Properties

Label 925.2.y.a.193.10
Level $925$
Weight $2$
Character 925.193
Analytic conductor $7.386$
Analytic rank $0$
Dimension $56$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [925,2,Mod(193,925)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("925.193"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(925, base_ring=CyclotomicField(12)) chi = DirichletCharacter(H, H._module([9, 1])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 925 = 5^{2} \cdot 37 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 925.y (of order \(12\), degree \(4\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [56] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.38616218697\)
Analytic rank: \(0\)
Dimension: \(56\)
Relative dimension: \(14\) over \(\Q(\zeta_{12})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 193.10
Character \(\chi\) \(=\) 925.193
Dual form 925.2.y.a.532.10

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.926614 - 0.534981i) q^{2} +(-0.561303 - 2.09481i) q^{3} +(-0.427591 + 0.740609i) q^{4} +(-1.64079 - 1.64079i) q^{6} +(0.642189 + 2.39668i) q^{7} +3.05494i q^{8} +(-1.47509 + 0.851645i) q^{9} -5.02991i q^{11} +(1.79144 + 0.480016i) q^{12} +(-3.98890 - 2.30299i) q^{13} +(1.87724 + 1.87724i) q^{14} +(0.779151 + 1.34953i) q^{16} +(-2.61653 - 4.53196i) q^{17} +(-0.911227 + 1.57829i) q^{18} +(-1.96405 - 7.32995i) q^{19} +(4.66013 - 2.69053i) q^{21} +(-2.69090 - 4.66078i) q^{22} +3.90190i q^{23} +(6.39951 - 1.71474i) q^{24} -4.92823 q^{26} +(-1.98852 - 1.98852i) q^{27} +(-2.04960 - 0.549188i) q^{28} +(-2.46568 - 2.46568i) q^{29} +(6.59621 - 6.59621i) q^{31} +(-3.84736 - 2.22127i) q^{32} +(-10.5367 + 2.82330i) q^{33} +(-4.84903 - 2.79959i) q^{34} -1.45662i q^{36} +(4.23183 + 4.36939i) q^{37} +(-5.74130 - 5.74130i) q^{38} +(-2.58535 + 9.64866i) q^{39} +(2.12301 + 1.22572i) q^{41} +(2.87876 - 4.98616i) q^{42} +2.84795i q^{43} +(3.72519 + 2.15074i) q^{44} +(2.08744 + 3.61556i) q^{46} +(3.77465 - 3.77465i) q^{47} +(2.38967 - 2.38967i) q^{48} +(0.730503 - 0.421756i) q^{49} +(-8.02493 + 8.02493i) q^{51} +(3.41123 - 1.96948i) q^{52} +(0.509586 - 1.90180i) q^{53} +(-2.90640 - 0.778769i) q^{54} +(-7.32171 + 1.96185i) q^{56} +(-14.2524 + 8.22864i) q^{57} +(-3.60383 - 0.965642i) q^{58} +(-12.3239 - 3.30218i) q^{59} +(3.14132 + 11.7236i) q^{61} +(2.58330 - 9.64099i) q^{62} +(-2.98841 - 2.98841i) q^{63} -7.86996 q^{64} +(-8.25304 + 8.25304i) q^{66} +(1.37987 - 0.369735i) q^{67} +4.47521 q^{68} +(8.17374 - 2.19015i) q^{69} +(0.476267 - 0.824919i) q^{71} +(-2.60172 - 4.50631i) q^{72} +(-5.74703 + 5.74703i) q^{73} +(6.25882 + 1.78479i) q^{74} +(6.26844 + 1.67962i) q^{76} +(12.0551 - 3.23015i) q^{77} +(2.76623 + 10.3237i) q^{78} +(2.65009 + 9.89027i) q^{79} +(-5.60434 + 9.70700i) q^{81} +2.62295 q^{82} +(0.433112 - 1.61639i) q^{83} +4.60178i q^{84} +(1.52360 + 2.63895i) q^{86} +(-3.78114 + 6.54913i) q^{87} +15.3660 q^{88} +(0.934359 - 3.48707i) q^{89} +(2.95791 - 11.0391i) q^{91} +(-2.88978 - 1.66842i) q^{92} +(-17.5203 - 10.1153i) q^{93} +(1.47828 - 5.51702i) q^{94} +(-2.49361 + 9.30629i) q^{96} -10.8774 q^{97} +(0.451263 - 0.781611i) q^{98} +(4.28369 + 7.41958i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 56 q + 36 q^{4} + 8 q^{14} - 72 q^{16} + 16 q^{19} - 36 q^{21} - 4 q^{24} + 8 q^{26} + 24 q^{31} + 60 q^{34} - 24 q^{41} + 24 q^{44} + 12 q^{49} + 84 q^{51} + 28 q^{54} + 104 q^{56} + 4 q^{59} - 24 q^{61}+ \cdots + 120 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/925\mathbb{Z}\right)^\times\).

\(n\) \(76\) \(852\)
\(\chi(n)\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.926614 0.534981i 0.655215 0.378289i −0.135236 0.990813i \(-0.543179\pi\)
0.790451 + 0.612525i \(0.209846\pi\)
\(3\) −0.561303 2.09481i −0.324068 1.20944i −0.915245 0.402897i \(-0.868003\pi\)
0.591177 0.806542i \(-0.298663\pi\)
\(4\) −0.427591 + 0.740609i −0.213795 + 0.370304i
\(5\) 0 0
\(6\) −1.64079 1.64079i −0.669852 0.669852i
\(7\) 0.642189 + 2.39668i 0.242725 + 0.905860i 0.974513 + 0.224329i \(0.0720190\pi\)
−0.731789 + 0.681531i \(0.761314\pi\)
\(8\) 3.05494i 1.08008i
\(9\) −1.47509 + 0.851645i −0.491697 + 0.283882i
\(10\) 0 0
\(11\) 5.02991i 1.51657i −0.651921 0.758287i \(-0.726037\pi\)
0.651921 0.758287i \(-0.273963\pi\)
\(12\) 1.79144 + 0.480016i 0.517145 + 0.138569i
\(13\) −3.98890 2.30299i −1.10632 0.638735i −0.168447 0.985711i \(-0.553875\pi\)
−0.937874 + 0.346976i \(0.887209\pi\)
\(14\) 1.87724 + 1.87724i 0.501714 + 0.501714i
\(15\) 0 0
\(16\) 0.779151 + 1.34953i 0.194788 + 0.337382i
\(17\) −2.61653 4.53196i −0.634602 1.09916i −0.986599 0.163161i \(-0.947831\pi\)
0.351998 0.936001i \(-0.385502\pi\)
\(18\) −0.911227 + 1.57829i −0.214778 + 0.372007i
\(19\) −1.96405 7.32995i −0.450585 1.68161i −0.700754 0.713403i \(-0.747153\pi\)
0.250169 0.968202i \(-0.419514\pi\)
\(20\) 0 0
\(21\) 4.66013 2.69053i 1.01692 0.587121i
\(22\) −2.69090 4.66078i −0.573703 0.993682i
\(23\) 3.90190i 0.813602i 0.913517 + 0.406801i \(0.133356\pi\)
−0.913517 + 0.406801i \(0.866644\pi\)
\(24\) 6.39951 1.71474i 1.30629 0.350021i
\(25\) 0 0
\(26\) −4.92823 −0.966505
\(27\) −1.98852 1.98852i −0.382690 0.382690i
\(28\) −2.04960 0.549188i −0.387338 0.103787i
\(29\) −2.46568 2.46568i −0.457865 0.457865i 0.440089 0.897954i \(-0.354947\pi\)
−0.897954 + 0.440089i \(0.854947\pi\)
\(30\) 0 0
\(31\) 6.59621 6.59621i 1.18471 1.18471i 0.206206 0.978509i \(-0.433888\pi\)
0.978509 0.206206i \(-0.0661117\pi\)
\(32\) −3.84736 2.22127i −0.680123 0.392669i
\(33\) −10.5367 + 2.82330i −1.83420 + 0.491473i
\(34\) −4.84903 2.79959i −0.831601 0.480125i
\(35\) 0 0
\(36\) 1.45662i 0.242770i
\(37\) 4.23183 + 4.36939i 0.695709 + 0.718323i
\(38\) −5.74130 5.74130i −0.931362 0.931362i
\(39\) −2.58535 + 9.64866i −0.413987 + 1.54502i
\(40\) 0 0
\(41\) 2.12301 + 1.22572i 0.331558 + 0.191425i 0.656533 0.754298i \(-0.272022\pi\)
−0.324975 + 0.945723i \(0.605356\pi\)
\(42\) 2.87876 4.98616i 0.444203 0.769381i
\(43\) 2.84795i 0.434308i 0.976137 + 0.217154i \(0.0696773\pi\)
−0.976137 + 0.217154i \(0.930323\pi\)
\(44\) 3.72519 + 2.15074i 0.561594 + 0.324237i
\(45\) 0 0
\(46\) 2.08744 + 3.61556i 0.307777 + 0.533085i
\(47\) 3.77465 3.77465i 0.550590 0.550590i −0.376021 0.926611i \(-0.622708\pi\)
0.926611 + 0.376021i \(0.122708\pi\)
\(48\) 2.38967 2.38967i 0.344919 0.344919i
\(49\) 0.730503 0.421756i 0.104358 0.0602509i
\(50\) 0 0
\(51\) −8.02493 + 8.02493i −1.12372 + 1.12372i
\(52\) 3.41123 1.96948i 0.473053 0.273117i
\(53\) 0.509586 1.90180i 0.0699970 0.261233i −0.922055 0.387058i \(-0.873491\pi\)
0.992052 + 0.125826i \(0.0401580\pi\)
\(54\) −2.90640 0.778769i −0.395511 0.105977i
\(55\) 0 0
\(56\) −7.32171 + 1.96185i −0.978404 + 0.262163i
\(57\) −14.2524 + 8.22864i −1.88778 + 1.08991i
\(58\) −3.60383 0.965642i −0.473206 0.126795i
