) 0.529632 0.305783i 0.0297003 0.0171475i
\(319\) 0.943486 0.943486i 0.0528251 0.0528251i
\(320\) 0 0
\(321\) −6.08190 + 3.51139i −0.339459 + 0.195987i
\(322\) −8.79622 + 8.79622i −0.490194 + 0.490194i
\(323\) 26.4986 26.4986i 1.47442 1.47442i
\(324\) 8.97338 + 15.5424i 0.498521 + 0.863464i
\(325\) 0 0
\(326\) 16.9973 + 9.81340i 0.941394 + 0.543514i
\(327\) 1.31131i 0.0725154i
\(328\) −0.443304 + 0.767825i −0.0244774 + 0.0423961i
\(329\) −11.7191 6.76605i −0.646097 0.373024i
\(330\) 0 0
\(331\) −2.23150 + 8.32808i −0.122655 + 0.457753i −0.999745 0.0225719i \(-0.992815\pi\)
0.877091 + 0.480325i \(0.159481\pi\)
\(332\) −10.0604 10.0604i −0.552137 0.552137i
\(333\) 14.8043 9.90180i 0.811270 0.542615i
\(334\) 33.2140i 1.81739i
\(335\) 0 0
\(336\) −23.5358 13.5884i −1.28398 0.741308i
\(337\) −1.54567 + 0.414161i −0.0841979 + 0.0225608i −0.300672 0.953728i \(-0.597211\pi\)
0.216474 + 0.976288i \(0.430544\pi\)
\(338\) 30.9613 + 17.8755i 1.68407 + 0.972300i
\(339\) 28.5488 28.5488i 1.55056 1.55056i
\(340\) 0 0
\(341\) 0.861307 + 0.861307i 0.0466424 + 0.0466424i
\(342\) 30.2257 + 8.09896i 1.63442 + 0.437942i
\(343\) −12.6845 12.6845i −0.684898 0.684898i
\(344\) 0.460518 0.0248295
\(345\) 0 0
\(346\) 37.1301 9.94898i 1.99613 0.534860i
\(347\) 17.9655i 0.964438i −0.876051 0.482219i \(-0.839831\pi\)
0.876051 0.482219i \(-0.160169\pi\)
\(348\) −1.88453 3.26410i −0.101021 0.174974i
\(349\) 21.5887 12.4642i 1.15562 0.667195i 0.205366 0.978685i \(-0.434162\pi\)
0.950249 + 0.311490i \(0.100828\pi\)
\(350\) 0 0
\(351\) 0.252509 + 0.942378i 0.0134780 + 0.0503004i
\(352\) 6.66990 11.5526i 0.355507 0.615756i
\(353\) −0.198621 0.344022i −0.0105715 0.0183104i 0.860691 0.509127i \(-0.170032\pi\)
−0.871263 + 0.490817i \(0.836698\pi\)
\(354\) −23.0102 39.8548i −1.22298 2.11826i
\(355\) 0 0
\(356\) −5.99007 5.99007i −0.317473 0.317473i
\(357\) −39.9938 23.0904i −2.11669 1.22207i
\(358\) 2.16328 + 0.579648i 0.114333 + 0.0306354i
\(359\) 26.6480i 1.40643i 0.710977 + 0.703215i \(0.248253\pi\)
−0.710977 + 0.703215i \(0.751747\pi\)
\(360\) 0 0
\(361\) −8.59627 + 4.96306i −0.452435 + 0.261214i
\(362\) 13.9372i 0.732521i
\(363\) −5.15439 19.2364i −0.270535 1.00965i
\(364\) 20.8792 + 20.8792i 1.09437 + 1.09437i
\(365\) 0 0
\(366\) −16.5512 + 28.6675i −0.865144 + 1.49847i
\(367\) 3.95597 + 14.7639i 0.206500 + 0.770668i 0.988987 + 0.148001i \(0.0472840\pi\)
−0.782487 + 0.622666i \(0.786049\pi\)
\(368\) 8.16663 4.71501i 0.425715 0.245787i
\(369\) −25.3473 −1.31953
\(370\) 0 0
\(371\) 0.344104 0.0178650
\(372\) 2.97979 1.72038i 0.154495 0.0891976i
\(373\) 9.45368 + 35.2816i 0.489493 + 1.82681i 0.558915 + 0.829225i \(0.311218\pi\)
−0.0694227 + 0.997587i \(0.522116\pi\)
\(374\) 11.6263 20.1373i 0.601180 1.04127i
\(375\) 0 0
\(376\) 0.360007 + 0.360007i 0.0185659 + 0.0185659i
\(377\) −1.14474 4.27222i −0.0589570 0.220031i
\(378\) 0.947951i 0.0487573i
\(379\) −19.1447 + 11.0532i −0.983399 + 0.567765i −0.903294 0.429021i \(-0.858859\pi\)
−0.0801041 + 0.996787i \(0.525525\pi\)
\(380\) 0 0
\(381\) 45.7096i 2.34177i
\(382\) 23.4245 + 6.27658i 1.19850 + 0.321138i
\(383\) 11.9728 + 6.91250i 0.611781 + 0.353212i 0.773662 0.633598i \(-0.218423\pi\)
−0.161881 + 0.986810i \(0.551756\pi\)
\(384\) 1.41013 + 1.41013i 0.0719606 + 0.0719606i
\(385\) 0 0
\(386\) −9.20636 15.9459i −0.468592 0.811624i
\(387\) 6.58288 + 11.4019i 0.334627 + 0.579590i
\(388\) 9.29713 16.1031i 0.471990 0.817511i
\(389\) 2.77714 + 10.3644i 0.140806 + 0.525496i 0.999906 + 0.0136886i \(0.00435736\pi\)
−0.859100 + 0.511808i \(0.828976\pi\)
\(390\) 0 0
\(391\) 13.8773 8.01208i 0.701807 0.405189i
\(392\) −0.0210049 0.0363815i −0.00106091 0.00183754i
\(393\) 15.1823i 0.765844i
\(394\) −40.6188 + 10.8838i −2.04635 + 0.548317i
\(395\) 0 0
\(396\) 9.58141 0.481484
\(397\) −16.8089 16.8089i −0.843614 0.843614i 0.145713 0.989327i \(-0.453452\pi\)
−0.989327 + 0.145713i \(0.953452\pi\)
\(398\) −27.3600 7.33109i −1.37143 0.367474i
\(399\) 25.2057 + 25.2057i 1.26187 + 1.26187i
\(400\) 0 0
\(401\) 10.5045 10.5045i 0.524569 0.524569i −0.394379 0.918948i \(-0.629040\pi\)
0.918948 + 0.394379i \(0.129040\pi\)
\(402\) −36.6493 21.1595i −1.82790 1.05534i
\(403\) 3.90010 1.04503i 0.194278 0.0520566i
\(404\) −28.4027 16.3983i −1.41309 0.815846i
\(405\) 0 0
