Properties

Label 925.2.t.b.643.14
Level $925$
Weight $2$
Character 925.643
Analytic conductor $7.386$
Analytic rank $0$
Dimension $68$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [925,2,Mod(82,925)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("925.82"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(925, base_ring=CyclotomicField(12)) chi = DirichletCharacter(H, H._module([3, 1])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 925 = 5^{2} \cdot 37 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 925.t (of order \(12\), degree \(4\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [68] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.38616218697\)
Analytic rank: \(0\)
Dimension: \(68\)
Relative dimension: \(17\) over \(\Q(\zeta_{12})\)
Twist minimal: no (minimal twist has level 185)
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 643.14
Character \(\chi\) \(=\) 925.643
Dual form 925.2.t.b.82.14

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.993536 - 1.72086i) q^{2} +(-2.35179 - 0.630160i) q^{3} +(-0.974229 - 1.68741i) q^{4} +(-3.42100 + 3.42100i) q^{6} +(2.62941 + 0.704548i) q^{7} +0.102418 q^{8} +(2.53574 + 1.46401i) q^{9} +1.67944i q^{11} +(1.22784 + 4.58237i) q^{12} +(-2.78351 - 4.82119i) q^{13} +(3.82484 - 3.82484i) q^{14} +(2.05021 - 3.55107i) q^{16} +(-6.03425 - 3.48387i) q^{17} +(5.03870 - 2.90910i) q^{18} +(1.39201 - 5.19504i) q^{19} +(-5.73984 - 3.31390i) q^{21} +(2.89007 + 1.66858i) q^{22} -2.29976 q^{23} +(-0.240865 - 0.0645396i) q^{24} -11.0621 q^{26} +(0.123920 + 0.123920i) q^{27} +(-1.37278 - 5.12329i) q^{28} +(-0.561787 + 0.561787i) q^{29} +(-0.512854 - 0.512854i) q^{31} +(-3.97151 - 6.87885i) q^{32} +(1.05832 - 3.94969i) q^{33} +(-11.9905 + 6.92271i) q^{34} -5.70513i q^{36} +(-0.400637 + 6.06955i) q^{37} +(-7.55690 - 7.55690i) q^{38} +(3.50812 + 13.0925i) q^{39} +(7.49700 - 4.32839i) q^{41} +(-11.4055 + 6.58496i) q^{42} -4.49647 q^{43} +(2.83391 - 1.63616i) q^{44} +(-2.28490 + 3.95756i) q^{46} +(3.51508 - 3.51508i) q^{47} +(-7.05942 + 7.05942i) q^{48} +(0.355227 + 0.205090i) q^{49} +(11.9959 + 11.9959i) q^{51} +(-5.42356 + 9.39388i) q^{52} +(0.122101 - 0.0327168i) q^{53} +(0.336369 - 0.0901297i) q^{54} +(0.269298 + 0.0721582i) q^{56} +(-6.54742 + 11.3405i) q^{57} +(0.408598 + 1.52491i) q^{58} +(-9.18809 + 2.46194i) q^{59} +(-1.77087 + 6.60897i) q^{61} +(-1.39209 + 0.373008i) q^{62} +(5.63603 + 5.63603i) q^{63} -7.58249 q^{64} +(-5.74537 - 5.74537i) q^{66} +(2.26393 - 8.44910i) q^{67} +13.5764i q^{68} +(5.40856 + 1.44922i) q^{69} +(-4.91365 - 8.51069i) q^{71} +(0.259705 + 0.149941i) q^{72} +(-0.804857 + 0.804857i) q^{73} +(10.0468 + 6.71976i) q^{74} +(-10.1223 + 2.71227i) q^{76} +(-1.18324 + 4.41593i) q^{77} +(26.0157 + 6.97089i) q^{78} +(2.57773 - 9.62023i) q^{79} +(-4.60538 - 7.97675i) q^{81} -17.2017i q^{82} +(-7.05316 + 1.88989i) q^{83} +12.9140i q^{84} +(-4.46741 + 7.73777i) q^{86} +(1.67522 - 0.967189i) q^{87} +0.172004i q^{88} +(-1.12526 - 4.19952i) q^{89} +(-3.92224 - 14.6380i) q^{91} +(2.24050 + 3.88065i) q^{92} +(0.882945 + 1.52931i) q^{93} +(-2.55659 - 9.54131i) q^{94} +(5.00537 + 18.6803i) q^{96} -9.54307i q^{97} +(0.705861 - 0.407529i) q^{98} +(-2.45872 + 4.25862i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 68 q + 4 q^{2} + 8 q^{3} - 30 q^{4} - 8 q^{6} + 2 q^{7} - 12 q^{8} - 14 q^{12} + 6 q^{13} - 26 q^{16} - 12 q^{17} - 18 q^{18} + 4 q^{19} - 12 q^{21} - 6 q^{22} + 12 q^{23} - 24 q^{26} + 68 q^{27} + 26 q^{28}+ \cdots + 32 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/925\mathbb{Z}\right)^\times\).

\(n\) \(76\) \(852\)
\(\chi(n)\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.993536 1.72086i 0.702536 1.21683i −0.265037 0.964238i \(-0.585384\pi\)
0.967573 0.252590i \(-0.0812825\pi\)
\(3\) −2.35179 0.630160i −1.35781 0.363823i −0.494796 0.869009i \(-0.664757\pi\)
−0.863011 + 0.505186i \(0.831424\pi\)
\(4\) −0.974229 1.68741i −0.487115 0.843707i
\(5\) 0 0
\(6\) −3.42100 + 3.42100i −1.39662 + 1.39662i
\(7\) 2.62941 + 0.704548i 0.993823 + 0.266294i 0.718856 0.695159i \(-0.244666\pi\)
0.274968 + 0.961453i \(0.411333\pi\)
\(8\) 0.102418 0.0362101
\(9\) 2.53574 + 1.46401i 0.845247 + 0.488004i
\(10\) 0 0
\(11\) 1.67944i 0.506370i 0.967418 + 0.253185i \(0.0814781\pi\)
−0.967418 + 0.253185i \(0.918522\pi\)
\(12\) 1.22784 + 4.58237i 0.354447 + 1.32281i
\(13\) −2.78351 4.82119i −0.772008 1.33716i −0.936461 0.350772i \(-0.885919\pi\)
0.164453 0.986385i \(-0.447414\pi\)
\(14\) 3.82484 3.82484i 1.02223 1.02223i
\(15\) 0 0
\(16\) 2.05021 3.55107i 0.512553 0.887769i
\(17\) −6.03425 3.48387i −1.46352 0.844964i −0.464348 0.885653i \(-0.653711\pi\)
−0.999172 + 0.0406892i \(0.987045\pi\)
\(18\) 5.03870 2.90910i 1.18763 0.685680i
\(19\) 1.39201 5.19504i 0.319348 1.19182i −0.600524 0.799606i \(-0.705041\pi\)
0.919873 0.392217i \(-0.128292\pi\)
\(20\) 0 0
\(21\) −5.73984 3.31390i −1.25254 0.723152i
\(22\) 2.89007 + 1.66858i 0.616165 + 0.355743i
\(23\) −2.29976 −0.479534 −0.239767 0.970830i \(-0.577071\pi\)
−0.239767 + 0.970830i \(0.577071\pi\)
\(24\) −0.240865 0.0645396i −0.0491664 0.0131741i
\(25\) 0 0
\(26\) −11.0621 −2.16945
\(27\) 0.123920 + 0.123920i 0.0238485 + 0.0238485i
\(28\) −1.37278 5.12329i −0.259431 0.968211i
\(29\) −0.561787 + 0.561787i −0.104321 + 0.104321i −0.757341 0.653020i \(-0.773502\pi\)
0.653020 + 0.757341i \(0.273502\pi\)
\(30\) 0 0
\(31\) −0.512854 0.512854i −0.0921113 0.0921113i 0.659550 0.751661i \(-0.270747\pi\)
−0.751661 + 0.659550i \(0.770747\pi\)
\(32\) −3.97151 6.87885i −0.702070 1.21602i
\(33\) 1.05832 3.94969i 0.184229 0.687552i
\(34\) −11.9905 + 6.92271i −2.05635 + 1.18724i
\(35\) 0 0
\(36\) 5.70513i 0.950854i
\(37\) −0.400637 + 6.06955i −0.0658643 + 0.997829i
\(38\) −7.55690 7.55690i −1.22589 1.22589i
\(39\) 3.50812 + 13.0925i 0.561749 + 2.09648i
\(40\) 0 0
\(41\) 7.49700 4.32839i 1.17083 0.675982i 0.216958 0.976181i \(-0.430387\pi\)
0.953877 + 0.300199i \(0.0970532\pi\)
\(42\) −11.4055 + 6.58496i −1.75990 + 1.01608i
\(43\) −4.49647 −0.685705 −0.342853 0.939389i \(-0.611393\pi\)
−0.342853 + 0.939389i \(0.611393\pi\)
\(44\) 2.83391 1.63616i 0.427228 0.246660i
\(45\) 0 0
\(46\) −2.28490 + 3.95756i −0.336890 + 0.583510i
\(47\) 3.51508 3.51508i 0.512728 0.512728i −0.402634 0.915361i \(-0.631905\pi\)
0.915361 + 0.402634i \(0.131905\pi\)
\(48\) −7.05942 + 7.05942i −1.01894 + 1.01894i
\(49\) 0.355227 + 0.205090i 0.0507467 + 0.0292986i
\(50\) 0 0
\(51\) 11.9959 + 11.9959i 1.67976 + 1.67976i
\(52\) −5.42356 + 9.39388i −0.752112 + 1.30270i
\(53\) 0.122101 0.0327168i 0.0167718 0.00449400i −0.250423 0.968136i \(-0.580570\pi\)
0.267195 + 0.963642i \(0.413903\pi\)
\(54\) 0.336369 0.0901297i 0.0457740 0.0122651i
\(55\) 0 0
\(56\) 0.269298 + 0.0721582i 0.0359865 + 0.00964254i
\(57\) −6.54742 + 11.3405i −0.867227 + 1.50208i
