Properties

Label 925.2.f.a.43.1
Level $925$
Weight $2$
Character 925.43
Analytic conductor $7.386$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [925,2,Mod(43,925)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(925, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([3, 3])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("925.43"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 925 = 5^{2} \cdot 37 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 925.f (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,0,-4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.38616218697\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(i)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 185)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 43.1
Root \(-1.00000i\) of defining polynomial
Character \(\chi\) \(=\) 925.43
Dual form 925.2.f.a.882.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000i q^{2} +(-2.00000 + 2.00000i) q^{3} +1.00000 q^{4} +(2.00000 + 2.00000i) q^{6} -3.00000i q^{8} -5.00000i q^{9} +4.00000i q^{11} +(-2.00000 + 2.00000i) q^{12} +4.00000i q^{13} -1.00000 q^{16} +2.00000 q^{17} -5.00000 q^{18} +4.00000 q^{22} -4.00000i q^{23} +(6.00000 + 6.00000i) q^{24} +4.00000 q^{26} +(4.00000 + 4.00000i) q^{27} +(1.00000 + 1.00000i) q^{29} +(-6.00000 + 6.00000i) q^{31} -5.00000i q^{32} +(-8.00000 - 8.00000i) q^{33} -2.00000i q^{34} -5.00000i q^{36} +(6.00000 - 1.00000i) q^{37} +(-8.00000 - 8.00000i) q^{39} +12.0000i q^{43} +4.00000i q^{44} -4.00000 q^{46} +(-8.00000 + 8.00000i) q^{47} +(2.00000 - 2.00000i) q^{48} +7.00000i q^{49} +(-4.00000 + 4.00000i) q^{51} +4.00000i q^{52} +(9.00000 + 9.00000i) q^{53} +(4.00000 - 4.00000i) q^{54} +(1.00000 - 1.00000i) q^{58} +(-4.00000 + 4.00000i) q^{59} +(1.00000 - 1.00000i) q^{61} +(6.00000 + 6.00000i) q^{62} -7.00000 q^{64} +(-8.00000 + 8.00000i) q^{66} +(-6.00000 - 6.00000i) q^{67} +2.00000 q^{68} +(8.00000 + 8.00000i) q^{69} -4.00000 q^{71} -15.0000 q^{72} +(-11.0000 + 11.0000i) q^{73} +(-1.00000 - 6.00000i) q^{74} +(-8.00000 + 8.00000i) q^{78} +(6.00000 - 6.00000i) q^{79} -1.00000 q^{81} +(2.00000 + 2.00000i) q^{83} +12.0000 q^{86} -4.00000 q^{87} +12.0000 q^{88} +(1.00000 + 1.00000i) q^{89} -4.00000i q^{92} -24.0000i q^{93} +(8.00000 + 8.00000i) q^{94} +(10.0000 + 10.0000i) q^{96} -4.00000 q^{97} +7.00000 q^{98} +20.0000 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 4 q^{3} + 2 q^{4} + 4 q^{6} - 4 q^{12} - 2 q^{16} + 4 q^{17} - 10 q^{18} + 8 q^{22} + 12 q^{24} + 8 q^{26} + 8 q^{27} + 2 q^{29} - 12 q^{31} - 16 q^{33} + 12 q^{37} - 16 q^{39} - 8 q^{46} - 16 q^{47}+ \cdots + 40 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/925\mathbb{Z}\right)^\times\).

\(n\) \(76\) \(852\)
\(\chi(n)\) \(e\left(\frac{3}{4}\right)\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000i 0.707107i −0.935414 0.353553i \(-0.884973\pi\)
0.935414 0.353553i \(-0.115027\pi\)
\(3\) −2.00000 + 2.00000i −1.15470 + 1.15470i −0.169102 + 0.985599i \(0.554087\pi\)
−0.985599 + 0.169102i \(0.945913\pi\)
\(4\) 1.00000 0.500000
\(5\) 0 0
\(6\) 2.00000 + 2.00000i 0.816497 + 0.816497i