\(406\) 4.29749i 0.213281i
\(407\) 0.672844 + 10.1934i 0.0333517 + 0.505270i
\(408\) 1.22859 + 1.22859i 0.0608243 + 0.0608243i
\(409\) −6.05393 + 22.5936i −0.299348 + 1.11718i 0.638355 + 0.769742i \(0.279615\pi\)
−0.937703 + 0.347438i \(0.887052\pi\)
\(410\) 0 0
\(411\) 20.0893 + 11.5986i 0.990934 + 0.572116i
\(412\) −7.65853 + 13.2650i −0.377308 + 0.653517i
\(413\) 25.8938i 1.27415i
\(414\) 11.5878 + 6.69023i 0.569510 + 0.328807i
\(415\) 0 0
\(416\) −22.1095 38.2948i −1.08401 1.87755i
\(417\) −23.3528 + 23.3528i −1.14359 + 1.14359i
\(418\) −12.6914 + 12.6914i −0.620754 + 0.620754i
\(419\) −20.0193 + 11.5582i −0.978009 + 0.564654i −0.901668 0.432428i \(-0.857657\pi\)
−0.0763404 + 0.997082i \(0.524324\pi\)
\(420\) 0 0
\(421\) 0.796474 0.796474i 0.0388178 0.0388178i −0.687431 0.726249i \(-0.741262\pi\)
0.726249 + 0.687431i \(0.241262\pi\)
\(422\) 15.7654 9.10213i 0.767445 0.443085i
\(423\) −3.76722 + 14.0595i −0.183169 + 0.683594i
\(424\) −0.0125053 0.00335078i −0.000607310 0.000162728i
\(425\) 0 0
\(426\) 45.9247 12.3055i 2.22506 0.596203i
\(427\) −16.1300 + 9.31268i −0.780587 + 0.450672i
\(428\) −5.42861 1.45459i −0.262402 0.0703104i
\(429\) 21.9880 + 5.89167i 1.06159 + 0.284453i
\(430\) 0 0
\(431\) −6.09536 22.7482i −0.293603 1.09574i −0.942320 0.334713i \(-0.891361\pi\)
0.648717 0.761030i \(-0.275306\pi\)
\(432\) 0.185987 0.694114i 0.00894832 0.0333956i
\(433\) 8.35425 + 8.35425i 0.401480 + 0.401480i 0.878754 0.477275i \(-0.158375\pi\)
−0.477275 + 0.878754i \(0.658375\pi\)
\(434\) 3.92317 0.188318
\(435\) 0 0
\(436\) 0.742037 0.742037i 0.0355371 0.0355371i
\(437\) −11.9474 + 3.20129i −0.571520 + 0.153138i
\(438\) −5.50684 −0.263127
\(439\) 3.56774 0.955972i 0.170279 0.0456261i −0.172672 0.984979i \(-0.555240\pi\)
0.342951 + 0.939353i \(0.388573\pi\)
\(440\) 0 0
\(441\) 0.600508 1.04011i 0.0285956 0.0495291i
\(442\) −38.5389 66.7514i −1.83311 3.17504i
\(443\) −25.0265 + 25.0265i −1.18905 + 1.18905i −0.211714 + 0.977332i \(0.567905\pi\)
−0.977332 + 0.211714i \(0.932095\pi\)
\(444\) 28.3048 + 5.61659i 1.34329 + 0.266551i
\(445\) 0 0
\(446\) 20.8265 + 5.58044i 0.986163 + 0.264242i
\(447\) 15.2068 4.07466i 0.719258 0.192725i
\(448\) −5.34223 19.9375i −0.252397 0.941957i
\(449\) −2.73747 10.2164i −0.129189 0.482141i 0.870765 0.491699i \(-0.163624\pi\)
−0.999954 + 0.00955863i \(0.996957\pi\)
\(450\) 0 0
\(451\) 7.26927 12.5907i 0.342297 0.592875i
\(452\) 32.3102 1.51974
\(453\) 7.08331 26.4353i 0.332803 1.24204i
\(454\) 24.2393i 1.13761i
\(455\) 0 0
\(456\) −0.670571 1.16146i −0.0314024 0.0543905i
\(457\) 15.0696 26.1013i 0.704927 1.22097i −0.261791 0.965125i \(-0.584313\pi\)
0.966718 0.255845i \(-0.0823536\pi\)
\(458\) −15.8993 −0.742924
\(459\) 0.316043 1.17949i 0.0147516 0.0550538i
\(460\) 0 0
\(461\) −3.05838 + 11.4140i −0.142443 + 0.531605i 0.857413 + 0.514629i \(0.172070\pi\)
−0.999856 + 0.0169755i \(0.994596\pi\)
\(462\) 19.1548 + 11.0590i 0.891162 + 0.514513i
\(463\) 15.0903 + 8.71241i 0.701307 + 0.404900i 0.807834 0.589410i \(-0.200640\pi\)
−0.106527 + 0.994310i \(0.533973\pi\)
\(464\) −0.843164 + 3.14673i −0.0391429 + 0.146083i
\(465\) 0 0
\(466\) −9.09001 + 33.9244i −0.421087 + 1.57152i
\(467\) 10.9228 0.505446 0.252723 0.967539i \(-0.418674\pi\)
0.252723 + 0.967539i \(0.418674\pi\)
\(468\) 15.8803 27.5055i 0.734067 1.27144i
\(469\) −11.9056 20.6211i −0.549749 0.952193i
\(470\) 0 0
\(471\) 23.3119i 1.07416i
\(472\) −0.252146 + 0.941023i −0.0116060 + 0.0433141i
\(473\) −7.55154 −0.347220
\(474\) −24.0924 + 41.7293i −1.10660 + 1.91669i
\(475\) 0 0
\(476\) −9.56520 35.6978i −0.438420 1.63621i
\(477\) −0.0957956 0.357514i −0.00438618 0.0163694i
\(478\) 41.7862 11.1966i 1.91126 0.512119i
\(479\) −8.05522 2.15839i −0.368052 0.0986194i 0.0700522 0.997543i \(-0.477683\pi\)
−0.438105 + 0.898924i \(0.644350\pi\)
\(480\) 0 0
\(481\) 30.3776 + 14.9631i 1.38510 + 0.682261i
\(482\) 4.06005 4.06005i 0.184930 0.184930i
\(483\) 7.62118 + 13.2003i 0.346776 + 0.600633i
\(484\) 7.96869 13.8022i 0.362213 0.627372i
\(485\) 0 0
\(486\) 42.0344 11.2631i 1.90672 0.510904i
\(487\) 8.29876 0.376053 0.188026 0.982164i \(-0.439791\pi\)
0.188026 + 0.982164i \(0.439791\pi\)
\(488\) 0.676876 0.181368i 0.0306407 0.00821016i
\(489\) 17.0050 17.0050i 0.768991 0.768991i
\(490\) 0 0
