Properties

Label 925.2.t.b.643.12
Level $925$
Weight $2$
Character 925.643
Analytic conductor $7.386$
Analytic rank $0$
Dimension $68$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [925,2,Mod(82,925)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("925.82"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(925, base_ring=CyclotomicField(12)) chi = DirichletCharacter(H, H._module([3, 1])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 925 = 5^{2} \cdot 37 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 925.t (of order \(12\), degree \(4\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [68] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.38616218697\)
Analytic rank: \(0\)
Dimension: \(68\)
Relative dimension: \(17\) over \(\Q(\zeta_{12})\)
Twist minimal: no (minimal twist has level 185)
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 643.12
Character \(\chi\) \(=\) 925.643
Dual form 925.2.t.b.82.12

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.723320 - 1.25283i) q^{2} +(0.791482 + 0.212077i) q^{3} +(-0.0463849 - 0.0803411i) q^{4} +(0.838191 - 0.838191i) q^{6} +(1.58905 + 0.425785i) q^{7} +2.75908 q^{8} +(-2.01661 - 1.16429i) q^{9} +4.76900i q^{11} +(-0.0196744 - 0.0734257i) q^{12} +(2.90320 + 5.02850i) q^{13} +(1.68283 - 1.68283i) q^{14} +(2.08847 - 3.61733i) q^{16} +(-1.25670 - 0.725557i) q^{17} +(-2.91731 + 1.68431i) q^{18} +(0.563197 - 2.10188i) q^{19} +(1.16741 + 0.674003i) q^{21} +(5.97473 + 3.44951i) q^{22} +4.09430 q^{23} +(2.18376 + 0.585137i) q^{24} +8.39979 q^{26} +(-3.08741 - 3.08741i) q^{27} +(-0.0395000 - 0.147416i) q^{28} +(-2.95018 + 2.95018i) q^{29} +(-1.46743 - 1.46743i) q^{31} +(-0.262184 - 0.454116i) q^{32} +(-1.01139 + 3.77458i) q^{33} +(-1.81799 + 1.04962i) q^{34} +0.216022i q^{36} +(0.827803 - 6.02617i) q^{37} +(-2.22592 - 2.22592i) q^{38} +(1.23141 + 4.59567i) q^{39} +(0.369301 - 0.213216i) q^{41} +(1.68882 - 0.975040i) q^{42} -7.53912 q^{43} +(0.383146 - 0.221210i) q^{44} +(2.96149 - 5.12945i) q^{46} +(5.55465 - 5.55465i) q^{47} +(2.42014 - 2.42014i) q^{48} +(-3.71838 - 2.14681i) q^{49} +(-0.840783 - 0.840783i) q^{51} +(0.269330 - 0.466493i) q^{52} +(10.5896 - 2.83749i) q^{53} +(-6.10117 + 1.63480i) q^{54} +(4.38432 + 1.17477i) q^{56} +(0.891520 - 1.54416i) q^{57} +(1.56214 + 5.82999i) q^{58} +(8.06779 - 2.16176i) q^{59} +(-1.52382 + 5.68696i) q^{61} +(-2.89985 + 0.777013i) q^{62} +(-2.70876 - 2.70876i) q^{63} +7.59529 q^{64} +(3.99733 + 3.99733i) q^{66} +(-2.40971 + 8.99317i) q^{67} +0.134620i q^{68} +(3.24056 + 0.868307i) q^{69} +(-6.20532 - 10.7479i) q^{71} +(-5.56398 - 3.21236i) q^{72} +(2.06563 - 2.06563i) q^{73} +(-6.95099 - 5.39595i) q^{74} +(-0.194991 + 0.0522477i) q^{76} +(-2.03057 + 7.57818i) q^{77} +(6.64828 + 1.78140i) q^{78} +(1.30294 - 4.86264i) q^{79} +(1.70401 + 2.95143i) q^{81} -0.616894i q^{82} +(-3.90229 + 1.04562i) q^{83} -0.125054i q^{84} +(-5.45320 + 9.44522i) q^{86} +(-2.96068 + 1.70935i) q^{87} +13.1580i q^{88} +(-3.97708 - 14.8427i) q^{89} +(2.47228 + 9.22669i) q^{91} +(-0.189914 - 0.328940i) q^{92} +(-0.850234 - 1.47265i) q^{93} +(-2.94123 - 10.9768i) q^{94} +(-0.111207 - 0.415028i) q^{96} +17.9332i q^{97} +(-5.37917 + 3.10566i) q^{98} +(5.55249 - 9.61720i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 68 q + 4 q^{2} + 8 q^{3} - 30 q^{4} - 8 q^{6} + 2 q^{7} - 12 q^{8} - 14 q^{12} + 6 q^{13} - 26 q^{16} - 12 q^{17} - 18 q^{18} + 4 q^{19} - 12 q^{21} - 6 q^{22} + 12 q^{23} - 24 q^{26} + 68 q^{27} + 26 q^{28}+ \cdots + 32 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/925\mathbb{Z}\right)^\times\).

\(n\) \(76\) \(852\)
\(\chi(n)\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.723320 1.25283i 0.511465 0.885883i −0.488447 0.872594i \(-0.662436\pi\)
0.999912 0.0132894i \(-0.00423027\pi\)
\(3\) 0.791482 + 0.212077i 0.456962 + 0.122443i 0.479955 0.877293i \(-0.340653\pi\)
−0.0229929 + 0.999736i \(0.507320\pi\)
\(4\) −0.0463849 0.0803411i −0.0231925 0.0401705i
\(5\) 0 0
\(6\) 0.838191 0.838191i 0.342190 0.342190i
\(7\) 1.58905 + 0.425785i 0.600605 + 0.160932i 0.546296 0.837592i \(-0.316038\pi\)
0.0543096 + 0.998524i \(0.482704\pi\)
\(8\) 2.75908 0.975481
\(9\) −2.01661 1.16429i −0.672203 0.388097i
\(10\) 0 0
\(11\) 4.76900i 1.43791i 0.695059 + 0.718953i \(0.255378\pi\)
−0.695059 + 0.718953i \(0.744622\pi\)
\(12\) −0.0196744 0.0734257i −0.00567950 0.0211962i
\(13\) 2.90320 + 5.02850i 0.805204 + 1.39465i 0.916153 + 0.400828i \(0.131278\pi\)
−0.110949 + 0.993826i \(0.535389\pi\)
\(14\) 1.68283 1.68283i 0.449755 0.449755i
\(15\) 0 0
\(16\) 2.08847 3.61733i 0.522117 0.904333i
\(17\) −1.25670 0.725557i −0.304795 0.175973i 0.339800 0.940498i \(-0.389641\pi\)
−0.644595 + 0.764524i \(0.722974\pi\)
\(18\) −2.91731 + 1.68431i −0.687616 + 0.396995i
\(19\) 0.563197 2.10188i 0.129206 0.482204i −0.870748 0.491729i \(-0.836365\pi\)
0.999955 + 0.00952470i \(0.00303185\pi\)
\(20\) 0 0
\(21\) 1.16741 + 0.674003i 0.254749 + 0.147079i
\(22\) 5.97473 + 3.44951i 1.27382 + 0.735438i
\(23\) 4.09430 0.853720 0.426860 0.904318i \(-0.359620\pi\)
0.426860 + 0.904318i \(0.359620\pi\)
\(24\) 2.18376 + 0.585137i 0.445758 + 0.119441i
\(25\) 0 0
\(26\) 8.39979 1.64733
\(27\) −3.08741 3.08741i −0.594172 0.594172i
\(28\) −0.0395000 0.147416i −0.00746480 0.0278590i
\(29\) −2.95018 + 2.95018i −0.547834 + 0.547834i −0.925814 0.377980i \(-0.876619\pi\)
0.377980 + 0.925814i \(0.376619\pi\)
\(30\) 0 0
\(31\) −1.46743 1.46743i −0.263557 0.263557i 0.562940 0.826498i \(-0.309670\pi\)
−0.826498 + 0.562940i \(0.809670\pi\)
\(32\) −0.262184 0.454116i −0.0463481 0.0802772i
\(33\) −1.01139 + 3.77458i −0.176061 + 0.657069i
\(34\) −1.81799 + 1.04962i −0.311784 + 0.180008i
\(35\) 0 0
\(36\) 0.216022i 0.0360037i
\(37\) 0.827803 6.02617i 0.136090 0.990696i
\(38\) −2.22592 2.22592i −0.361092 0.361092i
\(39\) 1.23141 + 4.59567i 0.197183 + 0.735896i
\(40\) 0 0
\(41\) 0.369301 0.213216i 0.0576751 0.0332988i −0.470885 0.882195i \(-0.656065\pi\)
0.528560 + 0.848896i \(0.322732\pi\)
\(42\) 1.68882 0.975040i 0.260590 0.150452i
\(43\) −7.53912 −1.14971 −0.574853 0.818257i \(-0.694941\pi\)
−0.574853 + 0.818257i \(0.694941\pi\)
\(44\) 0.383146 0.221210i 0.0577615 0.0333486i
\(45\) 0 0
\(46\) 2.96149 5.12945i 0.436648 0.756296i
\(47\) 5.55465 5.55465i 0.810228 0.810228i −0.174440 0.984668i \(-0.555811\pi\)
0.984668 + 0.174440i \(0.0558114\pi\)
\(48\) 2.42014 2.42014i 0.349317 0.349317i
\(49\) −3.71838 2.14681i −0.531198 0.306687i
\(50\) 0 0
\(51\) −0.840783 0.840783i −0.117733 0.117733i
\(52\) 0.269330 0.466493i 0.0373493 0.0646909i
\(53\) 10.5896 2.83749i 1.45460 0.389759i 0.556978 0.830527i \(-0.311961\pi\)
0.897621 + 0.440768i \(0.145294\pi\)
\(54\) −6.10117 + 1.63480i −0.830264 + 0.222469i
\(55\) 0 0
\(56\) 4.38432 + 1.17477i 0.585879 + 0.156986i
\(57\) 0.891520 1.54416i 0.118085 0.204529i
\(58\) 1.56214 + 5.82999i 0.205119 + 0.765515i