\(7\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(8\) 3.00000i 1.06066i
\(9\) 5.00000i 1.66667i
\(10\) 0 0
\(11\) 4.00000i 1.20605i 0.797724 + 0.603023i \(0.206037\pi\)
−0.797724 + 0.603023i \(0.793963\pi\)
\(12\) −2.00000 + 2.00000i −0.577350 + 0.577350i
\(13\) 4.00000i 1.10940i 0.832050 + 0.554700i \(0.187167\pi\)
−0.832050 + 0.554700i \(0.812833\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) −1.00000 −0.250000
\(17\) 2.00000 0.485071 0.242536 0.970143i \(-0.422021\pi\)
0.242536 + 0.970143i \(0.422021\pi\)
\(18\) −5.00000 −1.17851
\(19\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 4.00000 0.852803
\(23\) 4.00000i 0.834058i −0.908893 0.417029i \(-0.863071\pi\)
0.908893 0.417029i \(-0.136929\pi\)
\(24\) 6.00000 + 6.00000i 1.22474 + 1.22474i
\(25\) 0 0
\(26\) 4.00000 0.784465
\(27\) 4.00000 + 4.00000i 0.769800 + 0.769800i
\(28\) 0 0
\(29\) 1.00000 + 1.00000i 0.185695 + 0.185695i 0.793832 0.608137i \(-0.208083\pi\)
−0.608137 + 0.793832i \(0.708083\pi\)
\(30\) 0 0
\(31\) −6.00000 + 6.00000i −1.07763 + 1.07763i −0.0809104 + 0.996721i \(0.525783\pi\)
−0.996721 + 0.0809104i \(0.974217\pi\)
\(32\) 5.00000i 0.883883i
\(33\) −8.00000 8.00000i −1.39262 1.39262i
\(34\) 2.00000i 0.342997i
\(35\) 0 0
\(36\) 5.00000i 0.833333i
\(37\) 6.00000 1.00000i 0.986394 0.164399i
\(38\) 0 0
\(39\) −8.00000 8.00000i −1.28103 1.28103i
\(40\) 0 0
\(41\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(42\) 0 0
\(43\) 12.0000i 1.82998i 0.403473 + 0.914991i \(0.367803\pi\)
−0.403473 + 0.914991i \(0.632197\pi\)
\(44\) 4.00000i 0.603023i
\(45\) 0 0
\(46\) −4.00000 −0.589768
\(47\) −8.00000 + 8.00000i −1.16692 + 1.16692i −0.183992 + 0.982928i \(0.558902\pi\)
−0.982928 + 0.183992i \(0.941098\pi\)
\(48\) 2.00000 2.00000i 0.288675 0.288675i
\(49\) 7.00000i 1.00000i
\(50\) 0 0
\(51\) −4.00000 + 4.00000i −0.560112 + 0.560112i
\(52\) 4.00000i 0.554700i
\(53\) 9.00000 + 9.00000i 1.23625 + 1.23625i 0.961524 + 0.274721i \(0.0885855\pi\)
0.274721 + 0.961524i \(0.411414\pi\)
\(54\) 4.00000 4.00000i 0.544331 0.544331i
\(55\) 0 0
\(56\) 0 0
\(57\) 0 0
\(58\) 1.00000 1.00000i 0.131306 0.131306i
\(59\) −4.00000 + 4.00000i −0.520756 + 0.520756i −0.917800 0.397044i \(-0.870036\pi\)
0.397044 + 0.917800i \(0.370036\pi\)
\(60\) 0 0
\(61\) 1.00000 1.00000i 0.128037 0.128037i −0.640184 0.768221i \(-0.721142\pi\)
0.768221 + 0.640184i \(0.221142\pi\)
\(62\) 6.00000 + 6.00000i 0.762001 + 0.762001i
\(63\) 0 0
\(64\) −7.00000 −0.875000
\(65\) 0 0
\(66\) −8.00000 + 8.00000i −0.984732 + 0.984732i
\(67\) −6.00000 6.00000i −0.733017 0.733017i 0.238200 0.971216i \(-0.423443\pi\)
−0.971216 + 0.238200i \(0.923443\pi\)
\(68\) 2.00000 0.242536
\(69\) 8.00000 + 8.00000i 0.963087 + 0.963087i
\(70\) 0 0
\(71\) −4.00000 −0.474713 −0.237356 0.971423i \(-0.576281\pi\)
−0.237356 + 0.971423i \(0.576281\pi\)
\(72\) −15.0000 −1.76777
\(73\) −11.0000 + 11.0000i −1.28745 + 1.28745i −0.351123 + 0.936329i \(0.614200\pi\)
−0.936329 + 0.351123i \(0.885800\pi\)
\(74\) −1.00000 6.00000i −0.116248 0.697486i
\(75\) 0 0
\(76\) 0 0
\(77\) 0 0
\(78\) −8.00000 + 8.00000i −0.905822 + 0.905822i
\(79\) 6.00000 6.00000i 0.675053 0.675053i −0.283824 0.958876i \(-0.591603\pi\)
