Newspace parameters
Level: | \( N \) | \(=\) | \( 925 = 5^{2} \cdot 37 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 925.y (of order \(12\), degree \(4\), minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(7.38616218697\) |
Analytic rank: | \(0\) |
Dimension: | \(56\) |
Relative dimension: | \(14\) over \(\Q(\zeta_{12})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{12}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
193.1 | −2.41884 | + | 1.39652i | −0.623186 | − | 2.32576i | 2.90051 | − | 5.02383i | 0 | 4.75535 | + | 4.75535i | −1.09325 | − | 4.08007i | 10.6164i | −2.42273 | + | 1.39876i | 0 | ||||||
193.2 | −2.25962 | + | 1.30459i | 0.755810 | + | 2.82072i | 2.40393 | − | 4.16373i | 0 | −5.38774 | − | 5.38774i | 0.120281 | + | 0.448895i | 7.32622i | −4.78714 | + | 2.76386i | 0 | ||||||
193.3 | −1.88869 | + | 1.09044i | −0.177680 | − | 0.663112i | 1.37810 | − | 2.38694i | 0 | 1.05866 | + | 1.05866i | 1.19194 | + | 4.44838i | 1.64918i | 2.18993 | − | 1.26436i | 0 | ||||||
193.4 | −1.53267 | + | 0.884889i | 0.223454 | + | 0.833940i | 0.566056 | − | 0.980437i | 0 | −1.08043 | − | 1.08043i | −0.456178 | − | 1.70248i | − | 1.53597i | 1.95255 | − | 1.12731i | 0 | |||||
193.5 | −0.926614 | + | 0.534981i | 0.561303 | + | 2.09481i | −0.427591 | + | 0.740609i | 0 | −1.64079 | − | 1.64079i | −0.642189 | − | 2.39668i | − | 3.05494i | −1.47509 | + | 0.851645i | 0 | |||||
193.6 | −0.841127 | + | 0.485625i | −0.777162 | − | 2.90041i | −0.528337 | + | 0.915107i | 0 | 2.06220 | + | 2.06220i | 0.0821598 | + | 0.306625i | − | 2.96879i | −5.21031 | + | 3.00817i | 0 | |||||
193.7 | −0.331719 | + | 0.191518i | −0.222410 | − | 0.830044i | −0.926642 | + | 1.60499i | 0 | 0.232746 | + | 0.232746i | −0.206604 | − | 0.771056i | − | 1.47595i | 1.95857 | − | 1.13078i | 0 | |||||
193.8 | 0.331719 | − | 0.191518i | 0.222410 | + | 0.830044i | −0.926642 | + | 1.60499i | 0 | 0.232746 | + | 0.232746i | 0.206604 | + | 0.771056i | 1.47595i | 1.95857 | − | 1.13078i | 0 | ||||||
193.9 | 0.841127 | − | 0.485625i | 0.777162 | + | 2.90041i | −0.528337 | + | 0.915107i | 0 | 2.06220 | + | 2.06220i | −0.0821598 | − | 0.306625i | 2.96879i | −5.21031 | + | 3.00817i | 0 | ||||||
193.10 | 0.926614 | − | 0.534981i | −0.561303 | − | 2.09481i | −0.427591 | + | 0.740609i | 0 | −1.64079 | − | 1.64079i | 0.642189 | + | 2.39668i | 3.05494i | −1.47509 | + | 0.851645i | 0 | ||||||
193.11 | 1.53267 | − | 0.884889i | −0.223454 | − | 0.833940i | 0.566056 | − | 0.980437i | 0 | −1.08043 | − | 1.08043i | 0.456178 | + | 1.70248i | 1.53597i | 1.95255 | − | 1.12731i | 0 | ||||||
193.12 | 1.88869 | − | 1.09044i | 0.177680 | + | 0.663112i | 1.37810 | − | 2.38694i | 0 | 1.05866 | + | 1.05866i | −1.19194 | − | 4.44838i | − | 1.64918i | 2.18993 | − | 1.26436i | 0 | |||||