\(59\) −12.3239 3.30218i −1.60443 0.429907i −0.658057 0.752968i \(-0.728621\pi\)
−0.946378 + 0.323061i \(0.895288\pi\)
\(60\) 0 0
\(61\) 3.14132 + 11.7236i 0.402205 + 1.50105i 0.809153 + 0.587597i \(0.199926\pi\)
−0.406949 + 0.913451i \(0.633407\pi\)
\(62\) 2.58330 9.64099i 0.328079 1.22441i
\(63\) −2.98841 2.98841i −0.376504 0.376504i
\(64\) −7.86996 −0.983745
\(65\) 0 0
\(66\) −8.25304 + 8.25304i −1.01588 + 1.01588i
\(67\) 1.37987 0.369735i 0.168578 0.0451703i −0.173543 0.984826i \(-0.555521\pi\)
0.342121 + 0.939656i \(0.388855\pi\)
\(68\) 4.47521 0.542700
\(69\) 8.17374 2.19015i 0.984002 0.263663i
\(70\) 0 0
\(71\) 0.476267 0.824919i 0.0565225 0.0978999i −0.836380 0.548151i \(-0.815332\pi\)
0.892902 + 0.450251i \(0.148665\pi\)
\(72\) −2.60172 4.50631i −0.306616 0.531074i
\(73\) −5.74703 + 5.74703i −0.672639 + 0.672639i −0.958324 0.285685i \(-0.907779\pi\)
0.285685 + 0.958324i \(0.407779\pi\)
\(74\) 6.25882 + 1.78479i 0.727573 + 0.207478i
\(75\) 0 0
\(76\) 6.26844 + 1.67962i 0.719039 + 0.192666i
\(77\) 12.0551 3.23015i 1.37380 0.368110i
\(78\) 2.76623 + 10.3237i 0.313214 + 1.16893i
\(79\) 2.65009 + 9.89027i 0.298158 + 1.11274i 0.938676 + 0.344799i \(0.112053\pi\)
−0.640518 + 0.767943i \(0.721280\pi\)
\(80\) 0 0
\(81\) −5.60434 + 9.70700i −0.622704 + 1.07856i
\(82\) 2.62295 0.289656
\(83\) 0.433112 1.61639i 0.0475402 0.177422i −0.938073 0.346436i \(-0.887392\pi\)
0.985614 + 0.169014i \(0.0540583\pi\)
\(84\) 4.60178i 0.502095i
\(85\) 0 0
\(86\) 1.52360 + 2.63895i 0.164294 + 0.284565i
\(87\) −3.78114 + 6.54913i −0.405381 + 0.702140i
\(88\) 15.3660 1.63803
\(89\) 0.934359 3.48707i 0.0990418 0.369629i −0.898559 0.438852i \(-0.855385\pi\)
0.997601 + 0.0692228i \(0.0220519\pi\)
\(90\) 0 0
\(91\) 2.95791 11.0391i 0.310073 1.15721i
\(92\) −2.88978 1.66842i −0.301281 0.173944i
\(93\) −17.5203 10.1153i −1.81677 1.04891i
\(94\) 1.47828 5.51702i 0.152473 0.569037i
\(95\) 0 0
\(96\) −2.49361 + 9.30629i −0.254503 + 0.949820i
\(97\) −10.8774 −1.10443 −0.552215 0.833702i \(-0.686217\pi\)
−0.552215 + 0.833702i \(0.686217\pi\)
\(98\) 0.451263 0.781611i 0.0455845 0.0789546i
\(99\) 4.28369 + 7.41958i 0.430527 + 0.745695i
\(100\) 0 0
\(101\) 12.2409i 1.21802i −0.793164 0.609008i \(-0.791568\pi\)
0.793164 0.609008i \(-0.208432\pi\)
\(102\) −3.14283 + 11.7292i −0.311187 + 1.16136i
\(103\) 10.9612 1.08004 0.540021 0.841651i \(-0.318416\pi\)
0.540021 + 0.841651i \(0.318416\pi\)
\(104\) 7.03549 12.1858i 0.689887 1.19492i
\(105\) 0 0
\(106\) −0.545238 2.03485i −0.0529582 0.197643i
\(107\) 2.32616 + 8.68135i 0.224878 + 0.839257i 0.982453 + 0.186509i \(0.0597174\pi\)
−0.757575 + 0.652748i \(0.773616\pi\)
\(108\) 2.32298 0.622441i 0.223529 0.0598944i
\(109\) 5.88902 + 1.57796i 0.564066 + 0.151141i 0.529574 0.848264i \(-0.322352\pi\)
0.0344922 + 0.999405i \(0.489019\pi\)
\(110\) 0 0
\(111\) 6.77770 11.3174i 0.643311 1.07420i
\(112\) −2.73403 + 2.73403i −0.258341 + 0.258341i
\(113\) −1.55938 2.70092i −0.146694 0.254081i 0.783310 0.621632i \(-0.213530\pi\)
−0.930004 + 0.367550i \(0.880197\pi\)
\(114\) −8.80433 + 15.2495i −0.824601 + 1.42825i
\(115\) 0 0
\(116\) 2.88041 0.771803i 0.267439 0.0716601i
\(117\) 7.84532 0.725300
\(118\) −13.1861 + 3.53321i −1.21388 + 0.325258i
\(119\) 9.18136 9.18136i 0.841654 0.841654i
\(120\) 0 0
\(121\) −14.3000 −1.30000
\(122\) 9.18267 + 9.18267i 0.831360 + 0.831360i
\(123\) 1.37600 5.13530i 0.124070 0.463034i
\(124\) 2.06473 + 7.70569i 0.185419 + 0.691992i
\(125\) 0 0
\(126\) −4.36784 1.17036i −0.389118 0.104264i
\(127\) −7.08705 1.89897i −0.628874 0.168506i −0.0697154 0.997567i \(-0.522209\pi\)
−0.559159 + 0.829061i \(0.688876\pi\)
\(128\) 0.402302 0.232269i 0.0355588 0.0205299i
\(129\) 5.96590 1.59856i 0.525269 0.140745i
\(130\) 0 0
\(131\) 15.5092 + 4.15568i 1.35505 + 0.363084i 0.861995 0.506916i \(-0.169215\pi\)
0.493052 + 0.870000i \(0.335881\pi\)
\(132\) 2.41443 9.01079i 0.210150 0.784289i
\(133\) 16.3063 9.41442i 1.41393 0.816334i
\(134\) 1.08081 1.08081i 0.0933674 0.0933674i
\(135\) 0 0
\(136\) 13.8448 7.99333i 1.18719 0.685422i
\(137\) 11.5120 11.5120i 0.983540 0.983540i −0.0163269 0.999867i \(-0.505197\pi\)
0.999867 + 0.0163269i \(0.00519724\pi\)
\(138\) 6.40221 6.40221i 0.544993 0.544993i
\(139\) 0.497367 + 0.861465i 0.0421861 + 0.0730685i 0.886348 0.463021i \(-0.153234\pi\)
−0.844161 + 0.536089i \(0.819901\pi\)
\(140\) 0 0
\(141\) −10.0259 5.78846i −0.844334 0.487476i
\(142\) 1.01918i 0.0855273i
\(143\) −11.5838 + 20.0638i −0.968689 + 1.67782i
\(144\) −2.29864 1.32712i −0.191553 0.110593i
\(145\) 0 0
\(146\) −2.25073 + 8.39983i −0.186271 + 0.695175i
\(147\) −1.29353 1.29353i −0.106689 0.106689i
\(148\) −5.04550 + 1.26582i −0.414738 + 0.104050i
\(149\) 13.2762i 1.08763i −0.839206 0.543814i \(-0.816980\pi\)
0.839206 0.543814i \(-0.183020\pi\)
\(150\) 0 0
\(151\) 6.69165 + 3.86343i 0.544559 + 0.314401i 0.746924 0.664909i \(-0.231530\pi\)
−0.202366 + 0.979310i \(0.564863\pi\)
\(152\) 22.3925 6.00006i 1.81627 0.486669i
\(153\) 7.71924 + 4.45671i 0.624064 + 0.360303i
\(154\) 9.44234 9.44234i 0.760886 0.760886i
\(155\) 0 0
\(156\) −6.04041 6.04041i −0.483620 0.483620i
\(157\) −15.3229 4.10576i −1.22290 0.327675i −0.411089 0.911595i \(-0.634851\pi\)
−0.811811 + 0.583920i \(0.801518\pi\)
\(158\) 7.74672 + 7.74672i 0.616296 + 0.616296i
\(159\) −4.26994 −0.338629
\(160\) 0 0
\(161\) −9.35161 + 2.50576i −0.737010 + 0.197481i
\(162\) 11.9929i 0.942248i
\(163\) 0.821552 + 1.42297i 0.0643489 + 0.111456i 0.896405 0.443236i \(-0.146170\pi\)
−0.832056 + 0.554692i \(0.812836\pi\)
\(164\) −1.81556 + 1.04821i −0.141771 + 0.0818516i
\(165\) 0 0
\(166\) −0.463413 1.72948i −0.0359678 0.134234i
\(167\) −9.72982 + 16.8526i −0.752916 + 1.30409i 0.193487 + 0.981103i \(0.438020\pi\)
−0.946404 + 0.322987i \(0.895313\pi\)
\(168\) 8.21939 + 14.2364i 0.634139 + 1.09836i
\(169\) 4.10754 + 7.11447i 0.315965 + 0.547267i
\(170\) 0 0
\(171\) 9.13967 + 9.13967i 0.698928 + 0.698928i
\(172\) −2.10921 1.21776i −0.160826 0.0928530i
\(173\) 4.88196 + 1.30812i 0.371168 + 0.0994542i 0.439581 0.898203i \(-0.355127\pi\)
−0.0684130 + 0.997657i \(0.521794\pi\)
\(174\) 8.09135i 0.613404i
\(175\) 0 0
\(176\) 6.78800 3.91906i 0.511665 0.295410i
\(177\) 27.6697i 2.07979i
\(178\) −0.999728 3.73104i −0.0749328 0.279653i
\(179\) 6.16119 + 6.16119i 0.460509 + 0.460509i 0.898822 0.438313i \(-0.144424\pi\)
−0.438313 + 0.898822i \(0.644424\pi\)
\(180\) 0 0
\(181\) 8.91593 15.4428i 0.662716 1.14786i −0.317183 0.948364i \(-0.602737\pi\)
0.979899 0.199494i \(-0.0639297\pi\)
\(182\) −3.16485 11.8114i −0.234594 0.875518i
\(183\) 22.7954 13.1609i 1.68508 0.972884i
\(184\) −11.9201 −0.878758
\(185\) 0 0
\(186\) −21.6461 −1.58717
\(187\) −22.7953 + 13.1609i −1.66696 + 0.962420i
\(188\) 1.18154 + 4.40955i 0.0861723 + 0.321600i
\(189\) 3.48883 6.04284i 0.253775 0.439552i
\(190\) 0 0