\(59\) 8.06779 2.16176i 1.05034 0.281437i 0.307946 0.951404i \(-0.400358\pi\)
0.742391 + 0.669967i \(0.233692\pi\)
\(60\) 0 0
\(61\) −1.52382 + 5.68696i −0.195105 + 0.728140i 0.797135 + 0.603801i \(0.206348\pi\)
−0.992240 + 0.124339i \(0.960319\pi\)
\(62\) −2.89985 + 0.777013i −0.368281 + 0.0986807i
\(63\) −2.70876 2.70876i −0.341272 0.341272i
\(64\) 7.59529 0.949412
\(65\) 0 0
\(66\) 3.99733 + 3.99733i 0.492037 + 0.492037i
\(67\) −2.40971 + 8.99317i −0.294393 + 1.09869i 0.647305 + 0.762231i \(0.275896\pi\)
−0.941698 + 0.336460i \(0.890770\pi\)
\(68\) 0.134620i 0.0163250i
\(69\) 3.24056 + 0.868307i 0.390118 + 0.104532i
\(70\) 0 0
\(71\) −6.20532 10.7479i −0.736436 1.27554i −0.954090 0.299519i \(-0.903174\pi\)
0.217654 0.976026i \(-0.430159\pi\)
\(72\) −5.56398 3.21236i −0.655721 0.378581i
\(73\) 2.06563 2.06563i 0.241763 0.241763i −0.575816 0.817579i \(-0.695316\pi\)
0.817579 + 0.575816i \(0.195316\pi\)
\(74\) −6.95099 5.39595i −0.808036 0.627266i
\(75\) 0 0
\(76\) −0.194991 + 0.0522477i −0.0223670 + 0.00599322i
\(77\) −2.03057 + 7.57818i −0.231405 + 0.863614i
\(78\) 6.64828 + 1.78140i 0.752770 + 0.201704i
\(79\) 1.30294 4.86264i 0.146592 0.547089i −0.853087 0.521768i \(-0.825273\pi\)
0.999679 0.0253210i \(-0.00806079\pi\)
\(80\) 0 0
\(81\) 1.70401 + 2.95143i 0.189334 + 0.327937i
\(82\) 0.616894i 0.0681246i
\(83\) −3.90229 + 1.04562i −0.428332 + 0.114771i −0.466543 0.884498i \(-0.654501\pi\)
0.0382109 + 0.999270i \(0.487834\pi\)
\(84\) 0.125054i 0.0136445i
\(85\) 0 0
\(86\) −5.45320 + 9.44522i −0.588034 + 1.01850i
\(87\) −2.96068 + 1.70935i −0.317418 + 0.183261i
\(88\) 13.1580i 1.40265i
\(89\) −3.97708 14.8427i −0.421569 1.57332i −0.771302 0.636469i \(-0.780394\pi\)
0.349733 0.936849i \(-0.386272\pi\)
\(90\) 0 0
\(91\) 2.47228 + 9.22669i 0.259166 + 0.967219i
\(92\) −0.189914 0.328940i −0.0197999 0.0342944i
\(93\) −0.850234 1.47265i −0.0881652 0.152707i
\(94\) −2.94123 10.9768i −0.303364 1.13217i
\(95\) 0 0
\(96\) −0.111207 0.415028i −0.0113500 0.0423587i
\(97\) 17.9332i 1.82084i 0.413689 + 0.910418i \(0.364240\pi\)
−0.413689 + 0.910418i \(0.635760\pi\)
\(98\) −5.37917 + 3.10566i −0.543378 + 0.313719i
\(99\) 5.55249 9.61720i 0.558046 0.966565i
\(100\) 0 0
\(101\) 6.87214i 0.683803i −0.939736 0.341902i \(-0.888929\pi\)
0.939736 0.341902i \(-0.111071\pi\)
\(102\) −1.66151 + 0.445201i −0.164514 + 0.0440814i
\(103\) 12.6979i 1.25116i −0.780159 0.625581i \(-0.784862\pi\)
0.780159 0.625581i \(-0.215138\pi\)
\(104\) 8.01017 + 13.8740i 0.785461 + 1.36046i
\(105\) 0 0
\(106\) 4.10482 15.3194i 0.398696 1.48795i
\(107\) −8.86771 2.37610i −0.857274 0.229706i −0.196697 0.980464i \(-0.563022\pi\)
−0.660577 + 0.750759i \(0.729688\pi\)
\(108\) −0.104836 + 0.391255i −0.0100879 + 0.0376485i
\(109\) −7.90182 + 2.11729i −0.756857 + 0.202799i −0.616557 0.787310i \(-0.711473\pi\)
−0.140299 + 0.990109i \(0.544807\pi\)
\(110\) 0 0
\(111\) 1.93320 4.59405i 0.183492 0.436048i
\(112\) 4.85889 4.85889i 0.459122 0.459122i
\(113\) −6.41792 3.70539i −0.603747 0.348573i 0.166767 0.985996i \(-0.446667\pi\)
−0.770514 + 0.637423i \(0.780000\pi\)
\(114\) −1.28971 2.23384i −0.120792 0.209219i
\(115\) 0 0
\(116\) 0.373864 + 0.100177i 0.0347124 + 0.00930117i
\(117\) 13.5207i 1.24999i
\(118\) 3.12729 11.6712i 0.287890 1.07442i
\(119\) −1.68803 1.68803i −0.154742 0.154742i
\(120\) 0 0
\(121\) −11.7433 −1.06757
\(122\) 6.02257 + 6.02257i 0.545258 + 0.545258i
\(123\) 0.337514 0.0904365i 0.0304326 0.00815438i
\(124\) −0.0498281 + 0.185961i −0.00447470 + 0.0166998i
\(125\) 0 0
\(126\) −5.35291 + 1.43431i −0.476875 + 0.127778i
\(127\) 0.141304 + 0.527354i 0.0125387 + 0.0467951i 0.971912 0.235346i \(-0.0756222\pi\)
−0.959373 + 0.282141i \(0.908956\pi\)
\(128\) 6.01820 10.4238i 0.531939 0.921345i
\(129\) −5.96708 1.59887i −0.525372 0.140773i
\(130\) 0 0
\(131\) −15.3752 + 4.11977i −1.34334 + 0.359946i −0.857671 0.514198i \(-0.828090\pi\)
−0.485666 + 0.874144i \(0.661423\pi\)
\(132\) 0.350167 0.0938269i 0.0304781 0.00816658i
\(133\) 1.78990 3.10019i 0.155204 0.268821i
\(134\) 9.52390 + 9.52390i 0.822740 + 0.822740i
\(135\) 0 0
\(136\) −3.46733 2.00187i −0.297322 0.171659i
\(137\) 1.35878 1.35878i 0.116088 0.116088i −0.646676 0.762765i \(-0.723841\pi\)
0.762765 + 0.646676i \(0.223841\pi\)
\(138\) 3.43180 3.43180i 0.292135 0.292135i
\(139\) −8.69989 + 15.0687i −0.737915 + 1.27811i 0.215517 + 0.976500i \(0.430856\pi\)
−0.953432 + 0.301607i \(0.902477\pi\)
\(140\) 0 0
\(141\) 5.57442 3.21839i 0.469450 0.271037i
\(142\) −17.9537 −1.50664
\(143\) −23.9809 + 13.8454i −2.00538 + 1.15781i
\(144\) −8.42324 + 4.86316i −0.701937 + 0.405263i
\(145\) 0 0
\(146\) −1.09376 4.08198i −0.0905206 0.337827i
\(147\) −2.48775 2.48775i −0.205186 0.205186i
\(148\) −0.522547 + 0.213017i −0.0429531 + 0.0175099i
\(149\) 8.07457i 0.661495i −0.943719 0.330747i \(-0.892699\pi\)
0.943719 0.330747i \(-0.107301\pi\)
\(150\) 0 0
\(151\) −18.1193 + 10.4612i −1.47453 + 0.851320i −0.999588 0.0286973i \(-0.990864\pi\)
−0.474942 + 0.880017i \(0.657531\pi\)
\(152\) 1.55390 5.79924i 0.126038 0.470381i
\(153\) 1.68952 + 2.92633i 0.136589 + 0.236580i
\(154\) 8.02540 + 8.02540i 0.646706 + 0.646706i
\(155\) 0 0
\(156\) 0.312102 0.312102i 0.0249882 0.0249882i
\(157\) 3.58307 + 13.3722i 0.285960 + 1.06722i 0.948135 + 0.317868i \(0.102967\pi\)
−0.662175 + 0.749349i \(0.730366\pi\)
\(158\) −5.14960 5.14960i −0.409680 0.409680i
\(159\) 8.98328 0.712420
\(160\) 0 0
\(161\) 6.50605 + 1.74329i 0.512749 + 0.137391i
\(162\) 4.93018 0.387351
\(163\) −5.42818 3.13396i −0.425168 0.245471i 0.272118 0.962264i \(-0.412276\pi\)
−0.697286 + 0.716793i \(0.745609\pi\)
\(164\) −0.0342600 0.0197800i −0.00267526 0.00154456i
\(165\) 0 0
\(166\) −1.51263 + 5.64522i −0.117403 + 0.438154i
\(167\) 2.71690 1.56860i 0.210240 0.121382i −0.391183 0.920313i \(-0.627934\pi\)
0.601423 + 0.798931i \(0.294601\pi\)
\(168\) 3.22097 + 1.85963i 0.248503 + 0.143473i
\(169\) −10.3572 + 17.9392i −0.796707 + 1.37994i
\(170\) 0 0
\(171\) −3.58294 + 3.58294i −0.273994 + 0.273994i
\(172\) 0.349702 + 0.605701i 0.0266645 + 0.0461843i
\(173\) −1.32677 4.95158i −0.100873 0.376461i 0.896972 0.442088i \(-0.145762\pi\)
−0.997844 + 0.0656265i \(0.979095\pi\)
\(174\) 4.94563i 0.374927i
\(175\) 0 0
\(176\) 17.2510 + 9.95989i 1.30035 + 0.750755i
\(177\) 6.84398 0.514425
\(178\) −21.4720 5.75340i −1.60939 0.431236i
\(179\) −2.46194 + 2.46194i −0.184014 + 0.184014i −0.793102 0.609088i \(-0.791536\pi\)
0.609088 + 0.793102i \(0.291536\pi\)
\(180\) 0 0
\(181\) 5.87198 + 10.1706i 0.436461 + 0.755972i 0.997414 0.0718755i \(-0.0228984\pi\)
−0.560953 + 0.827848i \(0.689565\pi\)
\(182\) 13.3477 + 3.57651i 0.989397 + 0.265108i
\(183\) −2.41215 + 4.17796i −0.178311 + 0.308844i
\(184\) 11.2965 0.832788
\(185\) 0 0
\(186\) −2.45997 −0.180374
\(187\) 3.46018 5.99320i 0.253033 0.438266i
