Properties

Label 925.2.y.b.193.12
Level $925$
Weight $2$
Character 925.193
Analytic conductor $7.386$
Analytic rank $0$
Dimension $68$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [925,2,Mod(193,925)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("925.193"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(925, base_ring=CyclotomicField(12)) chi = DirichletCharacter(H, H._module([9, 1])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 925 = 5^{2} \cdot 37 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 925.y (of order \(12\), degree \(4\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [68] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.38616218697\)
Analytic rank: \(0\)
Dimension: \(68\)
Relative dimension: \(17\) over \(\Q(\zeta_{12})\)
Twist minimal: no (minimal twist has level 185)
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 193.12
Character \(\chi\) \(=\) 925.193
Dual form 925.2.y.b.532.12

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.25283 - 0.723320i) q^{2} +(0.212077 + 0.791482i) q^{3} +(0.0463849 - 0.0803411i) q^{4} +(0.838191 + 0.838191i) q^{6} +(-0.425785 - 1.58905i) q^{7} +2.75908i q^{8} +(2.01661 - 1.16429i) q^{9} -4.76900i q^{11} +(0.0734257 + 0.0196744i) q^{12} +(5.02850 + 2.90320i) q^{13} +(-1.68283 - 1.68283i) q^{14} +(2.08847 + 3.61733i) q^{16} +(0.725557 + 1.25670i) q^{17} +(1.68431 - 2.91731i) q^{18} +(-0.563197 - 2.10188i) q^{19} +(1.16741 - 0.674003i) q^{21} +(-3.44951 - 5.97473i) q^{22} +4.09430i q^{23} +(-2.18376 + 0.585137i) q^{24} +8.39979 q^{26} +(3.08741 + 3.08741i) q^{27} +(-0.147416 - 0.0395000i) q^{28} +(2.95018 + 2.95018i) q^{29} +(-1.46743 + 1.46743i) q^{31} +(0.454116 + 0.262184i) q^{32} +(3.77458 - 1.01139i) q^{33} +(1.81799 + 1.04962i) q^{34} -0.216022i q^{36} +(6.02617 - 0.827803i) q^{37} +(-2.22592 - 2.22592i) q^{38} +(-1.23141 + 4.59567i) q^{39} +(0.369301 + 0.213216i) q^{41} +(0.975040 - 1.68882i) q^{42} -7.53912i q^{43} +(-0.383146 - 0.221210i) q^{44} +(2.96149 + 5.12945i) q^{46} +(5.55465 - 5.55465i) q^{47} +(-2.42014 + 2.42014i) q^{48} +(3.71838 - 2.14681i) q^{49} +(-0.840783 + 0.840783i) q^{51} +(0.466493 - 0.269330i) q^{52} +(-2.83749 + 10.5896i) q^{53} +(6.10117 + 1.63480i) q^{54} +(4.38432 - 1.17477i) q^{56} +(1.54416 - 0.891520i) q^{57} +(5.82999 + 1.56214i) q^{58} +(-8.06779 - 2.16176i) q^{59} +(-1.52382 - 5.68696i) q^{61} +(-0.777013 + 2.89985i) q^{62} +(-2.70876 - 2.70876i) q^{63} -7.59529 q^{64} +(3.99733 - 3.99733i) q^{66} +(-8.99317 + 2.40971i) q^{67} +0.134620 q^{68} +(-3.24056 + 0.868307i) q^{69} +(-6.20532 + 10.7479i) q^{71} +(3.21236 + 5.56398i) q^{72} +(-2.06563 + 2.06563i) q^{73} +(6.95099 - 5.39595i) q^{74} +(-0.194991 - 0.0522477i) q^{76} +(-7.57818 + 2.03057i) q^{77} +(1.78140 + 6.64828i) q^{78} +(-1.30294 - 4.86264i) q^{79} +(1.70401 - 2.95143i) q^{81} +0.616894 q^{82} +(1.04562 - 3.90229i) q^{83} -0.125054i q^{84} +(-5.45320 - 9.44522i) q^{86} +(-1.70935 + 2.96068i) q^{87} +13.1580 q^{88} +(3.97708 - 14.8427i) q^{89} +(2.47228 - 9.22669i) q^{91} +(0.328940 + 0.189914i) q^{92} +(-1.47265 - 0.850234i) q^{93} +(2.94123 - 10.9768i) q^{94} +(-0.111207 + 0.415028i) q^{96} -17.9332 q^{97} +(3.10566 - 5.37917i) q^{98} +(-5.55249 - 9.61720i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 68 q + 6 q^{2} + 4 q^{3} + 30 q^{4} - 8 q^{6} + 2 q^{7} + 10 q^{12} + 6 q^{13} - 26 q^{16} + 10 q^{17} + 8 q^{18} - 4 q^{19} - 12 q^{21} + 14 q^{22} - 24 q^{26} - 68 q^{27} - 14 q^{28} - 14 q^{29} - 24 q^{31}+ \cdots - 32 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/925\mathbb{Z}\right)^\times\).

\(n\) \(76\) \(852\)
\(\chi(n)\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.25283 0.723320i 0.885883 0.511465i 0.0132894 0.999912i \(-0.495770\pi\)
0.872594 + 0.488447i \(0.162436\pi\)
\(3\) 0.212077 + 0.791482i 0.122443 + 0.456962i 0.999736 0.0229929i \(-0.00731951\pi\)
−0.877293 + 0.479955i \(0.840653\pi\)
\(4\) 0.0463849 0.0803411i 0.0231925 0.0401705i
\(5\) 0 0
\(6\) 0.838191 + 0.838191i 0.342190 + 0.342190i
\(7\) −0.425785 1.58905i −0.160932 0.600605i −0.998524 0.0543096i \(-0.982704\pi\)
0.837592 0.546296i \(-0.183962\pi\)
\(8\) 2.75908i 0.975481i
\(9\) 2.01661 1.16429i 0.672203 0.388097i
\(10\) 0 0
\(11\) 4.76900i 1.43791i −0.695059 0.718953i \(-0.744622\pi\)
0.695059 0.718953i \(-0.255378\pi\)
\(12\) 0.0734257 + 0.0196744i 0.0211962 + 0.00567950i
\(13\) 5.02850 + 2.90320i 1.39465 + 0.805204i 0.993826 0.110949i \(-0.0353891\pi\)
0.400828 + 0.916153i \(0.368722\pi\)
\(14\) −1.68283 1.68283i −0.449755 0.449755i
\(15\) 0 0
\(16\) 2.08847 + 3.61733i 0.522117 + 0.904333i
\(17\) 0.725557 + 1.25670i 0.175973 + 0.304795i 0.940498 0.339800i \(-0.110359\pi\)
−0.764524 + 0.644595i \(0.777026\pi\)
\(18\) 1.68431 2.91731i 0.396995 0.687616i
\(19\) −0.563197 2.10188i −0.129206 0.482204i 0.870748 0.491729i \(-0.163635\pi\)
−0.999955 + 0.00952470i \(0.996968\pi\)
\(20\) 0 0
\(21\) 1.16741 0.674003i 0.254749 0.147079i
\(22\) −3.44951 5.97473i −0.735438 1.27382i
\(23\) 4.09430i 0.853720i 0.904318 + 0.426860i \(0.140380\pi\)
−0.904318 + 0.426860i \(0.859620\pi\)
\(24\) −2.18376 + 0.585137i −0.445758 + 0.119441i
\(25\) 0 0
\(26\) 8.39979 1.64733
\(27\) 3.08741 + 3.08741i 0.594172 + 0.594172i
\(28\) −0.147416 0.0395000i −0.0278590 0.00746480i
\(29\) 2.95018 + 2.95018i 0.547834 + 0.547834i 0.925814 0.377980i \(-0.123381\pi\)
−0.377980 + 0.925814i \(0.623381\pi\)
\(30\) 0 0
\(31\) −1.46743 + 1.46743i −0.263557 + 0.263557i −0.826498 0.562940i \(-0.809670\pi\)
0.562940 + 0.826498i \(0.309670\pi\)
\(32\) 0.454116 + 0.262184i 0.0802772 + 0.0463481i
\(33\) 3.77458 1.01139i 0.657069 0.176061i
\(34\) 1.81799 + 1.04962i 0.311784 + 0.180008i
\(35\) 0 0
\(36\) 0.216022i 0.0360037i
\(37\) 6.02617 0.827803i 0.990696 0.136090i
\(38\) −2.22592 2.22592i −0.361092 0.361092i
\(39\) −1.23141 + 4.59567i −0.197183 + 0.735896i
\(40\) 0 0
\(41\) 0.369301 + 0.213216i 0.0576751 + 0.0332988i 0.528560 0.848896i \(-0.322732\pi\)
−0.470885 + 0.882195i \(0.656065\pi\)
\(42\) 0.975040 1.68882i 0.150452 0.260590i
\(43\) 7.53912i 1.14971i −0.818257 0.574853i \(-0.805059\pi\)
0.818257 0.574853i \(-0.194941\pi\)
\(44\) −0.383146 0.221210i −0.0577615 0.0333486i
\(45\) 0 0
\(46\) 2.96149 + 5.12945i 0.436648 + 0.756296i
\(47\) 5.55465 5.55465i 0.810228 0.810228i −0.174440 0.984668i \(-0.555811\pi\)
0.984668 + 0.174440i \(0.0558114\pi\)
\(48\) −2.42014 + 2.42014i −0.349317 + 0.349317i
\(49\) 3.71838 2.14681i 0.531198 0.306687i
\(50\) 0 0
\(51\) −0.840783 + 0.840783i −0.117733 + 0.117733i
\(52\) 0.466493 0.269330i 0.0646909 0.0373493i
\(53\) −2.83749 + 10.5896i −0.389759 + 1.45460i 0.440768 + 0.897621i \(0.354706\pi\)
−0.830527 + 0.556978i \(0.811961\pi\)
\(54\) 6.10117 + 1.63480i 0.830264 + 0.222469i
\(55\) 0 0
\(56\) 4.38432 1.17477i 0.585879 0.156986i
\(57\) 1.54416 0.891520i 0.204529 0.118085i