\(191\) −9.29165 9.29165i −0.672320 0.672320i 0.285930 0.958250i \(-0.407697\pi\)
−0.958250 + 0.285930i \(0.907697\pi\)
\(192\) 4.41743 + 16.4861i 0.318800 + 1.18978i
\(193\) 0.877457i 0.0631607i 0.999501 + 0.0315804i \(0.0100540\pi\)
−0.999501 + 0.0315804i \(0.989946\pi\)
\(194\) −10.0791 + 5.81918i −0.723639 + 0.417793i
\(195\) 0 0
\(196\) 0.721356i 0.0515255i
\(197\) −3.55020 0.951274i −0.252941 0.0677755i 0.130120 0.991498i \(-0.458464\pi\)
−0.383062 + 0.923723i \(0.625130\pi\)
\(198\) 7.93866 + 4.58339i 0.564176 + 0.325727i
\(199\) 6.52995 + 6.52995i 0.462896 + 0.462896i 0.899604 0.436708i \(-0.143856\pi\)
−0.436708 + 0.899604i \(0.643856\pi\)
\(200\) 0 0
\(201\) −1.54905 2.68303i −0.109261 0.189246i
\(202\) −6.54865 11.3426i −0.460762 0.798062i
\(203\) 4.32602 7.49288i 0.303627 0.525897i
\(204\) −2.51195 9.37472i −0.175872 0.656362i
\(205\) 0 0
\(206\) 10.1568 5.86405i 0.707660 0.408568i
\(207\) −3.32303 5.75566i −0.230967 0.400046i
\(208\) 7.17751i 0.497671i
\(209\) −36.8690 + 9.87901i −2.55028 + 0.683345i
\(210\) 0 0
\(211\) 22.5445 1.55203 0.776015 0.630714i \(-0.217238\pi\)
0.776015 + 0.630714i \(0.217238\pi\)
\(212\) 1.19060 + 1.19060i 0.0817705 + 0.0817705i
\(213\) −1.99538 0.534660i −0.136721 0.0366343i
\(214\) 6.79981 + 6.79981i 0.464825 + 0.464825i
\(215\) 0 0
\(216\) 6.07479 6.07479i 0.413337 0.413337i
\(217\) 20.0450 + 11.5730i 1.36075 + 0.785627i
\(218\) 6.30103 1.68835i 0.426759 0.114350i
\(219\) 15.2648 + 8.81311i 1.03150 + 0.595535i
\(220\) 0 0
\(221\) 24.1034i 1.62137i
\(222\) 0.225703 14.1128i 0.0151482 0.947192i
\(223\) −13.5560 13.5560i −0.907775 0.907775i 0.0883170 0.996092i \(-0.471851\pi\)
−0.996092 + 0.0883170i \(0.971851\pi\)
\(224\) 2.85295 10.6474i 0.190621 0.711407i
\(225\) 0 0
\(226\) −2.88988 1.66848i −0.192232 0.110985i
\(227\) 8.02252 13.8954i 0.532473 0.922271i −0.466808 0.884359i \(-0.654596\pi\)
0.999281 0.0379118i \(-0.0120706\pi\)
\(228\) 14.0740i 0.932071i
\(229\) −8.12112 4.68873i −0.536659 0.309840i 0.207065 0.978327i \(-0.433609\pi\)
−0.743724 + 0.668487i \(0.766942\pi\)
\(230\) 0 0
\(231\) −13.5331 23.4400i −0.890413 1.54224i
\(232\) 7.53249 7.53249i 0.494533 0.494533i
\(233\) 15.0519 15.0519i 0.986082 0.986082i −0.0138229 0.999904i \(-0.504400\pi\)
0.999904 + 0.0138229i \(0.00440012\pi\)
\(234\) 7.26959 4.19710i 0.475228 0.274373i
\(235\) 0 0
\(236\) 7.71521 7.71521i 0.502217 0.502217i
\(237\) 19.2307 11.1029i 1.24917 0.721209i
\(238\) 3.59573 13.4194i 0.233076 0.869853i
\(239\) −2.43829 0.653338i −0.157720 0.0422609i 0.179095 0.983832i \(-0.442683\pi\)
−0.336815 + 0.941571i \(0.609350\pi\)
\(240\) 0 0
\(241\) −17.7868 + 4.76596i −1.14575 + 0.307002i −0.781260 0.624206i \(-0.785423\pi\)
−0.364488 + 0.931208i \(0.618756\pi\)
\(242\) −13.2505 + 7.65021i −0.851778 + 0.491774i
\(243\) 15.3310 + 4.10792i 0.983481 + 0.263523i
\(244\) −10.0258 2.68640i −0.641834 0.171979i
\(245\) 0 0
\(246\) −1.47227 5.49457i −0.0938683 0.350321i
\(247\) −9.04640 + 33.7616i −0.575609 + 2.14820i
\(248\) 20.1510 + 20.1510i 1.27959 + 1.27959i
\(249\) −3.62915 −0.229988
\(250\) 0 0
\(251\) −11.9106 + 11.9106i −0.751792 + 0.751792i −0.974814 0.223021i \(-0.928408\pi\)
0.223021 + 0.974814i \(0.428408\pi\)
\(252\) 3.49106 0.935426i 0.219916 0.0589263i
\(253\) 19.6262 1.23389
\(254\) −7.58288 + 2.03183i −0.475792 + 0.127488i
\(255\) 0 0
\(256\) 8.11848 14.0616i 0.507405 0.878851i
\(257\) 7.08231 + 12.2669i 0.441783 + 0.765190i 0.997822 0.0659662i \(-0.0210129\pi\)
−0.556039 + 0.831156i \(0.687680\pi\)
\(258\) 4.67289 4.67289i 0.290922 0.290922i
\(259\) −7.75440 + 12.9483i −0.481835 + 0.804570i
\(260\) 0 0
\(261\) 5.73699 + 1.53722i 0.355111 + 0.0951516i
\(262\) 16.5943 4.44642i 1.02520 0.274701i
\(263\) 2.56405 + 9.56915i 0.158106 + 0.590059i 0.998819 + 0.0485788i \(0.0154692\pi\)
−0.840714 + 0.541480i \(0.817864\pi\)
\(264\) −8.62500 32.1889i −0.530832 1.98109i
\(265\) 0 0
\(266\) 10.0731 17.4471i 0.617620 1.06975i
\(267\) −7.82922 −0.479140
\(268\) −0.316190 + 1.18004i −0.0193144 + 0.0720823i
\(269\) 20.3700i 1.24198i −0.783819 0.620989i \(-0.786731\pi\)
0.783819 0.620989i \(-0.213269\pi\)
\(270\) 0 0
\(271\) 6.96002 + 12.0551i 0.422791 + 0.732296i 0.996211 0.0869658i \(-0.0277171\pi\)
−0.573420 + 0.819261i \(0.694384\pi\)
\(272\) 4.07734 7.06216i 0.247225 0.428206i
\(273\) −24.7850 −1.50006
\(274\) 4.50850 16.8259i 0.272368 1.01649i
\(275\) 0 0
\(276\) −1.87297 + 6.99003i −0.112740 + 0.420750i
\(277\) −9.65077 5.57187i −0.579858 0.334781i 0.181219 0.983443i \(-0.441996\pi\)
−0.761077 + 0.648661i \(0.775329\pi\)
\(278\) 0.921735 + 0.532164i 0.0552820 + 0.0319171i
\(279\) −4.11239 + 15.3476i −0.246202 + 0.918840i
\(280\) 0 0
\(281\) −5.29526 + 19.7622i −0.315889 + 1.17891i 0.607270 + 0.794495i \(0.292264\pi\)
−0.923159 + 0.384418i \(0.874402\pi\)
\(282\) −12.3869 −0.737627
\(283\) 2.40691 4.16889i 0.143076 0.247815i −0.785577 0.618763i \(-0.787634\pi\)
0.928653 + 0.370948i \(0.120967\pi\)
\(284\) 0.407295 + 0.705456i 0.0241685 + 0.0418611i
\(285\) 0 0
\(286\) 24.7885i 1.46578i
\(287\) −1.57429 + 5.87532i −0.0929272 + 0.346809i
\(288\) 7.56695 0.445887
\(289\) −5.19245 + 8.99359i −0.305438 + 0.529034i
\(290\) 0 0
\(291\) 6.10550 + 22.7860i 0.357910 + 1.33574i
\(292\) −1.79892 6.71368i −0.105274 0.392888i
\(293\) 7.58300 2.03186i 0.443004 0.118702i −0.0304202 0.999537i \(-0.509685\pi\)
0.473424 + 0.880835i \(0.343018\pi\)
\(294\) −1.89062 0.506590i −0.110263 0.0295450i
\(295\) 0 0
\(296\) −13.3482 + 12.9280i −0.775849 + 0.751424i
\(297\) −10.0020 + 10.0020i −0.580378 + 0.580378i
\(298\) −7.10251 12.3019i −0.411438 0.712631i
\(299\) 8.98604 15.5643i 0.519676 0.900106i
\(300\) 0 0
\(301\) −6.82562 + 1.82892i −0.393422 + 0.105417i
\(302\) 8.26744 0.475738
\(303\) −25.6424 + 6.87085i −1.47312 + 0.394720i
\(304\) 8.36168 8.36168i 0.479575 0.479575i
\(305\) 0 0
\(306\) 9.53701 0.545195
\(307\) 21.3204 + 21.3204i 1.21682 + 1.21682i 0.968739 + 0.248083i \(0.0798006\pi\)
0.248083 + 0.968739i \(0.420199\pi\)
\(308\) −2.76236 + 10.3093i −0.157400 + 0.587426i
\(309\) −6.15257 22.9617i −0.350007 1.30625i
\(310\) 0 0
\(311\) 10.2124 + 2.73640i 0.579092 + 0.155167i 0.536463 0.843924i \(-0.319760\pi\)
0.0426287 + 0.999091i \(0.486427\pi\)
\(312\) −29.4760 7.89808i −1.66875 0.447141i
\(313\) −21.1567 + 12.2148i −1.19585 + 0.690423i −0.959627 0.281277i \(-0.909242\pi\)
−0.236220 + 0.971699i \(0.575909\pi\)
\(314\) −16.3949 + 4.39300i −0.925218 + 0.247911i
\(315\) 0 0
\(316\) −8.45798 2.26631i −0.475798 0.127490i
\(317\) −1.05570 + 3.93993i −0.0592940 + 0.221288i −0.989215 0.146471i \(-0.953208\pi\)
0.929921 + 0.367760i \(0.119875\pi\)
\(318\) −3.95659 + 2.28434i −0.221875 + 0.128099i
\(319\) −12.4021 + 12.4021i −0.694387 + 0.694387i
\(320\) 0 0
\(321\) 16.8801 9.74573i 0.942155 0.543953i
\(322\) −7.32480 + 7.32480i −0.408195 + 0.408195i