\(58\) 0.408598 + 1.52491i 0.0536516 + 0.200230i
\(59\) −9.18809 + 2.46194i −1.19619 + 0.320517i −0.801329 0.598224i \(-0.795873\pi\)
−0.394859 + 0.918742i \(0.629206\pi\)
\(60\) 0 0
\(61\) −1.77087 + 6.60897i −0.226736 + 0.846192i 0.754965 + 0.655765i \(0.227654\pi\)
−0.981701 + 0.190427i \(0.939013\pi\)
\(62\) −1.39209 + 0.373008i −0.176795 + 0.0473721i
\(63\) 5.63603 + 5.63603i 0.710074 + 0.710074i
\(64\) −7.58249 −0.947811
\(65\) 0 0
\(66\) −5.74537 5.74537i −0.707206 0.707206i
\(67\) 2.26393 8.44910i 0.276583 1.03222i −0.678190 0.734886i \(-0.737235\pi\)
0.954773 0.297335i \(-0.0960979\pi\)
\(68\) 13.5764i 1.64638i
\(69\) 5.40856 + 1.44922i 0.651114 + 0.174466i
\(70\) 0 0
\(71\) −4.91365 8.51069i −0.583143 1.01003i −0.995104 0.0988320i \(-0.968489\pi\)
0.411961 0.911201i \(-0.364844\pi\)
\(72\) 0.259705 + 0.149941i 0.0306065 + 0.0176707i
\(73\) −0.804857 + 0.804857i −0.0942014 + 0.0942014i −0.752637 0.658436i \(-0.771218\pi\)
0.658436 + 0.752637i \(0.271218\pi\)
\(74\) 10.0468 + 6.71976i 1.16791 + 0.781156i
\(75\) 0 0
\(76\) −10.1223 + 2.71227i −1.16111 + 0.311118i
\(77\) −1.18324 + 4.41593i −0.134843 + 0.503242i
\(78\) 26.0157 + 6.97089i 2.94570 + 0.789298i
\(79\) 2.57773 9.62023i 0.290018 1.08236i −0.655076 0.755563i \(-0.727364\pi\)
0.945094 0.326798i \(-0.105970\pi\)
\(80\) 0 0
\(81\) −4.60538 7.97675i −0.511709 0.886305i
\(82\) 17.2017i 1.89961i
\(83\) −7.05316 + 1.88989i −0.774185 + 0.207442i −0.624219 0.781249i \(-0.714583\pi\)
−0.149965 + 0.988691i \(0.547916\pi\)
\(84\) 12.9140i 1.40903i
\(85\) 0 0
\(86\) −4.46741 + 7.73777i −0.481733 + 0.834386i
\(87\) 1.67522 0.967189i 0.179603 0.103694i
\(88\) 0.172004i 0.0183357i
\(89\) −1.12526 4.19952i −0.119277 0.445148i 0.880294 0.474428i \(-0.157345\pi\)
−0.999571 + 0.0292801i \(0.990679\pi\)
\(90\) 0 0
\(91\) −3.92224 14.6380i −0.411162 1.53448i
\(92\) 2.24050 + 3.88065i 0.233588 + 0.404586i
\(93\) 0.882945 + 1.52931i 0.0915571 + 0.158582i
\(94\) −2.55659 9.54131i −0.263692 0.984111i
\(95\) 0 0
\(96\) 5.00537 + 18.6803i 0.510859 + 1.90655i
\(97\) 9.54307i 0.968952i −0.874805 0.484476i \(-0.839010\pi\)
0.874805 0.484476i \(-0.160990\pi\)
\(98\) 0.705861 0.407529i 0.0713027 0.0411667i
\(99\) −2.45872 + 4.25862i −0.247110 + 0.428007i
\(100\) 0 0
\(101\) 16.8321i 1.67486i 0.546548 + 0.837428i \(0.315941\pi\)
−0.546548 + 0.837428i \(0.684059\pi\)
\(102\) 32.5615 8.72484i 3.22407 0.863888i
\(103\) 7.86111i 0.774579i −0.921958 0.387289i \(-0.873411\pi\)
0.921958 0.387289i \(-0.126589\pi\)
\(104\) −0.285081 0.493775i −0.0279545 0.0484186i
\(105\) 0 0
\(106\) 0.0650107 0.242623i 0.00631440 0.0235657i
\(107\) 2.78611 + 0.746535i 0.269343 + 0.0721703i 0.390963 0.920407i \(-0.372142\pi\)
−0.121620 + 0.992577i \(0.538809\pi\)
\(108\) 0.0883782 0.329832i 0.00850419 0.0317381i
\(109\) −0.520227 + 0.139395i −0.0498288 + 0.0133516i −0.283647 0.958929i \(-0.591544\pi\)
0.233819 + 0.972280i \(0.424878\pi\)
\(110\) 0 0
\(111\) 4.76701 14.0219i 0.452464 1.33090i
\(112\) 7.89275 7.89275i 0.745795 0.745795i
\(113\) 14.3608 + 8.29122i 1.35095 + 0.779973i 0.988383 0.151984i \(-0.0485663\pi\)
0.362569 + 0.931957i \(0.381900\pi\)
\(114\) 13.0102 + 22.5343i 1.21852 + 2.11053i
\(115\) 0 0
\(116\) 1.49528 + 0.400658i 0.138833 + 0.0372002i
\(117\) 16.3004i 1.50697i
\(118\) −4.89206 + 18.2574i −0.450350 + 1.68073i
\(119\) −13.4119 13.4119i −1.22947 1.22947i
\(120\) 0 0
\(121\) 8.17949 0.743590
\(122\) 9.61366 + 9.61366i 0.870380 + 0.870380i
\(123\) −20.3590 + 5.45517i −1.83571 + 0.491876i
\(124\) −0.365760 + 1.36503i −0.0328462 + 0.122584i
\(125\) 0 0
\(126\) 15.2984 4.09920i 1.36289 0.365185i
\(127\) 4.85902 + 18.1341i 0.431168 + 1.60914i 0.750073 + 0.661355i \(0.230018\pi\)
−0.318904 + 0.947787i \(0.603315\pi\)
\(128\) 0.409535 0.709335i 0.0361981 0.0626970i
\(129\) 10.5748 + 2.83350i 0.931055 + 0.249475i
\(130\) 0 0
\(131\) 6.02317 1.61390i 0.526247 0.141007i 0.0140923 0.999901i \(-0.495514\pi\)
0.512155 + 0.858893i \(0.328847\pi\)
\(132\) −7.69580 + 2.06208i −0.669833 + 0.179481i
\(133\) 7.32031 12.6791i 0.634751 1.09942i
\(134\) −12.2904 12.2904i −1.06173 1.06173i
\(135\) 0 0
\(136\) −0.618014 0.356810i −0.0529942 0.0305962i
\(137\) −6.73698 + 6.73698i −0.575579 + 0.575579i −0.933682 0.358103i \(-0.883424\pi\)
0.358103 + 0.933682i \(0.383424\pi\)
\(138\) 7.86750 7.86750i 0.669726 0.669726i
\(139\) 6.78219 11.7471i 0.575258 0.996376i −0.420756 0.907174i \(-0.638235\pi\)
0.996014 0.0892018i \(-0.0284316\pi\)
\(140\) 0 0
\(141\) −10.4818 + 6.05167i −0.882727 + 0.509643i
\(142\) −19.5276 −1.63872
\(143\) 8.09689 4.67474i 0.677096 0.390921i
\(144\) 10.3976 6.00307i 0.866468 0.500256i
\(145\) 0 0
\(146\) 0.585388 + 2.18470i 0.0484470 + 0.180807i
\(147\) −0.706179 0.706179i −0.0582447 0.0582447i
\(148\) 10.6322 5.23710i 0.873958 0.430487i
\(149\) 6.46606i 0.529721i 0.964287 + 0.264860i \(0.0853259\pi\)
−0.964287 + 0.264860i \(0.914674\pi\)
\(150\) 0 0
\(151\) 9.73455 5.62024i 0.792186 0.457369i −0.0485454 0.998821i \(-0.515459\pi\)
0.840732 + 0.541452i \(0.182125\pi\)
\(152\) 0.142566 0.532064i 0.0115636 0.0431561i
\(153\) −10.2009 17.6684i −0.824691 1.42841i
\(154\) 6.42358 + 6.42358i 0.517627 + 0.517627i
\(155\) 0 0
\(156\) 18.6747 18.6747i 1.49518 1.49518i
\(157\) −2.47810 9.24841i −0.197774 0.738103i −0.991531 0.129868i \(-0.958545\pi\)
0.793757 0.608235i \(-0.208122\pi\)
\(158\) −13.9940 13.9940i −1.11330 1.11330i
\(159\) −0.307772 −0.0244079
\(160\) 0 0
\(161\) −6.04702 1.62029i −0.476572 0.127697i
\(162\) −18.3024 −1.43798
\(163\) 8.55394 + 4.93862i 0.669997 + 0.386823i 0.796075 0.605198i \(-0.206906\pi\)
−0.126079 + 0.992020i \(0.540239\pi\)
\(164\) −14.6076 8.43369i −1.14066 0.658561i
\(165\) 0 0
\(166\) −3.75534 + 14.0151i −0.291471 + 1.08779i
\(167\) 14.4757 8.35752i 1.12016 0.646725i 0.178718 0.983900i \(-0.442805\pi\)
0.941442 + 0.337176i \(0.109472\pi\)
\(168\) −0.587861 0.339402i −0.0453545 0.0261854i
\(169\) −8.99590 + 15.5814i −0.691992 + 1.19857i
\(170\) 0 0
\(171\) 11.1354 11.1354i 0.851542 0.851542i
\(172\) 4.38059 + 7.58741i 0.334017 + 0.578534i
\(173\) 5.00685 + 18.6858i 0.380664 + 1.42066i 0.844890 + 0.534940i \(0.179666\pi\)
−0.464226 + 0.885717i \(0.653668\pi\)
\(174\) 3.84375i 0.291394i
\(175\) 0 0
\(176\) 5.96381 + 3.44321i 0.449539 + 0.259542i
\(177\) 23.1599 1.74080
\(178\) −8.34475 2.23597i −0.625465 0.167593i
\(179\) −0.796965 + 0.796965i −0.0595680 + 0.0595680i −0.736263 0.676695i \(-0.763411\pi\)
0.676695 + 0.736263i \(0.263411\pi\)
\(180\) 0 0
\(181\) 3.50696 + 6.07423i 0.260670 + 0.451494i 0.966420 0.256967i \(-0.0827232\pi\)
−0.705750 + 0.708461i \(0.749390\pi\)
\(182\) −29.0868 7.79377i −2.15605 0.577713i
\(183\) 8.32942 14.4270i 0.615729 1.06647i
\(184\) −0.235536 −0.0173640
\(185\) 0 0
\(186\) 3.50895 0.257289
\(187\) 5.85095 10.1341i 0.427864 0.741082i
\(188\) −9.35590 2.50691i −0.682349 0.182835i