0.958876 + 0.283824i \(0.0916031\pi\)
\(80\) 0 0
\(81\) −1.00000 −0.111111
\(82\) 0 0
\(83\) 2.00000 + 2.00000i 0.219529 + 0.219529i 0.808300 0.588771i \(-0.200388\pi\)
−0.588771 + 0.808300i \(0.700388\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 12.0000 1.29399
\(87\) −4.00000 −0.428845
\(88\) 12.0000 1.27920
\(89\) 1.00000 + 1.00000i 0.106000 + 0.106000i 0.758118 0.652118i \(-0.226119\pi\)
−0.652118 + 0.758118i \(0.726119\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 4.00000i 0.417029i
\(93\) 24.0000i 2.48868i
\(94\) 8.00000 + 8.00000i 0.825137 + 0.825137i
\(95\) 0 0
\(96\) 10.0000 + 10.0000i 1.02062 + 1.02062i
\(97\) −4.00000 −0.406138 −0.203069 0.979164i \(-0.565092\pi\)
−0.203069 + 0.979164i \(0.565092\pi\)
\(98\) 7.00000 0.707107
\(99\) 20.0000 2.01008
\(100\) 0 0
\(101\) 6.00000i 0.597022i −0.954406 0.298511i \(-0.903510\pi\)
0.954406 0.298511i \(-0.0964900\pi\)
\(102\) 4.00000 + 4.00000i 0.396059 + 0.396059i
\(103\) 4.00000 0.394132 0.197066 0.980390i \(-0.436859\pi\)
0.197066 + 0.980390i \(0.436859\pi\)
\(104\) 12.0000 1.17670
\(105\) 0 0
\(106\) 9.00000 9.00000i 0.874157 0.874157i
\(107\) 6.00000 6.00000i 0.580042 0.580042i −0.354873 0.934915i \(-0.615476\pi\)
0.934915 + 0.354873i \(0.115476\pi\)
\(108\) 4.00000 + 4.00000i 0.384900 + 0.384900i
\(109\) −3.00000 + 3.00000i −0.287348 + 0.287348i −0.836031 0.548683i \(-0.815129\pi\)
0.548683 + 0.836031i \(0.315129\pi\)
\(110\) 0 0
\(111\) −10.0000 + 14.0000i −0.949158 + 1.32882i
\(112\) 0 0
\(113\) 2.00000 0.188144 0.0940721 0.995565i \(-0.470012\pi\)
0.0940721 + 0.995565i \(0.470012\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 1.00000 + 1.00000i 0.0928477 + 0.0928477i
\(117\) 20.0000 1.84900
\(118\) 4.00000 + 4.00000i 0.368230 + 0.368230i
\(119\) 0 0
\(120\) 0 0
\(121\) −5.00000 −0.454545
\(122\) −1.00000 1.00000i −0.0905357 0.0905357i
\(123\) 0 0
\(124\) −6.00000 + 6.00000i −0.538816 + 0.538816i
\(125\) 0 0
\(126\) 0 0
\(127\) −12.0000 + 12.0000i −1.06483 + 1.06483i −0.0670802 + 0.997748i \(0.521368\pi\)
−0.997748 + 0.0670802i \(0.978632\pi\)
\(128\) 3.00000i 0.265165i
\(129\) −24.0000 24.0000i −2.11308 2.11308i
\(130\) 0 0
\(131\) 16.0000 16.0000i 1.39793 1.39793i 0.591957 0.805970i \(-0.298356\pi\)
0.805970 0.591957i \(-0.201644\pi\)
\(132\) −8.00000 8.00000i −0.696311 0.696311i
\(133\) 0 0
\(134\) −6.00000 + 6.00000i −0.518321 + 0.518321i
\(135\) 0 0
\(136\) 6.00000i 0.514496i
\(137\) 7.00000 7.00000i 0.598050 0.598050i −0.341743 0.939793i \(-0.611017\pi\)
0.939793 + 0.341743i \(0.111017\pi\)
\(138\) 8.00000 8.00000i 0.681005 0.681005i
\(139\) −4.00000 −0.339276 −0.169638 0.985506i \(-0.554260\pi\)
−0.169638 + 0.985506i \(0.554260\pi\)
\(140\) 0 0
\(141\) 32.0000i 2.69489i
\(142\) 4.00000i 0.335673i
\(143\) −16.0000 −1.33799
\(144\) 5.00000i 0.416667i
\(145\) 0 0
\(146\) 11.0000 + 11.0000i 0.910366 + 0.910366i
\(147\) −14.0000 14.0000i −1.15470 1.15470i
\(148\) 6.00000 1.00000i 0.493197 0.0821995i
\(149\) 10.0000i 0.819232i −0.912258 0.409616i \(-0.865663\pi\)
0.912258 0.409616i \(-0.134337\pi\)
\(150\) 0 0
\(151\) 8.00000i 0.651031i 0.945537 + 0.325515i \(0.105538\pi\)
