L(s) = 1 | + (0.926 − 0.534i)2-s + (−0.561 − 2.09i)3-s + (−0.427 + 0.740i)4-s + (−1.64 − 1.64i)6-s + (0.642 + 2.39i)7-s + 3.05i·8-s + (−1.47 + 0.851i)9-s − 5.02i·11-s + (1.79 + 0.480i)12-s + (−3.98 − 2.30i)13-s + (1.87 + 1.87i)14-s + (0.779 + 1.34i)16-s + (−2.61 − 4.53i)17-s + (−0.911 + 1.57i)18-s + (−1.96 − 7.32i)19-s + ⋯ |
L(s) = 1 | + (0.655 − 0.378i)2-s + (−0.324 − 1.20i)3-s + (−0.213 + 0.370i)4-s + (−0.669 − 0.669i)6-s + (0.242 + 0.905i)7-s + 1.08i·8-s + (−0.491 + 0.283i)9-s − 1.51i·11-s + (0.517 + 0.138i)12-s + (−1.10 − 0.638i)13-s + (0.501 + 0.501i)14-s + (0.194 + 0.337i)16-s + (−0.634 − 1.09i)17-s + (−0.214 + 0.372i)18-s + (−0.450 − 1.68i)19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 925 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.890 + 0.455i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 925 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.890 + 0.455i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.299788 - 1.24373i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.299788 - 1.24373i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 5 | \( 1 \) |
| 37 | \( 1 + (-4.23 - 4.36i)T \) |
good | 2 | \( 1 + (-0.926 + 0.534i)T + (1 - 1.73i)T^{2} \) |
| 3 | \( 1 + (0.561 + 2.09i)T + (-2.59 + 1.5i)T^{2} \) |
| 7 | \( 1 + (-0.642 - 2.39i)T + (-6.06 + 3.5i)T^{2} \) |
| 11 | \( 1 + 5.02iT - 11T^{2} \) |
| 13 | \( 1 + (3.98 + 2.30i)T + (6.5 + 11.2i)T^{2} \) |
| 17 | \( 1 + (2.61 + 4.53i)T + (-8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (1.96 + 7.32i)T + (-16.4 + 9.5i)T^{2} \) |
| 23 | \( 1 - 3.90iT - 23T^{2} \) |
| 29 | \( 1 + (2.46 + 2.46i)T + 29iT^{2} \) |
| 31 | \( 1 + (-6.59 + 6.59i)T - 31iT^{2} \) |
| 41 | \( 1 + (-2.12 - 1.22i)T + (20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 - 2.84iT - 43T^{2} \) |
| 47 | \( 1 + (-3.77 + 3.77i)T - 47iT^{2} \) |
| 53 | \( 1 + (-0.509 + 1.90i)T + (-45.8 - 26.5i)T^{2} \) |
| 59 | \( 1 + (12.3 + 3.30i)T + (51.0 + 29.5i)T^{2} \) |
| 61 | \( 1 + (-3.14 - 11.7i)T + (-52.8 + 30.5i)T^{2} \) |
| 67 | \( 1 + (-1.37 + 0.369i)T + (58.0 - 33.5i)T^{2} \) |
| 71 | \( 1 + (-0.476 + 0.824i)T + (-35.5 - 61.4i)T^{2} \) |
| 73 | \( 1 + (5.74 - 5.74i)T - 73iT^{2} \) |
| 79 | \( 1 + (-2.65 - 9.89i)T + (-68.4 + 39.5i)T^{2} \) |
| 83 | \( 1 + (-0.433 + 1.61i)T + (-71.8 - 41.5i)T^{2} \) |
| 89 | \( 1 + (-0.934 + 3.48i)T + (-77.0 - 44.5i)T^{2} \) |
| 97 | \( 1 + 10.8T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.578842836145892863157177535004, −8.721697649670975330934920963719, −7.968427861943154738398768054245, −7.20166959715360582365566454299, −6.10188993265722838270914388796, −5.37166900836272177101857998181, −4.45139388979770105146464719111, −2.84766740209763676870082203601, −2.42912373768458942179170726359, −0.49622384610329626192458589421,
1.80094996438333189932125244132, 3.82419585653326340459978974717, 4.47891392421910819196150161986, 4.74546072713276047040049458872, 5.95090872683708265821146405197, 6.85963977458062351891141599645, 7.68549499444149867985608919268, 9.067098630945479678348149791866, 9.855223905730685960953257927676, 10.37115293963096270130731355491