\(189\) 0.238530 + 0.413145i 0.0173505 + 0.0300519i
\(190\) 0 0
\(191\) 8.62975 8.62975i 0.624427 0.624427i −0.322233 0.946660i \(-0.604434\pi\)
0.946660 + 0.322233i \(0.104434\pi\)
\(192\) 17.8324 + 4.77818i 1.28694 + 0.344836i
\(193\) −9.26626 −0.667000 −0.333500 0.942750i \(-0.608230\pi\)
−0.333500 + 0.942750i \(0.608230\pi\)
\(194\) −16.4222 9.48138i −1.17905 0.680724i
\(195\) 0 0
\(196\) 0.799219i 0.0570871i
\(197\) 5.47729 + 20.4415i 0.390241 + 1.45640i 0.829737 + 0.558154i \(0.188490\pi\)
−0.439496 + 0.898244i \(0.644843\pi\)
\(198\) 4.88565 + 8.46219i 0.347208 + 0.601382i
\(199\) 10.0796 10.0796i 0.714524 0.714524i −0.252954 0.967478i \(-0.581402\pi\)
0.967478 + 0.252954i \(0.0814022\pi\)
\(200\) 0 0
\(201\) −10.6486 + 18.4439i −0.751092 + 1.30093i
\(202\) 28.9656 + 16.7233i 2.03801 + 1.17665i
\(203\) −1.87297 + 1.08136i −0.131457 + 0.0758967i
\(204\) 8.55529 31.9288i 0.598990 2.23546i
\(205\) 0 0
\(206\) −13.5278 7.81030i −0.942529 0.544170i
\(207\) −5.83160 3.36688i −0.405324 0.234014i
\(208\) −22.8272 −1.58278
\(209\) 8.72475 + 2.33779i 0.603503 + 0.161708i
\(210\) 0 0
\(211\) 9.16134 0.630693 0.315346 0.948977i \(-0.397879\pi\)
0.315346 + 0.948977i \(0.397879\pi\)
\(212\) −0.174161 0.174161i −0.0119614 0.0119614i
\(213\) 6.19278 + 23.1118i 0.424322 + 1.58359i
\(214\) 4.05278 4.05278i 0.277042 0.277042i
\(215\) 0 0
\(216\) 0.0126916 + 0.0126916i 0.000863557 + 0.000863557i
\(217\) −0.987173 1.70983i −0.0670136 0.116071i
\(218\) −0.276987 + 1.03373i −0.0187599 + 0.0700130i
\(219\) 2.40004 1.38567i 0.162180 0.0936346i
\(220\) 0 0
\(221\) 38.7897i 2.60927i
\(222\) −19.3934 22.1346i −1.30160 1.48557i
\(223\) 7.67262 + 7.67262i 0.513796 + 0.513796i 0.915688 0.401891i \(-0.131647\pi\)
−0.401891 + 0.915688i \(0.631647\pi\)
\(224\) −5.59623 20.8854i −0.373914 1.39547i
\(225\) 0 0
\(226\) 28.5360 16.4753i 1.89819 1.09592i
\(227\) −10.5642 + 6.09924i −0.701171 + 0.404821i −0.807783 0.589480i \(-0.799333\pi\)
0.106613 + 0.994301i \(0.466000\pi\)
\(228\) 25.5147 1.68975
\(229\) 6.92938 4.00068i 0.457906 0.264372i −0.253257 0.967399i \(-0.581502\pi\)
0.711163 + 0.703027i \(0.248169\pi\)
\(230\) 0 0
\(231\) 5.56549 9.63971i 0.366182 0.634246i
\(232\) −0.0575369 + 0.0575369i −0.00377748 + 0.00377748i
\(233\) 12.4980 12.4980i 0.818769 0.818769i −0.167160 0.985930i \(-0.553460\pi\)
0.985930 + 0.167160i \(0.0534598\pi\)
\(234\) −28.0506 16.1950i −1.83372 1.05870i
\(235\) 0 0
\(236\) 13.1056 + 13.1056i 0.853103 + 0.853103i
\(237\) −12.1246 + 21.0004i −0.787576 + 1.36412i
\(238\) −36.4053 + 9.75477i −2.35980 + 0.632308i
\(239\) −21.0290 + 5.63471i −1.36025 + 0.364479i −0.863910 0.503647i \(-0.831991\pi\)
−0.496344 + 0.868126i \(0.665325\pi\)
\(240\) 0 0
\(241\) 2.79110 + 0.747874i 0.179791 + 0.0481748i 0.347591 0.937646i \(-0.387000\pi\)
−0.167800 + 0.985821i \(0.553666\pi\)
\(242\) 8.12662 14.0757i 0.522399 0.904821i
\(243\) 5.66818 + 21.1539i 0.363614 + 1.35703i
\(244\) 12.8773 3.45046i 0.824385 0.220893i
\(245\) 0 0
\(246\) −10.8398 + 40.4547i −0.691121 + 2.57930i
\(247\) −28.9209 + 7.74934i −1.84019 + 0.493079i
\(248\) −0.0525253 0.0525253i −0.00333536 0.00333536i
\(249\) 17.7785 1.12667
\(250\) 0 0
\(251\) −8.78658 8.78658i −0.554604 0.554604i 0.373162 0.927766i \(-0.378273\pi\)
−0.927766 + 0.373162i \(0.878273\pi\)
\(252\) 4.01954 15.0011i 0.253207 0.944981i
\(253\) 3.86231i 0.242821i
\(254\) 36.0338 + 9.65523i 2.26096 + 0.605823i
\(255\) 0 0
\(256\) −8.39626 14.5428i −0.524766 0.908922i
\(257\) 13.9589 + 8.05916i 0.870731 + 0.502717i 0.867591 0.497279i \(-0.165667\pi\)
0.00313967 + 0.999995i \(0.499001\pi\)
\(258\) 15.3824 15.3824i 0.957669 0.957669i
\(259\) −5.32973 + 15.6771i −0.331173 + 0.974126i
\(260\) 0 0
\(261\) −2.24701 + 0.602084i −0.139086 + 0.0372681i
\(262\) 3.20695 11.9685i 0.198126 0.739415i
\(263\) 8.62681 + 2.31155i 0.531952 + 0.142536i 0.514789 0.857317i \(-0.327870\pi\)
0.0171624 + 0.999853i \(0.494537\pi\)
\(264\) 0.108390 0.404518i 0.00667096 0.0248964i
\(265\) 0 0
\(266\) −14.5460 25.1944i −0.891872 1.54477i
\(267\) 10.5855i 0.647821i
\(268\) −16.4627 + 4.41117i −1.00562 + 0.269455i
\(269\) 4.45940i 0.271895i −0.990716 0.135947i \(-0.956592\pi\)
0.990716 0.135947i \(-0.0434078\pi\)
\(270\) 0 0
\(271\) 12.8742 22.2987i 0.782050 1.35455i −0.148696 0.988883i \(-0.547507\pi\)
0.930746 0.365667i \(-0.119159\pi\)
\(272\) −24.7430 + 14.2854i −1.50026 + 0.866178i
\(273\) 36.8971i 2.23312i
\(274\) 4.89993 + 18.2868i 0.296016 + 1.10475i
\(275\) 0 0
\(276\) −2.82374 10.5384i −0.169969 0.634334i
\(277\) −14.5025 25.1190i −0.871368 1.50925i −0.860582 0.509312i \(-0.829900\pi\)
−0.0107863 0.999942i \(-0.503433\pi\)
\(278\) −13.4767 23.3423i −0.808279 1.39998i
\(279\) −0.549641 2.05129i −0.0329062 0.122807i
\(280\) 0 0
\(281\) 1.36182 + 5.08238i 0.0812394 + 0.303190i 0.994576 0.104017i \(-0.0331696\pi\)
−0.913336 + 0.407207i \(0.866503\pi\)
\(282\) 24.0502i 1.43217i
\(283\) 13.7819 7.95697i 0.819248 0.472993i −0.0309093 0.999522i \(-0.509840\pi\)
0.850157 + 0.526529i \(0.176507\pi\)
\(284\) −9.57404 + 16.5827i −0.568115 + 0.984004i
\(285\) 0 0
\(286\) 18.5781i 1.09855i
\(287\) 22.7622 6.09912i 1.34361 0.360020i
\(288\) 23.2573i 1.37045i
\(289\) 15.7748 + 27.3227i 0.927927 + 1.60722i
\(290\) 0 0
\(291\) −6.01366 + 22.4433i −0.352527 + 1.31565i
\(292\) 2.14224 + 0.574012i 0.125365 + 0.0335915i
\(293\) 5.48481 20.4696i 0.320426 1.19585i −0.598405 0.801194i \(-0.704199\pi\)
0.918831 0.394651i \(-0.129135\pi\)
\(294\) −1.91685 + 0.513617i −0.111793 + 0.0299548i
\(295\) 0 0
\(296\) −0.0410323 + 0.621630i −0.00238495 + 0.0361315i
\(297\) −0.208117 + 0.208117i −0.0120762 + 0.0120762i
\(298\) 11.1272 + 6.42427i 0.644579 + 0.372148i
\(299\) 6.40142 + 11.0876i 0.370204 + 0.641212i
\(300\) 0 0
\(301\) −11.8231 3.16798i −0.681470 0.182599i
\(302\) 22.3357i 1.28527i
\(303\) 10.6069 39.5855i 0.609351 2.27413i
\(304\) −15.5941 15.5941i −0.894381 0.894381i
\(305\) 0 0
\(306\) −40.5397 −2.31750
\(307\) −18.3419 18.3419i −1.04683 1.04683i −0.998848 0.0479805i \(-0.984721\pi\)
−0.0479805 0.998848i \(-0.515279\pi\)
\(308\) 8.60425 2.30550i 0.490273 0.131368i
\(309\) −4.95376 + 18.4877i −0.281810 + 1.05173i
\(310\) 0 0
\(311\) −5.37036 + 1.43898i −0.304525 + 0.0815973i −0.407846 0.913051i \(-0.633720\pi\)
0.103321 + 0.994648i \(0.467053\pi\)
\(312\) 0.359294 + 1.34090i 0.0203410 + 0.0759136i
\(313\) 3.05709 5.29504i 0.172797 0.299294i −0.766600 0.642125i \(-0.778053\pi\)
0.939397 + 0.342832i \(0.111386\pi\)
\(314\) −18.3773 4.92417i −1.03709 0.277887i
\(315\) 0 0
\(316\) −18.7446 + 5.02261i −1.05447 + 0.282544i
\(317\) −26.0909 + 6.99103i −1.46541 + 0.392655i −0.901354 0.433082i \(-0.857426\pi\)
−0.564055 + 0.825737i \(0.690759\pi\)
\(318\) −0.305783 + 0.529632i −0.0171475 + 0.0297003i
\(319\) −0.943486 0.943486i −0.0528251 0.0528251i