\(188\) −0.703918 0.188614i −0.0513385 0.0137561i
\(189\) −3.59148 6.22062i −0.261242 0.452484i
\(190\) 0 0
\(191\) 15.0489 15.0489i 1.08890 1.08890i 0.0932582 0.995642i \(-0.470272\pi\)
0.995642 0.0932582i \(-0.0297282\pi\)
\(192\) 6.01154 + 1.61079i 0.433846 + 0.116249i
\(193\) 12.5994 0.906924 0.453462 0.891276i \(-0.350189\pi\)
0.453462 + 0.891276i \(0.350189\pi\)
\(194\) 22.4672 + 12.9714i 1.61305 + 0.931294i
\(195\) 0 0
\(196\) 0.398319i 0.0284513i
\(197\) 1.45423 + 5.42726i 0.103610 + 0.386676i 0.998184 0.0602434i \(-0.0191877\pi\)
−0.894574 + 0.446920i \(0.852521\pi\)
\(198\) −8.03246 13.9126i −0.570842 0.988728i
\(199\) 11.5832 11.5832i 0.821108 0.821108i −0.165159 0.986267i \(-0.552814\pi\)
0.986267 + 0.165159i \(0.0528136\pi\)
\(200\) 0 0
\(201\) −3.81449 + 6.60689i −0.269053 + 0.466014i
\(202\) −8.60961 4.97076i −0.605770 0.349741i
\(203\) −5.94413 + 3.43184i −0.417196 + 0.240868i
\(204\) −0.0285497 + 0.106549i −0.00199888 + 0.00745992i
\(205\) 0 0
\(206\) −15.9083 9.18465i −1.10838 0.639925i
\(207\) −8.25660 4.76695i −0.573873 0.331326i
\(208\) 24.2530 1.68164
\(209\) 10.0238 + 2.68588i 0.693364 + 0.185786i
\(210\) 0 0
\(211\) 17.3906 1.19722 0.598609 0.801042i \(-0.295720\pi\)
0.598609 + 0.801042i \(0.295720\pi\)
\(212\) −0.719167 0.719167i −0.0493926 0.0493926i
\(213\) −2.63201 9.82280i −0.180343 0.673047i
\(214\) −9.39103 + 9.39103i −0.641958 + 0.641958i
\(215\) 0 0
\(216\) −8.51839 8.51839i −0.579603 0.579603i
\(217\) −1.70701 2.95662i −0.115879 0.200709i
\(218\) −3.06295 + 11.4311i −0.207449 + 0.774211i
\(219\) 2.07298 1.19683i 0.140079 0.0808746i
\(220\) 0 0
\(221\) 8.42576i 0.566778i
\(222\) −4.35723 5.74494i −0.292438 0.385575i
\(223\) 7.72909 + 7.72909i 0.517578 + 0.517578i 0.916838 0.399260i \(-0.130733\pi\)
−0.399260 + 0.916838i \(0.630733\pi\)
\(224\) −0.223268 0.833249i −0.0149177 0.0556738i
\(225\) 0 0
\(226\) −9.28442 + 5.36036i −0.617591 + 0.356566i
\(227\) 5.73394 3.31049i 0.380575 0.219725i −0.297493 0.954724i \(-0.596151\pi\)
0.678069 + 0.734999i \(0.262817\pi\)
\(228\) −0.165412 −0.0109547
\(229\) −9.79053 + 5.65257i −0.646977 + 0.373532i −0.787297 0.616574i \(-0.788520\pi\)
0.140320 + 0.990106i \(0.455187\pi\)
\(230\) 0 0
\(231\) −3.21432 + 5.56736i −0.211486 + 0.366305i
\(232\) −8.13977 + 8.13977i −0.534402 + 0.534402i
\(233\) 10.6730 10.6730i 0.699211 0.699211i −0.265029 0.964240i \(-0.585382\pi\)
0.964240 + 0.265029i \(0.0853816\pi\)
\(234\) −16.9391 9.77979i −1.10734 0.639325i
\(235\) 0 0
\(236\) −0.547902 0.547902i −0.0356654 0.0356654i
\(237\) 2.06251 3.57237i 0.133974 0.232050i
\(238\) −3.33580 + 0.893825i −0.216228 + 0.0579381i
\(239\) −17.2821 + 4.63073i −1.11789 + 0.299537i −0.770028 0.638010i \(-0.779758\pi\)
−0.347859 + 0.937547i \(0.613091\pi\)
\(240\) 0 0
\(241\) −27.1013 7.26176i −1.74575 0.467771i −0.762036 0.647535i \(-0.775800\pi\)
−0.983710 + 0.179764i \(0.942467\pi\)
\(242\) −8.49418 + 14.7124i −0.546027 + 0.945746i
\(243\) 4.11297 + 15.3498i 0.263847 + 0.984691i
\(244\) 0.527578 0.141364i 0.0337747 0.00904991i
\(245\) 0 0
\(246\) 0.130829 0.488261i 0.00834136 0.0311304i
\(247\) 12.2044 3.27015i 0.776545 0.208075i
\(248\) −4.04874 4.04874i −0.257095 0.257095i
\(249\) −3.31035 −0.209785
\(250\) 0 0
\(251\) −1.94654 1.94654i −0.122864 0.122864i 0.643001 0.765865i \(-0.277689\pi\)
−0.765865 + 0.643001i \(0.777689\pi\)
\(252\) −0.0919790 + 0.343270i −0.00579413 + 0.0216240i
\(253\) 19.5257i 1.22757i
\(254\) 0.762893 + 0.204416i 0.0478681 + 0.0128262i
\(255\) 0 0
\(256\) −1.11088 1.92410i −0.0694300 0.120256i
\(257\) −5.42559 3.13247i −0.338439 0.195398i 0.321142 0.947031i \(-0.395933\pi\)
−0.659582 + 0.751633i \(0.729266\pi\)
\(258\) −6.31923 + 6.31923i −0.393418 + 0.393418i
\(259\) 3.88128 9.22343i 0.241171 0.573116i
\(260\) 0 0
\(261\) 9.38422 2.51449i 0.580869 0.155643i
\(262\) −5.95983 + 22.2424i −0.368200 + 1.37414i
\(263\) 14.6303 + 3.92018i 0.902143 + 0.241728i 0.679936 0.733271i \(-0.262007\pi\)
0.222206 + 0.975000i \(0.428674\pi\)
\(264\) −2.79052 + 10.4143i −0.171744 + 0.640959i
\(265\) 0 0
\(266\) −2.58934 4.48487i −0.158763 0.274985i
\(267\) 12.5911i 0.770566i
\(268\) 0.834296 0.223549i 0.0509627 0.0136554i
\(269\) 20.5296i 1.25171i 0.779938 + 0.625856i \(0.215250\pi\)
−0.779938 + 0.625856i \(0.784750\pi\)
\(270\) 0 0
\(271\) −6.43197 + 11.1405i −0.390714 + 0.676737i −0.992544 0.121888i \(-0.961105\pi\)
0.601830 + 0.798624i \(0.294439\pi\)
\(272\) −5.24916 + 3.03060i −0.318277 + 0.183757i
\(273\) 7.82707i 0.473716i
\(274\) −0.719484 2.68515i −0.0434656 0.162216i
\(275\) 0 0
\(276\) −0.0805527 0.300627i −0.00484870 0.0180956i
\(277\) 0.620061 + 1.07398i 0.0372559 + 0.0645290i 0.884052 0.467388i \(-0.154805\pi\)
−0.846796 + 0.531917i \(0.821472\pi\)
\(278\) 12.5856 + 21.7989i 0.754836 + 1.30741i
\(279\) 1.25072 + 4.66773i 0.0748784 + 0.279450i
\(280\) 0 0
\(281\) −4.61727 17.2319i −0.275443 1.02797i −0.955544 0.294850i \(-0.904730\pi\)
0.680100 0.733119i \(-0.261936\pi\)
\(282\) 9.31171i 0.554504i
\(283\) −14.4857 + 8.36334i −0.861087 + 0.497149i −0.864376 0.502846i \(-0.832286\pi\)
0.00328885 + 0.999995i \(0.498953\pi\)
\(284\) −0.575667 + 0.997084i −0.0341595 + 0.0591661i
\(285\) 0 0
\(286\) 40.0586i 2.36871i
\(287\) 0.677623 0.181569i 0.0399988 0.0107176i
\(288\) 1.22103i 0.0719501i
\(289\) −7.44714 12.8988i −0.438067 0.758754i
\(290\) 0 0
\(291\) −3.80321 + 14.1938i −0.222948 + 0.832054i
\(292\) −0.261769 0.0701407i −0.0153188 0.00410467i
\(293\) 5.30445 19.7965i 0.309889 1.15652i −0.618765 0.785576i \(-0.712367\pi\)
0.928654 0.370946i \(-0.120967\pi\)
\(294\) −4.91616 + 1.31728i −0.286716 + 0.0768253i
\(295\) 0 0
\(296\) 2.28397 16.6267i 0.132753 0.966406i
\(297\) 14.7238 14.7238i 0.854363 0.854363i
\(298\) −10.1160 5.84050i −0.586007 0.338331i
\(299\) 11.8866 + 20.5882i 0.687419 + 1.19064i
\(300\) 0 0
\(301\) −11.9801 3.21005i −0.690519 0.185024i
\(302\) 30.2672i 1.74168i
\(303\) 1.45742 5.43918i 0.0837268 0.312472i
\(304\) −6.42697 6.42697i −0.368612 0.368612i
\(305\) 0 0
\(306\) 4.88825 0.279442
\(307\) −4.99397 4.99397i −0.285021 0.285021i 0.550087 0.835108i \(-0.314595\pi\)
−0.835108 + 0.550087i \(0.814595\pi\)
\(308\) 0.703027 0.188375i 0.0400587 0.0107337i
\(309\) 2.69293 10.0502i 0.153196 0.571734i
\(310\) 0 0
\(311\) 19.0548 5.10571i 1.08050 0.289518i 0.325698 0.945474i \(-0.394401\pi\)
0.754800 + 0.655955i \(0.227734\pi\)
\(312\) 3.39754 + 12.6798i 0.192348 + 0.717853i
\(313\) 10.3702 17.9617i 0.586156 1.01525i −0.408574 0.912725i \(-0.633974\pi\)
0.994730 0.102527i \(-0.0326929\pi\)
\(314\) 19.3448 + 5.18341i 1.09169 + 0.292517i
\(315\) 0 0
\(316\) −0.451106 + 0.120874i −0.0253767 + 0.00679967i
\(317\) −19.9739 + 5.35199i −1.12185 + 0.300597i −0.771630 0.636072i \(-0.780558\pi\)
−0.350215 + 0.936669i \(0.613892\pi\)
\(318\) 6.49779 11.2545i 0.364378 0.631121i
\(319\) −14.0694 14.0694i −0.787735 0.787735i
\(320\) 0 0