\(58\) 5.82999 + 1.56214i 0.765515 + 0.205119i
\(59\) −8.06779 2.16176i −1.05034 0.281437i −0.307946 0.951404i \(-0.599642\pi\)
−0.742391 + 0.669967i \(0.766308\pi\)
\(60\) 0 0
\(61\) −1.52382 5.68696i −0.195105 0.728140i −0.992240 0.124339i \(-0.960319\pi\)
0.797135 0.603801i \(-0.206348\pi\)
\(62\) −0.777013 + 2.89985i −0.0986807 + 0.368281i
\(63\) −2.70876 2.70876i −0.341272 0.341272i
\(64\) −7.59529 −0.949412
\(65\) 0 0
\(66\) 3.99733 3.99733i 0.492037 0.492037i
\(67\) −8.99317 + 2.40971i −1.09869 + 0.294393i −0.762231 0.647305i \(-0.775896\pi\)
−0.336460 + 0.941698i \(0.609230\pi\)
\(68\) 0.134620 0.0163250
\(69\) −3.24056 + 0.868307i −0.390118 + 0.104532i
\(70\) 0 0
\(71\) −6.20532 + 10.7479i −0.736436 + 1.27554i 0.217654 + 0.976026i \(0.430159\pi\)
−0.954090 + 0.299519i \(0.903174\pi\)
\(72\) 3.21236 + 5.56398i 0.378581 + 0.655721i
\(73\) −2.06563 + 2.06563i −0.241763 + 0.241763i −0.817579 0.575816i \(-0.804684\pi\)
0.575816 + 0.817579i \(0.304684\pi\)
\(74\) 6.95099 5.39595i 0.808036 0.627266i
\(75\) 0 0
\(76\) −0.194991 0.0522477i −0.0223670 0.00599322i
\(77\) −7.57818 + 2.03057i −0.863614 + 0.231405i
\(78\) 1.78140 + 6.64828i 0.201704 + 0.752770i
\(79\) −1.30294 4.86264i −0.146592 0.547089i −0.999679 0.0253210i \(-0.991939\pi\)
0.853087 0.521768i \(-0.174727\pi\)
\(80\) 0 0
\(81\) 1.70401 2.95143i 0.189334 0.327937i
\(82\) 0.616894 0.0681246
\(83\) 1.04562 3.90229i 0.114771 0.428332i −0.884498 0.466543i \(-0.845499\pi\)
0.999270 + 0.0382109i \(0.0121659\pi\)
\(84\) 0.125054i 0.0136445i
\(85\) 0 0
\(86\) −5.45320 9.44522i −0.588034 1.01850i
\(87\) −1.70935 + 2.96068i −0.183261 + 0.317418i
\(88\) 13.1580 1.40265
\(89\) 3.97708 14.8427i 0.421569 1.57332i −0.349733 0.936849i \(-0.613728\pi\)
0.771302 0.636469i \(-0.219606\pi\)
\(90\) 0 0
\(91\) 2.47228 9.22669i 0.259166 0.967219i
\(92\) 0.328940 + 0.189914i 0.0342944 + 0.0197999i
\(93\) −1.47265 0.850234i −0.152707 0.0881652i
\(94\) 2.94123 10.9768i 0.303364 1.13217i
\(95\) 0 0
\(96\) −0.111207 + 0.415028i −0.0113500 + 0.0423587i
\(97\) −17.9332 −1.82084 −0.910418 0.413689i \(-0.864240\pi\)
−0.910418 + 0.413689i \(0.864240\pi\)
\(98\) 3.10566 5.37917i 0.313719 0.543378i
\(99\) −5.55249 9.61720i −0.558046 0.966565i
\(100\) 0 0
\(101\) 6.87214i 0.683803i 0.939736 + 0.341902i \(0.111071\pi\)
−0.939736 + 0.341902i \(0.888929\pi\)
\(102\) −0.445201 + 1.66151i −0.0440814 + 0.164514i
\(103\) −12.6979 −1.25116 −0.625581 0.780159i \(-0.715138\pi\)
−0.625581 + 0.780159i \(0.715138\pi\)
\(104\) −8.01017 + 13.8740i −0.785461 + 1.36046i
\(105\) 0 0
\(106\) 4.10482 + 15.3194i 0.398696 + 1.48795i
\(107\) 2.37610 + 8.86771i 0.229706 + 0.857274i 0.980464 + 0.196697i \(0.0630215\pi\)
−0.750759 + 0.660577i \(0.770312\pi\)
\(108\) 0.391255 0.104836i 0.0376485 0.0100879i
\(109\) 7.90182 + 2.11729i 0.756857 + 0.202799i 0.616557 0.787310i \(-0.288527\pi\)
0.140299 + 0.990109i \(0.455193\pi\)
\(110\) 0 0
\(111\) 1.93320 + 4.59405i 0.183492 + 0.436048i
\(112\) 4.85889 4.85889i 0.459122 0.459122i
\(113\) −3.70539 6.41792i −0.348573 0.603747i 0.637423 0.770514i \(-0.280000\pi\)
−0.985996 + 0.166767i \(0.946667\pi\)
\(114\) 1.28971 2.23384i 0.120792 0.209219i
\(115\) 0 0
\(116\) 0.373864 0.100177i 0.0347124 0.00930117i
\(117\) 13.5207 1.24999
\(118\) −11.6712 + 3.12729i −1.07442 + 0.287890i
\(119\) 1.68803 1.68803i 0.154742 0.154742i
\(120\) 0 0
\(121\) −11.7433 −1.06757
\(122\) −6.02257 6.02257i −0.545258 0.545258i
\(123\) −0.0904365 + 0.337514i −0.00815438 + 0.0304326i
\(124\) 0.0498281 + 0.185961i 0.00447470 + 0.0166998i
\(125\) 0 0
\(126\) −5.35291 1.43431i −0.476875 0.127778i
\(127\) −0.527354 0.141304i −0.0467951 0.0125387i 0.235346 0.971912i \(-0.424378\pi\)
−0.282141 + 0.959373i \(0.591044\pi\)
\(128\) −10.4238 + 6.01820i −0.921345 + 0.531939i
\(129\) 5.96708 1.59887i 0.525372 0.140773i
\(130\) 0 0
\(131\) −15.3752 4.11977i −1.34334 0.359946i −0.485666 0.874144i \(-0.661423\pi\)
−0.857671 + 0.514198i \(0.828090\pi\)
\(132\) 0.0938269 0.350167i 0.00816658 0.0304781i
\(133\) −3.10019 + 1.78990i −0.268821 + 0.155204i
\(134\) −9.52390 + 9.52390i −0.822740 + 0.822740i
\(135\) 0 0
\(136\) −3.46733 + 2.00187i −0.297322 + 0.171659i
\(137\) 1.35878 1.35878i 0.116088 0.116088i −0.646676 0.762765i \(-0.723841\pi\)
0.762765 + 0.646676i \(0.223841\pi\)
\(138\) −3.43180 + 3.43180i −0.292135 + 0.292135i
\(139\) 8.69989 + 15.0687i 0.737915 + 1.27811i 0.953432 + 0.301607i \(0.0975230\pi\)
−0.215517 + 0.976500i \(0.569144\pi\)
\(140\) 0 0
\(141\) 5.57442 + 3.21839i 0.469450 + 0.271037i
\(142\) 17.9537i 1.50664i
\(143\) 13.8454 23.9809i 1.15781 2.00538i
\(144\) 8.42324 + 4.86316i 0.701937 + 0.405263i
\(145\) 0 0
\(146\) −1.09376 + 4.08198i −0.0905206 + 0.337827i
\(147\) 2.48775 + 2.48775i 0.205186 + 0.205186i
\(148\) 0.213017 0.522547i 0.0175099 0.0429531i
\(149\) 8.07457i 0.661495i −0.943719 0.330747i \(-0.892699\pi\)
0.943719 0.330747i \(-0.107301\pi\)
\(150\) 0 0
\(151\) −18.1193 10.4612i −1.47453 0.851320i −0.474942 0.880017i \(-0.657531\pi\)
−0.999588 + 0.0286973i \(0.990864\pi\)
\(152\) 5.79924 1.55390i 0.470381 0.126038i
\(153\) 2.92633 + 1.68952i 0.236580 + 0.136589i
\(154\) −8.02540 + 8.02540i −0.646706 + 0.646706i
\(155\) 0 0
\(156\) 0.312102 + 0.312102i 0.0249882 + 0.0249882i
\(157\) −13.3722 3.58307i −1.06722 0.285960i −0.317868 0.948135i \(-0.602967\pi\)
−0.749349 + 0.662175i \(0.769634\pi\)
\(158\) −5.14960 5.14960i −0.409680 0.409680i
\(159\) −8.98328 −0.712420
\(160\) 0 0
\(161\) 6.50605 1.74329i 0.512749 0.137391i
\(162\) 4.93018i 0.387351i
\(163\) −3.13396 5.42818i −0.245471 0.425168i 0.716793 0.697286i \(-0.245609\pi\)
−0.962264 + 0.272118i \(0.912276\pi\)
\(164\) 0.0342600 0.0197800i 0.00267526 0.00154456i
\(165\) 0 0
\(166\) −1.51263 5.64522i −0.117403 0.438154i
\(167\) 1.56860 2.71690i 0.121382 0.210240i −0.798931 0.601423i \(-0.794601\pi\)
0.920313 + 0.391183i \(0.127934\pi\)
\(168\) 1.85963 + 3.22097i 0.143473 + 0.248503i
\(169\) 10.3572 + 17.9392i 0.796707 + 1.37994i
\(170\) 0 0
\(171\) −3.58294 3.58294i −0.273994 0.273994i
\(172\) −0.605701 0.349702i −0.0461843 0.0266645i
\(173\) −4.95158 1.32677i −0.376461 0.100873i 0.0656265 0.997844i \(-0.479095\pi\)
−0.442088 + 0.896972i \(0.645762\pi\)
\(174\) 4.94563i 0.374927i
\(175\) 0 0
\(176\) 17.2510 9.95989i 1.30035 0.750755i
\(177\) 6.84398i 0.514425i
\(178\) −5.75340 21.4720i −0.431236 1.60939i
\(179\) 2.46194 + 2.46194i 0.184014 + 0.184014i 0.793102 0.609088i \(-0.208464\pi\)
−0.609088 + 0.793102i \(0.708464\pi\)
\(180\) 0 0
\(181\) 5.87198 10.1706i 0.436461 0.755972i −0.560953 0.827848i \(-0.689565\pi\)
0.997414 + 0.0718755i \(0.0228984\pi\)
\(182\) −3.57651 13.3477i −0.265108 0.989397i
\(183\) 4.17796 2.41215i 0.308844 0.178311i
\(184\) −11.2965 −0.832788
\(185\) 0 0
\(186\) −2.45997 −0.180374
\(187\) 5.99320 3.46018i 0.438266 0.253033i
\(188\) −0.188614 0.703918i −0.0137561 0.0513385i