\(320\) 0 0
\(321\) −6.08190 3.51139i −0.339459 0.195987i
\(322\) −8.79622 + 8.79622i −0.490194 + 0.490194i
\(323\) −26.4986 + 26.4986i −1.47442 + 1.47442i
\(324\) −8.97338 + 15.5424i −0.498521 + 0.863464i
\(325\) 0 0
\(326\) 16.9973 9.81340i 0.941394 0.543514i
\(327\) 1.31131 0.0725154
\(328\) 0.767825 0.443304i 0.0423961 0.0244774i
\(329\) 11.7191 6.76605i 0.646097 0.373024i
\(330\) 0 0
\(331\) −2.23150 8.32808i −0.122655 0.457753i 0.877091 0.480325i \(-0.159481\pi\)
−0.999745 + 0.0225719i \(0.992815\pi\)
\(332\) 10.0604 + 10.0604i 0.552137 + 0.552137i
\(333\) −9.90180 + 14.8043i −0.542615 + 0.811270i
\(334\) 33.2140i 1.81739i
\(335\) 0 0
\(336\) −23.5358 + 13.5884i −1.28398 + 0.741308i
\(337\) −0.414161 + 1.54567i −0.0225608 + 0.0841979i −0.976288 0.216474i \(-0.930544\pi\)
0.953728 + 0.300672i \(0.0972110\pi\)
\(338\) 17.8755 + 30.9613i 0.972300 + 1.68407i
\(339\) −28.5488 28.5488i −1.55056 1.55056i
\(340\) 0 0
\(341\) 0.861307 0.861307i 0.0466424 0.0466424i
\(342\) −8.09896 30.2257i −0.437942 1.63442i
\(343\) −12.6845 12.6845i −0.684898 0.684898i
\(344\) −0.460518 −0.0248295
\(345\) 0 0
\(346\) 37.1301 + 9.94898i 1.99613 + 0.534860i
\(347\) 17.9655 0.964438 0.482219 0.876051i \(-0.339831\pi\)
0.482219 + 0.876051i \(0.339831\pi\)
\(348\) −3.26410 1.88453i −0.174974 0.101021i
\(349\) −21.5887 12.4642i −1.15562 0.667195i −0.205366 0.978685i \(-0.565838\pi\)
−0.950249 + 0.311490i \(0.899172\pi\)
\(350\) 0 0
\(351\) 0.252509 0.942378i 0.0134780 0.0503004i
\(352\) 11.5526 6.66990i 0.615756 0.355507i
\(353\) −0.344022 0.198621i −0.0183104 0.0105715i 0.490817 0.871263i \(-0.336698\pi\)
−0.509127 + 0.860691i \(0.670032\pi\)
\(354\) 23.0102 39.8548i 1.22298 2.11826i
\(355\) 0 0
\(356\) −5.99007 + 5.99007i −0.317473 + 0.317473i
\(357\) 23.0904 + 39.9938i 1.22207 + 2.11669i
\(358\) 0.579648 + 2.16328i 0.0306354 + 0.114333i
\(359\) 26.6480i 1.40643i 0.710977 + 0.703215i \(0.248253\pi\)
−0.710977 + 0.703215i \(0.751747\pi\)
\(360\) 0 0
\(361\) −8.59627 4.96306i −0.452435 0.261214i
\(362\) 13.9372 0.732521
\(363\) −19.2364 5.15439i −1.00965 0.270535i
\(364\) −20.8792 + 20.8792i −1.09437 + 1.09437i
\(365\) 0 0
\(366\) −16.5512 28.6675i −0.865144 1.49847i
\(367\) −14.7639 3.95597i −0.770668 0.206500i −0.148001 0.988987i \(-0.547284\pi\)
−0.622666 + 0.782487i \(0.713951\pi\)
\(368\) −4.71501 + 8.16663i −0.245787 + 0.425715i
\(369\) 25.3473 1.31953
\(370\) 0 0
\(371\) 0.344104 0.0178650
\(372\) 1.72038 2.97979i 0.0891976 0.154495i
\(373\) 35.2816 + 9.45368i 1.82681 + 0.489493i 0.997587 0.0694227i \(-0.0221157\pi\)
0.829225 + 0.558915i \(0.188782\pi\)
\(374\) −11.6263 20.1373i −0.601180 1.04127i
\(375\) 0 0
\(376\) 0.360007 0.360007i 0.0185659 0.0185659i
\(377\) 4.27222 + 1.14474i 0.220031 + 0.0589570i
\(378\) 0.947951 0.0487573
\(379\) 19.1447 + 11.0532i 0.983399 + 0.567765i 0.903294 0.429021i \(-0.141141\pi\)
0.0801041 + 0.996787i \(0.474475\pi\)
\(380\) 0 0
\(381\) 45.7096i 2.34177i
\(382\) −6.27658 23.4245i −0.321138 1.19850i
\(383\) 6.91250 + 11.9728i 0.353212 + 0.611781i 0.986810 0.161881i \(-0.0517560\pi\)
−0.633598 + 0.773662i \(0.718423\pi\)
\(384\) −1.41013 + 1.41013i −0.0719606 + 0.0719606i
\(385\) 0 0
\(386\) −9.20636 + 15.9459i −0.468592 + 0.811624i
\(387\) −11.4019 6.58288i −0.579590 0.334627i
\(388\) −16.1031 + 9.29713i −0.817511 + 0.471990i
\(389\) −2.77714 + 10.3644i −0.140806 + 0.525496i 0.859100 + 0.511808i \(0.171024\pi\)
−0.999906 + 0.0136886i \(0.995643\pi\)
\(390\) 0 0
\(391\) 13.8773 + 8.01208i 0.701807 + 0.405189i
\(392\) 0.0363815 + 0.0210049i 0.00183754 + 0.00106091i
\(393\) −15.1823 −0.765844
\(394\) 40.6188 + 10.8838i 2.04635 + 0.548317i
\(395\) 0 0
\(396\) 9.58141 0.481484
\(397\) 16.8089 + 16.8089i 0.843614 + 0.843614i 0.989327 0.145713i \(-0.0465475\pi\)
−0.145713 + 0.989327i \(0.546548\pi\)
\(398\) −7.33109 27.3600i −0.367474 1.37143i
\(399\) −25.2057 + 25.2057i −1.26187 + 1.26187i
\(400\) 0 0
\(401\) 10.5045 + 10.5045i 0.524569 + 0.524569i 0.918948 0.394379i \(-0.129040\pi\)
−0.394379 + 0.918948i \(0.629040\pi\)
\(402\) 21.1595 + 36.6493i 1.05534 + 1.82790i
\(403\) −1.04503 + 3.90010i −0.0520566 + 0.194278i
\(404\) 28.4027 16.3983i 1.41309 0.815846i
\(405\) 0 0
\(406\) 4.29749i 0.213281i
\(407\) −10.1934 0.672844i −0.505270 0.0333517i
\(408\) 1.22859 + 1.22859i 0.0608243 + 0.0608243i
\(409\) 6.05393 + 22.5936i 0.299348 + 1.11718i 0.937703 + 0.347438i \(0.112948\pi\)
−0.638355 + 0.769742i \(0.720385\pi\)
\(410\) 0 0
\(411\) 20.0893 11.5986i 0.990934 0.572116i
\(412\) −13.2650 + 7.65853i −0.653517 + 0.377308i
\(413\) −25.8938 −1.27415
\(414\) −11.5878 + 6.69023i −0.569510 + 0.328807i
\(415\) 0 0
\(416\) −22.1095 + 38.2948i −1.08401 + 1.87755i
\(417\) −23.3528 + 23.3528i −1.14359 + 1.14359i
\(418\) 12.6914 12.6914i 0.620754 0.620754i
\(419\) 20.0193 + 11.5582i 0.978009 + 0.564654i 0.901668 0.432428i \(-0.142343\pi\)
0.0763404 + 0.997082i \(0.475676\pi\)
\(420\) 0 0
\(421\) 0.796474 + 0.796474i 0.0388178 + 0.0388178i 0.726249 0.687431i \(-0.241262\pi\)
−0.687431 + 0.726249i \(0.741262\pi\)
\(422\) 9.10213 15.7654i 0.443085 0.767445i
\(423\) 14.0595 3.76722i 0.683594 0.183169i
\(424\) 0.0125053 0.00335078i 0.000607310 0.000162728i
\(425\) 0 0
\(426\) 45.9247 + 12.3055i 2.22506 + 0.596203i
\(427\) −9.31268 + 16.1300i −0.450672 + 0.780587i
\(428\) −1.45459 5.42861i −0.0703104 0.262402i
\(429\) −21.9880 + 5.89167i −1.06159 + 0.284453i
\(430\) 0 0
\(431\) −6.09536 + 22.7482i −0.293603 + 1.09574i 0.648717 + 0.761030i \(0.275306\pi\)
−0.942320 + 0.334713i \(0.891361\pi\)
\(432\) 0.694114 0.185987i 0.0333956 0.00894832i
\(433\) 8.35425 + 8.35425i 0.401480 + 0.401480i 0.878754 0.477275i \(-0.158375\pi\)
−0.477275 + 0.878754i \(0.658375\pi\)
\(434\) −3.92317 −0.188318
\(435\) 0 0
\(436\) 0.742037 + 0.742037i 0.0355371 + 0.0355371i
\(437\) −3.20129 + 11.9474i −0.153138 + 0.571520i
\(438\) 5.50684i 0.263127i
\(439\) −3.56774 0.955972i −0.170279 0.0456261i 0.172672 0.984979i \(-0.444760\pi\)
−0.342951 + 0.939353i \(0.611427\pi\)
\(440\) 0 0
\(441\) 0.600508 + 1.04011i 0.0285956 + 0.0495291i
\(442\) 66.7514 + 38.5389i 3.17504 + 1.83311i
\(443\) 25.0265 25.0265i 1.18905 1.18905i 0.211714 0.977332i \(-0.432095\pi\)
0.977332 0.211714i \(-0.0679045\pi\)
\(444\) −28.3048 + 5.61659i −1.34329 + 0.266551i
\(445\) 0 0
\(446\) 20.8265 5.58044i 0.986163 0.264242i
\(447\) 4.07466 15.2068i 0.192725 0.719258i
\(448\) −19.9375 5.34223i −0.941957 0.252397i
\(449\) 2.73747 10.2164i 0.129189 0.482141i −0.870765 0.491699i \(-0.836376\pi\)
0.999954 + 0.00955863i \(0.00304265\pi\)
\(450\) 0 0
\(451\) 7.26927 + 12.5907i 0.342297 + 0.592875i
\(452\) 32.3102i 1.51974i
\(453\) −26.4353 + 7.08331i −1.24204 + 0.332803i
\(454\) 24.2393i 1.13761i
\(455\) 0 0
\(456\) −0.670571 + 1.16146i −0.0314024 + 0.0543905i
\(457\) 26.1013 15.0696i 1.22097 0.704927i 0.255845 0.966718i \(-0.417646\pi\)