\(321\) −6.51472 3.76127i −0.363616 0.209934i
\(322\) 6.89000 6.89000i 0.383965 0.383965i
\(323\) −2.23280 + 2.23280i −0.124236 + 0.124236i
\(324\) 0.158081 0.273804i 0.00878226 0.0152113i
\(325\) 0 0
\(326\) −7.85262 + 4.53371i −0.434917 + 0.251099i
\(327\) −6.70318 −0.370686
\(328\) 1.01893 0.588280i 0.0562610 0.0324823i
\(329\) 11.1917 6.46153i 0.617019 0.356236i
\(330\) 0 0
\(331\) 8.47290 + 31.6213i 0.465713 + 1.73806i 0.654515 + 0.756049i \(0.272873\pi\)
−0.188802 + 0.982015i \(0.560460\pi\)
\(332\) 0.265014 + 0.265014i 0.0145445 + 0.0145445i
\(333\) −8.68556 + 11.1886i −0.475966 + 0.613133i
\(334\) 4.53841i 0.248331i
\(335\) 0 0
\(336\) 4.87618 2.81526i 0.266018 0.153585i
\(337\) 2.67277 9.97490i 0.145595 0.543368i −0.854133 0.520054i \(-0.825912\pi\)
0.999728 0.0233134i \(-0.00742157\pi\)
\(338\) 14.9831 + 25.9516i 0.814975 + 1.41158i
\(339\) −4.29384 4.29384i −0.233209 0.233209i
\(340\) 0 0
\(341\) 6.99815 6.99815i 0.378971 0.378971i
\(342\) 1.89719 + 7.08043i 0.102589 + 0.382866i
\(343\) −13.1375 13.1375i −0.709358 0.709358i
\(344\) −20.8010 −1.12152
\(345\) 0 0
\(346\) −7.16315 1.91936i −0.385093 0.103185i
\(347\) 9.81456 0.526873 0.263437 0.964677i \(-0.415144\pi\)
0.263437 + 0.964677i \(0.415144\pi\)
\(348\) 0.274662 + 0.158576i 0.0147234 + 0.00850057i
\(349\) 11.0564 + 6.38340i 0.591834 + 0.341696i 0.765822 0.643052i \(-0.222332\pi\)
−0.173988 + 0.984748i \(0.555665\pi\)
\(350\) 0 0
\(351\) 6.56164 24.4884i 0.350235 1.30709i
\(352\) 2.16568 1.25036i 0.115431 0.0666442i
\(353\) 2.95032 + 1.70337i 0.157030 + 0.0906610i 0.576456 0.817128i \(-0.304435\pi\)
−0.419426 + 0.907789i \(0.637769\pi\)
\(354\) 4.95039 8.57432i 0.263110 0.455720i
\(355\) 0 0
\(356\) −1.00800 + 1.00800i −0.0534238 + 0.0534238i
\(357\) −0.978054 1.69404i −0.0517641 0.0896581i
\(358\) 1.30362 + 4.86517i 0.0688983 + 0.257132i
\(359\) 4.52436i 0.238787i 0.992847 + 0.119393i \(0.0380949\pi\)
−0.992847 + 0.119393i \(0.961905\pi\)
\(360\) 0 0
\(361\) 12.3538 + 7.13246i 0.650199 + 0.375393i
\(362\) 16.9893 0.892937
\(363\) −9.29463 2.49049i −0.487841 0.130717i
\(364\) 0.626605 0.626605i 0.0328430 0.0328430i
\(365\) 0 0
\(366\) 3.48951 + 6.04401i 0.182400 + 0.315925i
\(367\) −10.4390 2.79712i −0.544912 0.146009i −0.0241463 0.999708i \(-0.507687\pi\)
−0.520766 + 0.853700i \(0.674353\pi\)
\(368\) 8.55081 14.8104i 0.445742 0.772047i
\(369\) −0.992981 −0.0516925
\(370\) 0 0
\(371\) 18.0357 0.936364
\(372\) −0.0788761 + 0.136617i −0.00408954 + 0.00708328i
\(373\) −18.9102 5.06699i −0.979135 0.262359i −0.266455 0.963847i \(-0.585852\pi\)
−0.712680 + 0.701489i \(0.752519\pi\)
\(374\) −5.00563 8.67001i −0.258835 0.448316i
\(375\) 0 0
\(376\) 15.3257 15.3257i 0.790362 0.790362i
\(377\) −23.3999 6.27000i −1.20516 0.322921i
\(378\) −10.3912 −0.534463
\(379\) 4.24970 + 2.45356i 0.218292 + 0.126031i 0.605159 0.796104i \(-0.293109\pi\)
−0.386867 + 0.922136i \(0.626443\pi\)
\(380\) 0 0
\(381\) 0.447359i 0.0229189i
\(382\) −7.96850 29.7389i −0.407704 1.52157i
\(383\) 3.23997 + 5.61179i 0.165555 + 0.286749i 0.936852 0.349726i \(-0.113725\pi\)
−0.771298 + 0.636475i \(0.780392\pi\)
\(384\) 6.97395 6.97395i 0.355888 0.355888i
\(385\) 0 0
\(386\) 9.11340 15.7849i 0.463860 0.803429i
\(387\) 15.2035 + 8.77772i 0.772835 + 0.446197i
\(388\) 1.44077 0.831829i 0.0731440 0.0422297i
\(389\) 2.23101 8.32624i 0.113117 0.422157i −0.886022 0.463642i \(-0.846542\pi\)
0.999139 + 0.0414853i \(0.0132090\pi\)
\(390\) 0 0
\(391\) −5.14531 2.97065i −0.260209 0.150232i
\(392\) −10.2593 5.92322i −0.518173 0.299168i
\(393\) −13.0429 −0.657928
\(394\) 7.85130 + 2.10375i 0.395543 + 0.105985i
\(395\) 0 0
\(396\) −1.03021 −0.0517699
\(397\) 0.770578 + 0.770578i 0.0386742 + 0.0386742i 0.726179 0.687505i \(-0.241294\pi\)
−0.687505 + 0.726179i \(0.741294\pi\)
\(398\) −6.13337 22.8900i −0.307438 1.14737i
\(399\) 2.07415 2.07415i 0.103837 0.103837i
\(400\) 0 0
\(401\) −17.3804 17.3804i −0.867936 0.867936i 0.124308 0.992244i \(-0.460329\pi\)
−0.992244 + 0.124308i \(0.960329\pi\)
\(402\) 5.51820 + 9.55780i 0.275223 + 0.476700i
\(403\) 3.11871 11.6392i 0.155354 0.579789i
\(404\) −0.552115 + 0.318764i −0.0274687 + 0.0158591i
\(405\) 0 0
\(406\) 9.92929i 0.492783i
\(407\) 28.7388 + 3.94779i 1.42453 + 0.195685i
\(408\) −2.31978 2.31978i −0.114846 0.114846i
\(409\) −2.48177 9.26208i −0.122715 0.457980i 0.877033 0.480431i \(-0.159520\pi\)
−0.999748 + 0.0224508i \(0.992853\pi\)
\(410\) 0 0
\(411\) 1.36362 0.787285i 0.0672623 0.0388339i
\(412\) −1.02016 + 0.588991i −0.0502598 + 0.0290175i
\(413\) 13.7406 0.676130
\(414\) −11.9443 + 6.89606i −0.587032 + 0.338923i
\(415\) 0 0
\(416\) 1.52235 2.63679i 0.0746393 0.129279i
\(417\) −10.0815 + 10.0815i −0.493695 + 0.493695i
\(418\) 10.6154 10.6154i 0.519216 0.519216i
\(419\) 14.2802 + 8.24465i 0.697631 + 0.402778i 0.806465 0.591282i \(-0.201378\pi\)
−0.108833 + 0.994060i \(0.534711\pi\)
\(420\) 0 0
\(421\) 0.456713 + 0.456713i 0.0222588 + 0.0222588i 0.718149 0.695890i \(-0.244990\pi\)
−0.695890 + 0.718149i \(0.744990\pi\)
\(422\) 12.5790 21.7874i 0.612335 1.06059i
\(423\) −17.6688 + 4.73433i −0.859085 + 0.230191i
\(424\) 29.2176 7.82884i 1.41893 0.380202i
\(425\) 0 0
\(426\) −14.2101 3.80758i −0.688480 0.184478i
\(427\) −4.84284 + 8.38805i −0.234362 + 0.405926i
\(428\) 0.220430 + 0.822656i 0.0106549 + 0.0397646i
\(429\) −21.9167 + 5.87257i −1.05815 + 0.283530i
\(430\) 0 0
\(431\) −3.57129 + 13.3283i −0.172023 + 0.641999i 0.825016 + 0.565109i \(0.191166\pi\)
−0.997040 + 0.0768905i \(0.975501\pi\)
\(432\) −17.6161 + 4.72022i −0.847556 + 0.227102i
\(433\) 16.0407 + 16.0407i 0.770868 + 0.770868i 0.978258 0.207391i \(-0.0664971\pi\)
−0.207391 + 0.978258i \(0.566497\pi\)
\(434\) −4.93885 −0.237073
\(435\) 0 0
\(436\) 0.536630 + 0.536630i 0.0256999 + 0.0256999i
\(437\) 2.30589 8.60572i 0.110306 0.411667i
\(438\) 3.46278i 0.165458i
\(439\) 10.9533 + 2.93493i 0.522774 + 0.140077i 0.510549 0.859849i \(-0.329442\pi\)
0.0122243 + 0.999925i \(0.496109\pi\)
\(440\) 0 0
\(441\) 4.99902 + 8.65855i 0.238048 + 0.412312i
\(442\) −10.5560 6.09452i −0.502099 0.289887i
\(443\) 18.6448 18.6448i 0.885840 0.885840i −0.108280 0.994120i \(-0.534534\pi\)
0.994120 + 0.108280i \(0.0345344\pi\)
\(444\) −0.458762 + 0.0577790i −0.0217719 + 0.00274207i
\(445\) 0 0
\(446\) 15.2738 4.09261i 0.723237 0.193791i
\(447\) 1.71243 6.39088i 0.0809952 0.302278i
\(448\) 12.0693 + 3.23396i 0.570222 + 0.152790i
\(449\) 9.44296 35.2416i 0.445641 1.66315i −0.268598 0.963252i \(-0.586560\pi\)
0.714239 0.699902i \(-0.246773\pi\)
\(450\) 0 0
\(451\) 1.01683 + 1.76120i 0.0478805 + 0.0829314i
\(452\) 0.687496i 0.0323371i
\(453\) −16.5597 + 4.43716i −0.778043 + 0.208476i
\(454\) 9.57819i 0.449527i
\(455\) 0 0
\(456\) 2.45977 4.26045i 0.115189 0.199514i
\(457\) 35.7289 20.6281i 1.67133 0.964941i 0.704430 0.709773i \(-0.251203\pi\)
0.966897 0.255168i \(-0.0821307\pi\)