\(491\) −21.4566 −0.968322 −0.484161 0.874979i \(-0.660875\pi\)
−0.484161 + 0.874979i \(0.660875\pi\)
\(492\) −29.0394 29.0394i −1.30920 1.30920i
\(493\) −1.43277 + 5.34715i −0.0645285 + 0.240824i
\(494\) 15.3985 + 57.4680i 0.692811 + 2.58561i
\(495\) 0 0
\(496\) −2.87264 0.769722i −0.128985 0.0345616i
\(497\) 25.8400 + 6.92381i 1.15908 + 0.310575i
\(498\) −30.5942 + 17.6636i −1.37096 + 0.791523i
\(499\) −1.94647 + 0.521555i −0.0871360 + 0.0233480i −0.302124 0.953269i \(-0.597696\pi\)
0.214988 + 0.976617i \(0.431029\pi\)
\(500\) 0 0
\(501\) −39.3103 10.5332i −1.75625 0.470587i
\(502\) −6.39064 + 23.8502i −0.285228 + 1.06449i
\(503\) 27.6417 15.9589i 1.23248 0.711574i 0.264936 0.964266i \(-0.414649\pi\)
0.967547 + 0.252692i \(0.0813159\pi\)
\(504\) −0.577230 + 0.577230i −0.0257119 + 0.0257119i
\(505\) 0 0
\(506\) −6.64648 + 3.83735i −0.295472 + 0.170591i
\(507\) 30.9752 30.9752i 1.37566 1.37566i
\(508\) −25.8660 + 25.8660i −1.14762 + 1.14762i
\(509\) −3.16251 5.47763i −0.140176 0.242792i 0.787387 0.616459i \(-0.211433\pi\)
−0.927563 + 0.373667i \(0.878100\pi\)
\(510\) 0 0
\(511\) −2.68336 1.54924i −0.118705 0.0685342i
\(512\) 31.7298i 1.40227i
\(513\) −0.471273 + 0.816269i −0.0208072 + 0.0360392i
\(514\) −27.7373 16.0141i −1.22344 0.706353i
\(515\) 0 0
\(516\) −5.52095 + 20.6045i −0.243046 + 0.907061i
\(517\) −5.90337 5.90337i −0.259630 0.259630i
\(518\) 24.7474 + 21.6827i 1.08734 + 0.952683i
\(519\) 47.1003i 2.06747i
\(520\) 0 0
\(521\) −11.6555 6.72930i −0.510637 0.294816i 0.222459 0.974942i \(-0.428592\pi\)
−0.733095 + 0.680126i \(0.761925\pi\)
\(522\) −4.46497 + 1.19638i −0.195426 + 0.0523643i
\(523\) 29.5603 + 17.0666i 1.29258 + 0.746272i 0.979111 0.203326i \(-0.0651750\pi\)
0.313470 + 0.949598i \(0.398508\pi\)
\(524\) 8.59127 8.59127i 0.375312 0.375312i
\(525\) 0 0
\(526\) 12.5489 + 12.5489i 0.547158 + 0.547158i
\(527\) −4.88141 1.30797i −0.212637 0.0569760i
\(528\) −11.8559 11.8559i −0.515960 0.515960i
\(529\) 17.7111 0.770047
\(530\) 0 0
\(531\) −26.9029 + 7.20862i −1.16749 + 0.312827i
\(532\) 28.5266i 1.23679i
\(533\) −24.0963 41.7360i −1.04373 1.80779i
\(534\) −18.2161 + 10.5171i −0.788287 + 0.455118i
\(535\) 0 0
\(536\) 0.231866 + 0.865337i 0.0100151 + 0.0373769i
\(537\) 1.37208 2.37651i 0.0592096 0.102554i
\(538\) −4.43058 7.67399i −0.191016 0.330849i
\(539\) 0.344436 + 0.596581i 0.0148359 + 0.0256966i
\(540\) 0 0
\(541\) −20.9871 20.9871i −0.902306 0.902306i 0.0933293 0.995635i \(-0.470249\pi\)
−0.995635 + 0.0933293i \(0.970249\pi\)
\(542\) 44.3092 + 25.5819i 1.90324 + 1.09884i
\(543\) −16.4953 4.41989i −0.707879 0.189676i
\(544\) 55.3449i 2.37289i
\(545\) 0 0
\(546\) 63.4946 36.6586i 2.71732 1.56885i
\(547\) 26.7961i 1.14572i 0.819654 + 0.572859i \(0.194166\pi\)
−0.819654 + 0.572859i \(0.805834\pi\)
\(548\) 4.80471 + 17.9314i 0.205247 + 0.765993i
\(549\) 14.1661 + 14.1661i 0.604593 + 0.604593i
\(550\) 0 0
\(551\) 2.13649 3.70052i 0.0910177 0.157647i
\(552\) −0.148426 0.553932i −0.00631742 0.0235769i
\(553\) −23.4794 + 13.5558i −0.998445 + 0.576453i
\(554\) 57.6349 2.44867
\(555\) 0 0
\(556\) −26.4296 −1.12087
\(557\) −2.45586 + 1.41789i −0.104058 + 0.0600781i −0.551126 0.834422i \(-0.685802\pi\)
0.447068 + 0.894500i \(0.352468\pi\)
\(558\) −1.09218 4.07606i −0.0462355 0.172553i
\(559\) −12.5160 + 21.6783i −0.529370 + 0.916895i
\(560\) 0 0
\(561\) −20.1463 20.1463i −0.850580 0.850580i
\(562\) −2.70604 10.0991i −0.114147 0.426003i
\(563\) 18.8024i 0.792425i −0.918159 0.396212i \(-0.870324\pi\)
0.918159 0.396212i \(-0.129676\pi\)
\(564\) −20.4234 + 11.7914i −0.859979 + 0.496509i
\(565\) 0 0
\(566\) 31.6222i 1.32918i
\(567\) 24.2188 + 6.48942i 1.01710 + 0.272530i
\(568\) −0.871646 0.503245i −0.0365734 0.0211157i
\(569\) 12.7829 + 12.7829i 0.535887 + 0.535887i 0.922318 0.386431i \(-0.126292\pi\)
−0.386431 + 0.922318i \(0.626292\pi\)
\(570\) 0 0
\(571\) −8.53388 14.7811i −0.357132 0.618570i 0.630349 0.776312i \(-0.282912\pi\)
−0.987480 + 0.157742i \(0.949579\pi\)
\(572\) 9.10853 + 15.7764i 0.380847 + 0.659646i
\(573\) 14.8572 25.7335i 0.620670 1.07503i
\(574\) −12.1194 45.2302i −0.505854 1.88787i
\(575\) 0 0
\(576\) −19.2272 + 11.1008i −0.801134 + 0.462535i
\(577\) −12.0314 20.8390i −0.500875 0.867541i −0.999999 0.00101057i \(-0.999678\pi\)