0.965125 + 0.261791i \(0.0843130\pi\)
\(458\) 15.8993i 0.742924i
\(459\) −0.316043 1.17949i −0.0147516 0.0550538i
\(460\) 0 0
\(461\) −3.05838 11.4140i −0.142443 0.531605i −0.999856 0.0169755i \(-0.994596\pi\)
0.857413 0.514629i \(-0.172070\pi\)
\(462\) −11.0590 19.1548i −0.514513 0.891162i
\(463\) 8.71241 + 15.0903i 0.404900 + 0.701307i 0.994310 0.106527i \(-0.0339730\pi\)
−0.589410 + 0.807834i \(0.700640\pi\)
\(464\) 0.843164 + 3.14673i 0.0391429 + 0.146083i
\(465\) 0 0
\(466\) −9.09001 33.9244i −0.421087 1.57152i
\(467\) 10.9228i 0.505446i −0.967539 0.252723i \(-0.918674\pi\)
0.967539 0.252723i \(-0.0813262\pi\)
\(468\) −27.5055 + 15.8803i −1.27144 + 0.734067i
\(469\) 11.9056 20.6211i 0.549749 0.952193i
\(470\) 0 0
\(471\) 23.3119i 1.07416i
\(472\) −0.941023 + 0.252146i −0.0433141 + 0.0116060i
\(473\) 7.55154i 0.347220i
\(474\) 24.0924 + 41.7293i 1.10660 + 1.91669i
\(475\) 0 0
\(476\) −9.56520 + 35.6978i −0.438420 + 1.63621i
\(477\) 0.357514 + 0.0957956i 0.0163694 + 0.00438618i
\(478\) −11.1966 + 41.7862i −0.512119 + 1.91126i
\(479\) 8.05522 2.15839i 0.368052 0.0986194i −0.0700522 0.997543i \(-0.522317\pi\)
0.438105 + 0.898924i \(0.355650\pi\)
\(480\) 0 0
\(481\) 30.3776 14.9631i 1.38510 0.682261i
\(482\) 4.06005 4.06005i 0.184930 0.184930i
\(483\) 13.2003 + 7.62118i 0.600633 + 0.346776i
\(484\) −7.96869 13.8022i −0.362213 0.627372i
\(485\) 0 0
\(486\) 42.0344 + 11.2631i 1.90672 + 0.510904i
\(487\) 8.29876i 0.376053i −0.982164 0.188026i \(-0.939791\pi\)
0.982164 0.188026i \(-0.0602090\pi\)
\(488\) −0.181368 + 0.676876i −0.00821016 + 0.0306407i
\(489\) −17.0050 17.0050i −0.768991 0.768991i
\(490\) 0 0
\(491\) −21.4566 −0.968322 −0.484161 0.874979i \(-0.660875\pi\)
−0.484161 + 0.874979i \(0.660875\pi\)
\(492\) 29.0394 + 29.0394i 1.30920 + 1.30920i
\(493\) 5.34715 1.43277i 0.240824 0.0645285i
\(494\) −15.3985 + 57.4680i −0.692811 + 2.58561i
\(495\) 0 0
\(496\) −2.87264 + 0.769722i −0.128985 + 0.0345616i
\(497\) −6.92381 25.8400i −0.310575 1.15908i
\(498\) 17.6636 30.5942i 0.791523 1.37096i
\(499\) 1.94647 + 0.521555i 0.0871360 + 0.0233480i 0.302124 0.953269i \(-0.402304\pi\)
−0.214988 + 0.976617i \(0.568971\pi\)
\(500\) 0 0
\(501\) −39.3103 + 10.5332i −1.75625 + 0.470587i
\(502\) −23.8502 + 6.39064i −1.06449 + 0.285228i
\(503\) −15.9589 + 27.6417i −0.711574 + 1.23248i 0.252692 + 0.967547i \(0.418684\pi\)
−0.964266 + 0.264936i \(0.914649\pi\)
\(504\) 0.577230 + 0.577230i 0.0257119 + 0.0257119i
\(505\) 0 0
\(506\) −6.64648 3.83735i −0.295472 0.170591i
\(507\) 30.9752 30.9752i 1.37566 1.37566i
\(508\) 25.8660 25.8660i 1.14762 1.14762i
\(509\) 3.16251 5.47763i 0.140176 0.242792i −0.787387 0.616459i \(-0.788567\pi\)
0.927563 + 0.373667i \(0.121900\pi\)
\(510\) 0 0
\(511\) −2.68336 + 1.54924i −0.118705 + 0.0685342i
\(512\) −31.7298 −1.40227
\(513\) 0.816269 0.471273i 0.0360392 0.0208072i
\(514\) 27.7373 16.0141i 1.22344 0.706353i
\(515\) 0 0
\(516\) −5.52095 20.6045i −0.243046 0.907061i
\(517\) 5.90337 + 5.90337i 0.259630 + 0.259630i
\(518\) 21.6827 + 24.7474i 0.952683 + 1.08734i
\(519\) 47.1003i 2.06747i
\(520\) 0 0
\(521\) −11.6555 + 6.72930i −0.510637 + 0.294816i −0.733095 0.680126i \(-0.761925\pi\)
0.222459 + 0.974942i \(0.428592\pi\)
\(522\) −1.19638 + 4.46497i −0.0523643 + 0.195426i
\(523\) 17.0666 + 29.5603i 0.746272 + 1.29258i 0.949598 + 0.313470i \(0.101492\pi\)
−0.203326 + 0.979111i \(0.565175\pi\)
\(524\) −8.59127 8.59127i −0.375312 0.375312i
\(525\) 0 0
\(526\) 12.5489 12.5489i 0.547158 0.547158i
\(527\) 1.30797 + 4.88141i 0.0569760 + 0.212637i
\(528\) −11.8559 11.8559i −0.515960 0.515960i
\(529\) −17.7111 −0.770047
\(530\) 0 0
\(531\) −26.9029 7.20862i −1.16749 0.312827i
\(532\) −28.5266 −1.23679
\(533\) −41.7360 24.0963i −1.80779 1.04373i
\(534\) 18.2161 + 10.5171i 0.788287 + 0.455118i
\(535\) 0 0
\(536\) 0.231866 0.865337i 0.0100151 0.0373769i
\(537\) 2.37651 1.37208i 0.102554 0.0592096i
\(538\) −7.67399 4.43058i −0.330849 0.191016i
\(539\) −0.344436 + 0.596581i −0.0148359 + 0.0256966i
\(540\) 0 0
\(541\) −20.9871 + 20.9871i −0.902306 + 0.902306i −0.995635 0.0933293i \(-0.970249\pi\)
0.0933293 + 0.995635i \(0.470249\pi\)
\(542\) −25.5819 44.3092i −1.09884 1.90324i
\(543\) −4.41989 16.4953i −0.189676 0.707879i
\(544\) 55.3449i 2.37289i
\(545\) 0 0
\(546\) 63.4946 + 36.6586i 2.71732 + 1.56885i
\(547\) −26.7961 −1.14572 −0.572859 0.819654i \(-0.694166\pi\)
−0.572859 + 0.819654i \(0.694166\pi\)
\(548\) 17.9314 + 4.80471i 0.765993 + 0.205247i
\(549\) −14.1661 + 14.1661i −0.604593 + 0.604593i
\(550\) 0 0
\(551\) 2.13649 + 3.70052i 0.0910177 + 0.157647i
\(552\) 0.553932 + 0.148426i 0.0235769 + 0.00631742i
\(553\) 13.5558 23.4794i 0.576453 0.998445i
\(554\) −57.6349 −2.44867
\(555\) 0 0
\(556\) −26.4296 −1.12087
\(557\) −1.41789 + 2.45586i −0.0600781 + 0.104058i −0.894500 0.447068i \(-0.852468\pi\)
0.834422 + 0.551126i \(0.185802\pi\)
\(558\) −4.07606 1.09218i −0.172553 0.0462355i
\(559\) 12.5160 + 21.6783i 0.529370 + 0.916895i
\(560\) 0 0
\(561\) −20.1463 + 20.1463i −0.850580 + 0.850580i
\(562\) 10.0991 + 2.70604i 0.426003 + 0.114147i
\(563\) −18.8024 −0.792425 −0.396212 0.918159i \(-0.629676\pi\)
−0.396212 + 0.918159i \(0.629676\pi\)
\(564\) 20.4234 + 11.7914i 0.859979 + 0.496509i
\(565\) 0 0
\(566\) 31.6222i 1.32918i
\(567\) −6.48942 24.2188i −0.272530 1.01710i
\(568\) −0.503245 0.871646i −0.0211157 0.0365734i
\(569\) −12.7829 + 12.7829i −0.535887 + 0.535887i −0.922318 0.386431i \(-0.873708\pi\)
0.386431 + 0.922318i \(0.373708\pi\)
\(570\) 0 0
\(571\) −8.53388 + 14.7811i −0.357132 + 0.618570i −0.987480 0.157742i \(-0.949579\pi\)
0.630349 + 0.776312i \(0.282912\pi\)
\(572\) −15.7764 9.10853i −0.659646 0.380847i
\(573\) −25.7335 + 14.8572i −1.07503 + 0.620670i
\(574\) 12.1194 45.2302i 0.505854 1.88787i
\(575\) 0 0
\(576\) −19.2272 11.1008i −0.801134 0.462535i
\(577\) 20.8390 + 12.0314i 0.867541 + 0.500875i 0.866530 0.499125i \(-0.166345\pi\)
0.00101057 + 0.999999i \(0.499678\pi\)
\(578\) 62.6912 2.60761
\(579\) 21.7923 + 5.83923i 0.905657 + 0.242670i
\(580\) 0 0
\(581\) −19.8772 −0.824643
\(582\) 32.6469 + 32.6469i 1.35326 + 1.35326i
\(583\) 0.0549459 + 0.205061i 0.00227563 + 0.00849275i
\(584\) −0.0824316 + 0.0824316i −0.00341104 + 0.00341104i
\(585\) 0 0
\(586\) −29.7758 29.7758i −1.23003 1.23003i
\(587\) 5.47950 + 9.49077i 0.226163 + 0.391726i 0.956668 0.291182i \(-0.0940484\pi\)
−0.730505 + 0.682908i \(0.760715\pi\)
\(588\) −0.503636 + 1.87960i −0.0207696 + 0.0775132i
\(589\) −3.37819 + 1.95040i −0.139196 + 0.0803649i
\(590\) 0 0
\(591\) 51.5258i 2.11949i
\(592\) 20.7320 + 13.8666i 0.852082 + 0.569913i
\(593\) 18.4396 + 18.4396i 0.757223 + 0.757223i 0.975816 0.218593i \(-0.0701468\pi\)
−0.218593 + 0.975816i \(0.570147\pi\)
\(594\) 0.151367 + 0.564910i 0.00621067 + 0.0231785i
\(595\) 0 0