193.13 | 2.25962 | − | 1.30459i | −0.755810 | − | 2.82072i | 2.40393 | − | 4.16373i | 0 | −5.38774 | − | 5.38774i | −0.120281 | − | 0.448895i | − | 7.32622i | −4.78714 | + | 2.76386i | 0 | |||||
193.14 | 2.41884 | − | 1.39652i | 0.623186 | + | 2.32576i | 2.90051 | − | 5.02383i | 0 | 4.75535 | + | 4.75535i | 1.09325 | + | 4.08007i | − | 10.6164i | −2.42273 | + | 1.39876i | 0 | |||||
393.1 | −2.37208 | − | 1.36952i | −2.22164 | − | 0.595286i | 2.75116 | + | 4.76515i | 0 | 4.45464 | + | 4.45464i | 2.91092 | + | 0.779980i | − | 9.59298i | 1.98324 | + | 1.14502i | 0 | |||||
393.2 | −2.18069 | − | 1.25902i | 1.64641 | + | 0.441154i | 2.17027 | + | 3.75901i | 0 | −3.03489 | − | 3.03489i | −3.03103 | − | 0.812162i | − | 5.89357i | −0.0820259 | − | 0.0473577i | 0 | |||||
393.3 | −1.53162 | − | 0.884282i | 0.529279 | + | 0.141820i | 0.563910 | + | 0.976721i | 0 | −0.685247 | − | 0.685247i | 2.53925 | + | 0.680389i | 1.54251i | −2.33805 | − | 1.34988i | 0 | ||||||
393.4 | −1.23383 | − | 0.712354i | −2.41055 | − | 0.645905i | 0.0148964 | + | 0.0258014i | 0 | 2.51411 | + | 2.51411i | −0.508749 | − | 0.136319i | 2.80697i | 2.79549 | + | 1.61398i | 0 | ||||||
393.5 | −1.19478 | − | 0.689808i | 3.31268 | + | 0.887629i | −0.0483289 | − | 0.0837081i | 0 | −3.34563 | − | 3.34563i | 1.23915 | + | 0.332030i | 2.89258i | 7.58786 | + | 4.38085i | 0 | ||||||
393.6 | −0.520353 | − | 0.300426i | −0.384911 | − | 0.103137i | −0.819489 | − | 1.41940i | 0 | 0.169305 | + | 0.169305i | −3.80207 | − | 1.01876i | 2.18649i | −2.46056 | − | 1.42060i | 0 | ||||||
See all 56 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
5.b | even | 2 | 1 | inner |
185.p | even | 12 | 1 | inner |
185.u | even | 12 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 925.2.y.a | yes | 56 |
5.b | even | 2 | 1 | inner | 925.2.y.a | yes | 56 |
5.c | odd | 4 | 2 | 925.2.t.a | ✓ | 56 | |
37.g | odd | 12 | 1 | 925.2.t.a | ✓ | 56 | |
185.p | even | 12 | 1 | inner | 925.2.y.a | yes | 56 |
185.q | odd | 12 | 1 | 925.2.t.a | ✓ | 56 | |
185.u | even | 12 | 1 | inner | 925.2.y.a | yes | 56 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
925.2.t.a | ✓ | 56 | 5.c | odd | 4 | 2 | |
925.2.t.a | ✓ | 56 | 37.g | odd | 12 | 1 | |
925.2.t.a | ✓ | 56 | 185.q | odd | 12 | 1 | |
925.2.y.a | yes | 56 | 1.a | even | 1 | 1 | trivial |
925.2.y.a | yes | 56 | 5.b | even | 2 | 1 | inner |
925.2.y.a | yes | 56 | 185.p | even | 12 | 1 | inner |
925.2.y.a | yes | 56 | 185.u | even | 12 | 1 | inner |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{2}^{56} - 46 T_{2}^{54} + 1186 T_{2}^{52} - 21008 T_{2}^{50} + 282297 T_{2}^{48} - 3008832 T_{2}^{46} + \cdots + 6561 \)
acting on \(S_{2}^{\mathrm{new}}(925, [\chi])\).