−0.945537 + 0.325515i \(0.894462\pi\)
\(152\) 0 0
\(153\) 10.0000i 0.808452i
\(154\) 0 0
\(155\) 0 0
\(156\) −8.00000 8.00000i −0.640513 0.640513i
\(157\) 15.0000 15.0000i 1.19713 1.19713i 0.222108 0.975022i \(-0.428706\pi\)
0.975022 0.222108i \(-0.0712939\pi\)
\(158\) −6.00000 6.00000i −0.477334 0.477334i
\(159\) −36.0000 −2.85499
\(160\) 0 0
\(161\) 0 0
\(162\) 1.00000i 0.0785674i
\(163\) −4.00000 −0.313304 −0.156652 0.987654i \(-0.550070\pi\)
−0.156652 + 0.987654i \(0.550070\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 2.00000 2.00000i 0.155230 0.155230i
\(167\) 12.0000 0.928588 0.464294 0.885681i \(-0.346308\pi\)
0.464294 + 0.885681i \(0.346308\pi\)
\(168\) 0 0
\(169\) −3.00000 −0.230769
\(170\) 0 0
\(171\) 0 0
\(172\) 12.0000i 0.914991i
\(173\) −5.00000 + 5.00000i −0.380143 + 0.380143i −0.871154 0.491011i \(-0.836628\pi\)
0.491011 + 0.871154i \(0.336628\pi\)
\(174\) 4.00000i 0.303239i
\(175\) 0 0
\(176\) 4.00000i 0.301511i
\(177\) 16.0000i 1.20263i
\(178\) 1.00000 1.00000i 0.0749532 0.0749532i
\(179\) 16.0000 + 16.0000i 1.19590 + 1.19590i 0.975384 + 0.220512i \(0.0707728\pi\)
0.220512 + 0.975384i \(0.429227\pi\)
\(180\) 0 0
\(181\) −8.00000 −0.594635 −0.297318 0.954779i \(-0.596092\pi\)
−0.297318 + 0.954779i \(0.596092\pi\)
\(182\) 0 0
\(183\) 4.00000i 0.295689i
\(184\) −12.0000 −0.884652
\(185\) 0 0
\(186\) −24.0000 −1.75977
\(187\) 8.00000i 0.585018i
\(188\) −8.00000 + 8.00000i −0.583460 + 0.583460i
\(189\) 0 0
\(190\) 0 0
\(191\) −14.0000 14.0000i −1.01300 1.01300i −0.999914 0.0130901i \(-0.995833\pi\)
−0.0130901 0.999914i \(-0.504167\pi\)
\(192\) 14.0000 14.0000i 1.01036 1.01036i
\(193\) 14.0000i 1.00774i −0.863779 0.503871i \(-0.831909\pi\)
0.863779 0.503871i \(-0.168091\pi\)
\(194\) 4.00000i 0.287183i
\(195\) 0 0
\(196\) 7.00000i 0.500000i
\(197\) 5.00000 5.00000i 0.356235 0.356235i −0.506188 0.862423i \(-0.668946\pi\)
0.862423 + 0.506188i \(0.168946\pi\)
\(198\) 20.0000i 1.42134i
\(199\) 18.0000 + 18.0000i 1.27599 + 1.27599i 0.942894 + 0.333092i \(0.108092\pi\)
0.333092 + 0.942894i \(0.391908\pi\)
\(200\) 0 0
\(201\) 24.0000 1.69283
\(202\) −6.00000 −0.422159
\(203\) 0 0
\(204\) −4.00000 + 4.00000i −0.280056 + 0.280056i
\(205\) 0 0
\(206\) 4.00000i 0.278693i
\(207\) −20.0000 −1.39010
\(208\) 4.00000i 0.277350i
\(209\) 0 0
\(210\) 0 0
\(211\) 8.00000 0.550743 0.275371 0.961338i \(-0.411199\pi\)
0.275371 + 0.961338i \(0.411199\pi\)
\(212\) 9.00000 + 9.00000i 0.618123 + 0.618123i
\(213\) 8.00000 8.00000i 0.548151 0.548151i
\(214\) −6.00000 6.00000i −0.410152 0.410152i
\(215\) 0 0
\(216\) 12.0000 12.0000i 0.816497 0.816497i
\(217\) 0 0
\(218\) 3.00000 + 3.00000i 0.203186 + 0.203186i
\(219\) 44.0000i 2.97324i
\(220\) 0 0
\(221\) 8.00000i 0.538138i
\(222\) 14.0000 + 10.0000i 0.939618 + 0.671156i
\(223\) 4.00000 + 4.00000i 0.267860 + 0.267860i 0.828237 0.560378i \(-0.189344\pi\)
−0.560378 + 0.828237i \(0.689344\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 2.00000i 0.133038i
\(227\) −16.0000 −1.06196 −0.530979 0.847385i \(-0.678176\pi\)
−0.530979 + 0.847385i \(0.678176\pi\)
\(228\) 0 0
\(229\) 16.0000i 1.05731i −0.848837 0.528655i \(-0.822697\pi\)