\(458\) 16.3545i 0.764194i
\(459\) 1.63986 + 6.12004i 0.0765420 + 0.285659i
\(460\) 0 0
\(461\) 7.84179 + 29.2660i 0.365229 + 1.36305i 0.867111 + 0.498115i \(0.165974\pi\)
−0.501882 + 0.864936i \(0.667359\pi\)
\(462\) 4.64996 + 8.05397i 0.216336 + 0.374705i
\(463\) −2.12165 3.67480i −0.0986013 0.170783i 0.812505 0.582955i \(-0.198104\pi\)
−0.911106 + 0.412172i \(0.864770\pi\)
\(464\) 4.51042 + 16.8331i 0.209391 + 0.781458i
\(465\) 0 0
\(466\) −5.65143 21.0914i −0.261797 0.977041i
\(467\) 9.79517i 0.453266i 0.973980 + 0.226633i \(0.0727718\pi\)
−0.973980 + 0.226633i \(0.927228\pi\)
\(468\) −1.08627 + 0.627156i −0.0502127 + 0.0289903i
\(469\) −7.65832 + 13.2646i −0.353628 + 0.612502i
\(470\) 0 0
\(471\) 11.3437i 0.522692i
\(472\) 22.2597 5.96446i 1.02458 0.274537i
\(473\) 35.9540i 1.65317i
\(474\) −2.98371 5.16793i −0.137046 0.237371i
\(475\) 0 0
\(476\) −0.0573190 + 0.213917i −0.00262721 + 0.00980489i
\(477\) −24.6588 6.60731i −1.12905 0.302528i
\(478\) −6.69901 + 25.0010i −0.306405 + 1.14352i
\(479\) −29.0918 + 7.79512i −1.32924 + 0.356168i −0.852431 0.522840i \(-0.824873\pi\)
−0.476807 + 0.879008i \(0.658206\pi\)
\(480\) 0 0
\(481\) 32.7059 13.3326i 1.49126 0.607914i
\(482\) −28.7006 + 28.7006i −1.30728 + 1.30728i
\(483\) 4.77971 + 2.75957i 0.217484 + 0.125565i
\(484\) 0.544713 + 0.943471i 0.0247597 + 0.0428850i
\(485\) 0 0
\(486\) 22.2057 + 5.94999i 1.00727 + 0.269897i
\(487\) 8.80800i 0.399129i −0.979885 0.199564i \(-0.936047\pi\)
0.979885 0.199564i \(-0.0639527\pi\)
\(488\) −4.20433 + 15.6908i −0.190321 + 0.710287i
\(489\) −3.63166 3.63166i −0.164230 0.164230i
\(490\) 0 0
\(491\) −37.2665 −1.68181 −0.840907 0.541179i \(-0.817978\pi\)
−0.840907 + 0.541179i \(0.817978\pi\)
\(492\) −0.0229213 0.0229213i −0.00103337 0.00103337i
\(493\) 5.84801 1.56697i 0.263381 0.0705728i
\(494\) 4.73073 17.6553i 0.212846 0.794351i
\(495\) 0 0
\(496\) −8.37284 + 2.24349i −0.375951 + 0.100736i
\(497\) −5.28427 19.7212i −0.237032 0.884615i
\(498\) −2.39444 + 4.14729i −0.107297 + 0.185845i
\(499\) 3.52008 + 0.943201i 0.157580 + 0.0422235i 0.336747 0.941595i \(-0.390673\pi\)
−0.179166 + 0.983819i \(0.557340\pi\)
\(500\) 0 0
\(501\) 2.48305 0.665330i 0.110934 0.0297248i
\(502\) −3.84664 + 1.03071i −0.171684 + 0.0460026i
\(503\) −12.2071 + 21.1433i −0.544287 + 0.942732i 0.454365 + 0.890816i \(0.349866\pi\)
−0.998651 + 0.0519165i \(0.983467\pi\)
\(504\) −7.47367 7.47367i −0.332904 0.332904i
\(505\) 0 0
\(506\) 24.4623 + 14.1233i 1.08748 + 0.627859i
\(507\) −12.0020 + 12.0020i −0.533029 + 0.533029i
\(508\) 0.0358138 0.0358138i 0.00158898 0.00158898i
\(509\) 21.1376 36.6113i 0.936906 1.62277i 0.165708 0.986175i \(-0.447009\pi\)
0.771199 0.636595i \(-0.219657\pi\)
\(510\) 0 0
\(511\) 4.16190 2.40287i 0.184112 0.106297i
\(512\) 20.8587 0.921833
\(513\) −8.22817 + 4.75054i −0.363283 + 0.209741i
\(514\) −7.84888 + 4.53155i −0.346199 + 0.199878i
\(515\) 0 0
\(516\) 0.148327 + 0.553565i 0.00652975 + 0.0243694i
\(517\) 26.4901 + 26.4901i 1.16503 + 1.16503i
\(518\) −8.74797 11.5341i −0.384364 0.506778i
\(519\) 4.20046i 0.184380i
\(520\) 0 0
\(521\) 20.8093 12.0143i 0.911672 0.526354i 0.0307035 0.999529i \(-0.490225\pi\)
0.880969 + 0.473174i \(0.156892\pi\)
\(522\) 3.63757 13.5756i 0.159212 0.594188i
\(523\) −7.40563 12.8269i −0.323825 0.560882i 0.657448 0.753500i \(-0.271636\pi\)
−0.981274 + 0.192617i \(0.938302\pi\)
\(524\) 1.04416 + 1.04416i 0.0456145 + 0.0456145i
\(525\) 0 0
\(526\) 15.4937 15.4937i 0.675557 0.675557i
\(527\) 0.779415 + 2.90882i 0.0339518 + 0.126710i
\(528\) 11.5416 + 11.5416i 0.502285 + 0.502285i
\(529\) −6.23672 −0.271162
\(530\) 0 0
\(531\) −18.7865 5.03383i −0.815265 0.218449i
\(532\) −0.332097 −0.0143982
\(533\) 2.14431 + 1.23802i 0.0928805 + 0.0536246i
\(534\) −15.7745 9.10743i −0.682631 0.394117i
\(535\) 0 0
\(536\) −6.64859 + 24.8129i −0.287175 + 1.07175i
\(537\) −2.47071 + 1.42646i −0.106619 + 0.0615564i
\(538\) 25.7201 + 14.8495i 1.10887 + 0.640207i
\(539\) 10.2381 17.7330i 0.440987 0.763813i
\(540\) 0 0
\(541\) 11.8805 11.8805i 0.510784 0.510784i −0.403983 0.914767i \(-0.632374\pi\)
0.914767 + 0.403983i \(0.132374\pi\)
\(542\) 9.30474 + 16.1163i 0.399673 + 0.692254i
\(543\) 2.49062 + 9.29514i 0.106883 + 0.398892i
\(544\) 0.760918i 0.0326241i
\(545\) 0 0
\(546\) 9.80597 + 5.66148i 0.419657 + 0.242289i
\(547\) −17.4832 −0.747526 −0.373763 0.927524i \(-0.621933\pi\)
−0.373763 + 0.927524i \(0.621933\pi\)
\(548\) −0.172193 0.0461389i −0.00735571 0.00197096i
\(549\) 9.69421 9.69421i 0.413739 0.413739i
\(550\) 0 0
\(551\) 4.53939 + 7.86245i 0.193384 + 0.334952i
\(552\) 8.94097 + 2.39572i 0.380553 + 0.101969i
\(553\) 4.14088 7.17221i 0.176088 0.304993i
\(554\) 1.79401 0.0762202
\(555\) 0 0
\(556\) 1.61418 0.0684563
\(557\) 15.7212 27.2299i 0.666129 1.15377i −0.312849 0.949803i \(-0.601283\pi\)
0.978978 0.203967i \(-0.0653834\pi\)
\(558\) 6.75253 + 1.80934i 0.285858 + 0.0765953i
\(559\) −21.8876 37.9105i −0.925747 1.60344i
\(560\) 0 0
\(561\) 4.00969 4.00969i 0.169289 0.169289i
\(562\) −24.9284 6.67954i −1.05154 0.281759i
\(563\) 17.3599 0.731633 0.365816 0.930687i \(-0.380790\pi\)
0.365816 + 0.930687i \(0.380790\pi\)
\(564\) −0.517138 0.298570i −0.0217754 0.0125720i
\(565\) 0 0
\(566\) 24.1975i 1.01710i
\(567\) 1.45108 + 5.41552i 0.0609398 + 0.227430i
\(568\) −17.1210 29.6544i −0.718380 1.24427i
\(569\) −13.2625 + 13.2625i −0.555994 + 0.555994i −0.928165 0.372170i \(-0.878614\pi\)
0.372170 + 0.928165i \(0.378614\pi\)
\(570\) 0 0
\(571\) −13.5109 + 23.4016i −0.565415 + 0.979327i 0.431596 + 0.902067i \(0.357951\pi\)
−0.997011 + 0.0772604i \(0.975383\pi\)
\(572\) 2.22470 + 1.28443i 0.0930195 + 0.0537048i
\(573\) 15.1025 8.71941i 0.630914 0.364259i
\(574\) 0.262664 0.980277i 0.0109634 0.0409160i
\(575\) 0 0
\(576\) −15.3167 8.84312i −0.638197 0.368463i
\(577\) −21.9876 12.6946i −0.915357 0.528482i −0.0332064 0.999449i \(-0.510572\pi\)
−0.882151 + 0.470967i \(0.843905\pi\)
\(578\) −21.5467 −0.896223
\(579\) 9.97220 + 2.67204i 0.414430 + 0.111046i
\(580\) 0 0
\(581\) −6.64615 −0.275729
\(582\) 15.0314 + 15.0314i 0.623072 + 0.623072i
\(583\) 13.5320 + 50.5020i 0.560436 + 2.09158i
\(584\) 5.69922 5.69922i 0.235836 0.235836i
\(585\) 0 0
\(586\) −20.9648 20.9648i −0.866046 0.866046i
\(587\) 21.1677 + 36.6636i 0.873686 + 1.51327i 0.858156 + 0.513389i \(0.171610\pi\)
0.0155295 + 0.999879i \(0.495057\pi\)
\(588\) −0.0844742 + 0.315262i −0.00348366 + 0.0130012i
\(589\) −3.91080 + 2.25790i −0.161142 + 0.0930352i
\(590\) 0 0
\(591\) 4.60399i 0.189383i
\(592\) −20.0698 15.5799i −0.824864 0.640330i
\(593\) 22.5131 + 22.5131i 0.924503 + 0.924503i 0.997344 0.0728403i \(-0.0232063\pi\)
−0.0728403 + 0.997344i \(0.523206\pi\)
\(594\) −7.79637 29.0965i −0.319889 1.19384i
\(595\) 0 0
\(596\) −0.648720 + 0.374539i −0.0265726 + 0.0153417i
\(597\) 11.6244 6.71134i 0.475754 0.274677i