\(189\) 3.59148 6.22062i 0.261242 0.452484i
\(190\) 0 0
\(191\) 15.0489 + 15.0489i 1.08890 + 1.08890i 0.995642 + 0.0932582i \(0.0297282\pi\)
0.0932582 + 0.995642i \(0.470272\pi\)
\(192\) −1.61079 6.01154i −0.116249 0.433846i
\(193\) 12.5994i 0.906924i 0.891276 + 0.453462i \(0.149811\pi\)
−0.891276 + 0.453462i \(0.850189\pi\)
\(194\) −22.4672 + 12.9714i −1.61305 + 0.931294i
\(195\) 0 0
\(196\) 0.398319i 0.0284513i
\(197\) −5.42726 1.45423i −0.386676 0.103610i 0.0602434 0.998184i \(-0.480812\pi\)
−0.446920 + 0.894574i \(0.647479\pi\)
\(198\) −13.9126 8.03246i −0.988728 0.570842i
\(199\) −11.5832 11.5832i −0.821108 0.821108i 0.165159 0.986267i \(-0.447186\pi\)
−0.986267 + 0.165159i \(0.947186\pi\)
\(200\) 0 0
\(201\) −3.81449 6.60689i −0.269053 0.466014i
\(202\) 4.97076 + 8.60961i 0.349741 + 0.605770i
\(203\) 3.43184 5.94413i 0.240868 0.417196i
\(204\) 0.0285497 + 0.106549i 0.00199888 + 0.00745992i
\(205\) 0 0
\(206\) −15.9083 + 9.18465i −1.10838 + 0.639925i
\(207\) 4.76695 + 8.25660i 0.331326 + 0.573873i
\(208\) 24.2530i 1.68164i
\(209\) −10.0238 + 2.68588i −0.693364 + 0.185786i
\(210\) 0 0
\(211\) 17.3906 1.19722 0.598609 0.801042i \(-0.295720\pi\)
0.598609 + 0.801042i \(0.295720\pi\)
\(212\) 0.719167 + 0.719167i 0.0493926 + 0.0493926i
\(213\) −9.82280 2.63201i −0.673047 0.180343i
\(214\) 9.39103 + 9.39103i 0.641958 + 0.641958i
\(215\) 0 0
\(216\) −8.51839 + 8.51839i −0.579603 + 0.579603i
\(217\) 2.95662 + 1.70701i 0.200709 + 0.115879i
\(218\) 11.4311 3.06295i 0.774211 0.207449i
\(219\) −2.07298 1.19683i −0.140079 0.0808746i
\(220\) 0 0
\(221\) 8.42576i 0.566778i
\(222\) 5.74494 + 4.35723i 0.385575 + 0.292438i
\(223\) 7.72909 + 7.72909i 0.517578 + 0.517578i 0.916838 0.399260i \(-0.130733\pi\)
−0.399260 + 0.916838i \(0.630733\pi\)
\(224\) 0.223268 0.833249i 0.0149177 0.0556738i
\(225\) 0 0
\(226\) −9.28442 5.36036i −0.617591 0.356566i
\(227\) 3.31049 5.73394i 0.219725 0.380575i −0.734999 0.678069i \(-0.762817\pi\)
0.954724 + 0.297493i \(0.0961506\pi\)
\(228\) 0.165412i 0.0109547i
\(229\) 9.79053 + 5.65257i 0.646977 + 0.373532i 0.787297 0.616574i \(-0.211480\pi\)
−0.140320 + 0.990106i \(0.544813\pi\)
\(230\) 0 0
\(231\) −3.21432 5.56736i −0.211486 0.366305i
\(232\) −8.13977 + 8.13977i −0.534402 + 0.534402i
\(233\) −10.6730 + 10.6730i −0.699211 + 0.699211i −0.964240 0.265029i \(-0.914618\pi\)
0.265029 + 0.964240i \(0.414618\pi\)
\(234\) 16.9391 9.77979i 1.10734 0.639325i
\(235\) 0 0
\(236\) −0.547902 + 0.547902i −0.0356654 + 0.0356654i
\(237\) 3.57237 2.06251i 0.232050 0.133974i
\(238\) 0.893825 3.33580i 0.0579381 0.216228i
\(239\) 17.2821 + 4.63073i 1.11789 + 0.299537i 0.770028 0.638010i \(-0.220242\pi\)
0.347859 + 0.937547i \(0.386909\pi\)
\(240\) 0 0
\(241\) −27.1013 + 7.26176i −1.74575 + 0.467771i −0.983710 0.179764i \(-0.942467\pi\)
−0.762036 + 0.647535i \(0.775800\pi\)
\(242\) −14.7124 + 8.49418i −0.945746 + 0.546027i
\(243\) 15.3498 + 4.11297i 0.984691 + 0.263847i
\(244\) −0.527578 0.141364i −0.0337747 0.00904991i
\(245\) 0 0
\(246\) 0.130829 + 0.488261i 0.00834136 + 0.0311304i
\(247\) 3.27015 12.2044i 0.208075 0.776545i
\(248\) −4.04874 4.04874i −0.257095 0.257095i
\(249\) 3.31035 0.209785
\(250\) 0 0
\(251\) −1.94654 + 1.94654i −0.122864 + 0.122864i −0.765865 0.643001i \(-0.777689\pi\)
0.643001 + 0.765865i \(0.277689\pi\)
\(252\) −0.343270 + 0.0919790i −0.0216240 + 0.00579413i
\(253\) 19.5257 1.22757
\(254\) −0.762893 + 0.204416i −0.0478681 + 0.0128262i
\(255\) 0 0
\(256\) −1.11088 + 1.92410i −0.0694300 + 0.120256i
\(257\) 3.13247 + 5.42559i 0.195398 + 0.338439i 0.947031 0.321142i \(-0.104067\pi\)
−0.751633 + 0.659582i \(0.770734\pi\)
\(258\) 6.31923 6.31923i 0.393418 0.393418i
\(259\) −3.88128 9.22343i −0.241171 0.573116i
\(260\) 0 0
\(261\) 9.38422 + 2.51449i 0.580869 + 0.155643i
\(262\) −22.2424 + 5.95983i −1.37414 + 0.368200i
\(263\) 3.92018 + 14.6303i 0.241728 + 0.902143i 0.975000 + 0.222206i \(0.0713259\pi\)
−0.733271 + 0.679936i \(0.762007\pi\)
\(264\) 2.79052 + 10.4143i 0.171744 + 0.640959i
\(265\) 0 0
\(266\) −2.58934 + 4.48487i −0.158763 + 0.274985i
\(267\) 12.5911 0.770566
\(268\) −0.223549 + 0.834296i −0.0136554 + 0.0509627i
\(269\) 20.5296i 1.25171i 0.779938 + 0.625856i \(0.215250\pi\)
−0.779938 + 0.625856i \(0.784750\pi\)
\(270\) 0 0
\(271\) −6.43197 11.1405i −0.390714 0.676737i 0.601830 0.798624i \(-0.294439\pi\)
−0.992544 + 0.121888i \(0.961105\pi\)
\(272\) −3.03060 + 5.24916i −0.183757 + 0.318277i
\(273\) 7.82707 0.473716
\(274\) 0.719484 2.68515i 0.0434656 0.162216i
\(275\) 0 0
\(276\) −0.0805527 + 0.300627i −0.00484870 + 0.0180956i
\(277\) −1.07398 0.620061i −0.0645290 0.0372559i 0.467388 0.884052i \(-0.345195\pi\)
−0.531917 + 0.846796i \(0.678528\pi\)
\(278\) 21.7989 + 12.5856i 1.30741 + 0.754836i
\(279\) −1.25072 + 4.66773i −0.0748784 + 0.279450i
\(280\) 0 0
\(281\) −4.61727 + 17.2319i −0.275443 + 1.02797i 0.680100 + 0.733119i \(0.261936\pi\)
−0.955544 + 0.294850i \(0.904730\pi\)
\(282\) 9.31171 0.554504
\(283\) 8.36334 14.4857i 0.497149 0.861087i −0.502846 0.864376i \(-0.667714\pi\)
0.999995 + 0.00328885i \(0.00104687\pi\)
\(284\) 0.575667 + 0.997084i 0.0341595 + 0.0591661i
\(285\) 0 0
\(286\) 40.0586i 2.36871i
\(287\) 0.181569 0.677623i 0.0107176 0.0399988i
\(288\) 1.22103 0.0719501
\(289\) 7.44714 12.8988i 0.438067 0.758754i
\(290\) 0 0
\(291\) −3.80321 14.1938i −0.222948 0.832054i
\(292\) 0.0701407 + 0.261769i 0.00410467 + 0.0153188i
\(293\) −19.7965 + 5.30445i −1.15652 + 0.309889i −0.785576 0.618765i \(-0.787633\pi\)
−0.370946 + 0.928654i \(0.620967\pi\)
\(294\) 4.91616 + 1.31728i 0.286716 + 0.0768253i
\(295\) 0 0
\(296\) 2.28397 + 16.6267i 0.132753 + 0.966406i
\(297\) 14.7238 14.7238i 0.854363 0.854363i
\(298\) −5.84050 10.1160i −0.338331 0.586007i
\(299\) −11.8866 + 20.5882i −0.687419 + 1.19064i
\(300\) 0 0
\(301\) −11.9801 + 3.21005i −0.690519 + 0.185024i
\(302\) −30.2672 −1.74168
\(303\) −5.43918 + 1.45742i −0.312472 + 0.0837268i
\(304\) 6.42697 6.42697i 0.368612 0.368612i
\(305\) 0 0
\(306\) 4.88825 0.279442
\(307\) 4.99397 + 4.99397i 0.285021 + 0.285021i 0.835108 0.550087i \(-0.185405\pi\)
−0.550087 + 0.835108i \(0.685405\pi\)
\(308\) −0.188375 + 0.703027i −0.0107337 + 0.0400587i
\(309\) −2.69293 10.0502i −0.153196 0.571734i
\(310\) 0 0
\(311\) 19.0548 + 5.10571i 1.08050 + 0.289518i 0.754800 0.655955i \(-0.227734\pi\)
0.325698 + 0.945474i \(0.394401\pi\)
\(312\) −12.6798 3.39754i −0.717853 0.192348i
\(313\) −17.9617 + 10.3702i −1.01525 + 0.586156i −0.912725 0.408574i \(-0.866026\pi\)
−0.102527 + 0.994730i \(0.532693\pi\)
\(314\) −19.3448 + 5.18341i −1.09169 + 0.292517i
\(315\) 0 0
\(316\) −0.451106 0.120874i −0.0253767 0.00679967i
\(317\) −5.35199 + 19.9739i −0.300597 + 1.12185i 0.636072 + 0.771630i \(0.280558\pi\)
−0.936669 + 0.350215i \(0.886108\pi\)
\(318\) −11.2545 + 6.49779i −0.631121 + 0.364378i
\(319\) 14.0694 14.0694i 0.787735 0.787735i