0.848837 0.528655i \(-0.177303\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 3.00000 3.00000i 0.196960 0.196960i
\(233\) 13.0000 13.0000i 0.851658 0.851658i −0.138679 0.990337i \(-0.544286\pi\)
0.990337 + 0.138679i \(0.0442856\pi\)
\(234\) 20.0000i 1.30744i
\(235\) 0 0
\(236\) −4.00000 + 4.00000i −0.260378 + 0.260378i
\(237\) 24.0000i 1.55897i
\(238\) 0 0
\(239\) 14.0000 14.0000i 0.905585 0.905585i −0.0903274 0.995912i \(-0.528791\pi\)
0.995912 + 0.0903274i \(0.0287913\pi\)
\(240\) 0 0
\(241\) 13.0000 + 13.0000i 0.837404 + 0.837404i 0.988517 0.151113i \(-0.0482857\pi\)
−0.151113 + 0.988517i \(0.548286\pi\)
\(242\) 5.00000i 0.321412i
\(243\) −10.0000 + 10.0000i −0.641500 + 0.641500i
\(244\) 1.00000 1.00000i 0.0640184 0.0640184i
\(245\) 0 0
\(246\) 0 0
\(247\) 0 0
\(248\) 18.0000 + 18.0000i 1.14300 + 1.14300i
\(249\) −8.00000 −0.506979
\(250\) 0 0
\(251\) 4.00000 4.00000i 0.252478 0.252478i −0.569508 0.821986i \(-0.692866\pi\)
0.821986 + 0.569508i \(0.192866\pi\)
\(252\) 0 0
\(253\) 16.0000 1.00591
\(254\) 12.0000 + 12.0000i 0.752947 + 0.752947i
\(255\) 0 0
\(256\) −17.0000 −1.06250
\(257\) 14.0000 0.873296 0.436648 0.899632i \(-0.356166\pi\)
0.436648 + 0.899632i \(0.356166\pi\)
\(258\) −24.0000 + 24.0000i −1.49417 + 1.49417i
\(259\) 0 0
\(260\) 0 0
\(261\) 5.00000 5.00000i 0.309492 0.309492i
\(262\) −16.0000 16.0000i −0.988483 0.988483i
\(263\) 8.00000 8.00000i 0.493301 0.493301i −0.416044 0.909345i \(-0.636584\pi\)
0.909345 + 0.416044i \(0.136584\pi\)
\(264\) −24.0000 + 24.0000i −1.47710 + 1.47710i
\(265\) 0 0
\(266\) 0 0
\(267\) −4.00000 −0.244796
\(268\) −6.00000 6.00000i −0.366508 0.366508i
\(269\) 14.0000i 0.853595i −0.904347 0.426798i \(-0.859642\pi\)
0.904347 0.426798i \(-0.140358\pi\)
\(270\) 0 0
\(271\) −20.0000 −1.21491 −0.607457 0.794353i \(-0.707810\pi\)
−0.607457 + 0.794353i \(0.707810\pi\)
\(272\) −2.00000 −0.121268
\(273\) 0 0
\(274\) −7.00000 7.00000i −0.422885 0.422885i
\(275\) 0 0
\(276\) 8.00000 + 8.00000i 0.481543 + 0.481543i
\(277\) 4.00000i 0.240337i −0.992754 0.120168i \(-0.961657\pi\)
0.992754 0.120168i \(-0.0383434\pi\)
\(278\) 4.00000i 0.239904i
\(279\) 30.0000 + 30.0000i 1.79605 + 1.79605i
\(280\) 0 0
\(281\) −15.0000 15.0000i −0.894825 0.894825i 0.100148 0.994973i \(-0.468068\pi\)
−0.994973 + 0.100148i \(0.968068\pi\)
\(282\) −32.0000 −1.90557
\(283\) 4.00000 0.237775 0.118888 0.992908i \(-0.462067\pi\)
0.118888 + 0.992908i \(0.462067\pi\)
\(284\) −4.00000 −0.237356
\(285\) 0 0
\(286\) 16.0000i 0.946100i
\(287\) 0 0
\(288\) −25.0000 −1.47314
\(289\) −13.0000 −0.764706
\(290\) 0 0
\(291\) 8.00000 8.00000i 0.468968 0.468968i
\(292\) −11.0000 + 11.0000i −0.643726 + 0.643726i
\(293\) −1.00000 1.00000i −0.0584206 0.0584206i 0.677293 0.735714i \(-0.263153\pi\)
−0.735714 + 0.677293i \(0.763153\pi\)
\(294\) −14.0000 + 14.0000i −0.816497 + 0.816497i
\(295\) 0 0
\(296\) −3.00000 18.0000i −0.174371 1.04623i
\(297\) −16.0000 + 16.0000i −0.928414 + 0.928414i
\(298\) −10.0000 −0.579284
\(299\) 16.0000 0.925304
\(300\) 0 0
\(301\) 0 0
\(302\) 8.00000 0.460348
\(303\) 12.0000 + 12.0000i 0.689382 + 0.689382i
\(304\) 0 0
\(305\) 0 0
\(306\) −10.0000 −0.571662