\(598\) 34.3912 1.40636
\(599\) 13.9673 8.06402i 0.570688 0.329487i −0.186736 0.982410i \(-0.559791\pi\)
0.757424 + 0.652923i \(0.226458\pi\)
\(600\) 0 0
\(601\) 12.0579 20.8849i 0.491852 0.851912i −0.508104 0.861296i \(-0.669654\pi\)
0.999956 + 0.00938333i \(0.00298685\pi\)
\(602\) −12.6871 + 12.6871i −0.517086 + 0.517086i
\(603\) 15.3301 15.3301i 0.624290 0.624290i
\(604\) 1.68093 + 0.970484i 0.0683960 + 0.0394884i
\(605\) 0 0
\(606\) −5.76017 5.76017i −0.233991 0.233991i
\(607\) −2.36675 + 4.09934i −0.0960635 + 0.166387i −0.910052 0.414494i \(-0.863959\pi\)
0.813988 + 0.580881i \(0.197292\pi\)
\(608\) −1.10216 + 0.295323i −0.0446984 + 0.0119769i
\(609\) −5.43249 + 1.45563i −0.220136 + 0.0589851i
\(610\) 0 0
\(611\) 44.0578 + 11.8053i 1.78239 + 0.477589i
\(612\) 0.156736 0.271475i 0.00633568 0.0109737i
\(613\) 5.33493 + 19.9102i 0.215476 + 0.804167i 0.985999 + 0.166754i \(0.0533286\pi\)
−0.770523 + 0.637413i \(0.780005\pi\)
\(614\) −9.86883 + 2.64434i −0.398273 + 0.106717i
\(615\) 0 0
\(616\) −5.60249 + 20.9088i −0.225731 + 0.842439i
\(617\) −14.7457 + 3.95109i −0.593638 + 0.159065i −0.543115 0.839658i \(-0.682755\pi\)
−0.0505225 + 0.998723i \(0.516089\pi\)
\(618\) −10.6433 10.6433i −0.428135 0.428135i
\(619\) −6.80631 −0.273569 −0.136784 0.990601i \(-0.543677\pi\)
−0.136784 + 0.990601i \(0.543677\pi\)
\(620\) 0 0
\(621\) −12.6408 12.6408i −0.507256 0.507256i
\(622\) 7.38613 27.5654i 0.296157 1.10527i
\(623\) 25.2791i 1.01279i
\(624\) 19.1958 + 5.14350i 0.768447 + 0.205905i
\(625\) 0 0
\(626\) −15.0019 25.9841i −0.599597 1.03853i
\(627\) 7.36408 + 4.25166i 0.294093 + 0.169795i
\(628\) 0.908136 0.908136i 0.0362386 0.0362386i
\(629\) −5.41263 + 6.97248i −0.215816 + 0.278011i
\(630\) 0 0
\(631\) 24.9840 6.69444i 0.994597 0.266501i 0.275416 0.961325i \(-0.411184\pi\)
0.719180 + 0.694824i \(0.244518\pi\)
\(632\) 3.59491 13.4164i 0.142998 0.533675i
\(633\) 13.7643 + 3.68814i 0.547083 + 0.146591i
\(634\) −7.74240 + 28.8950i −0.307490 + 1.14757i
\(635\) 0 0
\(636\) −0.416689 0.721726i −0.0165228 0.0286183i
\(637\) 24.9305i 0.987783i
\(638\) −27.8032 + 7.44984i −1.10074 + 0.294942i
\(639\) 28.8992i 1.14323i
\(640\) 0 0
\(641\) 17.3223 30.0031i 0.684190 1.18505i −0.289501 0.957178i \(-0.593489\pi\)
0.973691 0.227874i \(-0.0731773\pi\)
\(642\) −9.42446 + 5.44121i −0.371954 + 0.214748i
\(643\) 22.9695i 0.905827i −0.891555 0.452913i \(-0.850385\pi\)
0.891555 0.452913i \(-0.149615\pi\)
\(644\) −0.161725 0.603566i −0.00637285 0.0237838i
\(645\) 0 0
\(646\) 1.18228 + 4.41235i 0.0465164 + 0.173601i
\(647\) 7.12196 + 12.3356i 0.279993 + 0.484962i 0.971383 0.237520i \(-0.0763344\pi\)
−0.691389 + 0.722482i \(0.743001\pi\)
\(648\) 4.70149 + 8.14323i 0.184692 + 0.319896i
\(649\) 10.3094 + 38.4753i 0.404680 + 1.51029i
\(650\) 0 0
\(651\) −0.724034 2.70213i −0.0283771 0.105905i
\(652\) 0.581474i 0.0227723i
\(653\) 9.03552 5.21666i 0.353587 0.204144i −0.312677 0.949860i \(-0.601226\pi\)
0.666264 + 0.745716i \(0.267892\pi\)
\(654\) −4.84854 + 8.39792i −0.189593 + 0.328385i
\(655\) 0 0
\(656\) 1.78118i 0.0695434i
\(657\) −6.57055 + 1.76057i −0.256341 + 0.0686865i
\(658\) 18.6950i 0.728808i
\(659\) 9.90312 + 17.1527i 0.385771 + 0.668174i 0.991876 0.127210i \(-0.0406023\pi\)
−0.606105 + 0.795385i \(0.707269\pi\)
\(660\) 0 0
\(661\) −5.73632 + 21.4082i −0.223117 + 0.832683i 0.760033 + 0.649884i \(0.225183\pi\)
−0.983150 + 0.182799i \(0.941484\pi\)
\(662\) 45.7447 + 12.2572i 1.77792 + 0.476391i
\(663\) 1.78691 6.66884i 0.0693978 0.258996i
\(664\) −10.7667 + 2.88494i −0.417830 + 0.111957i
\(665\) 0 0
\(666\) 7.73498 + 18.9745i 0.299724 + 0.735246i
\(667\) −12.0789 + 12.0789i −0.467697 + 0.467697i
\(668\) −0.252047 0.145519i −0.00975198 0.00563031i
\(669\) 4.47828 + 7.75660i 0.173140 + 0.299888i
\(670\) 0 0
\(671\) −27.1211 7.26707i −1.04700 0.280542i
\(672\) 0.706852i 0.0272674i
\(673\) −12.6606 + 47.2502i −0.488032 + 1.82136i 0.0779695 + 0.996956i \(0.475156\pi\)
−0.566001 + 0.824404i \(0.691510\pi\)
\(674\) −10.5636 10.5636i −0.406893 0.406893i
\(675\) 0 0
\(676\) 1.92167 0.0739104
\(677\) 8.62241 + 8.62241i 0.331386 + 0.331386i 0.853113 0.521727i \(-0.174712\pi\)
−0.521727 + 0.853113i \(0.674712\pi\)
\(678\) −8.48527 + 2.27362i −0.325875 + 0.0873179i
\(679\) −7.63567 + 28.4967i −0.293030 + 1.09360i
\(680\) 0 0
\(681\) 5.24039 1.40416i 0.200812 0.0538075i
\(682\) −3.70557 13.8294i −0.141894 0.529554i
\(683\) −7.97715 + 13.8168i −0.305237 + 0.528686i −0.977314 0.211795i \(-0.932069\pi\)
0.672077 + 0.740481i \(0.265402\pi\)
\(684\) 0.454052 + 0.121663i 0.0173611 + 0.00465190i
\(685\) 0 0
\(686\) −25.9616 + 6.95640i −0.991220 + 0.265597i
\(687\) −8.94781 + 2.39756i −0.341380 + 0.0914726i
\(688\) −15.7452 + 27.2715i −0.600280 + 1.03972i
\(689\) 45.0122 + 45.0122i 1.71483 + 1.71483i
\(690\) 0 0
\(691\) −16.8398 9.72247i −0.640617 0.369860i 0.144235 0.989543i \(-0.453928\pi\)
−0.784852 + 0.619683i \(0.787261\pi\)
\(692\) −0.336273 + 0.336273i −0.0127832 + 0.0127832i
\(693\) 12.9181 12.9181i 0.490716 0.490716i
\(694\) 7.09907 12.2960i 0.269477 0.466748i
\(695\) 0 0
\(696\) −8.16874 + 4.71623i −0.309635 + 0.178768i
\(697\) −0.618801 −0.0234388
\(698\) 15.9946 9.23449i 0.605405 0.349531i
\(699\) 10.7110 6.18399i 0.405127 0.233900i
\(700\) 0 0
\(701\) −11.0896 41.3868i −0.418847 1.56316i −0.777003 0.629497i \(-0.783261\pi\)
0.358155 0.933662i \(-0.383406\pi\)
\(702\) −25.9336 25.9336i −0.978799 0.978799i
\(703\) −12.2001 5.13386i −0.460134 0.193627i
\(704\) 36.2219i 1.36517i
\(705\) 0 0
\(706\) 4.26805 2.46416i 0.160630 0.0927399i
\(707\) 2.92605 10.9202i 0.110046 0.410696i
\(708\) −0.317457 0.549852i −0.0119308 0.0206647i
\(709\) −11.6125 11.6125i −0.436116 0.436116i 0.454586 0.890703i \(-0.349787\pi\)
−0.890703 + 0.454586i \(0.849787\pi\)
\(710\) 0 0
\(711\) −8.28904 + 8.28904i −0.310863 + 0.310863i
\(712\) −10.9731 40.9520i −0.411233 1.53474i
\(713\) −6.00808 6.00808i −0.225004 0.225004i
\(714\) −2.82979 −0.105902
\(715\) 0 0
\(716\) 0.311992 + 0.0835981i 0.0116597 + 0.00312421i
\(717\) −14.6606 −0.547509
\(718\) 5.66824 + 3.27256i 0.211537 + 0.122131i
\(719\) 28.4138 + 16.4047i 1.05966 + 0.611794i 0.925337 0.379144i \(-0.123782\pi\)
0.134320 + 0.990938i \(0.457115\pi\)
\(720\) 0 0
\(721\) 5.40658 20.1776i 0.201352 0.751454i
\(722\) 17.8715 10.3181i 0.665108 0.384000i
\(723\) −19.9101 11.4951i −0.740465 0.427508i
\(724\) 0.544743 0.943522i 0.0202452 0.0350657i
\(725\) 0 0
\(726\) −9.84315 + 9.84315i −0.365313 + 0.365313i
\(727\) 19.7125 + 34.1431i 0.731097 + 1.26630i 0.956415 + 0.292011i \(0.0943245\pi\)
−0.225318 + 0.974285i \(0.572342\pi\)
\(728\) 6.82122 + 25.4571i 0.252811 + 0.943504i
\(729\) 2.79732i 0.103604i
\(730\) 0 0
\(731\) 9.47442 + 5.47006i 0.350424 + 0.202317i
\(732\) 0.447549 0.0165419
\(733\) −40.8538 10.9468i −1.50897 0.404328i −0.592878 0.805293i \(-0.702008\pi\)
−0.916093 + 0.400965i \(0.868675\pi\)