0.499125 0.866530i \(-0.333655\pi\)
\(578\) 62.6912i 2.60761i
\(579\) −21.7923 + 5.83923i −0.905657 + 0.242670i
\(580\) 0 0
\(581\) −19.8772 −0.824643
\(582\) −32.6469 32.6469i −1.35326 1.35326i
\(583\) 0.205061 + 0.0549459i 0.00849275 + 0.00227563i
\(584\) 0.0824316 + 0.0824316i 0.00341104 + 0.00341104i
\(585\) 0 0
\(586\) −29.7758 + 29.7758i −1.23003 + 1.23003i
\(587\) −9.49077 5.47950i −0.391726 0.226163i 0.291182 0.956668i \(-0.405952\pi\)
−0.682908 + 0.730505i \(0.739285\pi\)
\(588\) 1.87960 0.503636i 0.0775132 0.0207696i
\(589\) 3.37819 + 1.95040i 0.139196 + 0.0803649i
\(590\) 0 0
\(591\) 51.5258i 2.11949i
\(592\) −13.8666 20.7320i −0.569913 0.852082i
\(593\) 18.4396 + 18.4396i 0.757223 + 0.757223i 0.975816 0.218593i \(-0.0701468\pi\)
−0.218593 + 0.975816i \(0.570147\pi\)
\(594\) −0.151367 + 0.564910i −0.00621067 + 0.0231785i
\(595\) 0 0
\(596\) 10.9109 + 6.29943i 0.446929 + 0.258035i
\(597\) −17.3534 + 30.0569i −0.710225 + 1.23015i
\(598\) 25.4402i 1.04033i
\(599\) −14.9856 8.65196i −0.612297 0.353510i 0.161567 0.986862i \(-0.448345\pi\)
−0.773864 + 0.633352i \(0.781679\pi\)
\(600\) 0 0
\(601\) −14.5641 25.2257i −0.594080 1.02898i −0.993676 0.112286i \(-0.964183\pi\)
0.399596 0.916692i \(-0.369151\pi\)
\(602\) −17.1983 + 17.1983i −0.700949 + 0.700949i
\(603\) −18.1103 + 18.1103i −0.737509 + 0.737509i
\(604\) 18.9674 10.9508i 0.771771 0.445582i
\(605\) 0 0
\(606\) −57.5826 + 57.5826i −2.33913 + 2.33913i
\(607\) 19.2374 11.1067i 0.780822 0.450808i −0.0558995 0.998436i \(-0.517803\pi\)
0.836722 + 0.547629i \(0.184469\pi\)
\(608\) 11.0567 41.2643i 0.448409 1.67349i
\(609\) −5.08627 1.36286i −0.206106 0.0552260i
\(610\) 0 0
\(611\) −26.7312 + 7.16259i −1.08143 + 0.289768i
\(612\) −34.4261 + 19.8759i −1.39159 + 0.803437i
\(613\) −14.0207 3.75684i −0.566292 0.151737i −0.0356964 0.999363i \(-0.511365\pi\)
−0.530595 + 0.847625i \(0.678032\pi\)
\(614\) 49.7872 + 13.3404i 2.00925 + 0.538376i
\(615\) 0 0
\(616\) −0.121185 0.452269i −0.00488269 0.0182225i
\(617\) 3.60314 13.4471i 0.145057 0.541360i −0.854696 0.519129i \(-0.826256\pi\)
0.999753 0.0222308i \(-0.00707688\pi\)
\(618\) 26.8929 + 26.8929i 1.08179 + 1.08179i
\(619\) −4.87562 −0.195968 −0.0979838 0.995188i \(-0.531239\pi\)
−0.0979838 + 0.995188i \(0.531239\pi\)
\(620\) 0 0
\(621\) −0.284988 + 0.284988i −0.0114362 + 0.0114362i
\(622\) −10.6713 + 2.85937i −0.427880 + 0.114650i
\(623\) −11.8351 −0.474161
\(624\) −53.6848 + 14.3848i −2.14911 + 0.575853i
\(625\) 0 0
\(626\) −6.07467 + 10.5216i −0.242793 + 0.420529i
\(627\) 10.9960 + 19.0456i 0.439137 + 0.760608i
\(628\) 13.1917 13.1917i 0.526404 0.526404i
\(629\) −23.5631 35.2294i −0.939522 1.40469i
\(630\) 0 0
\(631\) −12.0881 3.23901i −0.481222 0.128943i 0.0100498 0.999949i \(-0.496801\pi\)
−0.491271 + 0.871007i \(0.663468\pi\)
\(632\) 0.985282 0.264006i 0.0391924 0.0105016i
\(633\) −5.77312 21.5456i −0.229461 0.856359i
\(634\) 13.8917 + 51.8444i 0.551709 + 2.05901i
\(635\) 0 0
\(636\) 0.299841 0.519340i 0.0118895 0.0205932i
\(637\) 2.28349 0.0904750
\(638\) 0.686216 2.56099i 0.0271675 0.101391i
\(639\) 28.7746i 1.13830i
\(640\) 0 0
\(641\) 6.83773 + 11.8433i 0.270074 + 0.467782i 0.968881 0.247529i \(-0.0796184\pi\)
−0.698806 + 0.715311i \(0.746285\pi\)
\(642\) −6.97739 + 12.0852i −0.275375 + 0.476964i
\(643\) −38.4862 −1.51775 −0.758873 0.651239i \(-0.774250\pi\)
−0.758873 + 0.651239i \(0.774250\pi\)
\(644\) −3.15707 + 11.7824i −0.124406 + 0.464290i
\(645\) 0 0
\(646\) 19.2729 71.9275i 0.758283 2.82995i
\(647\) −12.3517 7.13127i −0.485596 0.280359i 0.237150 0.971473i \(-0.423787\pi\)
−0.722746 + 0.691114i \(0.757120\pi\)
\(648\) −0.816960 0.471672i −0.0320932 0.0185290i
\(649\) 4.13468 15.4308i 0.162300 0.605713i
\(650\) 0 0
\(651\) 1.24415 4.64325i 0.0487622 0.181983i
\(652\) 19.2454 0.753708
\(653\) 23.5671 40.8194i 0.922253 1.59739i 0.126332 0.991988i \(-0.459680\pi\)
0.795921 0.605400i \(-0.206987\pi\)
\(654\) −1.30283 2.25657i −0.0509447 0.0882389i
\(655\) 0 0
\(656\) 35.4965i 1.38591i
\(657\) −0.862589 + 3.21923i −0.0336528 + 0.125594i
\(658\) −26.8893 −1.04825
\(659\) 15.9643 27.6509i 0.621880 1.07713i −0.367256 0.930120i \(-0.619703\pi\)
0.989135 0.147007i \(-0.0469641\pi\)
\(660\) 0 0
\(661\) 0.934896 + 3.48908i 0.0363632 + 0.135709i 0.981721 0.190325i \(-0.0609541\pi\)