\(307\) 6.00000 + 6.00000i 0.342438 + 0.342438i 0.857283 0.514845i \(-0.172151\pi\)
−0.514845 + 0.857283i \(0.672151\pi\)
\(308\) 0 0
\(309\) −8.00000 + 8.00000i −0.455104 + 0.455104i
\(310\) 0 0
\(311\) −6.00000 + 6.00000i −0.340229 + 0.340229i −0.856453 0.516225i \(-0.827337\pi\)
0.516225 + 0.856453i \(0.327337\pi\)
\(312\) −24.0000 + 24.0000i −1.35873 + 1.35873i
\(313\) 6.00000i 0.339140i −0.985518 0.169570i \(-0.945762\pi\)
0.985518 0.169570i \(-0.0542379\pi\)
\(314\) −15.0000 15.0000i −0.846499 0.846499i
\(315\) 0 0
\(316\) 6.00000 6.00000i 0.337526 0.337526i
\(317\) −19.0000 19.0000i −1.06715 1.06715i −0.997577 0.0695692i \(-0.977838\pi\)
−0.0695692 0.997577i \(-0.522162\pi\)
\(318\) 36.0000i 2.01878i
\(319\) −4.00000 + 4.00000i −0.223957 + 0.223957i
\(320\) 0 0
\(321\) 24.0000i 1.33955i
\(322\) 0 0
\(323\) 0 0
\(324\) −1.00000 −0.0555556
\(325\) 0 0
\(326\) 4.00000i 0.221540i
\(327\) 12.0000i 0.663602i
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) −4.00000 4.00000i −0.219860 0.219860i 0.588579 0.808439i \(-0.299687\pi\)
−0.808439 + 0.588579i \(0.799687\pi\)
\(332\) 2.00000 + 2.00000i 0.109764 + 0.109764i
\(333\) −5.00000 30.0000i −0.273998 1.64399i
\(334\) 12.0000i 0.656611i
\(335\) 0 0
\(336\) 0 0
\(337\) −15.0000 15.0000i −0.817102 0.817102i 0.168585 0.985687i \(-0.446080\pi\)
−0.985687 + 0.168585i \(0.946080\pi\)
\(338\) 3.00000i 0.163178i
\(339\) −4.00000 + 4.00000i −0.217250 + 0.217250i
\(340\) 0 0
\(341\) −24.0000 24.0000i −1.29967 1.29967i
\(342\) 0 0
\(343\) 0 0
\(344\) 36.0000 1.94099
\(345\) 0 0
\(346\) 5.00000 + 5.00000i 0.268802 + 0.268802i
\(347\) 28.0000i 1.50312i 0.659665 + 0.751559i \(0.270698\pi\)
−0.659665 + 0.751559i \(0.729302\pi\)
\(348\) −4.00000 −0.214423
\(349\) 34.0000i 1.81998i 0.414632 + 0.909989i \(0.363910\pi\)
−0.414632 + 0.909989i \(0.636090\pi\)
\(350\) 0 0
\(351\) −16.0000 + 16.0000i −0.854017 + 0.854017i
\(352\) 20.0000 1.06600
\(353\) 4.00000 0.212899 0.106449 0.994318i \(-0.466052\pi\)
0.106449 + 0.994318i \(0.466052\pi\)
\(354\) −16.0000 −0.850390
\(355\) 0 0
\(356\) 1.00000 + 1.00000i 0.0529999 + 0.0529999i
\(357\) 0 0
\(358\) 16.0000 16.0000i 0.845626 0.845626i
\(359\) 20.0000i 1.05556i 0.849381 + 0.527780i \(0.176975\pi\)
−0.849381 + 0.527780i \(0.823025\pi\)
\(360\) 0 0
\(361\) 19.0000i 1.00000i
\(362\) 8.00000i 0.420471i
\(363\) 10.0000 10.0000i 0.524864 0.524864i
\(364\) 0 0
\(365\) 0 0
\(366\) 4.00000 0.209083
\(367\) 16.0000 16.0000i 0.835193 0.835193i −0.153029 0.988222i \(-0.548903\pi\)
0.988222 + 0.153029i \(0.0489027\pi\)
\(368\) 4.00000i 0.208514i
\(369\) 0 0
\(370\) 0 0
\(371\) 0 0
\(372\) 24.0000i 1.24434i
\(373\) 9.00000 9.00000i 0.466002 0.466002i −0.434614 0.900617i \(-0.643115\pi\)
0.900617 + 0.434614i \(0.143115\pi\)
\(374\) 8.00000 0.413670
\(375\) 0 0
\(376\) 24.0000 + 24.0000i 1.23771 + 1.23771i
\(377\) −4.00000 + 4.00000i −0.206010 + 0.206010i
\(378\) 0 0
\(379\) 8.00000i 0.410932i −0.978664 0.205466i \(-0.934129\pi\)
0.978664 0.205466i \(-0.0658711\pi\)
\(380\) 0 0
\(381\) 48.0000i 2.45911i
\(382\) −14.0000 + 14.0000i −0.716302 + 0.716302i
\(383\) 20.0000i 1.02195i −0.859595 0.510976i \(-0.829284\pi\)