\(596\) 10.9109 6.29943i 0.446929 0.258035i
\(597\) −30.0569 + 17.3534i −1.23015 + 0.710225i
\(598\) 25.4402 1.04033
\(599\) 14.9856 8.65196i 0.612297 0.353510i −0.161567 0.986862i \(-0.551655\pi\)
0.773864 + 0.633352i \(0.218321\pi\)
\(600\) 0 0
\(601\) −14.5641 + 25.2257i −0.594080 + 1.02898i 0.399596 + 0.916692i \(0.369151\pi\)
−0.993676 + 0.112286i \(0.964183\pi\)
\(602\) −17.1983 + 17.1983i −0.700949 + 0.700949i
\(603\) 18.1103 18.1103i 0.737509 0.737509i
\(604\) −18.9674 10.9508i −0.771771 0.445582i
\(605\) 0 0
\(606\) −57.5826 57.5826i −2.33913 2.33913i
\(607\) 11.1067 19.2374i 0.450808 0.780822i −0.547629 0.836722i \(-0.684469\pi\)
0.998436 + 0.0558995i \(0.0178027\pi\)
\(608\) −41.2643 + 11.0567i −1.67349 + 0.448409i
\(609\) 5.08627 1.36286i 0.206106 0.0552260i
\(610\) 0 0
\(611\) −26.7312 7.16259i −1.08143 0.289768i
\(612\) −19.8759 + 34.4261i −0.803437 + 1.39159i
\(613\) −3.75684 14.0207i −0.151737 0.566292i −0.999363 0.0356964i \(-0.988635\pi\)
0.847625 0.530595i \(-0.178032\pi\)
\(614\) −49.7872 + 13.3404i −2.00925 + 0.538376i
\(615\) 0 0
\(616\) −0.121185 + 0.452269i −0.00488269 + 0.0182225i
\(617\) 13.4471 3.60314i 0.541360 0.145057i 0.0222308 0.999753i \(-0.492923\pi\)
0.519129 + 0.854696i \(0.326256\pi\)
\(618\) 26.8929 + 26.8929i 1.08179 + 1.08179i
\(619\) 4.87562 0.195968 0.0979838 0.995188i \(-0.468761\pi\)
0.0979838 + 0.995188i \(0.468761\pi\)
\(620\) 0 0
\(621\) −0.284988 0.284988i −0.0114362 0.0114362i
\(622\) −2.85937 + 10.6713i −0.114650 + 0.427880i
\(623\) 11.8351i 0.474161i
\(624\) 53.6848 + 14.3848i 2.14911 + 0.575853i
\(625\) 0 0
\(626\) −6.07467 10.5216i −0.242793 0.420529i
\(627\) −19.0456 10.9960i −0.760608 0.439137i
\(628\) −13.1917 + 13.1917i −0.526404 + 0.526404i
\(629\) 23.5631 35.2294i 0.939522 1.40469i
\(630\) 0 0
\(631\) −12.0881 + 3.23901i −0.481222 + 0.128943i −0.491271 0.871007i \(-0.663468\pi\)
0.0100498 + 0.999949i \(0.496801\pi\)
\(632\) 0.264006 0.985282i 0.0105016 0.0391924i
\(633\) −21.5456 5.77312i −0.856359 0.229461i
\(634\) −13.8917 + 51.8444i −0.551709 + 2.05901i
\(635\) 0 0
\(636\) 0.299841 + 0.519340i 0.0118895 + 0.0205932i
\(637\) 2.28349i 0.0904750i
\(638\) −2.56099 + 0.686216i −0.101391 + 0.0271675i
\(639\) 28.7746i 1.13830i
\(640\) 0 0
\(641\) 6.83773 11.8433i 0.270074 0.467782i −0.698806 0.715311i \(-0.746285\pi\)
0.968881 + 0.247529i \(0.0796184\pi\)
\(642\) −12.0852 + 6.97739i −0.476964 + 0.275375i
\(643\) 38.4862i 1.51775i −0.651239 0.758873i \(-0.725750\pi\)
0.651239 0.758873i \(-0.274250\pi\)
\(644\) 3.15707 + 11.7824i 0.124406 + 0.464290i
\(645\) 0 0
\(646\) 19.2729 + 71.9275i 0.758283 + 2.82995i
\(647\) 7.13127 + 12.3517i 0.280359 + 0.485596i 0.971473 0.237150i \(-0.0762132\pi\)
−0.691114 + 0.722746i \(0.742880\pi\)
\(648\) −0.471672 0.816960i −0.0185290 0.0320932i
\(649\) −4.13468 15.4308i −0.162300 0.605713i
\(650\) 0 0
\(651\) 1.24415 + 4.64325i 0.0487622 + 0.181983i
\(652\) 19.2454i 0.753708i
\(653\) −40.8194 + 23.5671i −1.59739 + 0.922253i −0.605400 + 0.795921i \(0.706987\pi\)
−0.991988 + 0.126332i \(0.959680\pi\)
\(654\) 1.30283 2.25657i 0.0509447 0.0882389i
\(655\) 0 0
\(656\) 35.4965i 1.38591i
\(657\) −3.21923 + 0.862589i −0.125594 + 0.0336528i
\(658\) 26.8893i 1.04825i
\(659\) −15.9643 27.6509i −0.621880 1.07713i −0.989135 0.147007i \(-0.953036\pi\)
0.367256 0.930120i \(-0.380297\pi\)
\(660\) 0 0
\(661\) 0.934896 3.48908i 0.0363632 0.135709i −0.945358 0.326034i \(-0.894287\pi\)
0.981721 + 0.190325i \(0.0609541\pi\)
\(662\) −16.5485 4.43416i −0.643176 0.172338i
\(663\) 24.4437 91.2251i 0.949315 3.54289i
\(664\) −0.722368 + 0.193558i −0.0280333 + 0.00751151i
\(665\) 0 0
\(666\) 15.6382 + 31.7482i 0.605969 + 1.23022i
\(667\) 1.29198 1.29198i 0.0500255 0.0500255i
\(668\) −28.2052 16.2843i −1.09129 0.630058i
\(669\) −13.2094 22.8794i −0.510705 0.884568i
\(670\) 0 0
\(671\) −11.0994 2.97406i −0.428486 0.114812i
\(672\) 52.6447i 2.03081i
\(673\) 5.76709 21.5231i 0.222305 0.829654i −0.761161 0.648563i \(-0.775370\pi\)
0.983466 0.181091i \(-0.0579629\pi\)
\(674\) 2.24839 + 2.24839i 0.0866047 + 0.0866047i
\(675\) 0 0
\(676\) 35.0563 1.34832
\(677\) −18.0215 18.0215i −0.692623 0.692623i 0.270185 0.962808i \(-0.412915\pi\)
−0.962808 + 0.270185i \(0.912915\pi\)
\(678\) −77.4927 + 20.7641i −2.97609 + 0.797441i
\(679\) 6.72355 25.0926i 0.258026 0.962967i
\(680\) 0 0
\(681\) 28.6883 7.68700i 1.09934 0.294567i
\(682\) −0.626445 2.33792i −0.0239878 0.0895237i
\(683\) −9.12242 + 15.8005i −0.349060 + 0.604589i −0.986083 0.166256i \(-0.946832\pi\)
0.637023 + 0.770845i \(0.280166\pi\)
\(684\) −29.6384 7.94157i −1.13325 0.303654i
\(685\) 0 0
\(686\) −34.4307 + 9.22567i −1.31457 + 0.352238i
\(687\) −18.8175 + 5.04214i −0.717933 + 0.192370i
\(688\) −9.21872 + 15.9673i −0.351460 + 0.608747i
\(689\) −0.497603 0.497603i −0.0189572 0.0189572i
\(690\) 0 0
\(691\) −26.8608 15.5081i −1.02183 0.589957i −0.107200 0.994237i \(-0.534189\pi\)
−0.914635 + 0.404281i \(0.867522\pi\)
\(692\) 26.6529 26.6529i 1.01319 1.01319i
\(693\) −9.46537 + 9.46537i −0.359560 + 0.359560i
\(694\) 17.8494 30.9160i 0.677553 1.17356i
\(695\) 0 0
\(696\) 0.171572 0.0990573i 0.00650343 0.00375476i
\(697\) −60.3183 −2.28472
\(698\) −42.8983 + 24.7673i −1.62372 + 0.937457i
\(699\) −37.2683 + 21.5169i −1.40962 + 0.813843i
\(700\) 0 0
\(701\) 1.72147 + 6.42463i 0.0650192 + 0.242655i 0.990785 0.135442i \(-0.0432454\pi\)
−0.925766 + 0.378097i \(0.876579\pi\)
\(702\) −1.37082 1.37082i −0.0517382 0.0517382i
\(703\) 30.9739 + 10.5302i 1.16820 + 0.397153i
\(704\) 12.7343i 0.479943i
\(705\) 0 0
\(706\) −0.683596 + 0.394674i −0.0257275 + 0.0148538i
\(707\) −11.8590 + 44.2584i −0.446004 + 1.66451i
\(708\) −22.5630 39.0803i −0.847970 1.46873i
\(709\) −5.97248 5.97248i −0.224301 0.224301i 0.586006 0.810307i \(-0.300700\pi\)
−0.810307 + 0.586006i \(0.800700\pi\)
\(710\) 0 0
\(711\) 20.6206 20.6206i 0.773333 0.773333i
\(712\) −0.115246 0.430105i −0.00431904 0.0161189i
\(713\) 1.17944 + 1.17944i 0.0441705 + 0.0441705i
\(714\) 91.7647 3.43421
\(715\) 0 0
\(716\) 2.12124 + 0.568384i 0.0792744 + 0.0212415i
\(717\) 53.0066 1.97957
\(718\) 45.8574 + 26.4758i 1.71138 + 0.988068i
\(719\) −18.4724 10.6650i −0.688904 0.397739i 0.114297 0.993447i \(-0.463538\pi\)
−0.803201 + 0.595707i \(0.796872\pi\)
\(720\) 0 0
\(721\) 5.53853 20.6701i 0.206266 0.769794i
\(722\) −17.0814 + 9.86196i −0.635705 + 0.367024i
\(723\) −6.09281 3.51769i −0.226594 0.130824i
\(724\) 6.83316 11.8354i 0.253952 0.439858i
\(725\) 0 0
\(726\) −27.9821 + 27.9821i −1.03851 + 1.03851i
\(727\) 1.94208 + 3.36379i 0.0720279 + 0.124756i 0.899790 0.436323i \(-0.143720\pi\)
−0.827762 + 0.561079i \(0.810386\pi\)
\(728\) −0.401707 1.49919i −0.0148882 0.0555637i
\(729\) 25.6892i 0.951452i
\(730\) 0 0
\(731\) 27.1328 + 15.6651i 1.00354 + 0.579396i
\(732\) −32.4591 −1.19972