−0.945358 + 0.326034i \(0.894287\pi\)
\(662\) 4.43416 + 16.5485i 0.172338 + 0.643176i
\(663\) −91.2251 + 24.4437i −3.54289 + 0.949315i
\(664\) 0.722368 + 0.193558i 0.0280333 + 0.00751151i
\(665\) 0 0
\(666\) 15.6382 31.7482i 0.605969 1.23022i
\(667\) 1.29198 1.29198i 0.0500255 0.0500255i
\(668\) −16.2843 28.2052i −0.630058 1.09129i
\(669\) 13.2094 22.8794i 0.510705 0.884568i
\(670\) 0 0
\(671\) −11.0994 + 2.97406i −0.428486 + 0.114812i
\(672\) −52.6447 −2.03081
\(673\) −21.5231 + 5.76709i −0.829654 + 0.222305i −0.648563 0.761161i \(-0.724630\pi\)
−0.181091 + 0.983466i \(0.557963\pi\)
\(674\) −2.24839 + 2.24839i −0.0866047 + 0.0866047i
\(675\) 0 0
\(676\) 35.0563 1.34832
\(677\) 18.0215 + 18.0215i 0.692623 + 0.692623i 0.962808 0.270185i \(-0.0870849\pi\)
−0.270185 + 0.962808i \(0.587085\pi\)
\(678\) 20.7641 77.4927i 0.797441 2.97609i
\(679\) −6.72355 25.0926i −0.258026 0.962967i
\(680\) 0 0
\(681\) 28.6883 + 7.68700i 1.09934 + 0.294567i
\(682\) 2.33792 + 0.626445i 0.0895237 + 0.0239878i
\(683\) 15.8005 9.12242i 0.604589 0.349060i −0.166256 0.986083i \(-0.553168\pi\)
0.770845 + 0.637023i \(0.219834\pi\)
\(684\) 29.6384 7.94157i 1.13325 0.303654i
\(685\) 0 0
\(686\) −34.4307 9.22567i −1.31457 0.352238i
\(687\) −5.04214 + 18.8175i −0.192370 + 0.717933i
\(688\) 15.9673 9.21872i 0.608747 0.351460i
\(689\) 0.497603 0.497603i 0.0189572 0.0189572i
\(690\) 0 0
\(691\) −26.8608 + 15.5081i −1.02183 + 0.589957i −0.914635 0.404281i \(-0.867522\pi\)
−0.107200 + 0.994237i \(0.534189\pi\)
\(692\) 26.6529 26.6529i 1.01319 1.01319i
\(693\) 9.46537 9.46537i 0.359560 0.359560i
\(694\) −17.8494 30.9160i −0.677553 1.17356i
\(695\) 0 0
\(696\) 0.171572 + 0.0990573i 0.00650343 + 0.00375476i
\(697\) 60.3183i 2.28472i
\(698\) 24.7673 42.8983i 0.937457 1.62372i
\(699\) 37.2683 + 21.5169i 1.40962 + 0.813843i
\(700\) 0 0
\(701\) 1.72147 6.42463i 0.0650192 0.242655i −0.925766 0.378097i \(-0.876579\pi\)
0.990785 + 0.135442i \(0.0432454\pi\)
\(702\) 1.37082 + 1.37082i 0.0517382 + 0.0517382i
\(703\) 10.5302 + 30.9739i 0.397153 + 1.16820i
\(704\) 12.7343i 0.479943i
\(705\) 0 0
\(706\) −0.683596 0.394674i −0.0257275 0.0148538i
\(707\) −44.2584 + 11.8590i −1.66451 + 0.446004i
\(708\) −39.0803 22.5630i −1.46873 0.847970i
\(709\) 5.97248 5.97248i 0.224301 0.224301i −0.586006 0.810307i \(-0.699300\pi\)
0.810307 + 0.586006i \(0.199300\pi\)
\(710\) 0 0
\(711\) 20.6206 + 20.6206i 0.773333 + 0.773333i
\(712\) 0.430105 + 0.115246i 0.0161189 + 0.00431904i
\(713\) 1.17944 + 1.17944i 0.0441705 + 0.0441705i
\(714\) −91.7647 −3.43421
\(715\) 0 0
\(716\) 2.12124 0.568384i 0.0792744 0.0212415i
\(717\) 53.0066i 1.97957i
\(718\) 26.4758 + 45.8574i 0.988068 + 1.71138i
\(719\) 18.4724 10.6650i 0.688904 0.397739i −0.114297 0.993447i \(-0.536462\pi\)
0.803201 + 0.595707i \(0.203128\pi\)
\(720\) 0 0
\(721\) 5.53853 + 20.6701i 0.206266 + 0.769794i
\(722\) −9.86196 + 17.0814i −0.367024 + 0.635705i
\(723\) −3.51769 6.09281i −0.130824 0.226594i
\(724\) −6.83316 11.8354i −0.253952 0.439858i
\(725\) 0 0
\(726\) −27.9821 27.9821i −1.03851 1.03851i
\(727\) −3.36379 1.94208i −0.124756 0.0720279i 0.436323 0.899790i \(-0.356280\pi\)
−0.561079 + 0.827762i \(0.689614\pi\)
\(728\) −1.49919 0.401707i −0.0555637 0.0148882i
\(729\) 25.6892i 0.951452i
\(730\) 0 0
\(731\) 27.1328 15.6651i 1.00354 0.579396i
\(732\) 32.4591i 1.19972i
\(733\) −8.74505 32.6370i −0.323006 1.20547i −0.916302 0.400489i \(-0.868840\pi\)
0.593296 0.804984i \(-0.297826\pi\)
\(734\) 21.4761 + 21.4761i 0.792697 + 0.792697i
\(735\) 0 0
\(736\) 9.13352 15.8197i 0.336666 0.583123i
\(737\) −3.80213 14.1897i −0.140053 0.522686i
\(738\) −43.6190 + 25.1834i −1.60564 + 0.927015i
\(739\) −41.3843 −1.52234 −0.761172 0.648550i \(-0.775376\pi\)
−0.761172 + 0.648550i \(0.775376\pi\)
\(740\) 0 0
\(741\) 72.8993 2.67802
\(742\) 0.592153 0.341879i 0.0217386 0.0125508i
\(743\) 2.89539 + 10.8057i 0.106222 + 0.396424i 0.998481 0.0550990i \(-0.0175475\pi\)
−0.892259 + 0.451523i \(0.850881\pi\)
\(744\) −0.0904292 + 0.156628i −0.00331529 + 0.00574226i
\(745\) 0 0
\(746\) 51.3220 + 51.3220i 1.87903 + 1.87903i
\(747\) 5.53363 + 20.6518i 0.202465 + 0.755610i
\(748\) 22.8007i 0.833675i
\(749\) −6.79985 + 3.92589i −0.248461 + 0.143449i
\(750\) 0 0