\(323\) −28.0800 + 28.0800i −1.56242 + 1.56242i
\(324\) −4.79273 8.30124i −0.266263 0.461180i
\(325\) 0 0
\(326\) 1.52252 + 0.879029i 0.0843248 + 0.0486849i
\(327\) 13.2221i 0.731183i
\(328\) −3.74449 + 6.48565i −0.206755 + 0.358110i
\(329\) 11.4707 + 6.62260i 0.632399 + 0.365116i
\(330\) 0 0
\(331\) −2.85231 + 10.6450i −0.156777 + 0.585101i 0.842169 + 0.539213i \(0.181278\pi\)
−0.998947 + 0.0458877i \(0.985388\pi\)
\(332\) 1.01192 + 1.01192i 0.0555364 + 0.0555364i
\(333\) −9.96351 2.84123i −0.545997 0.155699i
\(334\) 20.8211i 1.13928i
\(335\) 0 0
\(336\) 7.26189 + 4.19265i 0.396168 + 0.228728i
\(337\) 24.2549 6.49907i 1.32125 0.354027i 0.471802 0.881705i \(-0.343604\pi\)
0.849445 + 0.527678i \(0.176937\pi\)
\(338\) 7.61222 + 4.39492i 0.414050 + 0.239052i
\(339\) −4.78264 + 4.78264i −0.259757 + 0.259757i
\(340\) 0 0
\(341\) −33.1783 33.1783i −1.79671 1.79671i
\(342\) 13.3585 + 3.57940i 0.722345 + 0.193552i
\(343\) 13.7614 + 13.7614i 0.743045 + 0.743045i
\(344\) −8.70029 −0.469088
\(345\) 0 0
\(346\) 5.22351 1.39963i 0.280817 0.0752448i
\(347\) 28.0694i 1.50685i −0.657536 0.753423i \(-0.728401\pi\)
0.657536 0.753423i \(-0.271599\pi\)
\(348\) −3.23356 5.60069i −0.173337 0.300229i
\(349\) 7.20930 4.16229i 0.385905 0.222802i −0.294479 0.955658i \(-0.595146\pi\)
0.680384 + 0.732855i \(0.261813\pi\)
\(350\) 0 0
\(351\) 3.35245 + 12.5115i 0.178941 + 0.667816i
\(352\) −11.1728 + 19.3519i −0.595512 + 1.03146i
\(353\) −10.8303 18.7587i −0.576441 0.998425i −0.995883 0.0906428i \(-0.971108\pi\)
0.419443 0.907782i \(-0.362225\pi\)
\(354\) 14.8028 + 25.6392i 0.786759 + 1.36271i
\(355\) 0 0
\(356\) 2.18304 + 2.18304i 0.115701 + 0.115701i
\(357\) −24.3867 14.0797i −1.29068 0.745176i
\(358\) 9.00516 + 2.41293i 0.475938 + 0.127527i
\(359\) 12.6259i 0.666370i 0.942861 + 0.333185i \(0.108123\pi\)
−0.942861 + 0.333185i \(0.891877\pi\)
\(360\) 0 0
\(361\) −33.4162 + 19.2928i −1.75875 + 1.01541i
\(362\) 19.0794i 1.00279i
\(363\) 8.02661 + 29.9557i 0.421288 + 1.57227i
\(364\) 6.91086 + 6.91086i 0.362228 + 0.362228i
\(365\) 0 0
\(366\) 14.0817 24.3902i 0.736062 1.27490i
\(367\) 2.92473 + 10.9152i 0.152669 + 0.569770i 0.999294 + 0.0375790i \(0.0119646\pi\)
−0.846624 + 0.532191i \(0.821369\pi\)
\(368\) −5.26573 + 3.04017i −0.274495 + 0.158480i
\(369\) −4.17551 −0.217368
\(370\) 0 0
\(371\) 4.88526 0.253630
\(372\) 14.9830 8.65045i 0.776833 0.448505i
\(373\) −3.65968 13.6581i −0.189491 0.707191i −0.993624 0.112741i \(-0.964037\pi\)
0.804133 0.594449i \(-0.202630\pi\)
\(374\) −14.0817 + 24.3901i −0.728145 + 1.26118i
\(375\) 0 0
\(376\) 11.5313 + 11.5313i 0.594683 + 0.594683i
\(377\) 4.15691 + 15.5138i 0.214092 + 0.799001i
\(378\) 7.46584i 0.384001i
\(379\) 27.8783 16.0956i 1.43201 0.826774i 0.434739 0.900556i \(-0.356840\pi\)
0.997274 + 0.0737827i \(0.0235071\pi\)
\(380\) 0 0
\(381\) 15.9119i 0.815193i
\(382\) −13.5806 3.63892i −0.694845 0.186183i
\(383\) 27.8000 + 16.0504i 1.42052 + 0.820135i 0.996343 0.0854465i \(-0.0272317\pi\)
0.424172 + 0.905581i \(0.360565\pi\)
\(384\) −0.712374 0.712374i −0.0363532 0.0363532i
\(385\) 0 0
\(386\) 0.469423 + 0.813064i 0.0238930 + 0.0413839i
\(387\) −2.42544 4.20098i −0.123292 0.213548i
\(388\) 4.65106 8.05588i 0.236122 0.408975i
\(389\) 5.37479 + 20.0590i 0.272513 + 1.01703i 0.957490 + 0.288467i \(0.0931454\pi\)
−0.684977 + 0.728564i \(0.740188\pi\)
\(390\) 0 0
\(391\) 17.6833 10.2094i 0.894281 0.516313i
\(392\) 1.28844 + 2.23164i 0.0650760 + 0.112715i
\(393\) 34.8215i 1.75651i
\(394\) −3.79858 + 1.01783i −0.191370 + 0.0512774i
\(395\) 0 0
\(396\) −7.32667 −0.368179
\(397\) −14.9552 14.9552i −0.750580 0.750580i 0.224008 0.974587i \(-0.428086\pi\)
−0.974587 + 0.224008i \(0.928086\pi\)
\(398\) 9.54414 + 2.55735i 0.478405 + 0.128188i
\(399\) −28.8742 28.8742i −1.44552 1.44552i
\(400\) 0 0
\(401\) −0.727039 + 0.727039i −0.0363066 + 0.0363066i −0.725027 0.688720i \(-0.758173\pi\)
0.688720 + 0.725027i \(0.258173\pi\)
\(402\) −2.87074 1.65742i −0.143180 0.0826647i
\(403\) −41.5026 + 11.1206i −2.06739 + 0.553957i
\(404\) 9.06572 + 5.23410i 0.451037 + 0.260406i
\(405\) 0 0
\(406\) 9.25735i 0.459434i
\(407\) 21.9776 21.2857i 1.08939 1.05509i
\(408\) −24.5157 24.5157i −1.21371 1.21371i
\(409\) 0.0739583 0.276016i 0.00365700 0.0136481i −0.964073 0.265637i \(-0.914418\pi\)
0.967730 + 0.251989i \(0.0810845\pi\)
\(410\) 0 0
\(411\) −30.5773 17.6538i −1.50827 0.870798i
\(412\) −4.68692 + 8.11799i −0.230908 + 0.399945i
\(413\) 31.6571i 1.55774i
\(414\) −6.15834 3.55552i −0.302666 0.174744i
\(415\) 0 0
\(416\) 10.2312 + 17.7209i 0.501623 + 0.868837i
\(417\) 1.52543 1.52543i 0.0747007 0.0747007i
\(418\) −28.8782 + 28.8782i −1.41248 + 1.41248i
\(419\) 33.0662 19.0908i 1.61539 0.932645i 0.627297 0.778780i \(-0.284161\pi\)
0.988092 0.153865i \(-0.0491721\pi\)
\(420\) 0 0
\(421\) 6.96708 6.96708i 0.339555 0.339555i −0.516645 0.856200i \(-0.672819\pi\)
0.856200 + 0.516645i \(0.172819\pi\)
\(422\) 20.8901 12.0609i 1.01691 0.587116i
\(423\) −2.35330 + 8.78263i −0.114421 + 0.427026i
\(424\) 5.80988 + 1.55675i 0.282153 + 0.0756026i
\(425\) 0 0
\(426\) −2.13498 + 0.572066i −0.103440 + 0.0277167i
\(427\) −26.0803 + 15.0575i −1.26212 + 0.728683i
\(428\) −7.42413 1.98929i −0.358859 0.0961559i
\(429\) 48.5319 + 13.0041i 2.34314 + 0.627843i
\(430\) 0 0
\(431\) −3.09363 11.5456i −0.149015 0.556131i −0.999544 0.0302026i \(-0.990385\pi\)
0.850529 0.525928i \(-0.176282\pi\)
\(432\) 1.13421 4.23291i 0.0545695 0.203656i
\(433\) −22.4771 22.4771i −1.08018 1.08018i −0.996492 0.0836882i \(-0.973330\pi\)
−0.0836882 0.996492i \(-0.526670\pi\)
\(434\) 24.7653 1.18877
\(435\) 0 0
\(436\) −3.68674 + 3.68674i −0.176563 + 0.176563i
\(437\) 28.6007 7.66354i 1.36816 0.366597i
\(438\) 18.8594 0.901136
\(439\) −7.28246 + 1.95133i −0.347573 + 0.0931319i −0.428382 0.903598i \(-0.640916\pi\)
0.0808091 + 0.996730i \(0.474250\pi\)
\(440\) 0 0
\(441\) −0.718373 + 1.24426i −0.0342082 + 0.0592504i
\(442\) 12.8949 + 22.3345i 0.613345 + 1.06235i
\(443\) −10.5608 + 10.5608i −0.501757 + 0.501757i −0.911984 0.410227i \(-0.865450\pi\)
0.410227 + 0.911984i \(0.365450\pi\)
\(444\) 5.48371 + 9.85886i 0.260246 + 0.467881i
\(445\) 0 0
\(446\) −19.8134 5.30897i −0.938189 0.251387i
\(447\) −27.8111 + 7.45197i −1.31542 + 0.352466i
\(448\) −5.05400 18.8618i −0.238779 0.891136i
\(449\) 3.96580 + 14.8006i 0.187158 + 0.698483i 0.994158 + 0.107932i \(0.0344228\pi\)
−0.807000 + 0.590551i \(0.798910\pi\)
\(450\) 0 0
\(451\) 6.16525 10.6785i 0.290310 0.502832i
\(452\) 2.66710 0.125450
\(453\) 4.33710 16.1863i 0.203775 0.760498i
\(454\) 17.1676i 0.805714i
\(455\) 0 0
\(456\) −25.1380 43.5402i −1.17719 2.03896i
\(457\) 9.76779 16.9183i 0.456918 0.791405i −0.541878 0.840457i \(-0.682287\pi\)
0.998796 + 0.0490521i \(0.0156200\pi\)
\(458\) −10.0335 −0.468836