\(320\) 0 0
\(321\) −6.51472 + 3.76127i −0.363616 + 0.209934i
\(322\) 6.89000 6.89000i 0.383965 0.383965i
\(323\) 2.23280 2.23280i 0.124236 0.124236i
\(324\) −0.158081 0.273804i −0.00878226 0.0152113i
\(325\) 0 0
\(326\) −7.85262 4.53371i −0.434917 0.251099i
\(327\) 6.70318i 0.370686i
\(328\) −0.588280 + 1.01893i −0.0324823 + 0.0562610i
\(329\) −11.1917 6.46153i −0.617019 0.356236i
\(330\) 0 0
\(331\) 8.47290 31.6213i 0.465713 1.73806i −0.188802 0.982015i \(-0.560460\pi\)
0.654515 0.756049i \(-0.272873\pi\)
\(332\) −0.265014 0.265014i −0.0145445 0.0145445i
\(333\) 11.1886 8.68556i 0.613133 0.475966i
\(334\) 4.53841i 0.248331i
\(335\) 0 0
\(336\) 4.87618 + 2.81526i 0.266018 + 0.153585i
\(337\) 9.97490 2.67277i 0.543368 0.145595i 0.0233134 0.999728i \(-0.492578\pi\)
0.520054 + 0.854133i \(0.325912\pi\)
\(338\) 25.9516 + 14.9831i 1.41158 + 0.814975i
\(339\) 4.29384 4.29384i 0.233209 0.233209i
\(340\) 0 0
\(341\) 6.99815 + 6.99815i 0.378971 + 0.378971i
\(342\) −7.08043 1.89719i −0.382866 0.102589i
\(343\) −13.1375 13.1375i −0.709358 0.709358i
\(344\) 20.8010 1.12152
\(345\) 0 0
\(346\) −7.16315 + 1.91936i −0.385093 + 0.103185i
\(347\) 9.81456i 0.526873i −0.964677 0.263437i \(-0.915144\pi\)
0.964677 0.263437i \(-0.0848560\pi\)
\(348\) 0.158576 + 0.274662i 0.00850057 + 0.0147234i
\(349\) −11.0564 + 6.38340i −0.591834 + 0.341696i −0.765822 0.643052i \(-0.777668\pi\)
0.173988 + 0.984748i \(0.444335\pi\)
\(350\) 0 0
\(351\) 6.56164 + 24.4884i 0.350235 + 1.30709i
\(352\) 1.25036 2.16568i 0.0666442 0.115431i
\(353\) 1.70337 + 2.95032i 0.0906610 + 0.157030i 0.907789 0.419426i \(-0.137769\pi\)
−0.817128 + 0.576456i \(0.804435\pi\)
\(354\) −4.95039 8.57432i −0.263110 0.455720i
\(355\) 0 0
\(356\) −1.00800 1.00800i −0.0534238 0.0534238i
\(357\) 1.69404 + 0.978054i 0.0896581 + 0.0517641i
\(358\) 4.86517 + 1.30362i 0.257132 + 0.0688983i
\(359\) 4.52436i 0.238787i 0.992847 + 0.119393i \(0.0380949\pi\)
−0.992847 + 0.119393i \(0.961905\pi\)
\(360\) 0 0
\(361\) 12.3538 7.13246i 0.650199 0.375393i
\(362\) 16.9893i 0.892937i
\(363\) −2.49049 9.29463i −0.130717 0.487841i
\(364\) −0.626605 0.626605i −0.0328430 0.0328430i
\(365\) 0 0
\(366\) 3.48951 6.04401i 0.182400 0.315925i
\(367\) 2.79712 + 10.4390i 0.146009 + 0.544912i 0.999708 + 0.0241463i \(0.00768676\pi\)
−0.853700 + 0.520766i \(0.825647\pi\)
\(368\) −14.8104 + 8.55081i −0.772047 + 0.445742i
\(369\) 0.992981 0.0516925
\(370\) 0 0
\(371\) 18.0357 0.936364
\(372\) −0.136617 + 0.0788761i −0.00708328 + 0.00408954i
\(373\) −5.06699 18.9102i −0.262359 0.979135i −0.963847 0.266455i \(-0.914148\pi\)
0.701489 0.712680i \(-0.252519\pi\)
\(374\) 5.00563 8.67001i 0.258835 0.448316i
\(375\) 0 0
\(376\) 15.3257 + 15.3257i 0.790362 + 0.790362i
\(377\) 6.27000 + 23.3999i 0.322921 + 1.20516i
\(378\) 10.3912i 0.534463i
\(379\) −4.24970 + 2.45356i −0.218292 + 0.126031i −0.605159 0.796104i \(-0.706891\pi\)
0.386867 + 0.922136i \(0.373557\pi\)
\(380\) 0 0
\(381\) 0.447359i 0.0229189i
\(382\) 29.7389 + 7.96850i 1.52157 + 0.407704i
\(383\) 5.61179 + 3.23997i 0.286749 + 0.165555i 0.636475 0.771298i \(-0.280392\pi\)
−0.349726 + 0.936852i \(0.613725\pi\)
\(384\) −6.97395 6.97395i −0.355888 0.355888i
\(385\) 0 0
\(386\) 9.11340 + 15.7849i 0.463860 + 0.803429i
\(387\) −8.77772 15.2035i −0.446197 0.772835i
\(388\) −0.831829 + 1.44077i −0.0422297 + 0.0731440i
\(389\) −2.23101 8.32624i −0.113117 0.422157i 0.886022 0.463642i \(-0.153458\pi\)
−0.999139 + 0.0414853i \(0.986791\pi\)
\(390\) 0 0
\(391\) −5.14531 + 2.97065i −0.260209 + 0.150232i
\(392\) 5.92322 + 10.2593i 0.299168 + 0.518173i
\(393\) 13.0429i 0.657928i
\(394\) −7.85130 + 2.10375i −0.395543 + 0.105985i
\(395\) 0 0
\(396\) −1.03021 −0.0517699
\(397\) −0.770578 0.770578i −0.0386742 0.0386742i 0.687505 0.726179i \(-0.258706\pi\)
−0.726179 + 0.687505i \(0.758706\pi\)
\(398\) −22.8900 6.13337i −1.14737 0.307438i
\(399\) −2.07415 2.07415i −0.103837 0.103837i
\(400\) 0 0
\(401\) −17.3804 + 17.3804i −0.867936 + 0.867936i −0.992244 0.124308i \(-0.960329\pi\)
0.124308 + 0.992244i \(0.460329\pi\)
\(402\) −9.55780 5.51820i −0.476700 0.275223i
\(403\) −11.6392 + 3.11871i −0.579789 + 0.155354i
\(404\) 0.552115 + 0.318764i 0.0274687 + 0.0158591i
\(405\) 0 0
\(406\) 9.92929i 0.492783i
\(407\) −3.94779 28.7388i −0.195685 1.42453i
\(408\) −2.31978 2.31978i −0.114846 0.114846i
\(409\) 2.48177 9.26208i 0.122715 0.457980i −0.877033 0.480431i \(-0.840480\pi\)
0.999748 + 0.0224508i \(0.00714691\pi\)
\(410\) 0 0
\(411\) 1.36362 + 0.787285i 0.0672623 + 0.0388339i
\(412\) −0.588991 + 1.02016i −0.0290175 + 0.0502598i
\(413\) 13.7406i 0.676130i
\(414\) 11.9443 + 6.89606i 0.587032 + 0.338923i
\(415\) 0 0
\(416\) 1.52235 + 2.63679i 0.0746393 + 0.129279i
\(417\) −10.0815 + 10.0815i −0.493695 + 0.493695i
\(418\) −10.6154 + 10.6154i −0.519216 + 0.519216i
\(419\) −14.2802 + 8.24465i −0.697631 + 0.402778i −0.806465 0.591282i \(-0.798622\pi\)
0.108833 + 0.994060i \(0.465289\pi\)
\(420\) 0 0
\(421\) 0.456713 0.456713i 0.0222588 0.0222588i −0.695890 0.718149i \(-0.744990\pi\)
0.718149 + 0.695890i \(0.244990\pi\)
\(422\) 21.7874 12.5790i 1.06059 0.612335i
\(423\) 4.73433 17.6688i 0.230191 0.859085i
\(424\) −29.2176 7.82884i −1.41893 0.380202i
\(425\) 0 0
\(426\) −14.2101 + 3.80758i −0.688480 + 0.184478i
\(427\) −8.38805 + 4.84284i −0.405926 + 0.234362i
\(428\) 0.822656 + 0.220430i 0.0397646 + 0.0106549i
\(429\) 21.9167 + 5.87257i 1.05815 + 0.283530i
\(430\) 0 0
\(431\) −3.57129 13.3283i −0.172023 0.641999i −0.997040 0.0768905i \(-0.975501\pi\)
0.825016 0.565109i \(-0.191166\pi\)
\(432\) −4.72022 + 17.6161i −0.227102 + 0.847556i
\(433\) 16.0407 + 16.0407i 0.770868 + 0.770868i 0.978258 0.207391i \(-0.0664971\pi\)
−0.207391 + 0.978258i \(0.566497\pi\)
\(434\) 4.93885 0.237073
\(435\) 0 0
\(436\) 0.536630 0.536630i 0.0256999 0.0256999i
\(437\) 8.60572 2.30589i 0.411667 0.110306i
\(438\) −3.46278 −0.165458
\(439\) −10.9533 + 2.93493i −0.522774 + 0.140077i −0.510549 0.859849i \(-0.670558\pi\)
−0.0122243 + 0.999925i \(0.503891\pi\)
\(440\) 0 0
\(441\) 4.99902 8.65855i 0.238048 0.412312i
\(442\) 6.09452 + 10.5560i 0.289887 + 0.502099i
\(443\) −18.6448 + 18.6448i −0.885840 + 0.885840i −0.994120 0.108280i \(-0.965466\pi\)
0.108280 + 0.994120i \(0.465466\pi\)
\(444\) 0.458762 + 0.0577790i 0.0217719 + 0.00274207i
\(445\) 0 0
\(446\) 15.2738 + 4.09261i 0.723237 + 0.193791i
\(447\) 6.39088 1.71243i 0.302278 0.0809952i
\(448\) 3.23396 + 12.0693i 0.152790 + 0.570222i
\(449\) −9.44296 35.2416i −0.445641 1.66315i −0.714239 0.699902i \(-0.753227\pi\)
0.268598 0.963252i \(-0.413440\pi\)
\(450\) 0 0
\(451\) 1.01683 1.76120i 0.0478805 0.0829314i
\(452\) −0.687496 −0.0323371
\(453\) 4.43716 16.5597i 0.208476 0.778043i
\(454\) 9.57819i 0.449527i
\(455\) 0 0
\(456\) 2.45977 + 4.26045i 0.115189 + 0.199514i
\(457\) 20.6281 35.7289i 0.964941 1.67133i 0.255168 0.966897i \(-0.417869\pi\)