\(751\) 2.77329i 0.101199i −0.998719 0.0505993i \(-0.983887\pi\)
0.998719 0.0505993i \(-0.0161132\pi\)
\(752\) 19.6890 + 5.27565i 0.717984 + 0.192383i
\(753\) 26.2011 + 15.1272i 0.954823 + 0.551267i
\(754\) −6.21454 6.21454i −0.226320 0.226320i
\(755\) 0 0
\(756\) 0.464765 + 0.804996i 0.0169033 + 0.0292774i
\(757\) −13.8153 23.9288i −0.502125 0.869705i −0.999997 0.00245512i \(-0.999219\pi\)
0.497872 0.867250i \(-0.334115\pi\)
\(758\) −21.9635 + 38.0420i −0.797752 + 1.38175i
\(759\) 2.43387 + 9.08334i 0.0883441 + 0.329704i
\(760\) 0 0
\(761\) 5.11172 2.95125i 0.185300 0.106983i −0.404481 0.914547i \(-0.632548\pi\)
0.589780 + 0.807564i \(0.299214\pi\)
\(762\) 45.4141 + 78.6596i 1.64518 + 2.84954i
\(763\) 1.46610i 0.0530764i
\(764\) 22.9693 6.15461i 0.831001 0.222666i
\(765\) 0 0
\(766\) 27.4713 0.992577
\(767\) −37.4447 37.4447i −1.35205 1.35205i
\(768\) 39.4925 + 10.5820i 1.42506 + 0.381845i
\(769\) −15.6442 15.6442i −0.564144 0.564144i 0.366338 0.930482i \(-0.380611\pi\)
−0.930482 + 0.366338i \(0.880611\pi\)
\(770\) 0 0
\(771\) −27.7498 + 27.7498i −0.999384 + 0.999384i
\(772\) −15.6360 9.02746i −0.562752 0.324905i
\(773\) 28.1683 7.54766i 1.01314 0.271470i 0.286200 0.958170i \(-0.407608\pi\)
0.726941 + 0.686699i \(0.240941\pi\)
\(774\) 22.6564 + 13.0807i 0.814366 + 0.470175i
\(775\) 0 0
\(776\) 0.977379i 0.0350859i
\(777\) 33.5106 22.4135i 1.20219 0.804079i
\(778\) 15.0765 + 15.0765i 0.540518 + 0.540518i
\(779\) 12.0503 44.9724i 0.431747 1.61130i
\(780\) 0 0
\(781\) 14.2932 + 8.25217i 0.511450 + 0.295286i
\(782\) 15.9206 27.5753i 0.569319 0.986090i
\(783\) 0.139234i 0.00497581i
\(784\) −1.45658 0.840957i −0.0520207 0.0300342i
\(785\) 0 0
\(786\) −15.0841 26.1265i −0.538033 0.931900i
\(787\) −2.72026 + 2.72026i −0.0969667 + 0.0969667i −0.753926 0.656959i \(-0.771842\pi\)
0.656959 + 0.753926i \(0.271842\pi\)
\(788\) −29.1572 + 29.1572i −1.03868 + 1.03868i
\(789\) 18.8318 10.8725i 0.670430 0.387073i
\(790\) 0 0
\(791\) 31.9189 31.9189i 1.13491 1.13491i
\(792\) −0.436158 + 0.251816i −0.0154982 + 0.00894789i
\(793\) −9.85847 + 36.7923i −0.350085 + 1.30653i
\(794\) −45.6259 12.2254i −1.61920 0.433864i
\(795\) 0 0
\(796\) −26.8283 + 7.18862i −0.950904 + 0.254794i
\(797\) 9.03980 5.21913i 0.320206 0.184871i −0.331278 0.943533i \(-0.607480\pi\)
0.651484 + 0.758662i \(0.274147\pi\)
\(798\) 68.4182 + 18.3326i 2.42198 + 0.648967i
\(799\) 33.4570 + 8.96477i 1.18362 + 0.317151i
\(800\) 0 0
\(801\) 3.29478 + 12.2963i 0.116415 + 0.434468i
\(802\) 7.64012 28.5133i 0.269782 1.00684i
\(803\) −1.35171 1.35171i −0.0477007 0.0477007i
\(804\) −41.4966 −1.46347
\(805\) 0 0
\(806\) 5.67324 5.67324i 0.199831 0.199831i
\(807\) −10.4876 + 2.81014i −0.369180 + 0.0989216i
\(808\) 1.72390 0.0606467
\(809\) 17.2925 4.63351i 0.607972 0.162906i 0.0583182 0.998298i \(-0.481426\pi\)
0.549654 + 0.835392i \(0.314760\pi\)
\(810\) 0 0
\(811\) 12.0147 20.8102i 0.421895 0.730743i −0.574230 0.818694i \(-0.694698\pi\)
0.996125 + 0.0879507i \(0.0280318\pi\)
\(812\) −2.10699 3.64941i −0.0739408 0.128069i
\(813\) 44.3291 44.3291i 1.55469 1.55469i
\(814\) 11.2854 + 16.8729i 0.395554 + 0.591396i
\(815\) 0 0
\(816\) 67.1924 + 18.0042i 2.35220 + 0.630271i
\(817\) −23.3593 + 6.25911i −0.817240 + 0.218979i
\(818\) 12.0296 + 44.8951i 0.420605 + 1.56972i
\(819\) −11.4844 42.8604i −0.401297 1.49766i
\(820\) 0 0
\(821\) −12.1723 + 21.0830i −0.424815 + 0.735801i −0.996403 0.0847397i \(-0.972994\pi\)
0.571588 + 0.820541i \(0.306327\pi\)
\(822\) 46.0945 1.60773
\(823\) −3.92742 + 14.6573i −0.136901 + 0.510923i 0.863082 + 0.505065i \(0.168531\pi\)
−0.999983 + 0.00585796i \(0.998135\pi\)
\(824\) 0.805117i 0.0280476i
\(825\) 0 0
\(826\) −25.7264 44.5595i −0.895137 1.55042i
\(827\) −4.50988 + 7.81135i −0.156824 + 0.271627i −0.933722 0.358000i \(-0.883459\pi\)
0.776898 + 0.629627i \(0.216792\pi\)
\(828\) 13.1204 0.455967
\(829\) −5.61392 + 20.9514i −0.194979 + 0.727673i 0.797293 + 0.603593i \(0.206265\pi\)
−0.992272 + 0.124080i \(0.960402\pi\)
\(830\) 0 0
\(831\) 18.2777 68.2135i 0.634048 2.36630i
\(832\) −36.5566 21.1060i −1.26737 0.731718i
\(833\) −2.47513 1.42902i −0.0857582 0.0495125i
\(834\) −16.9850 + 63.3888i −0.588141 + 2.19497i
\(835\) 0 0
\(836\) −4.55508 + 16.9998i −0.157541 + 0.587951i
\(837\) 0.127106 0.00439343