\(459\) −3.80887 + 14.2149i −0.177783 + 0.663494i
\(460\) 0 0
\(461\) 0.0440321 0.164330i 0.00205078 0.00765362i −0.964893 0.262644i \(-0.915406\pi\)
0.966944 + 0.254990i \(0.0820722\pi\)
\(462\) −25.0799 14.4799i −1.16682 0.673666i
\(463\) 10.7568 + 6.21046i 0.499912 + 0.288624i 0.728677 0.684857i \(-0.240135\pi\)
−0.228765 + 0.973482i \(0.573469\pi\)
\(464\) 1.40637 5.24864i 0.0652891 0.243662i
\(465\) 0 0
\(466\) 5.89482 21.9998i 0.273072 1.01912i
\(467\) 33.8170 1.56486 0.782432 0.622736i \(-0.213979\pi\)
0.782432 + 0.622736i \(0.213979\pi\)
\(468\) −3.35459 + 5.81032i −0.155066 + 0.268582i
\(469\) 1.77227 + 3.06967i 0.0818360 + 0.141744i
\(470\) 0 0
\(471\) 34.4031i 1.58521i
\(472\) 10.0879 37.6487i 0.464335 1.73292i
\(473\) 14.3249 0.658660
\(474\) 11.8796 20.5762i 0.545650 0.945094i
\(475\) 0 0
\(476\) 2.87393 + 10.7257i 0.131726 + 0.491610i
\(477\) 0.867973 + 3.23932i 0.0397417 + 0.148318i
\(478\) −2.60888 + 0.699047i −0.119327 + 0.0319737i
\(479\) −3.60990 0.967271i −0.164941 0.0441957i 0.175404 0.984497i \(-0.443877\pi\)
−0.340344 + 0.940301i \(0.610544\pi\)
\(480\) 0 0
\(481\) −6.81769 27.1749i −0.310860 1.23907i
\(482\) −13.9318 + 13.9318i −0.634576 + 0.634576i
\(483\) 10.4982 + 18.1834i 0.477683 + 0.827371i
\(484\) 6.11453 10.5907i 0.277933 0.481395i
\(485\) 0 0
\(486\) 16.4035 4.39531i 0.744080 0.199376i
\(487\) −19.2166 −0.870789 −0.435394 0.900240i \(-0.643391\pi\)
−0.435394 + 0.900240i \(0.643391\pi\)
\(488\) −35.8147 + 9.59653i −1.62126 + 0.434414i
\(489\) 2.51971 2.51971i 0.113945 0.113945i
\(490\) 0 0
\(491\) −1.12142 −0.0506089 −0.0253045 0.999680i \(-0.508056\pi\)
−0.0253045 + 0.999680i \(0.508056\pi\)
\(492\) 3.21488 + 3.21488i 0.144938 + 0.144938i
\(493\) −4.72284 + 17.6259i −0.212706 + 0.793830i
\(494\) 9.67930 + 36.1237i 0.435492 + 1.62528i
\(495\) 0 0
\(496\) 14.0412 + 3.76233i 0.630469 + 0.168934i
\(497\) 2.28292 + 0.611707i 0.102403 + 0.0274388i
\(498\) −3.36282 + 1.94152i −0.150691 + 0.0870018i
\(499\) 1.54366 0.413621i 0.0691035 0.0185162i −0.224102 0.974566i \(-0.571945\pi\)
0.293205 + 0.956050i \(0.405278\pi\)
\(500\) 0 0
\(501\) 40.7643 + 10.9228i 1.82121 + 0.487993i
\(502\) −4.66460 + 17.4085i −0.208191 + 0.776980i
\(503\) 33.1979 19.1668i 1.48022 0.854607i 0.480474 0.877009i \(-0.340465\pi\)
0.999749 + 0.0224019i \(0.00713133\pi\)
\(504\) 9.12940 9.12940i 0.406656 0.406656i
\(505\) 0 0
\(506\) 18.1859 10.4996i 0.808462 0.466766i
\(507\) 12.5979 12.5979i 0.559492 0.559492i
\(508\) 4.43675 4.43675i 0.196849 0.196849i
\(509\) 0.0135360 + 0.0234450i 0.000599970 + 0.00103918i 0.866325 0.499480i \(-0.166476\pi\)
−0.865725 + 0.500519i \(0.833142\pi\)
\(510\) 0 0
\(511\) −17.4645 10.0831i −0.772583 0.446051i
\(512\) 16.4438i 0.726722i
\(513\) −10.6702 + 18.4813i −0.471099 + 0.815968i
\(514\) 13.1251 + 7.57780i 0.578925 + 0.334243i
\(515\) 0 0
\(516\) −1.36706 + 5.10193i −0.0601814 + 0.224600i
\(517\) −18.9862 18.9862i −0.835010 0.835010i
\(518\) −0.258227 + 16.1466i −0.0113459 + 0.709439i
\(519\) 10.9610i 0.481135i
\(520\) 0 0
\(521\) −13.0122 7.51259i −0.570074 0.329133i 0.187105 0.982340i \(-0.440090\pi\)
−0.757179 + 0.653207i \(0.773423\pi\)
\(522\) 6.13836 1.64477i 0.268669 0.0719896i
\(523\) 18.0764 + 10.4364i 0.790427 + 0.456353i 0.840113 0.542412i \(-0.182489\pi\)
−0.0496857 + 0.998765i \(0.515822\pi\)
\(524\) −9.70934 + 9.70934i −0.424154 + 0.424154i
\(525\) 0 0
\(526\) 7.49519 + 7.49519i 0.326806 + 0.326806i
\(527\) −47.1530 12.6346i −2.05401 0.550372i
\(528\) −12.0198 12.0198i −0.523095 0.523095i
\(529\) 7.77518 0.338051
\(530\) 0 0
\(531\) 20.9912 5.62457i 0.910939 0.244085i
\(532\) 16.1021i 0.698114i
\(533\) −5.64564 9.77854i −0.244540 0.423556i
\(534\) −7.25466 + 4.18848i −0.313940 + 0.181253i
\(535\) 0 0
\(536\) 1.12952 + 4.21541i 0.0487877 + 0.182078i
\(537\) 9.44823 16.3648i 0.407721 0.706194i
\(538\) −10.8975 18.8751i −0.469827 0.813763i
\(539\) −2.12139 3.67436i −0.0913749 0.158266i
\(540\) 0 0
\(541\) −12.1070 12.1070i −0.520520 0.520520i 0.397209 0.917728i \(-0.369979\pi\)
−0.917728 + 0.397209i \(0.869979\pi\)
\(542\) 12.8985 + 7.44696i 0.554038 + 0.319874i
\(543\) −37.3544 10.0091i −1.60303 0.429530i
\(544\) 23.2481i 0.996755i
\(545\) 0 0
\(546\) −22.9662 + 13.2595i −0.982862 + 0.567455i
\(547\) 14.1115i 0.603364i −0.953409 0.301682i \(-0.902452\pi\)
0.953409 0.301682i \(-0.0975482\pi\)
\(548\) 3.60348 + 13.4484i 0.153933 + 0.574485i
\(549\) −14.6180 14.6180i −0.623883 0.623883i
\(550\) 0 0
\(551\) −13.2306 + 22.9160i −0.563642 + 0.976256i
\(552\) 6.69076 + 24.9702i 0.284778 + 1.06280i
\(553\) −22.0020 + 12.7028i −0.935619 + 0.540180i
\(554\) −11.9234 −0.506576
\(555\) 0 0
\(556\) −0.850678 −0.0360768
\(557\) 13.4266 7.75186i 0.568904 0.328457i −0.187807 0.982206i \(-0.560138\pi\)
0.756712 + 0.653749i \(0.226805\pi\)
\(558\) 4.40010 + 16.4214i 0.186271 + 0.695173i
\(559\) 6.55879 11.3602i 0.277407 0.480484i
\(560\) 0 0
\(561\) 40.3647 + 40.3647i 1.70420 + 1.70420i
\(562\) 5.66573 + 21.1448i 0.238994 + 0.891939i
\(563\) 25.2519i 1.06424i −0.846669 0.532119i \(-0.821396\pi\)
0.846669 0.532119i \(-0.178604\pi\)
\(564\) 8.57397 4.95019i 0.361029 0.208440i
\(565\) 0 0
\(566\) 5.15061i 0.216496i
\(567\) −26.8636 7.19808i −1.12817 0.302291i
\(568\) 2.52007 + 1.45497i 0.105740 + 0.0610490i
\(569\) −27.4188 27.4188i −1.14945 1.14945i −0.986660 0.162794i \(-0.947949\pi\)
−0.162794 0.986660i \(-0.552051\pi\)
\(570\) 0 0
\(571\) −12.8765 22.3027i −0.538864 0.933340i −0.998966 0.0454735i \(-0.985520\pi\)
0.460102 0.887866i \(-0.347813\pi\)
\(572\) −9.90628 17.1582i −0.414202 0.717420i
\(573\) −14.2488 + 24.6797i −0.595253 + 1.03101i
\(574\) 1.68443 + 6.28636i 0.0703066 + 0.262388i
\(575\) 0 0
\(576\) 11.6089 6.70241i 0.483705 0.279267i
\(577\) −20.6569 35.7788i −0.859959 1.48949i −0.871967 0.489565i \(-0.837156\pi\)
0.0120080 0.999928i \(-0.496178\pi\)
\(578\) 11.1114i 0.462175i
\(579\) 1.83811 0.492519i 0.0763890 0.0204684i
\(580\) 0 0
\(581\) 4.15212 0.172259
\(582\) 17.8475 + 17.8475i 0.739804 + 0.739804i
\(583\) −9.56588 2.56317i −0.396178 0.106156i
\(584\) −17.5568 17.5568i −0.726505 0.726505i
\(585\) 0 0
\(586\) 5.93951 5.93951i 0.245359 0.245359i
\(587\) −10.6262 6.13506i −0.438591 0.253221i 0.264409 0.964411i \(-0.414823\pi\)
−0.703000 + 0.711190i \(0.748157\pi\)
\(588\) 1.51110 0.404899i 0.0623169 0.0166978i
\(589\) −61.3052 35.3946i −2.52604 1.45841i
\(590\) 0 0
\(591\) 7.97095i 0.327881i
\(592\) −2.59938 + 9.11540i −0.106834 + 0.374640i
\(593\) 9.41692 + 9.41692i 0.386707 + 0.386707i 0.873511 0.486804i \(-0.161838\pi\)
−0.486804 + 0.873511i \(0.661838\pi\)
\(594\) −3.91713 + 14.6189i −0.160722 + 0.599822i
\(595\) 0 0
\(596\) 9.83247 + 5.67678i 0.402754 + 0.232530i
\(597\) 10.0137 17.3443i 0.409835 0.709854i
\(598\) 19.2294i 0.786351i