0.709773 0.704430i \(-0.248797\pi\)
\(458\) 16.3545 0.764194
\(459\) −1.63986 + 6.12004i −0.0765420 + 0.285659i
\(460\) 0 0
\(461\) 7.84179 29.2660i 0.365229 1.36305i −0.501882 0.864936i \(-0.667359\pi\)
0.867111 0.498115i \(-0.165974\pi\)
\(462\) −8.05397 4.64996i −0.374705 0.216336i
\(463\) −3.67480 2.12165i −0.170783 0.0986013i 0.412172 0.911106i \(-0.364770\pi\)
−0.582955 + 0.812505i \(0.698104\pi\)
\(464\) −4.51042 + 16.8331i −0.209391 + 0.781458i
\(465\) 0 0
\(466\) −5.65143 + 21.0914i −0.261797 + 0.977041i
\(467\) −9.79517 −0.453266 −0.226633 0.973980i \(-0.572772\pi\)
−0.226633 + 0.973980i \(0.572772\pi\)
\(468\) 0.627156 1.08627i 0.0289903 0.0502127i
\(469\) 7.65832 + 13.2646i 0.353628 + 0.612502i
\(470\) 0 0
\(471\) 11.3437i 0.522692i
\(472\) 5.96446 22.2597i 0.274537 1.02458i
\(473\) −35.9540 −1.65317
\(474\) 2.98371 5.16793i 0.137046 0.237371i
\(475\) 0 0
\(476\) −0.0573190 0.213917i −0.00262721 0.00980489i
\(477\) 6.60731 + 24.6588i 0.302528 + 1.12905i
\(478\) 25.0010 6.69901i 1.14352 0.306405i
\(479\) 29.0918 + 7.79512i 1.32924 + 0.356168i 0.852431 0.522840i \(-0.175127\pi\)
0.476807 + 0.879008i \(0.341794\pi\)
\(480\) 0 0
\(481\) 32.7059 + 13.3326i 1.49126 + 0.607914i
\(482\) −28.7006 + 28.7006i −1.30728 + 1.30728i
\(483\) 2.75957 + 4.77971i 0.125565 + 0.217484i
\(484\) −0.544713 + 0.943471i −0.0247597 + 0.0428850i
\(485\) 0 0
\(486\) 22.2057 5.94999i 1.00727 0.269897i
\(487\) 8.80800 0.399129 0.199564 0.979885i \(-0.436047\pi\)
0.199564 + 0.979885i \(0.436047\pi\)
\(488\) 15.6908 4.20433i 0.710287 0.190321i
\(489\) 3.63166 3.63166i 0.164230 0.164230i
\(490\) 0 0
\(491\) −37.2665 −1.68181 −0.840907 0.541179i \(-0.817978\pi\)
−0.840907 + 0.541179i \(0.817978\pi\)
\(492\) 0.0229213 + 0.0229213i 0.00103337 + 0.00103337i
\(493\) −1.56697 + 5.84801i −0.0705728 + 0.263381i
\(494\) −4.73073 17.6553i −0.212846 0.794351i
\(495\) 0 0
\(496\) −8.37284 2.24349i −0.375951 0.100736i
\(497\) 19.7212 + 5.28427i 0.884615 + 0.237032i
\(498\) 4.14729 2.39444i 0.185845 0.107297i
\(499\) −3.52008 + 0.943201i −0.157580 + 0.0422235i −0.336747 0.941595i \(-0.609327\pi\)
0.179166 + 0.983819i \(0.442660\pi\)
\(500\) 0 0
\(501\) 2.48305 + 0.665330i 0.110934 + 0.0297248i
\(502\) −1.03071 + 3.84664i −0.0460026 + 0.171684i
\(503\) 21.1433 12.2071i 0.942732 0.544287i 0.0519165 0.998651i \(-0.483467\pi\)
0.890816 + 0.454365i \(0.150134\pi\)
\(504\) 7.47367 7.47367i 0.332904 0.332904i
\(505\) 0 0
\(506\) 24.4623 14.1233i 1.08748 0.627859i
\(507\) −12.0020 + 12.0020i −0.533029 + 0.533029i
\(508\) −0.0358138 + 0.0358138i −0.00158898 + 0.00158898i
\(509\) −21.1376 36.6113i −0.936906 1.62277i −0.771199 0.636595i \(-0.780343\pi\)
−0.165708 0.986175i \(-0.552991\pi\)
\(510\) 0 0
\(511\) 4.16190 + 2.40287i 0.184112 + 0.106297i
\(512\) 20.8587i 0.921833i
\(513\) 4.75054 8.22817i 0.209741 0.363283i
\(514\) 7.84888 + 4.53155i 0.346199 + 0.199878i
\(515\) 0 0
\(516\) 0.148327 0.553565i 0.00652975 0.0243694i
\(517\) −26.4901 26.4901i −1.16503 1.16503i
\(518\) −11.5341 8.74797i −0.506778 0.384364i
\(519\) 4.20046i 0.184380i
\(520\) 0 0
\(521\) 20.8093 + 12.0143i 0.911672 + 0.526354i 0.880969 0.473174i \(-0.156892\pi\)
0.0307035 + 0.999529i \(0.490225\pi\)
\(522\) 13.5756 3.63757i 0.594188 0.159212i
\(523\) −12.8269 7.40563i −0.560882 0.323825i 0.192617 0.981274i \(-0.438302\pi\)
−0.753500 + 0.657448i \(0.771636\pi\)
\(524\) −1.04416 + 1.04416i −0.0456145 + 0.0456145i
\(525\) 0 0
\(526\) 15.4937 + 15.4937i 0.675557 + 0.675557i
\(527\) −2.90882 0.779415i −0.126710 0.0339518i
\(528\) 11.5416 + 11.5416i 0.502285 + 0.502285i
\(529\) 6.23672 0.271162
\(530\) 0 0
\(531\) −18.7865 + 5.03383i −0.815265 + 0.218449i
\(532\) 0.332097i 0.0143982i
\(533\) 1.23802 + 2.14431i 0.0536246 + 0.0928805i
\(534\) 15.7745 9.10743i 0.682631 0.394117i
\(535\) 0 0
\(536\) −6.64859 24.8129i −0.287175 1.07175i
\(537\) −1.42646 + 2.47071i −0.0615564 + 0.106619i
\(538\) 14.8495 + 25.7201i 0.640207 + 1.10887i
\(539\) −10.2381 17.7330i −0.440987 0.763813i
\(540\) 0 0
\(541\) 11.8805 + 11.8805i 0.510784 + 0.510784i 0.914767 0.403983i \(-0.132374\pi\)
−0.403983 + 0.914767i \(0.632374\pi\)
\(542\) −16.1163 9.30474i −0.692254 0.399673i
\(543\) 9.29514 + 2.49062i 0.398892 + 0.106883i
\(544\) 0.760918i 0.0326241i
\(545\) 0 0
\(546\) 9.80597 5.66148i 0.419657 0.242289i
\(547\) 17.4832i 0.747526i 0.927524 + 0.373763i \(0.121933\pi\)
−0.927524 + 0.373763i \(0.878067\pi\)
\(548\) −0.0461389 0.172193i −0.00197096 0.00735571i
\(549\) −9.69421 9.69421i −0.413739 0.413739i
\(550\) 0 0
\(551\) 4.53939 7.86245i 0.193384 0.334952i
\(552\) −2.39572 8.94097i −0.101969 0.380553i
\(553\) −7.17221 + 4.14088i −0.304993 + 0.176088i
\(554\) −1.79401 −0.0762202
\(555\) 0 0
\(556\) 1.61418 0.0684563
\(557\) 27.2299 15.7212i 1.15377 0.666129i 0.203967 0.978978i \(-0.434617\pi\)
0.949803 + 0.312849i \(0.101283\pi\)
\(558\) 1.80934 + 6.75253i 0.0765953 + 0.285858i
\(559\) 21.8876 37.9105i 0.925747 1.60344i
\(560\) 0 0
\(561\) 4.00969 + 4.00969i 0.169289 + 0.169289i
\(562\) 6.67954 + 24.9284i 0.281759 + 1.05154i
\(563\) 17.3599i 0.731633i 0.930687 + 0.365816i \(0.119210\pi\)
−0.930687 + 0.365816i \(0.880790\pi\)
\(564\) 0.517138 0.298570i 0.0217754 0.0125720i
\(565\) 0 0
\(566\) 24.1975i 1.01710i
\(567\) −5.41552 1.45108i −0.227430 0.0609398i
\(568\) −29.6544 17.1210i −1.24427 0.718380i
\(569\) 13.2625 + 13.2625i 0.555994 + 0.555994i 0.928165 0.372170i \(-0.121386\pi\)
−0.372170 + 0.928165i \(0.621386\pi\)
\(570\) 0 0
\(571\) −13.5109 23.4016i −0.565415 0.979327i −0.997011 0.0772604i \(-0.975383\pi\)
0.431596 0.902067i \(-0.357951\pi\)
\(572\) −1.28443 2.22470i −0.0537048 0.0930195i
\(573\) −8.71941 + 15.1025i −0.364259 + 0.630914i
\(574\) −0.262664 0.980277i −0.0109634 0.0409160i
\(575\) 0 0
\(576\) −15.3167 + 8.84312i −0.638197 + 0.368463i
\(577\) 12.6946 + 21.9876i 0.528482 + 0.915357i 0.999449 + 0.0332064i \(0.0105719\pi\)
−0.470967 + 0.882151i \(0.656095\pi\)
\(578\) 21.5467i 0.896223i
\(579\) −9.97220 + 2.67204i −0.414430 + 0.111046i
\(580\) 0 0
\(581\) −6.64615 −0.275729
\(582\) −15.0314 15.0314i −0.623072 0.623072i
\(583\) 50.5020 + 13.5320i 2.09158 + 0.560436i
\(584\) −5.69922 5.69922i −0.235836 0.235836i
\(585\) 0 0
\(586\) −20.9648 + 20.9648i −0.866046 + 0.866046i
\(587\) −36.6636 21.1677i −1.51327 0.873686i −0.999879 0.0155295i \(-0.995057\pi\)
−0.513389 0.858156i \(-0.671610\pi\)
\(588\) 0.315262 0.0844742i 0.0130012 0.00348366i
\(589\) 3.91080 + 2.25790i 0.161142 + 0.0930352i
\(590\) 0 0
\(591\) 4.60399i 0.189383i
\(592\) 15.5799 + 20.0698i 0.640330 + 0.824864i
\(593\) 22.5131 + 22.5131i 0.924503 + 0.924503i 0.997344 0.0728403i \(-0.0232063\pi\)
−0.0728403 + 0.997344i \(0.523206\pi\)
\(594\) 7.79637 29.0965i 0.319889 1.19384i
\(595\) 0 0
\(596\) −0.648720 0.374539i −0.0265726 0.0153417i
\(597\) 6.71134 11.6244i 0.274677 0.475754i