\(733\) −32.6370 8.74505i −1.20547 0.323006i −0.400489 0.916302i \(-0.631160\pi\)
−0.804984 + 0.593296i \(0.797826\pi\)
\(734\) −21.4761 + 21.4761i −0.792697 + 0.792697i
\(735\) 0 0
\(736\) 9.13352 + 15.8197i 0.336666 + 0.583123i
\(737\) 14.1897 + 3.80213i 0.522686 + 0.140053i
\(738\) 25.1834 43.6190i 0.927015 1.60564i
\(739\) 41.3843 1.52234 0.761172 0.648550i \(-0.224624\pi\)
0.761172 + 0.648550i \(0.224624\pi\)
\(740\) 0 0
\(741\) 72.8993 2.67802
\(742\) 0.341879 0.592153i 0.0125508 0.0217386i
\(743\) 10.8057 + 2.89539i 0.396424 + 0.106222i 0.451523 0.892259i \(-0.350881\pi\)
−0.0550990 + 0.998481i \(0.517547\pi\)
\(744\) 0.0904292 + 0.156628i 0.00331529 + 0.00574226i
\(745\) 0 0
\(746\) 51.3220 51.3220i 1.87903 1.87903i
\(747\) −20.6518 5.53363i −0.755610 0.202465i
\(748\) −22.8007 −0.833675
\(749\) 6.79985 + 3.92589i 0.248461 + 0.143449i
\(750\) 0 0
\(751\) 2.77329i 0.101199i 0.998719 + 0.0505993i \(0.0161132\pi\)
−0.998719 + 0.0505993i \(0.983887\pi\)
\(752\) −5.27565 19.6890i −0.192383 0.717984i
\(753\) 15.1272 + 26.2011i 0.551267 + 0.954823i
\(754\) 6.21454 6.21454i 0.226320 0.226320i
\(755\) 0 0
\(756\) 0.464765 0.804996i 0.0169033 0.0292774i
\(757\) 23.9288 + 13.8153i 0.869705 + 0.502125i 0.867250 0.497872i \(-0.165885\pi\)
0.00245512 + 0.999997i \(0.499219\pi\)
\(758\) 38.0420 21.9635i 1.38175 0.797752i
\(759\) −2.43387 + 9.08334i −0.0883441 + 0.329704i
\(760\) 0 0
\(761\) 5.11172 + 2.95125i 0.185300 + 0.106983i 0.589780 0.807564i \(-0.299214\pi\)
−0.404481 + 0.914547i \(0.632548\pi\)
\(762\) −78.6596 45.4141i −2.84954 1.64518i
\(763\) −1.46610 −0.0530764
\(764\) −22.9693 6.15461i −0.831001 0.222666i
\(765\) 0 0
\(766\) 27.4713 0.992577
\(767\) 37.4447 + 37.4447i 1.35205 + 1.35205i
\(768\) 10.5820 + 39.4925i 0.381845 + 1.42506i
\(769\) 15.6442 15.6442i 0.564144 0.564144i −0.366338 0.930482i \(-0.619389\pi\)
0.930482 + 0.366338i \(0.119389\pi\)
\(770\) 0 0
\(771\) −27.7498 27.7498i −0.999384 0.999384i
\(772\) 9.02746 + 15.6360i 0.324905 + 0.562752i
\(773\) −7.54766 + 28.1683i −0.271470 + 1.01314i 0.686699 + 0.726941i \(0.259059\pi\)
−0.958170 + 0.286200i \(0.907608\pi\)
\(774\) −22.6564 + 13.0807i −0.814366 + 0.470175i
\(775\) 0 0
\(776\) 0.977379i 0.0350859i
\(777\) 22.4135 33.5106i 0.804079 1.20219i
\(778\) 15.0765 + 15.0765i 0.540518 + 0.540518i
\(779\) −12.0503 44.9724i −0.431747 1.61130i
\(780\) 0 0
\(781\) 14.2932 8.25217i 0.511450 0.295286i
\(782\) 27.5753 15.9206i 0.986090 0.569319i
\(783\) −0.139234 −0.00497581
\(784\) 1.45658 0.840957i 0.0520207 0.0300342i
\(785\) 0 0
\(786\) −15.0841 + 26.1265i −0.538033 + 0.931900i
\(787\) −2.72026 + 2.72026i −0.0969667 + 0.0969667i −0.753926 0.656959i \(-0.771842\pi\)
0.656959 + 0.753926i \(0.271842\pi\)
\(788\) 29.1572 29.1572i 1.03868 1.03868i
\(789\) −18.8318 10.8725i −0.670430 0.387073i
\(790\) 0 0
\(791\) 31.9189 + 31.9189i 1.13491 + 1.13491i
\(792\) −0.251816 + 0.436158i −0.00894789 + 0.0154982i
\(793\) 36.7923 9.85847i 1.30653 0.350085i
\(794\) 45.6259 12.2254i 1.61920 0.433864i
\(795\) 0 0
\(796\) −26.8283 7.18862i −0.950904 0.254794i
\(797\) 5.21913 9.03980i 0.184871 0.320206i −0.758662 0.651484i \(-0.774147\pi\)
0.943533 + 0.331278i \(0.107480\pi\)
\(798\) 18.3326 + 68.4182i 0.648967 + 2.42198i
\(799\) −33.4570 + 8.96477i −1.18362 + 0.317151i
\(800\) 0 0
\(801\) 3.29478 12.2963i 0.116415 0.434468i
\(802\) 28.5133 7.64012i 1.00684 0.269782i
\(803\) −1.35171 1.35171i −0.0477007 0.0477007i
\(804\) 41.4966 1.46347
\(805\) 0 0
\(806\) 5.67324 + 5.67324i 0.199831 + 0.199831i
\(807\) −2.81014 + 10.4876i −0.0989216 + 0.369180i
\(808\) 1.72390i 0.0606467i
\(809\) −17.2925 4.63351i −0.607972 0.162906i −0.0583182 0.998298i \(-0.518574\pi\)
−0.549654 + 0.835392i \(0.685240\pi\)
\(810\) 0 0
\(811\) 12.0147 + 20.8102i 0.421895 + 0.730743i 0.996125 0.0879507i \(-0.0280318\pi\)
−0.574230 + 0.818694i \(0.694698\pi\)
\(812\) 3.64941 + 2.10699i 0.128069 + 0.0739408i
\(813\) −44.3291 + 44.3291i −1.55469 + 1.55469i
\(814\) −11.2854 + 16.8729i −0.395554 + 0.591396i
\(815\) 0 0
\(816\) 67.1924 18.0042i 2.35220 0.630271i
\(817\) −6.25911 + 23.3593i −0.218979 + 0.817240i
\(818\) 44.8951 + 12.0296i 1.56972 + 0.420605i
\(819\) 11.4844 42.8604i 0.401297 1.49766i
\(820\) 0 0
\(821\) −12.1723 21.0830i −0.424815 0.735801i 0.571588 0.820541i \(-0.306327\pi\)
−0.996403 + 0.0847397i \(0.972994\pi\)
\(822\) 46.0945i 1.60773i
\(823\) 14.6573 3.92742i 0.510923 0.136901i 0.00585796 0.999983i \(-0.498135\pi\)
0.505065 + 0.863082i \(0.331469\pi\)
\(824\) 0.805117i 0.0280476i
\(825\) 0 0
\(826\) −25.7264 + 44.5595i −0.895137 + 1.55042i
\(827\) −7.81135 + 4.50988i −0.271627 + 0.156824i −0.629627 0.776898i \(-0.716792\pi\)
0.358000 + 0.933722i \(0.383459\pi\)
\(828\) 13.1204i 0.455967i
\(829\) 5.61392 + 20.9514i 0.194979 + 0.727673i 0.992272 + 0.124080i \(0.0395981\pi\)
−0.797293 + 0.603593i \(0.793735\pi\)
\(830\) 0 0
\(831\) 18.2777 + 68.2135i 0.634048 + 2.36630i
\(832\) 21.1060 + 36.5566i 0.731718 + 1.26737i
\(833\) −1.42902 2.47513i −0.0495125 0.0857582i
\(834\) 16.9850 + 63.3888i 0.588141 + 2.19497i
\(835\) 0 0
\(836\) −4.55508 16.9998i −0.157541 0.587951i
\(837\) 0.127106i 0.00439343i
\(838\) 39.7799 22.9669i 1.37417 0.793379i
\(839\) 17.8183 30.8622i 0.615157 1.06548i −0.375200 0.926944i \(-0.622426\pi\)
0.990357 0.138539i \(-0.0442406\pi\)
\(840\) 0 0
\(841\) 28.3688i 0.978234i
\(842\) 2.16194 0.579291i 0.0745055 0.0199637i
\(843\) 12.8109i 0.441230i
\(844\) −8.92525 15.4590i −0.307220 0.532120i
\(845\) 0 0
\(846\) 7.48574 27.9372i 0.257365 0.960500i
\(847\) 21.5072 + 5.76284i 0.738997 + 0.198014i
\(848\) 0.134153 0.500666i 0.00460683 0.0171929i
\(849\) −37.4263 + 10.0283i −1.28447 + 0.344172i
\(850\) 0 0
\(851\) 0.921369 13.9585i 0.0315841 0.478492i
\(852\) 32.9659 32.9659i 1.12939 1.12939i
\(853\) −24.8691 14.3582i −0.851501 0.491614i 0.00965588 0.999953i \(-0.496926\pi\)
−0.861157 + 0.508339i \(0.830260\pi\)
\(854\) 18.5050 + 32.0515i 0.633227 + 1.09678i
\(855\) 0 0
\(856\) 0.285347 + 0.0764584i 0.00975295 + 0.00261329i
\(857\) 6.04867i 0.206618i −0.994649 0.103309i \(-0.967057\pi\)
0.994649 0.103309i \(-0.0329431\pi\)
\(858\) −11.7072 + 43.6918i −0.399677 + 1.49161i
\(859\) −38.1045 38.1045i −1.30011 1.30011i −0.928316 0.371791i \(-0.878744\pi\)
−0.371791 0.928316i \(-0.621256\pi\)
\(860\) 0 0
\(861\) −57.3755 −1.95535
\(862\) 33.0904 + 33.0904i 1.12706 + 1.12706i
\(863\) 11.2783 3.02200i 0.383917 0.102870i −0.0616982 0.998095i \(-0.519652\pi\)
0.445615 + 0.895225i \(0.352985\pi\)
\(864\) 0.360279 1.34458i 0.0122569 0.0457436i
\(865\) 0 0
\(866\) 22.6767 6.07620i 0.770586 0.206478i
\(867\) −19.8813 74.1979i −0.675203 2.51989i
\(868\) −1.92346 + 3.33154i −0.0652866 + 0.113080i
\(869\) 16.1566 + 4.32914i 0.548075 + 0.146856i
\(870\) 0 0
\(871\) −47.0364 + 12.6034i −1.59377 + 0.427048i
\(872\) −0.0532805 + 0.0142765i −0.00180431 + 0.000483462i