\(599\) 32.1246 + 18.5471i 1.31257 + 0.757815i 0.982522 0.186148i \(-0.0596003\pi\)
0.330052 + 0.943963i \(0.392934\pi\)
\(600\) 0 0
\(601\) 9.28898 + 16.0890i 0.378905 + 0.656283i 0.990903 0.134576i \(-0.0429672\pi\)
−0.611998 + 0.790859i \(0.709634\pi\)
\(602\) −5.34628 + 5.34628i −0.217898 + 0.217898i
\(603\) −1.72055 + 1.72055i −0.0700663 + 0.0700663i
\(604\) −5.72258 + 3.30393i −0.232848 + 0.134435i
\(605\) 0 0
\(606\) −20.0848 + 20.0848i −0.815890 + 0.815890i
\(607\) 34.6826 20.0240i 1.40772 0.812749i 0.412555 0.910933i \(-0.364637\pi\)
0.995168 + 0.0981835i \(0.0313032\pi\)
\(608\) −8.72540 + 32.5636i −0.353862 + 1.32063i
\(609\) −18.1244 4.85641i −0.734437 0.196792i
\(610\) 0 0
\(611\) −23.7497 + 6.36372i −0.960811 + 0.257448i
\(612\) −6.60135 + 3.81129i −0.266844 + 0.154062i
\(613\) 5.64923 + 1.51371i 0.228170 + 0.0611381i 0.371093 0.928596i \(-0.378983\pi\)
−0.142922 + 0.989734i \(0.545650\pi\)
\(614\) 31.1619 + 8.34979i 1.25759 + 0.336970i
\(615\) 0 0
\(616\) 9.86790 + 36.8275i 0.397589 + 1.48382i
\(617\) 3.47987 12.9870i 0.140094 0.522839i −0.859831 0.510579i \(-0.829431\pi\)
0.999925 0.0122593i \(-0.00390237\pi\)
\(618\) −17.9851 17.9851i −0.723468 0.723468i
\(619\) −28.9680 −1.16432 −0.582162 0.813073i \(-0.697793\pi\)
−0.582162 + 0.813073i \(0.697793\pi\)
\(620\) 0 0
\(621\) 7.75899 7.75899i 0.311357 0.311357i
\(622\) 10.9269 2.92785i 0.438128 0.117396i
\(623\) 8.95744 0.358872
\(624\) −15.0355 + 4.02876i −0.601903 + 0.161279i
\(625\) 0 0
\(626\) −13.0694 + 22.6369i −0.522358 + 0.904751i
\(627\) 41.3893 + 71.6884i 1.65293 + 2.86296i
\(628\) 9.59268 9.59268i 0.382790 0.382790i
\(629\) 8.72919 30.6111i 0.348056 1.22055i
\(630\) 0 0
\(631\) −42.1539 11.2951i −1.67812 0.449651i −0.710839 0.703355i \(-0.751685\pi\)
−0.967282 + 0.253704i \(0.918351\pi\)
\(632\) −30.2141 + 8.09585i −1.20185 + 0.322036i
\(633\) −12.6543 47.2265i −0.502964 1.87709i
\(634\) 1.12956 + 4.21557i 0.0448605 + 0.167422i
\(635\) 0 0
\(636\) 1.82579 3.16236i 0.0723972 0.125396i
\(637\) −3.88521 −0.153937
\(638\) −4.85709 + 18.1269i −0.192294 + 0.717651i
\(639\) 1.62244i 0.0641828i
\(640\) 0 0
\(641\) −21.3625 37.0010i −0.843770 1.46145i −0.886685 0.462374i \(-0.846998\pi\)
0.0429152 0.999079i \(-0.486335\pi\)
\(642\) 10.4276 18.0611i 0.411543 0.712813i
\(643\) 4.82705 0.190360 0.0951802 0.995460i \(-0.469657\pi\)
0.0951802 + 0.995460i \(0.469657\pi\)
\(644\) 2.14288 7.99732i 0.0844412 0.315139i
\(645\) 0 0
\(646\) −10.9971 + 41.0417i −0.432674 + 1.61476i
\(647\) −16.3059 9.41423i −0.641052 0.370112i 0.143967 0.989582i \(-0.454014\pi\)
−0.785020 + 0.619471i \(0.787347\pi\)
\(648\) −29.6542 17.1209i −1.16493 0.672572i
\(649\) −16.6096 + 61.9881i −0.651986 + 2.43324i
\(650\) 0 0
\(651\) 12.9919 48.4865i 0.509193 1.90034i
\(652\) −1.40515 −0.0550300
\(653\) −17.1768 + 29.7510i −0.672178 + 1.16425i 0.305107 + 0.952318i \(0.401308\pi\)
−0.977285 + 0.211929i \(0.932025\pi\)
\(654\) −7.07357 12.2518i −0.276598 0.479082i
\(655\) 0 0
\(656\) 3.82008i 0.149149i
\(657\) 3.58297 13.3718i 0.139785 0.521684i
\(658\) 14.1719 0.552477
\(659\) −12.6706 + 21.9461i −0.493575 + 0.854897i −0.999973 0.00740321i \(-0.997643\pi\)
0.506398 + 0.862300i \(0.330977\pi\)
\(660\) 0 0
\(661\) 1.57712 + 5.88590i 0.0613430 + 0.228935i 0.989791 0.142528i \(-0.0455230\pi\)
−0.928448 + 0.371463i \(0.878856\pi\)
\(662\) 3.05187 + 11.3897i 0.118614 + 0.442674i
\(663\) 50.4920 13.5293i 1.96095 0.525434i
\(664\) 4.93798 + 1.32313i 0.191631 + 0.0513473i
\(665\) 0 0
\(666\) −10.7523 + 2.69756i −0.416645 + 0.104528i
\(667\) 9.62084 9.62084i 0.372520 0.372520i
\(668\) −8.32077 14.4120i −0.321940 0.557617i
\(669\) −20.7882 + 36.0062i −0.803718 + 1.39208i
\(670\) 0 0
\(671\) 58.9684 15.8005i 2.27645 0.609973i
\(672\) −23.9056 −0.922178
\(673\) 0.698464 0.187153i 0.0269238 0.00721421i −0.245332 0.969439i \(-0.578897\pi\)
0.272256 + 0.962225i \(0.412230\pi\)
\(674\) 18.9980 18.9980i 0.731776 0.731776i
\(675\) 0 0
\(676\) −7.02539 −0.270207
\(677\) 19.6540 + 19.6540i 0.755365 + 0.755365i 0.975475 0.220110i \(-0.0706417\pi\)
−0.220110 + 0.975475i \(0.570642\pi\)
\(678\) −1.87304 + 6.99028i −0.0719336 + 0.268460i
\(679\) −6.98532 26.0696i −0.268072 1.00046i
\(680\) 0 0
\(681\) −33.6113 9.00612i −1.28799 0.345115i
\(682\) −48.4933 12.9937i −1.85690 0.497556i
\(683\) 30.1277 17.3942i 1.15280 0.665571i 0.203235 0.979130i \(-0.434855\pi\)
0.949569 + 0.313559i \(0.101521\pi\)
\(684\) −10.6770 + 2.86088i −0.408244 + 0.109389i
\(685\) 0 0
\(686\) 20.1136 + 5.38942i 0.767940 + 0.205769i
\(687\) −5.26359 + 19.6440i −0.200819 + 0.749465i
\(688\) −3.84338 + 2.21898i −0.146528 + 0.0845978i
\(689\) −6.41252 + 6.41252i −0.244298 + 0.244298i
\(690\) 0 0
\(691\) −24.4409 + 14.1110i −0.929777 + 0.536807i −0.886741 0.462267i \(-0.847036\pi\)
−0.0430357 + 0.999074i \(0.513703\pi\)
\(692\) −3.05628 + 3.05628i −0.116182 + 0.116182i
\(693\) −15.0314 + 15.0314i −0.570996 + 0.570996i
\(694\) −15.0166 26.0095i −0.570023 0.987309i
\(695\) 0 0
\(696\) −20.0072 11.5511i −0.758369 0.437845i
\(697\) 12.8285i 0.485915i
\(698\) 4.45350 7.71368i 0.168567 0.291967i
\(699\) −39.9795 23.0822i −1.51216 0.873048i
\(700\) 0 0
\(701\) −1.93774 + 7.23174i −0.0731874 + 0.273139i −0.992816 0.119650i \(-0.961823\pi\)
0.919629 + 0.392789i \(0.128490\pi\)
\(702\) 9.79985 + 9.79985i 0.369872 + 0.369872i
\(703\) 23.7159 39.6009i 0.894461 1.49357i
\(704\) 39.5852i 1.49192i
\(705\) 0 0
\(706\) −20.0711 11.5880i −0.755385 0.436122i
\(707\) 29.3376 7.86097i 1.10335 0.295642i
\(708\) −20.4925 11.8313i −0.770154 0.444649i
\(709\) 5.54419 5.54419i 0.208216 0.208216i −0.595293 0.803509i \(-0.702964\pi\)
0.803509 + 0.595293i \(0.202964\pi\)
\(710\) 0 0
\(711\) −12.3321 12.3321i −0.462491 0.462491i
\(712\) 10.6528 + 2.85441i 0.399230 + 0.106973i
\(713\) 25.7378 + 25.7378i 0.963887 + 0.963887i
\(714\) −30.1295 −1.12757
\(715\) 0 0
\(716\) −7.19750 + 1.92856i −0.268983 + 0.0720738i
\(717\) 5.47448i 0.204448i
\(718\) 6.75463 + 11.6994i 0.252080 + 0.436616i
\(719\) 35.4199 20.4497i 1.32094 0.762645i 0.337061 0.941483i \(-0.390567\pi\)
0.983879 + 0.178838i \(0.0572338\pi\)
\(720\) 0 0
\(721\) 7.03918 + 26.2706i 0.262153 + 0.978368i
\(722\) −20.6426 + 35.7540i −0.768238 + 1.33063i
\(723\) 19.9675 + 34.5848i 0.742601 + 1.28622i
\(724\) 7.62474 + 13.2064i 0.283371 + 0.490813i
\(725\) 0 0
\(726\) 23.4633 + 23.4633i 0.870805 + 0.870805i
\(727\) −15.9454 9.20610i −0.591384 0.341435i 0.174261 0.984700i \(-0.444246\pi\)
−0.765644 + 0.643264i \(0.777580\pi\)
\(728\) 33.7237 + 9.03623i 1.24988 + 0.334905i
\(729\) 0.795201i 0.0294519i
\(730\) 0 0
\(731\) 12.9068 7.45173i 0.477374 0.275612i
\(732\) 22.5100i 0.831993i
\(733\) 9.63447 + 35.9563i 0.355857 + 1.32808i 0.879402 + 0.476079i \(0.157943\pi\)
−0.523545 + 0.851998i \(0.675391\pi\)
\(734\) 8.54953 + 8.54953i 0.315569 + 0.315569i