\(838\) −22.9669 + 39.7799i −0.793379 + 1.37417i
\(839\) −17.8183 30.8622i −0.615157 1.06548i −0.990357 0.138539i \(-0.955759\pi\)
0.375200 0.926944i \(-0.377574\pi\)
\(840\) 0 0
\(841\) 28.3688i 0.978234i
\(842\) 0.579291 2.16194i 0.0199637 0.0745055i
\(843\) −12.8109 −0.441230
\(844\) 8.92525 15.4590i 0.307220 0.532120i
\(845\) 0 0
\(846\) 7.48574 + 27.9372i 0.257365 + 0.960500i
\(847\) −5.76284 21.5072i −0.198014 0.738997i
\(848\) −0.500666 + 0.134153i −0.0171929 + 0.00460683i
\(849\) 37.4263 + 10.0283i 1.28447 + 0.344172i
\(850\) 0 0
\(851\) 0.921369 + 13.9585i 0.0315841 + 0.478492i
\(852\) 32.9659 32.9659i 1.12939 1.12939i
\(853\) −14.3582 24.8691i −0.491614 0.851501i 0.508339 0.861157i \(-0.330260\pi\)
−0.999953 + 0.00965588i \(0.996926\pi\)
\(854\) −18.5050 + 32.0515i −0.633227 + 1.09678i
\(855\) 0 0
\(856\) 0.285347 0.0764584i 0.00975295 0.00261329i
\(857\) 6.04867 0.206618 0.103309 0.994649i \(-0.467057\pi\)
0.103309 + 0.994649i \(0.467057\pi\)
\(858\) 43.6918 11.7072i 1.49161 0.399677i
\(859\) 38.1045 38.1045i 1.30011 1.30011i 0.371791 0.928316i \(-0.378744\pi\)
0.928316 0.371791i \(-0.121256\pi\)
\(860\) 0 0
\(861\) −57.3755 −1.95535
\(862\) −33.0904 33.0904i −1.12706 1.12706i
\(863\) −3.02200 + 11.2783i −0.102870 + 0.383917i −0.998095 0.0616982i \(-0.980348\pi\)
0.895225 + 0.445615i \(0.147015\pi\)
\(864\) −0.360279 1.34458i −0.0122569 0.0457436i
\(865\) 0 0
\(866\) 22.6767 + 6.07620i 0.770586 + 0.206478i
\(867\) 74.1979 + 19.8813i 2.51989 + 0.675203i
\(868\) 3.33154 1.92346i 0.113080 0.0652866i
\(869\) −16.1566 + 4.32914i −0.548075 + 0.146856i
\(870\) 0 0
\(871\) −47.0364 12.6034i −1.59377 0.427048i
\(872\) −0.0142765 + 0.0532805i −0.000483462 + 0.00180431i
\(873\) −24.1987 + 13.9712i −0.819003 + 0.472852i
\(874\) −17.3791 + 17.3791i −0.587856 + 0.587856i
\(875\) 0 0
\(876\) −4.67638 + 2.69991i −0.158000 + 0.0912216i
\(877\) −25.9009 + 25.9009i −0.874612 + 0.874612i −0.992971 0.118359i \(-0.962237\pi\)
0.118359 + 0.992971i \(0.462237\pi\)
\(878\) 5.18977 5.18977i 0.175146 0.175146i
\(879\) 25.7982 + 44.6838i 0.870153 + 1.50715i
\(880\) 0 0
\(881\) −19.7789 11.4193i −0.666367 0.384727i 0.128332 0.991731i \(-0.459038\pi\)
−0.794699 + 0.607004i \(0.792371\pi\)
\(882\) 2.38651i 0.0803579i
\(883\) 8.10927 14.0457i 0.272899 0.472674i −0.696704 0.717359i \(-0.745351\pi\)
0.969603 + 0.244684i \(0.0786843\pi\)
\(884\) −65.4542 37.7900i −2.20146 1.27102i
\(885\) 0 0
\(886\) −18.2023 + 67.9318i −0.611517 + 2.28221i
\(887\) −9.65037 9.65037i −0.324028 0.324028i 0.526282 0.850310i \(-0.323586\pi\)
−0.850310 + 0.526282i \(0.823586\pi\)
\(888\) −1.43609 + 0.488226i −0.0481919 + 0.0163838i
\(889\) 51.1054i 1.71402i
\(890\) 0 0
\(891\) 13.3965 + 7.73445i 0.448798 + 0.259114i
\(892\) 20.4218 5.47200i 0.683771 0.183216i
\(893\) −23.1540 13.3680i −0.774820 0.447342i
\(894\) 22.1204 22.1204i 0.739818 0.739818i
\(895\) 0 0
\(896\) 1.57660 + 1.57660i 0.0526703 + 0.0526703i
\(897\) 30.1096 + 8.06785i 1.00533 + 0.269378i
\(898\) −14.8611 14.8611i −0.495922 0.495922i
\(899\) −0.576229 −0.0192183
\(900\) 0 0
\(901\) −0.850768 + 0.227963i −0.0283432 + 0.00759453i
\(902\) 28.8891i 0.961903i
\(903\) 14.9008 + 25.8090i 0.495869 + 0.858870i
\(904\) −1.47080 + 0.849168i −0.0489181 + 0.0282429i
\(905\) 0 0
\(906\) −14.0751 52.5288i −0.467612 1.74515i
\(907\) 20.0602 34.7453i 0.666089 1.15370i −0.312900 0.949786i \(-0.601301\pi\)
0.978989 0.203913i \(-0.0653661\pi\)
\(908\) 11.8841 + 20.5839i 0.394388 + 0.683101i
\(909\) 24.6424 + 42.6818i 0.817335 + 1.41567i
\(910\) 0 0
\(911\) −6.91310 6.91310i −0.229041 0.229041i 0.583251 0.812292i \(-0.301780\pi\)
−0.812292 + 0.583251i \(0.801780\pi\)
\(912\) −46.5007 26.8472i −1.53979 0.889000i
\(913\) −11.8453 3.17395i −0.392024 0.105042i
\(914\) 59.8889i 1.98095i
\(915\) 0 0
\(916\) −13.5016 + 7.79515i −0.446106 + 0.257559i
\(917\) 16.9745i 0.560546i
\(918\) −0.628001 2.34373i −0.0207271 0.0773547i
\(919\) 10.7644 + 10.7644i 0.355086 + 0.355086i 0.861998 0.506912i \(-0.169213\pi\)
−0.506912 + 0.861998i \(0.669213\pi\)
\(920\) 0 0
\(921\) 31.5780 54.6947i 1.04053 1.80225i
\(922\) 6.07723 + 22.6805i 0.200143 + 0.746943i
\(923\) 47.3793 27.3544i 1.55951 0.900382i
\(924\) 21.6882 0.713491
\(925\) 0 0
\(926\) 34.6244 1.13783
\(927\) 19.9338 11.5088i 0.654710 0.377997i