\(873\) 13.9712 24.1987i 0.472852 0.819003i
\(874\) 17.3791 + 17.3791i 0.587856 + 0.587856i
\(875\) 0 0
\(876\) −4.67638 2.69991i −0.158000 0.0912216i
\(877\) −25.9009 + 25.9009i −0.874612 + 0.874612i −0.992971 0.118359i \(-0.962237\pi\)
0.118359 + 0.992971i \(0.462237\pi\)
\(878\) −5.18977 + 5.18977i −0.175146 + 0.175146i
\(879\) −25.7982 + 44.6838i −0.870153 + 1.50715i
\(880\) 0 0
\(881\) −19.7789 + 11.4193i −0.666367 + 0.384727i −0.794699 0.607004i \(-0.792371\pi\)
0.128332 + 0.991731i \(0.459038\pi\)
\(882\) 2.38651 0.0803579
\(883\) −14.0457 + 8.10927i −0.472674 + 0.272899i −0.717359 0.696704i \(-0.754649\pi\)
0.244684 + 0.969603i \(0.421316\pi\)
\(884\) 65.4542 37.7900i 2.20146 1.27102i
\(885\) 0 0
\(886\) −18.2023 67.9318i −0.611517 2.28221i
\(887\) 9.65037 + 9.65037i 0.324028 + 0.324028i 0.850310 0.526282i \(-0.176414\pi\)
−0.526282 + 0.850310i \(0.676414\pi\)
\(888\) 0.488226 1.43609i 0.0163838 0.0481919i
\(889\) 51.1054i 1.71402i
\(890\) 0 0
\(891\) 13.3965 7.73445i 0.448798 0.259114i
\(892\) 5.47200 20.4218i 0.183216 0.683771i
\(893\) −13.3680 23.1540i −0.447342 0.774820i
\(894\) −22.1204 22.1204i −0.739818 0.739818i
\(895\) 0 0
\(896\) 1.57660 1.57660i 0.0526703 0.0526703i
\(897\) −8.06785 30.1096i −0.269378 1.00533i
\(898\) −14.8611 14.8611i −0.495922 0.495922i
\(899\) 0.576229 0.0192183
\(900\) 0 0
\(901\) −0.850768 0.227963i −0.0283432 0.00759453i
\(902\) 28.8891 0.961903
\(903\) 25.8090 + 14.9008i 0.858870 + 0.495869i
\(904\) 1.47080 + 0.849168i 0.0489181 + 0.0282429i
\(905\) 0 0
\(906\) −14.0751 + 52.5288i −0.467612 + 1.74515i
\(907\) 34.7453 20.0602i 1.15370 0.666089i 0.203913 0.978989i \(-0.434634\pi\)
0.949786 + 0.312900i \(0.101301\pi\)
\(908\) 20.5839 + 11.8841i 0.683101 + 0.394388i
\(909\) −24.6424 + 42.6818i −0.817335 + 1.41567i
\(910\) 0 0
\(911\) −6.91310 + 6.91310i −0.229041 + 0.229041i −0.812292 0.583251i \(-0.801780\pi\)
0.583251 + 0.812292i \(0.301780\pi\)
\(912\) 26.8472 + 46.5007i 0.889000 + 1.53979i
\(913\) −3.17395 11.8453i −0.105042 0.392024i
\(914\) 59.8889i 1.98095i
\(915\) 0 0
\(916\) −13.5016 7.79515i −0.446106 0.257559i
\(917\) 16.9745 0.560546
\(918\) −2.34373 0.628001i −0.0773547 0.0207271i
\(919\) −10.7644 + 10.7644i −0.355086 + 0.355086i −0.861998 0.506912i \(-0.830787\pi\)
0.506912 + 0.861998i \(0.330787\pi\)
\(920\) 0 0
\(921\) 31.5780 + 54.6947i 1.04053 + 1.80225i
\(922\) −22.6805 6.07723i −0.746943 0.200143i
\(923\) −27.3544 + 47.3793i −0.900382 + 1.55951i
\(924\) −21.6882 −0.713491
\(925\) 0 0
\(926\) 34.6244 1.13783
\(927\) 11.5088 19.9338i 0.377997 0.654710i
\(928\) 6.09559 + 1.63331i 0.200097 + 0.0536159i
\(929\) 2.66910 + 4.62301i 0.0875702 + 0.151676i 0.906484 0.422241i \(-0.138756\pi\)
−0.818913 + 0.573917i \(0.805423\pi\)
\(930\) 0 0
\(931\) 1.55993 1.55993i 0.0511246 0.0511246i
\(932\) −33.2651 8.91337i −1.08964 0.291967i
\(933\) 13.5368 0.443174
\(934\) −18.7965 10.8522i −0.615041 0.355094i
\(935\) 0 0
\(936\) 1.66945i 0.0545676i
\(937\) −4.23510 15.8056i −0.138355 0.516346i −0.999962 0.00877029i \(-0.997208\pi\)
0.861607 0.507576i \(-0.169458\pi\)
\(938\) −23.6573 40.9756i −0.772437 1.33790i
\(939\) −10.5264 + 10.5264i −0.343515 + 0.343515i
\(940\) 0 0
\(941\) 15.2812 26.4678i 0.498152 0.862824i −0.501846 0.864957i \(-0.667346\pi\)
0.999998 + 0.00213282i \(0.000678897\pi\)
\(942\) 40.1165 + 23.1612i 1.30706 + 0.754634i
\(943\) −17.2413 + 9.95428i −0.561455 + 0.324156i
\(944\) −10.0950 + 37.6751i −0.328565 + 1.22622i
\(945\) 0 0
\(946\) −12.9951 7.50273i −0.422508 0.243935i
\(947\) −43.7794 25.2760i −1.42264 0.821361i −0.426115 0.904669i \(-0.640118\pi\)
−0.996524 + 0.0833078i \(0.973452\pi\)
\(948\) 47.2485 1.53456
\(949\) 6.12070 + 1.64004i 0.198686 + 0.0532378i
\(950\) 0 0
\(951\) 65.7657 2.13260
\(952\) −1.37362 1.37362i −0.0445193 0.0445193i
\(953\) −9.34657 34.8819i −0.302765 1.12994i −0.934852 0.355038i \(-0.884468\pi\)
0.632087 0.774898i \(-0.282199\pi\)
\(954\) 0.520053 0.520053i 0.0168373 0.0168373i
\(955\) 0 0
\(956\) 29.9952 + 29.9952i 0.970113 + 0.970113i
\(957\) 1.62433 + 2.81343i 0.0525073 + 0.0909453i
\(958\) 4.28888 16.0063i 0.138567 0.517140i
\(959\) −22.4608 + 12.9678i −0.725297 + 0.418751i
\(960\) 0 0
\(961\) 30.4740i 0.983031i
\(962\) 4.43188 67.1420i 0.142889 2.16474i
\(963\) 5.97191 + 5.97191i 0.192442 + 0.192442i
\(964\) −1.45720 5.43835i −0.0469333 0.175157i
\(965\) 0 0
\(966\) 26.2299 15.1438i 0.843933 0.487245i
\(967\) 30.8443 17.8080i 0.991886 0.572666i 0.0860487 0.996291i \(-0.472576\pi\)
0.905838 + 0.423625i \(0.139243\pi\)
\(968\) 0.837724 0.0269255
\(969\) 79.0175 45.6208i 2.53841 1.46555i
\(970\) 0 0
\(971\) 16.8077 29.1118i 0.539386 0.934244i −0.459551 0.888151i \(-0.651990\pi\)
0.998937 0.0460924i \(-0.0146769\pi\)
\(972\) 30.1733 30.1733i 0.967810 0.967810i
\(973\) 26.1095 26.1095i 0.837034 0.837034i
\(974\) −14.2810 8.24512i −0.457592 0.264191i
\(975\) 0 0
\(976\) 19.8383 + 19.8383i 0.635008 + 0.635008i
\(977\) 28.3165 49.0457i 0.905926 1.56911i 0.0862569 0.996273i \(-0.472509\pi\)
0.819669 0.572837i \(-0.194157\pi\)
\(978\) −46.1581 + 12.3680i −1.47597 + 0.395486i
\(979\) 7.05283 1.88980i 0.225410 0.0603983i
\(980\) 0 0
\(981\) −1.52324 0.408150i −0.0486332 0.0130312i
\(982\) −21.3179 + 36.9237i −0.680282 + 1.17828i
\(983\) −9.23907 34.4807i −0.294681 1.09976i −0.941471 0.337095i \(-0.890556\pi\)
0.646790 0.762668i \(-0.276111\pi\)
\(984\) −2.08512 + 0.558706i −0.0664711 + 0.0178109i
\(985\) 0 0
\(986\) 2.84701 10.6252i 0.0906673 0.338375i
\(987\) −31.8247 + 8.52739i −1.01299 + 0.271430i
\(988\) 41.2520 + 41.2520i 1.31240 + 1.31240i
\(989\) 10.3408 0.328819
\(990\) 0 0
\(991\) −1.29277 1.29277i −0.0410661 0.0410661i 0.686276 0.727342i \(-0.259244\pi\)
−0.727342 + 0.686276i \(0.759244\pi\)
\(992\) −1.49104 + 5.56465i −0.0473407 + 0.176678i
\(993\) 20.9921i 0.666165i
\(994\) −51.3460 13.7581i −1.62859 0.436381i
\(995\) 0 0
\(996\) −17.3203 29.9997i −0.548815 0.950576i
\(997\) −25.1686 14.5311i −0.797098 0.460205i 0.0453572 0.998971i \(-0.485557\pi\)
−0.842456 + 0.538766i \(0.818891\pi\)
\(998\) 2.83141 2.83141i 0.0896267 0.0896267i
\(999\) −0.801789 + 0.702495i −0.0253675 + 0.0222259i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 925.2.t.b.643.14 68
5.2 odd 4 925.2.y.b.532.14 68
5.3 odd 4 185.2.u.a.162.4 yes 68
5.4 even 2 185.2.p.a.88.4 yes 68
37.8 odd 12 925.2.y.b.193.14 68
185.8 even 12 185.2.p.a.82.4 68
185.82 even 12 inner 925.2.t.b.82.14 68
185.119 odd 12 185.2.u.a.8.4 yes 68
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
185.2.p.a.82.4 68 185.8 even 12
185.2.p.a.88.4 yes 68 5.4 even 2
185.2.u.a.8.4 yes 68 185.119 odd 12
185.2.u.a.162.4 yes 68 5.3 odd 4
925.2.t.b.82.14 68 185.82 even 12 inner
925.2.t.b.643.14 68 1.1 even 1 trivial
925.2.y.b.193.14 68 37.8 odd 12
925.2.y.b.532.14 68 5.2 odd 4