\(735\) 0 0
\(736\) 8.66719 15.0120i 0.319477 0.553350i
\(737\) −1.85973 6.94061i −0.0685041 0.255661i
\(738\) −3.86909 + 2.23382i −0.142423 + 0.0822280i
\(739\) 4.83340 0.177799 0.0888997 0.996041i \(-0.471665\pi\)
0.0888997 + 0.996041i \(0.471665\pi\)
\(740\) 0 0
\(741\) 75.8020 2.78465
\(742\) 4.52675 2.61352i 0.166182 0.0959454i
\(743\) 0.700312 + 2.61360i 0.0256919 + 0.0958836i 0.977581 0.210558i \(-0.0675282\pi\)
−0.951889 + 0.306442i \(0.900861\pi\)
\(744\) 30.9017 53.5233i 1.13291 1.96226i
\(745\) 0 0
\(746\) −10.6979 10.6979i −0.391680 0.391680i
\(747\) 0.737715 + 2.75319i 0.0269916 + 0.100734i
\(748\) 22.5099i 0.823044i
\(749\) −19.3126 + 11.1501i −0.705667 + 0.407417i
\(750\) 0 0
\(751\) 44.2080i 1.61317i 0.591116 + 0.806586i \(0.298687\pi\)
−0.591116 + 0.806586i \(0.701313\pi\)
\(752\) 8.03503 + 2.15298i 0.293007 + 0.0785111i
\(753\) 31.6360 + 18.2650i 1.15288 + 0.665615i
\(754\) 12.1514 + 12.1514i 0.442529 + 0.442529i
\(755\) 0 0
\(756\) 2.98359 + 5.16772i 0.108512 + 0.187948i
\(757\) 13.8005 + 23.9032i 0.501588 + 0.868776i 0.999998 + 0.00183500i \(0.000584100\pi\)
−0.498410 + 0.866941i \(0.666083\pi\)
\(758\) 17.2216 29.8288i 0.625518 1.08343i
\(759\) −11.0162 41.1131i −0.399864 1.49231i
\(760\) 0 0
\(761\) 31.2157 18.0224i 1.13157 0.653311i 0.187239 0.982314i \(-0.440046\pi\)
0.944329 + 0.329003i \(0.106713\pi\)
\(762\) 8.51258 + 14.7442i 0.308378 + 0.534127i
\(763\) 15.1274i 0.547650i
\(764\) 10.8545 2.90845i 0.392702 0.105224i
\(765\) 0 0
\(766\) 34.3465 1.24099
\(767\) 41.5539 + 41.5539i 1.50042 + 1.50042i
\(768\) −34.0133 9.11385i −1.22735 0.328868i
\(769\) 17.1512 + 17.1512i 0.618489 + 0.618489i 0.945144 0.326655i \(-0.105921\pi\)
−0.326655 + 0.945144i \(0.605921\pi\)
\(770\) 0 0
\(771\) 21.7216 21.7216i 0.782283 0.782283i
\(772\) −0.649852 0.375192i −0.0233887 0.0135035i
\(773\) −46.7592 + 12.5291i −1.68181 + 0.450640i −0.968256 0.249961i \(-0.919582\pi\)
−0.713554 + 0.700600i \(0.752916\pi\)
\(774\) −4.49489 2.59513i −0.161565 0.0932799i
\(775\) 0 0
\(776\) 33.2297i 1.19288i
\(777\) 31.4769 + 8.97606i 1.12923 + 0.322015i
\(778\) 15.7115 + 15.7115i 0.563286 + 0.563286i
\(779\) 4.81476 17.9689i 0.172507 0.643803i
\(780\) 0 0
\(781\) −4.14927 2.39558i −0.148472 0.0857206i
\(782\) 10.9237 18.9204i 0.390631 0.676593i
\(783\) 9.80609i 0.350441i
\(784\) 1.13834 + 0.657223i 0.0406552 + 0.0234723i
\(785\) 0 0
\(786\) −18.6288 32.2661i −0.664468 1.15089i
\(787\) −29.7783 + 29.7783i −1.06148 + 1.06148i −0.0635008 + 0.997982i \(0.520227\pi\)
−0.997982 + 0.0635008i \(0.979773\pi\)
\(788\) 2.22256 2.22256i 0.0791753 0.0791753i
\(789\) 18.6063 10.7424i 0.662403 0.382439i
\(790\) 0 0
\(791\) 5.47184 5.47184i 0.194556 0.194556i
\(792\) −22.6663 + 13.0864i −0.805413 + 0.465005i
\(793\) 14.4689 53.9985i 0.513804 1.91754i
\(794\) −21.8584 5.85695i −0.775727 0.207855i
\(795\) 0 0
\(796\) −7.62829 + 2.04399i −0.270377 + 0.0724474i
\(797\) 21.0733 12.1667i 0.746455 0.430966i −0.0779563 0.996957i \(-0.524839\pi\)
0.824412 + 0.565991i \(0.191506\pi\)
\(798\) −42.2023 11.3081i −1.49395 0.400302i
\(799\) −26.9831 7.23010i −0.954593 0.255782i
\(800\) 0 0
\(801\) 1.59148 + 5.93950i 0.0562323 + 0.209862i
\(802\) −0.284733 + 1.06264i −0.0100543 + 0.0375230i
\(803\) 28.9070 + 28.9070i 1.02011 + 1.02011i
\(804\) 2.64944 0.0934384
\(805\) 0 0
\(806\) −32.5076 + 32.5076i −1.14503 + 1.14503i
\(807\) −42.6712 + 11.4337i −1.50210 + 0.402486i
\(808\) 37.3952 1.31556
\(809\) −16.9308 + 4.53660i −0.595256 + 0.159498i −0.543854 0.839180i \(-0.683036\pi\)
−0.0514018 + 0.998678i \(0.516369\pi\)
\(810\) 0 0
\(811\) −17.0374 + 29.5096i −0.598263 + 1.03622i 0.394814 + 0.918761i \(0.370809\pi\)
−0.993077 + 0.117462i \(0.962524\pi\)
\(812\) 3.69953 + 6.40778i 0.129828 + 0.224869i
\(813\) 21.3465 21.3465i 0.748654 0.748654i
\(814\) 8.97732 31.4813i 0.314655 1.10342i
\(815\) 0 0
\(816\) −17.0825 4.57724i −0.598007 0.160236i
\(817\) 20.8753 5.59352i 0.730334 0.195692i
\(818\) −0.0791325 0.295327i −0.00276680 0.0103259i
\(819\) 5.03818 + 18.8027i 0.176048 + 0.657021i
\(820\) 0 0
\(821\) 8.74075 15.1394i 0.305054 0.528370i −0.672219 0.740352i \(-0.734659\pi\)
0.977273 + 0.211983i \(0.0679920\pi\)
\(822\) −37.7778 −1.31765
\(823\) −2.35099 + 8.77400i −0.0819502 + 0.305842i −0.994719 0.102634i \(-0.967273\pi\)
0.912769 + 0.408476i \(0.133940\pi\)
\(824\) 33.4859i 1.16654i
\(825\) 0 0
\(826\) −16.9359 29.3339i −0.589276 1.02066i
\(827\) 22.8046 39.4988i 0.792994 1.37351i −0.131111 0.991368i \(-0.541854\pi\)
0.924105 0.382139i \(-0.124812\pi\)
\(828\) 5.68359 0.197518
\(829\) −1.07495 + 4.01177i −0.0373346 + 0.139334i −0.982077 0.188478i \(-0.939645\pi\)
0.944743 + 0.327812i \(0.106311\pi\)
\(830\) 0 0
\(831\) −6.25501 + 23.3440i −0.216984 + 0.809795i
\(832\) 31.3925 + 18.1245i 1.08834 + 0.628352i
\(833\) −3.82277 2.20708i −0.132451 0.0764706i
\(834\) 0.597410 2.22956i 0.0206866 0.0772035i
\(835\) 0 0
\(836\) 8.44835 31.5297i 0.292192 1.09048i
\(837\) −26.2333 −0.906757
\(838\) 20.4264 35.3796i 0.705618 1.22217i
\(839\) 6.83483 + 11.8383i 0.235964 + 0.408702i 0.959553 0.281530i \(-0.0908418\pi\)
−0.723588 + 0.690232i \(0.757508\pi\)
\(840\) 0 0
\(841\) 16.8408i 0.580719i
\(842\) 2.72854 10.1830i 0.0940317 0.350931i
\(843\) 44.3703 1.52819
\(844\) −9.63984 + 16.6967i −0.331817 + 0.574724i
\(845\) 0 0
\(846\) 2.51794 + 9.39708i 0.0865685 + 0.323078i
\(847\) −9.18328 34.2725i −0.315541 1.17762i
\(848\) 2.96358 0.794089i 0.101770 0.0272691i
\(849\) −10.0840 2.70201i −0.346083 0.0927328i
\(850\) 0 0
\(851\) −17.0489 + 16.5122i −0.584430 + 0.566031i
\(852\) 1.24918 1.24918i 0.0427962 0.0427962i
\(853\) −1.01716 1.76178i −0.0348271 0.0603222i 0.848087 0.529858i \(-0.177755\pi\)
−0.882914 + 0.469536i \(0.844421\pi\)
\(854\) −16.1109 + 27.9050i −0.551305 + 0.954888i
\(855\) 0 0
\(856\) −26.5210 + 7.10627i −0.906468 + 0.242887i
\(857\) 19.2528 0.657662 0.328831 0.944389i \(-0.393345\pi\)
0.328831 + 0.944389i \(0.393345\pi\)
\(858\) 51.9272 13.9139i 1.77277 0.475011i
\(859\) 1.92856 1.92856i 0.0658018 0.0658018i −0.673440 0.739242i \(-0.735184\pi\)
0.739242 + 0.673440i \(0.235184\pi\)
\(860\) 0 0
\(861\) 13.1913 0.449559
\(862\) −9.04326 9.04326i −0.308015 0.308015i
\(863\) 12.5939 47.0010i 0.428701 1.59993i −0.327005 0.945023i \(-0.606039\pi\)
0.755706 0.654911i \(-0.227294\pi\)
\(864\) 3.23350 + 12.0676i 0.110006 + 0.410547i
\(865\) 0 0
\(866\) −32.8524 8.80278i −1.11637 0.299131i
\(867\) 21.7544 + 5.82907i 0.738818 + 0.197966i
\(868\) −17.1421 + 9.89702i −0.581842 + 0.335927i
\(869\) 49.7471 13.3297i 1.68756 0.452179i
\(870\) 0 0
\(871\) −6.35566 1.70299i −0.215353 0.0577037i
\(872\) −4.82056 + 17.9906i −0.163245 + 0.609238i
\(873\) 16.0451 9.26365i 0.543045 0.313527i
\(874\) 22.4020 22.4020i 0.757759 0.757759i
\(875\) 0 0
\(876\) −13.0541 + 7.53681i −0.441058 + 0.254645i