\(928\) 1.63331 + 6.09559i 0.0536159 + 0.200097i
\(929\) −2.66910 + 4.62301i −0.0875702 + 0.151676i −0.906484 0.422241i \(-0.861244\pi\)
0.818913 + 0.573917i \(0.194577\pi\)
\(930\) 0 0
\(931\) 1.55993 + 1.55993i 0.0511246 + 0.0511246i
\(932\) 8.91337 + 33.2651i 0.291967 + 1.08964i
\(933\) 13.5368i 0.443174i
\(934\) 18.7965 10.8522i 0.615041 0.355094i
\(935\) 0 0
\(936\) 1.66945i 0.0545676i
\(937\) 15.8056 + 4.23510i 0.516346 + 0.138355i 0.507576 0.861607i \(-0.330542\pi\)
0.00877029 + 0.999962i \(0.497208\pi\)
\(938\) −40.9756 23.6573i −1.33790 0.772437i
\(939\) 10.5264 + 10.5264i 0.343515 + 0.343515i
\(940\) 0 0
\(941\) 15.2812 + 26.4678i 0.498152 + 0.862824i 0.999998 0.00213282i \(-0.000678897\pi\)
−0.501846 + 0.864957i \(0.667346\pi\)
\(942\) −23.1612 40.1165i −0.754634 1.30706i
\(943\) 9.95428 17.2413i 0.324156 0.561455i
\(944\) 10.0950 + 37.6751i 0.328565 + 1.22622i
\(945\) 0 0
\(946\) −12.9951 + 7.50273i −0.422508 + 0.243935i
\(947\) 25.2760 + 43.7794i 0.821361 + 1.42264i 0.904669 + 0.426115i \(0.140118\pi\)
−0.0833078 + 0.996524i \(0.526548\pi\)
\(948\) 47.2485i 1.53456i
\(949\) −6.12070 + 1.64004i −0.198686 + 0.0532378i
\(950\) 0 0
\(951\) 65.7657 2.13260
\(952\) 1.37362 + 1.37362i 0.0445193 + 0.0445193i
\(953\) −34.8819 9.34657i −1.12994 0.302765i −0.355038 0.934852i \(-0.615532\pi\)
−0.774898 + 0.632087i \(0.782199\pi\)
\(954\) −0.520053 0.520053i −0.0168373 0.0168373i
\(955\) 0 0
\(956\) 29.9952 29.9952i 0.970113 0.970113i
\(957\) −2.81343 1.62433i −0.0909453 0.0525073i
\(958\) −16.0063 + 4.28888i −0.517140 + 0.138567i
\(959\) 22.4608 + 12.9678i 0.725297 + 0.418751i
\(960\) 0 0
\(961\) 30.4740i 0.983031i
\(962\) 67.1420 4.43188i 2.16474 0.142889i
\(963\) 5.97191 + 5.97191i 0.192442 + 0.192442i
\(964\) 1.45720 5.43835i 0.0469333 0.175157i
\(965\) 0 0
\(966\) 26.2299 + 15.1438i 0.843933 + 0.487245i
\(967\) 17.8080 30.8443i 0.572666 0.991886i −0.423625 0.905838i \(-0.639243\pi\)
0.996291 0.0860487i \(-0.0274241\pi\)
\(968\) 0.837724i 0.0269255i
\(969\) −79.0175 45.6208i −2.53841 1.46555i
\(970\) 0 0
\(971\) 16.8077 + 29.1118i 0.539386 + 0.934244i 0.998937 + 0.0460924i \(0.0146769\pi\)
−0.459551 + 0.888151i \(0.651990\pi\)
\(972\) 30.1733 30.1733i 0.967810 0.967810i
\(973\) −26.1095 + 26.1095i −0.837034 + 0.837034i
\(974\) 14.2810 8.24512i 0.457592 0.264191i
\(975\) 0 0
\(976\) 19.8383 19.8383i 0.635008 0.635008i
\(977\) 49.0457 28.3165i 1.56911 0.905926i 0.572837 0.819669i \(-0.305843\pi\)
0.996273 0.0862569i \(-0.0274906\pi\)
\(978\) 12.3680 46.1581i 0.395486 1.47597i
\(979\) −7.05283 1.88980i −0.225410 0.0603983i
\(980\) 0 0
\(981\) −1.52324 + 0.408150i −0.0486332 + 0.0130312i
\(982\) −36.9237 + 21.3179i −1.17828 + 0.680282i
\(983\) −34.4807 9.23907i −1.09976 0.294681i −0.337095 0.941471i \(-0.609444\pi\)
−0.762668 + 0.646790i \(0.776111\pi\)
\(984\) 2.08512 + 0.558706i 0.0664711 + 0.0178109i
\(985\) 0 0
\(986\) 2.84701 + 10.6252i 0.0906673 + 0.338375i
\(987\) −8.52739 + 31.8247i −0.271430 + 1.01299i
\(988\) 41.2520 + 41.2520i 1.31240 + 1.31240i
\(989\) −10.3408 −0.328819
\(990\) 0 0
\(991\) −1.29277 + 1.29277i −0.0410661 + 0.0410661i −0.727342 0.686276i \(-0.759244\pi\)
0.686276 + 0.727342i \(0.259244\pi\)
\(992\) −5.56465 + 1.49104i −0.176678 + 0.0473407i
\(993\) 20.9921 0.666165
\(994\) 51.3460 13.7581i 1.62859 0.436381i
\(995\) 0 0
\(996\) −17.3203 + 29.9997i −0.548815 + 0.950576i
\(997\) 14.5311 + 25.1686i 0.460205 + 0.797098i 0.998971 0.0453572i \(-0.0144426\pi\)
−0.538766 + 0.842456i \(0.681109\pi\)
\(998\) −2.83141 + 2.83141i −0.0896267 + 0.0896267i
\(999\) 0.801789 + 0.702495i 0.0253675 + 0.0222259i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 925.2.y.b.193.14 68
5.2 odd 4 925.2.t.b.82.14 68
5.3 odd 4 185.2.p.a.82.4 68
5.4 even 2 185.2.u.a.8.4 yes 68
37.14 odd 12 925.2.t.b.643.14 68
185.14 odd 12 185.2.p.a.88.4 yes 68
185.88 even 12 185.2.u.a.162.4 yes 68
185.162 even 12 inner 925.2.y.b.532.14 68
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
185.2.p.a.82.4 68 5.3 odd 4
185.2.p.a.88.4 yes 68 185.14 odd 12
185.2.u.a.8.4 yes 68 5.4 even 2
185.2.u.a.162.4 yes 68 185.88 even 12
925.2.t.b.82.14 68 5.2 odd 4
925.2.t.b.643.14 68 37.14 odd 12
925.2.y.b.193.14 68 1.1 even 1 trivial
925.2.y.b.532.14 68 185.162 even 12 inner