\(598\) 34.3912i 1.40636i
\(599\) −13.9673 8.06402i −0.570688 0.329487i 0.186736 0.982410i \(-0.440209\pi\)
−0.757424 + 0.652923i \(0.773542\pi\)
\(600\) 0 0
\(601\) 12.0579 + 20.8849i 0.491852 + 0.851912i 0.999956 0.00938333i \(-0.00298685\pi\)
−0.508104 + 0.861296i \(0.669654\pi\)
\(602\) −12.6871 + 12.6871i −0.517086 + 0.517086i
\(603\) −15.3301 + 15.3301i −0.624290 + 0.624290i
\(604\) −1.68093 + 0.970484i −0.0683960 + 0.0394884i
\(605\) 0 0
\(606\) −5.76017 + 5.76017i −0.233991 + 0.233991i
\(607\) −4.09934 + 2.36675i −0.166387 + 0.0960635i −0.580881 0.813988i \(-0.697292\pi\)
0.414494 + 0.910052i \(0.363959\pi\)
\(608\) 0.295323 1.10216i 0.0119769 0.0446984i
\(609\) 5.43249 + 1.45563i 0.220136 + 0.0589851i
\(610\) 0 0
\(611\) 44.0578 11.8053i 1.78239 0.477589i
\(612\) 0.271475 0.156736i 0.0109737 0.00633568i
\(613\) 19.9102 + 5.33493i 0.804167 + 0.215476i 0.637413 0.770523i \(-0.280005\pi\)
0.166754 + 0.985999i \(0.446671\pi\)
\(614\) 9.86883 + 2.64434i 0.398273 + 0.106717i
\(615\) 0 0
\(616\) −5.60249 20.9088i −0.225731 0.842439i
\(617\) −3.95109 + 14.7457i −0.159065 + 0.593638i 0.839658 + 0.543115i \(0.182755\pi\)
−0.998723 + 0.0505225i \(0.983911\pi\)
\(618\) −10.6433 10.6433i −0.428135 0.428135i
\(619\) 6.80631 0.273569 0.136784 0.990601i \(-0.456323\pi\)
0.136784 + 0.990601i \(0.456323\pi\)
\(620\) 0 0
\(621\) −12.6408 + 12.6408i −0.507256 + 0.507256i
\(622\) 27.5654 7.38613i 1.10527 0.296157i
\(623\) −25.2791 −1.01279
\(624\) −19.1958 + 5.14350i −0.768447 + 0.205905i
\(625\) 0 0
\(626\) −15.0019 + 25.9841i −0.599597 + 1.03853i
\(627\) −4.25166 7.36408i −0.169795 0.294093i
\(628\) −0.908136 + 0.908136i −0.0362386 + 0.0362386i
\(629\) 5.41263 + 6.97248i 0.215816 + 0.278011i
\(630\) 0 0
\(631\) 24.9840 + 6.69444i 0.994597 + 0.266501i 0.719180 0.694824i \(-0.244518\pi\)
0.275416 + 0.961325i \(0.411184\pi\)
\(632\) 13.4164 3.59491i 0.533675 0.142998i
\(633\) 3.68814 + 13.7643i 0.146591 + 0.547083i
\(634\) 7.74240 + 28.8950i 0.307490 + 1.14757i
\(635\) 0 0
\(636\) −0.416689 + 0.721726i −0.0165228 + 0.0286183i
\(637\) 24.9305 0.987783
\(638\) 7.44984 27.8032i 0.294942 1.10074i
\(639\) 28.8992i 1.14323i
\(640\) 0 0
\(641\) 17.3223 + 30.0031i 0.684190 + 1.18505i 0.973691 + 0.227874i \(0.0731773\pi\)
−0.289501 + 0.957178i \(0.593489\pi\)
\(642\) −5.44121 + 9.42446i −0.214748 + 0.371954i
\(643\) −22.9695 −0.905827 −0.452913 0.891555i \(-0.649615\pi\)
−0.452913 + 0.891555i \(0.649615\pi\)
\(644\) 0.161725 0.603566i 0.00637285 0.0237838i
\(645\) 0 0
\(646\) 1.18228 4.41235i 0.0465164 0.173601i
\(647\) −12.3356 7.12196i −0.484962 0.279993i 0.237520 0.971383i \(-0.423666\pi\)
−0.722482 + 0.691389i \(0.756999\pi\)
\(648\) 8.14323 + 4.70149i 0.319896 + 0.184692i
\(649\) −10.3094 + 38.4753i −0.404680 + 1.51029i
\(650\) 0 0
\(651\) −0.724034 + 2.70213i −0.0283771 + 0.105905i
\(652\) −0.581474 −0.0227723
\(653\) −5.21666 + 9.03552i −0.204144 + 0.353587i −0.949860 0.312677i \(-0.898774\pi\)
0.745716 + 0.666264i \(0.232108\pi\)
\(654\) 4.84854 + 8.39792i 0.189593 + 0.328385i
\(655\) 0 0
\(656\) 1.78118i 0.0695434i
\(657\) −1.76057 + 6.57055i −0.0686865 + 0.256341i
\(658\) −18.6950 −0.728808
\(659\) −9.90312 + 17.1527i −0.385771 + 0.668174i −0.991876 0.127210i \(-0.959398\pi\)
0.606105 + 0.795385i \(0.292731\pi\)
\(660\) 0 0
\(661\) −5.73632 21.4082i −0.223117 0.832683i −0.983150 0.182799i \(-0.941484\pi\)
0.760033 0.649884i \(-0.225183\pi\)
\(662\) −12.2572 45.7447i −0.476391 1.77792i
\(663\) −6.66884 + 1.78691i −0.258996 + 0.0693978i
\(664\) 10.7667 + 2.88494i 0.417830 + 0.111957i
\(665\) 0 0
\(666\) 7.73498 18.9745i 0.299724 0.735246i
\(667\) −12.0789 + 12.0789i −0.467697 + 0.467697i
\(668\) −0.145519 0.252047i −0.00563031 0.00975198i
\(669\) −4.47828 + 7.75660i −0.173140 + 0.299888i
\(670\) 0 0
\(671\) −27.1211 + 7.26707i −1.04700 + 0.280542i
\(672\) 0.706852 0.0272674
\(673\) 47.2502 12.6606i 1.82136 0.488032i 0.824404 0.566001i \(-0.191510\pi\)
0.996956 + 0.0779695i \(0.0248437\pi\)
\(674\) 10.5636 10.5636i 0.406893 0.406893i
\(675\) 0 0
\(676\) 1.92167 0.0739104
\(677\) −8.62241 8.62241i −0.331386 0.331386i 0.521727 0.853113i \(-0.325288\pi\)
−0.853113 + 0.521727i \(0.825288\pi\)
\(678\) 2.27362 8.48527i 0.0873179 0.325875i
\(679\) 7.63567 + 28.4967i 0.293030 + 1.09360i
\(680\) 0 0
\(681\) 5.24039 + 1.40416i 0.200812 + 0.0538075i
\(682\) 13.8294 + 3.70557i 0.529554 + 0.141894i
\(683\) 13.8168 7.97715i 0.528686 0.305237i −0.211795 0.977314i \(-0.567931\pi\)
0.740481 + 0.672077i \(0.234598\pi\)
\(684\) −0.454052 + 0.121663i −0.0173611 + 0.00465190i
\(685\) 0 0
\(686\) −25.9616 6.95640i −0.991220 0.265597i
\(687\) −2.39756 + 8.94781i −0.0914726 + 0.341380i
\(688\) 27.2715 15.7452i 1.03972 0.600280i
\(689\) −45.0122 + 45.0122i −1.71483 + 1.71483i
\(690\) 0 0
\(691\) −16.8398 + 9.72247i −0.640617 + 0.369860i −0.784852 0.619683i \(-0.787261\pi\)
0.144235 + 0.989543i \(0.453928\pi\)
\(692\) −0.336273 + 0.336273i −0.0127832 + 0.0127832i
\(693\) −12.9181 + 12.9181i −0.490716 + 0.490716i
\(694\) −7.09907 12.2960i −0.269477 0.466748i
\(695\) 0 0
\(696\) −8.16874 4.71623i −0.309635 0.178768i
\(697\) 0.618801i 0.0234388i
\(698\) −9.23449 + 15.9946i −0.349531 + 0.605405i
\(699\) −10.7110 6.18399i −0.405127 0.233900i
\(700\) 0 0
\(701\) −11.0896 + 41.3868i −0.418847 + 1.56316i 0.358155 + 0.933662i \(0.383406\pi\)
−0.777003 + 0.629497i \(0.783261\pi\)
\(702\) 25.9336 + 25.9336i 0.978799 + 0.978799i
\(703\) −5.13386 12.2001i −0.193627 0.460134i
\(704\) 36.2219i 1.36517i
\(705\) 0 0
\(706\) 4.26805 + 2.46416i 0.160630 + 0.0927399i
\(707\) 10.9202 2.92605i 0.410696 0.110046i
\(708\) −0.549852 0.317457i −0.0206647 0.0119308i
\(709\) 11.6125 11.6125i 0.436116 0.436116i −0.454586 0.890703i \(-0.650213\pi\)
0.890703 + 0.454586i \(0.150213\pi\)
\(710\) 0 0
\(711\) −8.28904 8.28904i −0.310863 0.310863i
\(712\) 40.9520 + 10.9731i 1.53474 + 0.411233i
\(713\) −6.00808 6.00808i −0.225004 0.225004i
\(714\) 2.82979 0.105902
\(715\) 0 0
\(716\) 0.311992 0.0835981i 0.0116597 0.00312421i
\(717\) 14.6606i 0.547509i
\(718\) 3.27256 + 5.66824i 0.122131 + 0.211537i
\(719\) −28.4138 + 16.4047i −1.05966 + 0.611794i −0.925337 0.379144i \(-0.876218\pi\)
−0.134320 + 0.990938i \(0.542885\pi\)
\(720\) 0 0
\(721\) 5.40658 + 20.1776i 0.201352 + 0.751454i
\(722\) 10.3181 17.8715i 0.384000 0.665108i
\(723\) −11.4951 19.9101i −0.427508 0.740465i
\(724\) −0.544743 0.943522i −0.0202452 0.0350657i
\(725\) 0 0
\(726\) −9.84315 9.84315i −0.365313 0.365313i
\(727\) −34.1431 19.7125i −1.26630 0.731097i −0.292011 0.956415i \(-0.594324\pi\)
−0.974285 + 0.225318i \(0.927658\pi\)
\(728\) 25.4571 + 6.82122i 0.943504 + 0.252811i
\(729\) 2.79732i 0.103604i
\(730\) 0 0
\(731\) 9.47442 5.47006i 0.350424 0.202317i
\(732\) 0.447549i 0.0165419i
\(733\) −10.9468 40.8538i −0.404328 1.50897i −0.805293 0.592878i \(-0.797992\pi\)