\(734\) −11.0551 + 11.0551i −0.408050 + 0.408050i
\(735\) 0 0
\(736\) −1.07346 1.85929i −0.0395683 0.0685343i
\(737\) −42.8884 11.4919i −1.57981 0.423310i
\(738\) −0.718244 + 1.24403i −0.0264389 + 0.0457935i
\(739\) −32.4999 −1.19553 −0.597764 0.801672i \(-0.703944\pi\)
−0.597764 + 0.801672i \(0.703944\pi\)
\(740\) 0 0
\(741\) 10.3531 0.380329
\(742\) 13.0456 22.5956i 0.478917 0.829509i
\(743\) 11.0864 + 2.97059i 0.406720 + 0.108980i 0.456378 0.889786i \(-0.349146\pi\)
−0.0496580 + 0.998766i \(0.515813\pi\)
\(744\) −2.34586 4.06315i −0.0860035 0.148962i
\(745\) 0 0
\(746\) −20.0262 + 20.0262i −0.733212 + 0.733212i
\(747\) 9.08680 + 2.43480i 0.332469 + 0.0890847i
\(748\) −0.642000 −0.0234739
\(749\) −13.0795 7.55148i −0.477916 0.275925i
\(750\) 0 0
\(751\) 35.5418i 1.29694i 0.761240 + 0.648470i \(0.224591\pi\)
−0.761240 + 0.648470i \(0.775409\pi\)
\(752\) −8.49230 31.6937i −0.309682 1.15575i
\(753\) −1.12783 1.95346i −0.0411005 0.0711882i
\(754\) −24.7809 + 24.7809i −0.902466 + 0.902466i
\(755\) 0 0
\(756\) −0.333181 + 0.577086i −0.0121177 + 0.0209884i
\(757\) 31.7438 + 18.3273i 1.15375 + 0.666117i 0.949798 0.312864i \(-0.101288\pi\)
0.203951 + 0.978981i \(0.434622\pi\)
\(758\) 6.14778 3.54943i 0.223298 0.128921i
\(759\) −4.14095 + 15.4542i −0.150307 + 0.560953i
\(760\) 0 0
\(761\) 18.5429 + 10.7058i 0.672180 + 0.388083i 0.796902 0.604109i \(-0.206471\pi\)
−0.124722 + 0.992192i \(0.539804\pi\)
\(762\) 0.560464 + 0.323584i 0.0203035 + 0.0117222i
\(763\) −13.4579 −0.487209
\(764\) −1.90709 0.511002i −0.0689960 0.0184874i
\(765\) 0 0
\(766\) 9.37414 0.338701
\(767\) 34.2929 + 34.2929i 1.23824 + 1.23824i
\(768\) −0.471184 1.75848i −0.0170024 0.0634538i
\(769\) 23.2703 23.2703i 0.839147 0.839147i −0.149599 0.988747i \(-0.547798\pi\)
0.988747 + 0.149599i \(0.0477984\pi\)
\(770\) 0 0
\(771\) −3.62993 3.62993i −0.130729 0.130729i
\(772\) −0.584422 1.01225i −0.0210338 0.0364316i
\(773\) −8.99634 + 33.5748i −0.323576 + 1.20760i 0.592160 + 0.805821i \(0.298275\pi\)
−0.915736 + 0.401781i \(0.868391\pi\)
\(774\) 21.9939 12.6982i 0.790556 0.456428i
\(775\) 0 0
\(776\) 49.4790i 1.77619i
\(777\) 5.02804 6.47705i 0.180380 0.232363i
\(778\) −8.81761 8.81761i −0.316127 0.316127i
\(779\) −0.240165 0.896309i −0.00860481 0.0321136i
\(780\) 0 0
\(781\) 51.2568 29.5931i 1.83411 1.05893i
\(782\) −7.44341 + 4.29746i −0.266176 + 0.153677i
\(783\) 18.2168 0.651015
\(784\) −15.5314 + 8.96708i −0.554695 + 0.320253i
\(785\) 0 0
\(786\) −9.43420 + 16.3405i −0.336507 + 0.582847i
\(787\) 1.73887 1.73887i 0.0619839 0.0619839i −0.675435 0.737419i \(-0.736044\pi\)
0.737419 + 0.675435i \(0.236044\pi\)
\(788\) 0.368577 0.368577i 0.0131300 0.0131300i
\(789\) 10.7482 + 6.20550i 0.382647 + 0.220922i
\(790\) 0 0
\(791\) −8.62071 8.62071i −0.306517 0.306517i
\(792\) 15.3198 26.5346i 0.544364 0.942866i
\(793\) −33.0208 + 8.84790i −1.17260 + 0.314198i
\(794\) 1.52278 0.408027i 0.0540413 0.0144803i
\(795\) 0 0
\(796\) −1.46789 0.393319i −0.0520279 0.0139408i
\(797\) −15.6728 + 27.1461i −0.555160 + 0.961566i 0.442731 + 0.896655i \(0.354010\pi\)
−0.997891 + 0.0649113i \(0.979324\pi\)
\(798\) −1.09828 4.09883i −0.0388786 0.145097i
\(799\) −11.0107 + 2.95032i −0.389532 + 0.104375i
\(800\) 0 0
\(801\) −9.26094 + 34.5623i −0.327219 + 1.22120i
\(802\) −34.3462 + 9.20305i −1.21281 + 0.324971i
\(803\) 9.85096 + 9.85096i 0.347633 + 0.347633i
\(804\) 0.707740 0.0249601
\(805\) 0 0
\(806\) −12.3261 12.3261i −0.434167 0.434167i
\(807\) −4.35386 + 16.2488i −0.153263 + 0.571986i
\(808\) 18.9608i 0.667037i
\(809\) −0.121396 0.0325280i −0.00426806 0.00114362i 0.256684 0.966495i \(-0.417370\pi\)
−0.260952 + 0.965352i \(0.584037\pi\)
\(810\) 0 0
\(811\) −7.32474 12.6868i −0.257207 0.445495i 0.708286 0.705926i \(-0.249469\pi\)
−0.965492 + 0.260431i \(0.916135\pi\)
\(812\) 0.551436 + 0.318372i 0.0193516 + 0.0111727i
\(813\) −7.45343 + 7.45343i −0.261403 + 0.261403i
\(814\) 25.7332 33.1492i 0.901950 1.16188i
\(815\) 0 0
\(816\) −4.79733 + 1.28544i −0.167940 + 0.0449995i
\(817\) −4.24601 + 15.8463i −0.148549 + 0.554393i
\(818\) −13.3989 3.59022i −0.468482 0.125529i
\(819\) 5.75691 21.4851i 0.201163 0.750749i
\(820\) 0 0
\(821\) −7.54707 13.0719i −0.263394 0.456213i 0.703747 0.710450i \(-0.251509\pi\)
−0.967142 + 0.254238i \(0.918175\pi\)
\(822\) 2.27784i 0.0794487i
\(823\) −15.2859 + 4.09584i −0.532832 + 0.142772i −0.515196 0.857073i \(-0.672281\pi\)
−0.0176363 + 0.999844i \(0.505614\pi\)
\(824\) 35.0345i 1.22048i
\(825\) 0 0
\(826\) 9.93885 17.2146i 0.345817 0.598972i
\(827\) −20.0903 + 11.5992i −0.698610 + 0.403343i −0.806829 0.590784i \(-0.798818\pi\)
0.108220 + 0.994127i \(0.465485\pi\)
\(828\) 0.884458i 0.0307371i
\(829\) −6.63771 24.7723i −0.230537 0.860377i −0.980110 0.198455i \(-0.936408\pi\)
0.749573 0.661922i \(-0.230259\pi\)
\(830\) 0 0
\(831\) 0.263001 + 0.981534i 0.00912342 + 0.0340491i
\(832\) 22.0507 + 38.1929i 0.764470 + 1.32410i
\(833\) 3.11527 + 5.39580i 0.107938 + 0.186953i
\(834\) 5.33824 + 19.9226i 0.184848 + 0.689863i
\(835\) 0 0
\(836\) −0.249169 0.929911i −0.00861769 0.0321616i
\(837\) 9.06108i 0.313197i
\(838\) 20.6583 11.9270i 0.713628 0.412013i
\(839\) −28.4964 + 49.3573i −0.983806 + 1.70400i −0.336681 + 0.941619i \(0.609304\pi\)
−0.647125 + 0.762384i \(0.724029\pi\)
\(840\) 0 0
\(841\) 11.5929i 0.399755i
\(842\) 0.902532 0.241833i 0.0311033 0.00833410i
\(843\) 14.6180i 0.503469i
\(844\) −0.806661 1.39718i −0.0277664 0.0480929i
\(845\) 0 0
\(846\) −6.84888 + 25.5604i −0.235469 + 0.878783i
\(847\) −18.6607 5.00013i −0.641191 0.171807i
\(848\) 11.8520 44.2322i 0.406999 1.51894i
\(849\) −13.2389 + 3.54735i −0.454357 + 0.121745i
\(850\) 0 0
\(851\) 3.38927 24.6729i 0.116183 0.845778i
\(852\) −0.667089 + 0.667089i −0.0228541 + 0.0228541i
\(853\) 21.1492 + 12.2105i 0.724135 + 0.418079i 0.816273 0.577667i \(-0.196037\pi\)
−0.0921378 + 0.995746i \(0.529370\pi\)
\(854\) 7.00586 + 12.1345i 0.239735 + 0.415234i
\(855\) 0 0
\(856\) −24.4667 6.55583i −0.836254 0.224074i
\(857\) 23.7142i 0.810060i 0.914303 + 0.405030i \(0.132739\pi\)
−0.914303 + 0.405030i \(0.867261\pi\)
\(858\) −8.49550 + 31.7056i −0.290032 + 1.08241i
\(859\) 1.55152 + 1.55152i 0.0529373 + 0.0529373i 0.733080 0.680143i \(-0.238082\pi\)
−0.680143 + 0.733080i \(0.738082\pi\)
\(860\) 0 0
\(861\) 0.574833 0.0195903
\(862\) 14.1148 + 14.1148i 0.480753 + 0.480753i
\(863\) −38.9434 + 10.4349i −1.32565 + 0.355207i −0.851091 0.525018i \(-0.824059\pi\)
−0.474558 + 0.880224i \(0.657392\pi\)
\(864\) −0.592573 + 2.21151i −0.0201597 + 0.0752372i
\(865\) 0 0
\(866\) 31.6988 8.49368i 1.07717 0.288627i
\(867\) −3.15873 11.7886i −0.107276 0.400360i
\(868\) −0.158359 + 0.274286i −0.00537505 + 0.00930986i
\(869\) 23.1899 + 6.21371i 0.786663 + 0.210786i
\(870\) 0 0
\(871\) −52.2180 + 13.9918i −1.76934 + 0.474094i
\(872\) −21.8017 + 5.84175i −0.738299 + 0.197827i