\(877\) −6.15212 + 6.15212i −0.207742 + 0.207742i −0.803307 0.595565i \(-0.796928\pi\)
0.595565 + 0.803307i \(0.296928\pi\)
\(878\) −5.70411 + 5.70411i −0.192504 + 0.192504i
\(879\) −8.51272 14.7445i −0.287127 0.497318i
\(880\) 0 0
\(881\) 19.1705 + 11.0681i 0.645871 + 0.372894i 0.786872 0.617116i \(-0.211699\pi\)
−0.141002 + 0.990009i \(0.545032\pi\)
\(882\) 1.53726i 0.0517624i
\(883\) −1.18144 + 2.04631i −0.0397585 + 0.0688637i −0.885220 0.465173i \(-0.845992\pi\)
0.845461 + 0.534037i \(0.179326\pi\)
\(884\) −17.8512 10.3064i −0.600400 0.346641i
\(885\) 0 0
\(886\) −4.13594 + 15.4356i −0.138950 + 0.518567i
\(887\) −17.5210 17.5210i −0.588298 0.588298i 0.348872 0.937170i \(-0.386565\pi\)
−0.937170 + 0.348872i \(0.886565\pi\)
\(888\) 34.5740 + 20.7054i 1.16023 + 0.694829i
\(889\) 18.2049i 0.610573i
\(890\) 0 0
\(891\) 48.8253 + 28.1893i 1.63571 + 0.944377i
\(892\) 15.8361 4.24327i 0.530232 0.142075i
\(893\) −35.0817 20.2544i −1.17396 0.677788i
\(894\) −21.7835 + 21.7835i −0.728550 + 0.728550i
\(895\) 0 0
\(896\) 0.815030 + 0.815030i 0.0272282 + 0.0272282i
\(897\) −37.6481 10.0878i −1.25703 0.336821i
\(898\) 11.5928 + 11.5928i 0.386857 + 0.386857i
\(899\) −32.5283 −1.08488
\(900\) 0 0
\(901\) −9.95224 + 2.66669i −0.331557 + 0.0888405i
\(902\) 13.1932i 0.439284i
\(903\) 7.66247 + 13.2718i 0.254991 + 0.441658i
\(904\) 8.25114 4.76380i 0.274429 0.158442i
\(905\) 0 0
\(906\) −4.64053 17.3187i −0.154171 0.575376i
\(907\) −3.30636 + 5.72678i −0.109786 + 0.190155i −0.915683 0.401900i \(-0.868350\pi\)
0.805898 + 0.592055i \(0.201683\pi\)
\(908\) 6.86071 + 11.8831i 0.227681 + 0.394354i
\(909\) 10.4249 + 18.0565i 0.345772 + 0.598895i
\(910\) 0 0
\(911\) −1.30394 1.30394i −0.0432014 0.0432014i 0.685176 0.728377i \(-0.259725\pi\)
−0.728377 + 0.685176i \(0.759725\pi\)
\(912\) −22.2096 12.8227i −0.735432 0.424602i
\(913\) −8.13031 2.17851i −0.269074 0.0720982i
\(914\) 20.9023i 0.691387i
\(915\) 0 0
\(916\) 6.94503 4.00971i 0.229470 0.132485i
\(917\) 39.8394i 1.31561i
\(918\) 4.07534 + 15.2094i 0.134506 + 0.501984i
\(919\) 40.4446 + 40.4446i 1.33415 + 1.33415i 0.901623 + 0.432523i \(0.142376\pi\)
0.432523 + 0.901623i \(0.357624\pi\)
\(920\) 0 0
\(921\) 32.6951 56.6295i 1.07734 1.86601i
\(922\) −0.0471127 0.175827i −0.00155157 0.00579055i
\(923\) −3.79956 + 2.19368i −0.125064 + 0.0722058i
\(924\) 23.1465 0.761464
\(925\) 0 0
\(926\) 13.2899 0.436733
\(927\) −16.1688 + 9.33508i −0.531054 + 0.306604i
\(928\) 4.00941 + 14.9633i 0.131615 + 0.491195i
\(929\) −13.5950 + 23.5472i −0.446036 + 0.772557i −0.998124 0.0612287i \(-0.980498\pi\)
0.552088 + 0.833786i \(0.313831\pi\)
\(930\) 0 0
\(931\) −4.52620 4.52620i −0.148340 0.148340i
\(932\) 4.71151 + 17.5836i 0.154331 + 0.575970i
\(933\) 22.9290i 0.750661i
\(934\) 31.3353 18.0915i 1.02532 0.591970i
\(935\) 0 0
\(936\) 23.9670i 0.783385i
\(937\) 7.77806 + 2.08413i 0.254098 + 0.0680854i 0.383620 0.923491i \(-0.374677\pi\)
−0.129521 + 0.991577i \(0.541344\pi\)
\(938\) 3.28443 + 1.89626i 0.107240 + 0.0619152i
\(939\) 37.4630 + 37.4630i 1.22256 + 1.22256i
\(940\) 0 0
\(941\) 17.3013 + 29.9668i 0.564008 + 0.976890i 0.997141 + 0.0755604i \(0.0240746\pi\)
−0.433133 + 0.901330i \(0.642592\pi\)
\(942\) 18.4050 + 31.8784i 0.599668 + 1.03865i
\(943\) −4.78263 + 8.28376i −0.155744 + 0.269756i
\(944\) −5.14579 19.2043i −0.167481 0.625048i
\(945\) 0 0
\(946\) 13.2737 7.66355i 0.431564 0.249163i
\(947\) −17.1551 29.7135i −0.557465 0.965558i −0.997707 0.0676788i \(-0.978441\pi\)
0.440242 0.897879i \(-0.354893\pi\)
\(948\) 18.9899i 0.616764i
\(949\) 36.1597 9.68895i 1.17379 0.314517i
\(950\) 0 0
\(951\) 8.84596 0.286850
\(952\) 28.0485 + 28.0485i 0.909056 + 0.909056i
\(953\) −0.726754 0.194733i −0.0235419 0.00630802i 0.247029 0.969008i \(-0.420546\pi\)
−0.270571 + 0.962700i \(0.587212\pi\)
\(954\) 2.53725 + 2.53725i 0.0821465 + 0.0821465i
\(955\) 0 0
\(956\) 1.52646 1.52646i 0.0493692 0.0493692i
\(957\) 32.9415 + 19.0188i 1.06485 + 0.614790i
\(958\) −3.86246 + 1.03494i −0.124790 + 0.0334375i
\(959\) 34.9836 + 20.1978i 1.12968 + 0.652220i
\(960\) 0 0
\(961\) 56.0200i 1.80710i
\(962\) −20.8554 21.5334i −0.672406 0.694263i
\(963\) −10.8247 10.8247i −0.348822 0.348822i
\(964\) 4.07576 15.2109i 0.131271 0.489911i
\(965\) 0 0
\(966\) 19.4555 + 11.2326i 0.625970 + 0.361404i
\(967\) −25.2004 + 43.6483i −0.810389 + 1.40363i 0.102203 + 0.994764i \(0.467411\pi\)
−0.912592 + 0.408871i \(0.865923\pi\)
\(968\) 43.6855i 1.40410i
\(969\) 74.5838 + 43.0610i 2.39598 + 1.38332i
\(970\) 0 0
\(971\) −15.0692 26.1007i −0.483594 0.837610i 0.516228 0.856451i \(-0.327336\pi\)
−0.999822 + 0.0188411i \(0.994002\pi\)
\(972\) −9.59773 + 9.59773i −0.307847 + 0.307847i
\(973\) −1.74525 + 1.74525i −0.0559503 + 0.0559503i
\(974\) −17.8064 + 10.2805i −0.570554 + 0.329410i
\(975\) 0 0
\(976\) −13.3737 + 13.3737i −0.428082 + 0.428082i
\(977\) −6.28185 + 3.62683i −0.200974 + 0.116033i −0.597110 0.802159i \(-0.703684\pi\)
0.396136 + 0.918192i \(0.370351\pi\)
\(978\) 0.986803 3.68280i 0.0315545 0.117763i
\(979\) −17.5397 4.69974i −0.560570 0.150204i
\(980\) 0 0
\(981\) −10.0307 + 2.68772i −0.320256 + 0.0858123i
\(982\) −1.03912 + 0.599938i −0.0331597 + 0.0191448i
\(983\) 7.23524 + 1.93868i 0.230768 + 0.0618342i 0.372350 0.928092i \(-0.378552\pi\)
−0.141582 + 0.989927i \(0.545219\pi\)
\(984\) 15.6880 + 4.20359i 0.500115 + 0.134005i
\(985\) 0 0
\(986\) 5.05326 + 18.8590i 0.160929 + 0.600594i
\(987\) 7.43457 27.7462i 0.236645 0.883171i
\(988\) −21.1360 21.1360i −0.672426 0.672426i
\(989\) −11.1124 −0.353354
\(990\) 0 0
\(991\) −21.2828 + 21.2828i −0.676072 + 0.676072i −0.959109 0.283037i \(-0.908658\pi\)
0.283037 + 0.959109i \(0.408658\pi\)
\(992\) −40.0300 + 10.7260i −1.27095 + 0.340551i
\(993\) 23.9002 0.758450
\(994\) 2.44264 0.654503i 0.0774758 0.0207596i
\(995\) 0 0
\(996\) 1.55179 2.68778i 0.0491703 0.0851655i
\(997\) −14.2217 24.6327i −0.450406 0.780125i 0.548006 0.836475i \(-0.315387\pi\)
−0.998411 + 0.0563494i \(0.982054\pi\)
\(998\) 1.20909 1.20909i 0.0382732 0.0382732i
\(999\) 0.273534 17.1037i 0.00865423 0.541136i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 925.2.y.a.193.10 yes 56
5.2 odd 4 925.2.t.a.82.10 yes 56
5.3 odd 4 925.2.t.a.82.5 56
5.4 even 2 inner 925.2.y.a.193.5 yes 56
37.14 odd 12 925.2.t.a.643.10 yes 56
185.14 odd 12 925.2.t.a.643.5 yes 56
185.88 even 12 inner 925.2.y.a.532.5 yes 56
185.162 even 12 inner 925.2.y.a.532.10 yes 56
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
925.2.t.a.82.5 56 5.3 odd 4
925.2.t.a.82.10 yes 56 5.2 odd 4
925.2.t.a.643.5 yes 56 185.14 odd 12
925.2.t.a.643.10 yes 56 37.14 odd 12
925.2.y.a.193.5 yes 56 5.4 even 2 inner
925.2.y.a.193.10 yes 56 1.1 even 1 trivial
925.2.y.a.532.5 yes 56 185.88 even 12 inner
925.2.y.a.532.10 yes 56 185.162 even 12 inner