0.400965 0.916093i \(-0.368675\pi\)
\(734\) 11.0551 + 11.0551i 0.408050 + 0.408050i
\(735\) 0 0
\(736\) −1.07346 + 1.85929i −0.0395683 + 0.0685343i
\(737\) 11.4919 + 42.8884i 0.423310 + 1.57981i
\(738\) 1.24403 0.718244i 0.0457935 0.0264389i
\(739\) 32.4999 1.19553 0.597764 0.801672i \(-0.296056\pi\)
0.597764 + 0.801672i \(0.296056\pi\)
\(740\) 0 0
\(741\) 10.3531 0.380329
\(742\) 22.5956 13.0456i 0.829509 0.478917i
\(743\) 2.97059 + 11.0864i 0.108980 + 0.406720i 0.998766 0.0496580i \(-0.0158131\pi\)
−0.889786 + 0.456378i \(0.849146\pi\)
\(744\) 2.34586 4.06315i 0.0860035 0.148962i
\(745\) 0 0
\(746\) −20.0262 20.0262i −0.733212 0.733212i
\(747\) −2.43480 9.08680i −0.0890847 0.332469i
\(748\) 0.642000i 0.0234739i
\(749\) 13.0795 7.55148i 0.477916 0.275925i
\(750\) 0 0
\(751\) 35.5418i 1.29694i −0.761240 0.648470i \(-0.775409\pi\)
0.761240 0.648470i \(-0.224591\pi\)
\(752\) 31.6937 + 8.49230i 1.15575 + 0.309682i
\(753\) −1.95346 1.12783i −0.0711882 0.0411005i
\(754\) 24.7809 + 24.7809i 0.902466 + 0.902466i
\(755\) 0 0
\(756\) −0.333181 0.577086i −0.0121177 0.0209884i
\(757\) −18.3273 31.7438i −0.666117 1.15375i −0.978981 0.203951i \(-0.934622\pi\)
0.312864 0.949798i \(-0.398712\pi\)
\(758\) −3.54943 + 6.14778i −0.128921 + 0.223298i
\(759\) 4.14095 + 15.4542i 0.150307 + 0.560953i
\(760\) 0 0
\(761\) 18.5429 10.7058i 0.672180 0.388083i −0.124722 0.992192i \(-0.539804\pi\)
0.796902 + 0.604109i \(0.206471\pi\)
\(762\) −0.323584 0.560464i −0.0117222 0.0203035i
\(763\) 13.4579i 0.487209i
\(764\) 1.90709 0.511002i 0.0689960 0.0184874i
\(765\) 0 0
\(766\) 9.37414 0.338701
\(767\) −34.2929 34.2929i −1.23824 1.23824i
\(768\) −1.75848 0.471184i −0.0634538 0.0170024i
\(769\) −23.2703 23.2703i −0.839147 0.839147i 0.149599 0.988747i \(-0.452202\pi\)
−0.988747 + 0.149599i \(0.952202\pi\)
\(770\) 0 0
\(771\) −3.62993 + 3.62993i −0.130729 + 0.130729i
\(772\) 1.01225 + 0.584422i 0.0364316 + 0.0210338i
\(773\) 33.5748 8.99634i 1.20760 0.323576i 0.401781 0.915736i \(-0.368391\pi\)
0.805821 + 0.592160i \(0.201725\pi\)
\(774\) −21.9939 12.6982i −0.790556 0.456428i
\(775\) 0 0
\(776\) 49.4790i 1.77619i
\(777\) 6.47705 5.02804i 0.232363 0.180380i
\(778\) −8.81761 8.81761i −0.316127 0.316127i
\(779\) 0.240165 0.896309i 0.00860481 0.0321136i
\(780\) 0 0
\(781\) 51.2568 + 29.5931i 1.83411 + 1.05893i
\(782\) −4.29746 + 7.44341i −0.153677 + 0.266176i
\(783\) 18.2168i 0.651015i
\(784\) 15.5314 + 8.96708i 0.554695 + 0.320253i
\(785\) 0 0
\(786\) −9.43420 16.3405i −0.336507 0.582847i
\(787\) 1.73887 1.73887i 0.0619839 0.0619839i −0.675435 0.737419i \(-0.736044\pi\)
0.737419 + 0.675435i \(0.236044\pi\)
\(788\) −0.368577 + 0.368577i −0.0131300 + 0.0131300i
\(789\) −10.7482 + 6.20550i −0.382647 + 0.220922i
\(790\) 0 0
\(791\) −8.62071 + 8.62071i −0.306517 + 0.306517i
\(792\) 26.5346 15.3198i 0.942866 0.544364i
\(793\) 8.84790 33.0208i 0.314198 1.17260i
\(794\) −1.52278 0.408027i −0.0540413 0.0144803i
\(795\) 0 0
\(796\) −1.46789 + 0.393319i −0.0520279 + 0.0139408i
\(797\) −27.1461 + 15.6728i −0.961566 + 0.555160i −0.896655 0.442731i \(-0.854010\pi\)
−0.0649113 + 0.997891i \(0.520676\pi\)
\(798\) −4.09883 1.09828i −0.145097 0.0388786i
\(799\) 11.0107 + 2.95032i 0.389532 + 0.104375i
\(800\) 0 0
\(801\) −9.26094 34.5623i −0.327219 1.22120i
\(802\) −9.20305 + 34.3462i −0.324971 + 1.21281i
\(803\) 9.85096 + 9.85096i 0.347633 + 0.347633i
\(804\) −0.707740 −0.0249601
\(805\) 0 0
\(806\) −12.3261 + 12.3261i −0.434167 + 0.434167i
\(807\) −16.2488 + 4.35386i −0.571986 + 0.153263i
\(808\) −18.9608 −0.667037
\(809\) 0.121396 0.0325280i 0.00426806 0.00114362i −0.256684 0.966495i \(-0.582630\pi\)
0.260952 + 0.965352i \(0.415963\pi\)
\(810\) 0 0
\(811\) −7.32474 + 12.6868i −0.257207 + 0.445495i −0.965492 0.260431i \(-0.916135\pi\)
0.708286 + 0.705926i \(0.249469\pi\)
\(812\) −0.318372 0.551436i −0.0111727 0.0193516i
\(813\) 7.45343 7.45343i 0.261403 0.261403i
\(814\) −25.7332 33.1492i −0.901950 1.16188i
\(815\) 0 0
\(816\) −4.79733 1.28544i −0.167940 0.0449995i
\(817\) −15.8463 + 4.24601i −0.554393 + 0.148549i
\(818\) −3.59022 13.3989i −0.125529 0.468482i
\(819\) −5.75691 21.4851i −0.201163 0.750749i
\(820\) 0 0
\(821\) −7.54707 + 13.0719i −0.263394 + 0.456213i −0.967142 0.254238i \(-0.918175\pi\)
0.703747 + 0.710450i \(0.251509\pi\)
\(822\) 2.27784 0.0794487
\(823\) 4.09584 15.2859i 0.142772 0.532832i −0.857073 0.515196i \(-0.827719\pi\)
0.999844 0.0176363i \(-0.00561411\pi\)
\(824\) 35.0345i 1.22048i
\(825\) 0 0
\(826\) 9.93885 + 17.2146i 0.345817 + 0.598972i
\(827\) −11.5992 + 20.0903i −0.403343 + 0.698610i −0.994127 0.108220i \(-0.965485\pi\)
0.590784 + 0.806829i \(0.298818\pi\)
\(828\) 0.884458 0.0307371
\(829\) 6.63771 24.7723i 0.230537 0.860377i −0.749573 0.661922i \(-0.769741\pi\)
0.980110 0.198455i \(-0.0635924\pi\)
\(830\) 0 0
\(831\) 0.263001 0.981534i 0.00912342 0.0340491i
\(832\) −38.1929 22.0507i −1.32410 0.764470i
\(833\) 5.39580 + 3.11527i 0.186953 + 0.107938i
\(834\) −5.33824 + 19.9226i −0.184848 + 0.689863i
\(835\) 0 0
\(836\) −0.249169 + 0.929911i −0.00861769 + 0.0321616i
\(837\) −9.06108 −0.313197
\(838\) −11.9270 + 20.6583i −0.412013 + 0.713628i
\(839\) 28.4964 + 49.3573i 0.983806 + 1.70400i 0.647125 + 0.762384i \(0.275971\pi\)
0.336681 + 0.941619i \(0.390696\pi\)
\(840\) 0 0
\(841\) 11.5929i 0.399755i
\(842\) 0.241833 0.902532i 0.00833410 0.0311033i
\(843\) −14.6180 −0.503469
\(844\) 0.806661 1.39718i 0.0277664 0.0480929i
\(845\) 0 0
\(846\) −6.84888 25.5604i −0.235469 0.878783i
\(847\) 5.00013 + 18.6607i 0.171807 + 0.641191i
\(848\) −44.2322 + 11.8520i −1.51894 + 0.406999i
\(849\) 13.2389 + 3.54735i 0.454357 + 0.121745i
\(850\) 0 0
\(851\) 3.38927 + 24.6729i 0.116183 + 0.845778i
\(852\) −0.667089 + 0.667089i −0.0228541 + 0.0228541i
\(853\) 12.2105 + 21.1492i 0.418079 + 0.724135i 0.995746 0.0921378i \(-0.0293700\pi\)
−0.577667 + 0.816273i \(0.696037\pi\)
\(854\) −7.00586 + 12.1345i −0.239735 + 0.415234i
\(855\) 0 0
\(856\) −24.4667 + 6.55583i −0.836254 + 0.224074i
\(857\) −23.7142 −0.810060 −0.405030 0.914303i \(-0.632739\pi\)
−0.405030 + 0.914303i \(0.632739\pi\)
\(858\) 31.7056 8.49550i 1.08241 0.290032i
\(859\) −1.55152 + 1.55152i −0.0529373 + 0.0529373i −0.733080 0.680143i \(-0.761918\pi\)
0.680143 + 0.733080i \(0.261918\pi\)
\(860\) 0 0
\(861\) 0.574833 0.0195903
\(862\) −14.1148 14.1148i −0.480753 0.480753i
\(863\) 10.4349 38.9434i 0.355207 1.32565i −0.525018 0.851091i \(-0.675941\pi\)
0.880224 0.474558i \(-0.157392\pi\)
\(864\) 0.592573 + 2.21151i 0.0201597 + 0.0752372i
\(865\) 0 0
\(866\) 31.6988 + 8.49368i 1.07717 + 0.288627i
\(867\) 11.7886 + 3.15873i 0.400360 + 0.107276i
\(868\) 0.274286 0.158359i 0.00930986 0.00537505i
\(869\) −23.1899 + 6.21371i −0.786663 + 0.210786i
\(870\) 0 0
\(871\) −52.2180 13.9918i −1.76934 0.474094i
\(872\) −5.84175 + 21.8017i −0.197827 + 0.738299i