\(873\) 20.8794 36.1642i 0.706660 1.22397i
\(874\) −9.11358 9.11358i −0.308271 0.308271i
\(875\) 0 0
\(876\) −0.192310 0.111030i −0.00649755 0.00375136i
\(877\) −5.84034 + 5.84034i −0.197214 + 0.197214i −0.798805 0.601590i \(-0.794534\pi\)
0.601590 + 0.798805i \(0.294534\pi\)
\(878\) 11.5997 11.5997i 0.391472 0.391472i
\(879\) 8.39676 14.5436i 0.283216 0.490544i
\(880\) 0 0
\(881\) −32.5692 + 18.8038i −1.09728 + 0.633517i −0.935506 0.353311i \(-0.885056\pi\)
−0.161777 + 0.986827i \(0.551723\pi\)
\(882\) 14.4636 0.487014
\(883\) 20.7143 11.9594i 0.697091 0.402466i −0.109172 0.994023i \(-0.534820\pi\)
0.806263 + 0.591557i \(0.201487\pi\)
\(884\) −0.676934 + 0.390828i −0.0227678 + 0.0131450i
\(885\) 0 0
\(886\) −9.87255 36.8448i −0.331675 1.23783i
\(887\) −21.5121 21.5121i −0.722305 0.722305i 0.246769 0.969074i \(-0.420631\pi\)
−0.969074 + 0.246769i \(0.920631\pi\)
\(888\) 5.33386 12.6753i 0.178993 0.425356i
\(889\) 0.898159i 0.0301233i
\(890\) 0 0
\(891\) −14.0754 + 8.12641i −0.471542 + 0.272245i
\(892\) 0.262450 0.979477i 0.00878748 0.0327953i
\(893\) −8.54683 14.8035i −0.286009 0.495382i
\(894\) −6.76804 6.76804i −0.226357 0.226357i
\(895\) 0 0
\(896\) 14.0015 14.0015i 0.467759 0.467759i
\(897\) 5.04174 + 18.8160i 0.168339 + 0.628249i
\(898\) −37.3214 37.3214i −1.24543 1.24543i
\(899\) 8.65834 0.288772
\(900\) 0 0
\(901\) −15.3668 4.11751i −0.511941 0.137174i
\(902\) 2.94197 0.0979567
\(903\) −8.80122 5.08139i −0.292886 0.169098i
\(904\) −17.7075 10.2234i −0.588944 0.340027i
\(905\) 0 0
\(906\) −6.41898 + 23.9559i −0.213256 + 0.795883i
\(907\) 26.5778 15.3447i 0.882500 0.509512i 0.0110183 0.999939i \(-0.496493\pi\)
0.871482 + 0.490428i \(0.163159\pi\)
\(908\) −0.531937 0.307114i −0.0176530 0.0101919i
\(909\) −8.00116 + 13.8584i −0.265382 + 0.459655i
\(910\) 0 0
\(911\) −2.31494 + 2.31494i −0.0766975 + 0.0766975i −0.744415 0.667717i \(-0.767271\pi\)
0.667717 + 0.744415i \(0.267271\pi\)
\(912\) −3.72382 6.44985i −0.123308 0.213576i
\(913\) −4.98654 18.6100i −0.165030 0.615902i
\(914\) 59.6829i 1.97413i
\(915\) 0 0
\(916\) 0.908266 + 0.524388i 0.0300100 + 0.0173263i
\(917\) −26.1861 −0.864742
\(918\) 8.85349 + 2.37229i 0.292209 + 0.0782971i
\(919\) −19.7684 + 19.7684i −0.652098 + 0.652098i −0.953498 0.301400i \(-0.902546\pi\)
0.301400 + 0.953498i \(0.402546\pi\)
\(920\) 0 0
\(921\) −2.89353 5.01175i −0.0953452 0.165143i
\(922\) 42.3373 + 11.3443i 1.39431 + 0.373603i
\(923\) 36.0306 62.4069i 1.18596 2.05415i
\(924\) 0.596383 0.0196196
\(925\) 0 0
\(926\) −6.13852 −0.201724
\(927\) −14.7840 + 25.6067i −0.485571 + 0.841034i
\(928\) 2.11322 + 0.566234i 0.0693697 + 0.0185876i
\(929\) 9.70159 + 16.8036i 0.318299 + 0.551310i 0.980133 0.198340i \(-0.0635552\pi\)
−0.661834 + 0.749650i \(0.730222\pi\)
\(930\) 0 0
\(931\) −6.60652 + 6.60652i −0.216520 + 0.216520i
\(932\) −1.35255 0.362414i −0.0443041 0.0118713i
\(933\) 16.1643 0.529196
\(934\) 12.2717 + 7.08504i 0.401541 + 0.231830i
\(935\) 0 0
\(936\) 37.3046i 1.21934i
\(937\) −5.29178 19.7492i −0.172875 0.645178i −0.996904 0.0786302i \(-0.974945\pi\)
0.824029 0.566548i \(-0.191721\pi\)
\(938\) 11.0788 + 19.1891i 0.361737 + 0.626547i
\(939\) 12.0171 12.0171i 0.392162 0.392162i
\(940\) 0 0
\(941\) 0.662999 1.14835i 0.0216131 0.0374351i −0.855017 0.518601i \(-0.826453\pi\)
0.876630 + 0.481166i \(0.159786\pi\)
\(942\) 14.2118 + 8.20516i 0.463044 + 0.267339i
\(943\) 1.51203 0.872970i 0.0492384 0.0284278i
\(944\) 9.02952 33.6986i 0.293886 1.09680i
\(945\) 0 0
\(946\) −45.0442 26.0063i −1.46451 0.845537i
\(947\) −12.6269 7.29012i −0.410318 0.236897i 0.280608 0.959822i \(-0.409464\pi\)
−0.690926 + 0.722925i \(0.742797\pi\)
\(948\) −0.382677 −0.0124288
\(949\) 16.3839 + 4.39006i 0.531845 + 0.142507i
\(950\) 0 0
\(951\) −16.9440 −0.549447
\(952\) −4.65741 4.65741i −0.150948 0.150948i
\(953\) −6.41629 23.9459i −0.207844 0.775684i −0.988564 0.150803i \(-0.951814\pi\)
0.780720 0.624881i \(-0.214853\pi\)
\(954\) −26.1141 + 26.1141i −0.845474 + 0.845474i
\(955\) 0 0
\(956\) 1.17367 + 1.17367i 0.0379591 + 0.0379591i
\(957\) −8.15188 14.1195i −0.263513 0.456418i
\(958\) −11.2767 + 42.0854i −0.364335 + 1.35972i
\(959\) 2.73772 1.58062i 0.0884057 0.0510410i
\(960\) 0 0
\(961\) 26.6933i 0.861075i
\(962\) 6.95337 50.6186i 0.224186 1.63201i
\(963\) 15.1162 + 15.1162i 0.487114 + 0.487114i
\(964\) 0.673673 + 2.51418i 0.0216975 + 0.0809763i
\(965\) 0 0
\(966\) 6.91453 3.99210i 0.222471 0.128444i
\(967\) −28.8077 + 16.6321i −0.926393 + 0.534853i −0.885669 0.464317i \(-0.846300\pi\)
−0.0407238 + 0.999170i \(0.512966\pi\)
\(968\) −32.4007 −1.04140
\(969\) −2.24075 + 1.29370i −0.0719832 + 0.0415595i
\(970\) 0 0
\(971\) −6.82047 + 11.8134i −0.218879 + 0.379110i −0.954466 0.298321i \(-0.903573\pi\)
0.735586 + 0.677431i \(0.236907\pi\)
\(972\) 1.04244 1.04244i 0.0334363 0.0334363i
\(973\) −20.2406 + 20.2406i −0.648884 + 0.648884i
\(974\) −11.0349 6.37101i −0.353581 0.204140i
\(975\) 0 0
\(976\) 17.3892 + 17.3892i 0.556614 + 0.556614i
\(977\) 3.68372 6.38040i 0.117853 0.204127i −0.801064 0.598579i \(-0.795732\pi\)
0.918917 + 0.394452i \(0.129066\pi\)
\(978\) −7.17671 + 1.92299i −0.229486 + 0.0614905i
\(979\) 70.7846 18.9667i 2.26228 0.606177i
\(980\) 0 0
\(981\) 18.4000 + 4.93027i 0.587467 + 0.157411i
\(982\) −26.9556 + 46.6885i −0.860189 + 1.48989i
\(983\) 9.94128 + 37.1014i 0.317078 + 1.18335i 0.922040 + 0.387095i \(0.126522\pi\)
−0.604962 + 0.796254i \(0.706812\pi\)
\(984\) 0.931226 0.249521i 0.0296864 0.00795445i
\(985\) 0 0
\(986\) 2.26684 8.45998i 0.0721910 0.269421i
\(987\) 10.2284 2.74069i 0.325573 0.0872370i
\(988\) −0.828826 0.828826i −0.0263685 0.0263685i
\(989\) −30.8674 −0.981527
\(990\) 0 0
\(991\) −10.4917 10.4917i −0.333278 0.333278i 0.520552 0.853830i \(-0.325726\pi\)
−0.853830 + 0.520552i \(0.825726\pi\)
\(992\) −0.281646 + 1.05112i −0.00894228 + 0.0333730i
\(993\) 26.8246i 0.851253i
\(994\) −28.5294 7.64444i −0.904899 0.242467i
\(995\) 0 0
\(996\) 0.153550 + 0.265957i 0.00486542 + 0.00842716i
\(997\) 21.4627 + 12.3915i 0.679731 + 0.392443i 0.799754 0.600328i \(-0.204963\pi\)
−0.120023 + 0.992771i \(0.538297\pi\)
\(998\) 3.72781 3.72781i 0.118002 0.118002i
\(999\) −21.1610 + 16.0495i −0.669505 + 0.507783i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 925.2.t.b.643.12 68
5.2 odd 4 925.2.y.b.532.12 68
5.3 odd 4 185.2.u.a.162.6 yes 68
5.4 even 2 185.2.p.a.88.6 yes 68
37.8 odd 12 925.2.y.b.193.12 68
185.8 even 12 185.2.p.a.82.6 68
185.82 even 12 inner 925.2.t.b.82.12 68
185.119 odd 12 185.2.u.a.8.6 yes 68
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
185.2.p.a.82.6 68 185.8 even 12
185.2.p.a.88.6 yes 68 5.4 even 2
185.2.u.a.8.6 yes 68 185.119 odd 12
185.2.u.a.162.6 yes 68 5.3 odd 4
925.2.t.b.82.12 68 185.82 even 12 inner
925.2.t.b.643.12 68 1.1 even 1 trivial
925.2.y.b.193.12 68 37.8 odd 12
925.2.y.b.532.12 68 5.2 odd 4