0.859595 0.510976i \(-0.170716\pi\)
\(384\) 6.00000 + 6.00000i 0.306186 + 0.306186i
\(385\) 0 0
\(386\) −14.0000 −0.712581
\(387\) 60.0000 3.04997
\(388\) −4.00000 −0.203069
\(389\) 1.00000 1.00000i 0.0507020 0.0507020i −0.681301 0.732003i \(-0.738586\pi\)
0.732003 + 0.681301i \(0.238586\pi\)
\(390\) 0 0
\(391\) 8.00000i 0.404577i
\(392\) 21.0000 1.06066
\(393\) 64.0000i 3.22837i
\(394\) −5.00000 5.00000i −0.251896 0.251896i
\(395\) 0 0
\(396\) 20.0000 1.00504
\(397\) −1.00000 1.00000i −0.0501886 0.0501886i 0.681567 0.731756i \(-0.261299\pi\)
−0.731756 + 0.681567i \(0.761299\pi\)
\(398\) 18.0000 18.0000i 0.902258 0.902258i
\(399\) 0 0
\(400\) 0 0
\(401\) 1.00000 1.00000i 0.0499376 0.0499376i −0.681697 0.731635i \(-0.738758\pi\)
0.731635 + 0.681697i \(0.238758\pi\)
\(402\) 24.0000i 1.19701i
\(403\) −24.0000 24.0000i −1.19553 1.19553i
\(404\) 6.00000i 0.298511i
\(405\) 0 0
\(406\) 0 0
\(407\) 4.00000 + 24.0000i 0.198273 + 1.18964i
\(408\) 12.0000 + 12.0000i 0.594089 + 0.594089i
\(409\) −3.00000 3.00000i −0.148340 0.148340i 0.629036 0.777376i \(-0.283450\pi\)
−0.777376 + 0.629036i \(0.783450\pi\)
\(410\) 0 0
\(411\) 28.0000i 1.38114i
\(412\) 4.00000 0.197066
\(413\) 0 0
\(414\) 20.0000i 0.982946i
\(415\) 0 0
\(416\) 20.0000 0.980581
\(417\) 8.00000 8.00000i 0.391762 0.391762i
\(418\) 0 0
\(419\) 16.0000i 0.781651i −0.920465 0.390826i \(-0.872190\pi\)
0.920465 0.390826i \(-0.127810\pi\)
\(420\) 0 0
\(421\) 3.00000 3.00000i 0.146211 0.146211i −0.630212 0.776423i \(-0.717032\pi\)
0.776423 + 0.630212i \(0.217032\pi\)
\(422\) 8.00000i 0.389434i
\(423\) 40.0000 + 40.0000i 1.94487 + 1.94487i
\(424\) 27.0000 27.0000i 1.31124 1.31124i
\(425\) 0 0
\(426\) −8.00000 8.00000i −0.387601 0.387601i
\(427\) 0 0
\(428\) 6.00000 6.00000i 0.290021 0.290021i
\(429\) 32.0000 32.0000i 1.54497 1.54497i
\(430\) 0 0
\(431\) 2.00000 2.00000i 0.0963366 0.0963366i −0.657296 0.753633i \(-0.728300\pi\)
0.753633 + 0.657296i \(0.228300\pi\)
\(432\) −4.00000 4.00000i −0.192450 0.192450i
\(433\) −11.0000 11.0000i −0.528626 0.528626i 0.391536 0.920163i \(-0.371944\pi\)
−0.920163 + 0.391536i \(0.871944\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) −3.00000 + 3.00000i −0.143674 + 0.143674i
\(437\) 0 0
\(438\) −44.0000 −2.10240
\(439\) 10.0000 + 10.0000i 0.477274 + 0.477274i 0.904259 0.426985i \(-0.140424\pi\)
−0.426985 + 0.904259i \(0.640424\pi\)
\(440\) 0 0
\(441\) 35.0000 1.66667
\(442\) 8.00000 0.380521
\(443\) −2.00000 + 2.00000i −0.0950229 + 0.0950229i −0.753020 0.657997i \(-0.771404\pi\)
0.657997 + 0.753020i \(0.271404\pi\)
\(444\) −10.0000 + 14.0000i −0.474579 + 0.664411i
\(445\) 0 0
\(446\) 4.00000 4.00000i 0.189405 0.189405i
\(447\) 20.0000 + 20.0000i 0.945968 + 0.945968i
\(448\) 0 0
\(449\) −23.0000 + 23.0000i −1.08544 + 1.08544i −0.0894454 + 0.995992i \(0.528509\pi\)
−0.995992 + 0.0894454i \(0.971491\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 2.00000 0.0940721
\(453\) −16.0000 16.0000i −0.751746 0.751746i
\(454\) 16.0000i 0.750917i
\(455\) 0 0
\(456\) 0 0
\(457\) 20.0000 0.935561 0.467780 0.883845i \(-0.345054\pi\)
0.467780 + 0.883845i \(0.345054\pi\)