\(873\) −36.1642 + 20.8794i −1.22397 + 0.706660i
\(874\) 9.11358 9.11358i 0.308271 0.308271i
\(875\) 0 0
\(876\) −0.192310 + 0.111030i −0.00649755 + 0.00375136i
\(877\) −5.84034 + 5.84034i −0.197214 + 0.197214i −0.798805 0.601590i \(-0.794534\pi\)
0.601590 + 0.798805i \(0.294534\pi\)
\(878\) −11.5997 + 11.5997i −0.391472 + 0.391472i
\(879\) −8.39676 14.5436i −0.283216 0.490544i
\(880\) 0 0
\(881\) −32.5692 18.8038i −1.09728 0.633517i −0.161777 0.986827i \(-0.551723\pi\)
−0.935506 + 0.353311i \(0.885056\pi\)
\(882\) 14.4636i 0.487014i
\(883\) −11.9594 + 20.7143i −0.402466 + 0.697091i −0.994023 0.109172i \(-0.965180\pi\)
0.591557 + 0.806263i \(0.298513\pi\)
\(884\) 0.676934 + 0.390828i 0.0227678 + 0.0131450i
\(885\) 0 0
\(886\) −9.87255 + 36.8448i −0.331675 + 1.23783i
\(887\) 21.5121 + 21.5121i 0.722305 + 0.722305i 0.969074 0.246769i \(-0.0793690\pi\)
−0.246769 + 0.969074i \(0.579369\pi\)
\(888\) −12.6753 + 5.33386i −0.425356 + 0.178993i
\(889\) 0.898159i 0.0301233i
\(890\) 0 0
\(891\) −14.0754 8.12641i −0.471542 0.272245i
\(892\) 0.979477 0.262450i 0.0327953 0.00878748i
\(893\) −14.8035 8.54683i −0.495382 0.286009i
\(894\) 6.76804 6.76804i 0.226357 0.226357i
\(895\) 0 0
\(896\) 14.0015 + 14.0015i 0.467759 + 0.467759i
\(897\) −18.8160 5.04174i −0.628249 0.168339i
\(898\) −37.3214 37.3214i −1.24543 1.24543i
\(899\) −8.65834 −0.288772
\(900\) 0 0
\(901\) −15.3668 + 4.11751i −0.511941 + 0.137174i
\(902\) 2.94197i 0.0979567i
\(903\) −5.08139 8.80122i −0.169098 0.292886i
\(904\) 17.7075 10.2234i 0.588944 0.340027i
\(905\) 0 0
\(906\) −6.41898 23.9559i −0.213256 0.795883i
\(907\) 15.3447 26.5778i 0.509512 0.882500i −0.490428 0.871482i \(-0.663159\pi\)
0.999939 0.0110183i \(-0.00350730\pi\)
\(908\) −0.307114 0.531937i −0.0101919 0.0176530i
\(909\) 8.00116 + 13.8584i 0.265382 + 0.459655i
\(910\) 0 0
\(911\) −2.31494 2.31494i −0.0766975 0.0766975i 0.667717 0.744415i \(-0.267271\pi\)
−0.744415 + 0.667717i \(0.767271\pi\)
\(912\) 6.44985 + 3.72382i 0.213576 + 0.123308i
\(913\) −18.6100 4.98654i −0.615902 0.165030i
\(914\) 59.6829i 1.97413i
\(915\) 0 0
\(916\) 0.908266 0.524388i 0.0300100 0.0173263i
\(917\) 26.1861i 0.864742i
\(918\) 2.37229 + 8.85349i 0.0782971 + 0.292209i
\(919\) 19.7684 + 19.7684i 0.652098 + 0.652098i 0.953498 0.301400i \(-0.0974538\pi\)
−0.301400 + 0.953498i \(0.597454\pi\)
\(920\) 0 0
\(921\) −2.89353 + 5.01175i −0.0953452 + 0.165143i
\(922\) −11.3443 42.3373i −0.373603 1.39431i
\(923\) −62.4069 + 36.0306i −2.05415 + 1.18596i
\(924\) −0.596383 −0.0196196
\(925\) 0 0
\(926\) −6.13852 −0.201724
\(927\) −25.6067 + 14.7840i −0.841034 + 0.485571i
\(928\) 0.566234 + 2.11322i 0.0185876 + 0.0693697i
\(929\) −9.70159 + 16.8036i −0.318299 + 0.551310i −0.980133 0.198340i \(-0.936445\pi\)
0.661834 + 0.749650i \(0.269778\pi\)
\(930\) 0 0
\(931\) −6.60652 6.60652i −0.216520 0.216520i
\(932\) 0.362414 + 1.35255i 0.0118713 + 0.0443041i
\(933\) 16.1643i 0.529196i
\(934\) −12.2717 + 7.08504i −0.401541 + 0.231830i
\(935\) 0 0
\(936\) 37.3046i 1.21934i
\(937\) 19.7492 + 5.29178i 0.645178 + 0.172875i 0.566548 0.824029i \(-0.308279\pi\)
0.0786302 + 0.996904i \(0.474945\pi\)
\(938\) 19.1891 + 11.0788i 0.626547 + 0.361737i
\(939\) −12.0171 12.0171i −0.392162 0.392162i
\(940\) 0 0
\(941\) 0.662999 + 1.14835i 0.0216131 + 0.0374351i 0.876630 0.481166i \(-0.159786\pi\)
−0.855017 + 0.518601i \(0.826453\pi\)
\(942\) −8.20516 14.2118i −0.267339 0.463044i
\(943\) −0.872970 + 1.51203i −0.0284278 + 0.0492384i
\(944\) −9.02952 33.6986i −0.293886 1.09680i
\(945\) 0 0
\(946\) −45.0442 + 26.0063i −1.46451 + 0.845537i
\(947\) 7.29012 + 12.6269i 0.236897 + 0.410318i 0.959822 0.280608i \(-0.0905362\pi\)
−0.722925 + 0.690926i \(0.757203\pi\)
\(948\) 0.382677i 0.0124288i
\(949\) −16.3839 + 4.39006i −0.531845 + 0.142507i
\(950\) 0 0
\(951\) −16.9440 −0.549447
\(952\) 4.65741 + 4.65741i 0.150948 + 0.150948i
\(953\) −23.9459 6.41629i −0.775684 0.207844i −0.150803 0.988564i \(-0.548186\pi\)
−0.624881 + 0.780720i \(0.714853\pi\)
\(954\) 26.1141 + 26.1141i 0.845474 + 0.845474i
\(955\) 0 0
\(956\) 1.17367 1.17367i 0.0379591 0.0379591i
\(957\) 14.1195 + 8.15188i 0.456418 + 0.263513i
\(958\) 42.0854 11.2767i 1.35972 0.364335i
\(959\) −2.73772 1.58062i −0.0884057 0.0510410i
\(960\) 0 0
\(961\) 26.6933i 0.861075i
\(962\) 50.6186 6.95337i 1.63201 0.224186i
\(963\) 15.1162 + 15.1162i 0.487114 + 0.487114i
\(964\) −0.673673 + 2.51418i −0.0216975 + 0.0809763i
\(965\) 0 0
\(966\) 6.91453 + 3.99210i 0.222471 + 0.128444i
\(967\) −16.6321 + 28.8077i −0.534853 + 0.926393i 0.464317 + 0.885669i \(0.346300\pi\)
−0.999170 + 0.0407238i \(0.987034\pi\)
\(968\) 32.4007i 1.04140i
\(969\) 2.24075 + 1.29370i 0.0719832 + 0.0415595i
\(970\) 0 0
\(971\) −6.82047 11.8134i −0.218879 0.379110i 0.735586 0.677431i \(-0.236907\pi\)
−0.954466 + 0.298321i \(0.903573\pi\)
\(972\) 1.04244 1.04244i 0.0334363 0.0334363i
\(973\) 20.2406 20.2406i 0.648884 0.648884i
\(974\) 11.0349 6.37101i 0.353581 0.204140i
\(975\) 0 0
\(976\) 17.3892 17.3892i 0.556614 0.556614i
\(977\) 6.38040 3.68372i 0.204127 0.117853i −0.394452 0.918917i \(-0.629066\pi\)
0.598579 + 0.801064i \(0.295732\pi\)
\(978\) 1.92299 7.17671i 0.0614905 0.229486i
\(979\) −70.7846 18.9667i −2.26228 0.606177i
\(980\) 0 0
\(981\) 18.4000 4.93027i 0.587467 0.157411i
\(982\) −46.6885 + 26.9556i −1.48989 + 0.860189i
\(983\) 37.1014 + 9.94128i 1.18335 + 0.317078i 0.796254 0.604962i \(-0.206812\pi\)
0.387095 + 0.922040i \(0.373478\pi\)
\(984\) −0.931226 0.249521i −0.0296864 0.00795445i
\(985\) 0 0
\(986\) 2.26684 + 8.45998i 0.0721910 + 0.269421i
\(987\) 2.74069 10.2284i 0.0872370 0.325573i
\(988\) −0.828826 0.828826i −0.0263685 0.0263685i
\(989\) 30.8674 0.981527
\(990\) 0 0
\(991\) −10.4917 + 10.4917i −0.333278 + 0.333278i −0.853830 0.520552i \(-0.825726\pi\)
0.520552 + 0.853830i \(0.325726\pi\)
\(992\) −1.05112 + 0.281646i −0.0333730 + 0.00894228i
\(993\) 26.8246 0.851253
\(994\) 28.5294 7.64444i 0.904899 0.242467i
\(995\) 0 0
\(996\) 0.153550 0.265957i 0.00486542 0.00842716i
\(997\) −12.3915 21.4627i −0.392443 0.679731i 0.600328 0.799754i \(-0.295037\pi\)
−0.992771 + 0.120023i \(0.961703\pi\)
\(998\) −3.72781 + 3.72781i −0.118002 + 0.118002i
\(999\) 21.1610 + 16.0495i 0.669505 + 0.507783i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 925.2.y.b.193.12 68
5.2 odd 4 925.2.t.b.82.12 68
5.3 odd 4 185.2.p.a.82.6 68
5.4 even 2 185.2.u.a.8.6 yes 68
37.14 odd 12 925.2.t.b.643.12 68
185.14 odd 12 185.2.p.a.88.6 yes 68
185.88 even 12 185.2.u.a.162.6 yes 68
185.162 even 12 inner 925.2.y.b.532.12 68
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
185.2.p.a.82.6 68 5.3 odd 4
185.2.p.a.88.6 yes 68 185.14 odd 12
185.2.u.a.8.6 yes 68 5.4 even 2
185.2.u.a.162.6 yes 68 185.88 even 12
925.2.t.b.82.12 68 5.2 odd 4
925.2.t.b.643.12 68 37.14 odd 12
925.2.y.b.193.12 68 1.1 even 1 trivial
925.2.y.b.532.12 68 185.162 even 12 inner