\(458\) −16.0000 −0.747631
\(459\) 8.00000 + 8.00000i 0.373408 + 0.373408i
\(460\) 0 0
\(461\) 21.0000 + 21.0000i 0.978068 + 0.978068i 0.999765 0.0216971i \(-0.00690694\pi\)
−0.0216971 + 0.999765i \(0.506907\pi\)
\(462\) 0 0
\(463\) 20.0000i 0.929479i 0.885448 + 0.464739i \(0.153852\pi\)
−0.885448 + 0.464739i \(0.846148\pi\)
\(464\) −1.00000 1.00000i −0.0464238 0.0464238i
\(465\) 0 0
\(466\) −13.0000 13.0000i −0.602213 0.602213i
\(467\) 4.00000 0.185098 0.0925490 0.995708i \(-0.470499\pi\)
0.0925490 + 0.995708i \(0.470499\pi\)
\(468\) 20.0000 0.924500
\(469\) 0 0
\(470\) 0 0
\(471\) 60.0000i 2.76465i
\(472\) 12.0000 + 12.0000i 0.552345 + 0.552345i
\(473\) −48.0000 −2.20704
\(474\) 24.0000 1.10236
\(475\) 0 0
\(476\) 0 0
\(477\) 45.0000 45.0000i 2.06041 2.06041i
\(478\) −14.0000 14.0000i −0.640345 0.640345i
\(479\) 10.0000 10.0000i 0.456912 0.456912i −0.440729 0.897640i \(-0.645280\pi\)
0.897640 + 0.440729i \(0.145280\pi\)
\(480\) 0 0
\(481\) 4.00000 + 24.0000i 0.182384 + 1.09431i
\(482\) 13.0000 13.0000i 0.592134 0.592134i
\(483\) 0 0
\(484\) −5.00000 −0.227273
\(485\) 0 0
\(486\) 10.0000 + 10.0000i 0.453609 + 0.453609i
\(487\) −20.0000 −0.906287 −0.453143 0.891438i \(-0.649697\pi\)
−0.453143 + 0.891438i \(0.649697\pi\)
\(488\) −3.00000 3.00000i −0.135804 0.135804i
\(489\) 8.00000 8.00000i 0.361773 0.361773i
\(490\) 0 0
\(491\) 8.00000 0.361035 0.180517 0.983572i \(-0.442223\pi\)
0.180517 + 0.983572i \(0.442223\pi\)
\(492\) 0 0
\(493\) 2.00000 + 2.00000i 0.0900755 + 0.0900755i
\(494\) 0 0
\(495\) 0 0
\(496\) 6.00000 6.00000i 0.269408 0.269408i
\(497\) 0 0
\(498\) 8.00000i 0.358489i
\(499\) −12.0000 12.0000i −0.537194 0.537194i 0.385510 0.922704i \(-0.374026\pi\)
−0.922704 + 0.385510i \(0.874026\pi\)
\(500\) 0 0
\(501\) −24.0000 + 24.0000i −1.07224 + 1.07224i
\(502\) −4.00000 4.00000i −0.178529 0.178529i
\(503\) 24.0000i 1.07011i −0.844818 0.535054i \(-0.820291\pi\)
0.844818 0.535054i \(-0.179709\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 16.0000i 0.711287i
\(507\) 6.00000 6.00000i 0.266469 0.266469i
\(508\) −12.0000 + 12.0000i −0.532414 + 0.532414i
\(509\) 18.0000 0.797836 0.398918 0.916987i \(-0.369386\pi\)
0.398918 + 0.916987i \(0.369386\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 11.0000i 0.486136i
\(513\) 0 0
\(514\) 14.0000i 0.617514i
\(515\) 0 0
\(516\) −24.0000 24.0000i −1.05654 1.05654i
\(517\) −32.0000 32.0000i −1.40736 1.40736i
\(518\) 0 0
\(519\) 20.0000i 0.877903i
\(520\) 0 0
\(521\) 2.00000i 0.0876216i −0.999040 0.0438108i \(-0.986050\pi\)
0.999040 0.0438108i \(-0.0139499\pi\)
\(522\) −5.00000 5.00000i −0.218844 0.218844i
\(523\) 40.0000i 1.74908i 0.484955 + 0.874539i \(0.338836\pi\)
−0.484955 + 0.874539i \(0.661164\pi\)
\(524\) 16.0000 16.0000i 0.698963 0.698963i
\(525\) 0 0
\(526\) −8.00000 8.00000i −0.348817 0.348817i
\(527\) −12.0000 + 12.0000i −0.522728 + 0.522728i
\(528\) 8.00000 + 8.00000i 0.348155 + 0.348155i
\(529\) 7.00000 0.304348
\(530\) 0 0
\(531\) 20.0000 + 20.0000i 0.867926 + 0.867926i
\(532\) 0 0
\(533\) 0 0
\(534\) 4.00000i 0.173097i
\(535\) 0 0
\(536\) −18.0000 + 18.0000i −0.777482 + 0.777482i
\(537\) −64.0000 −2.76180
\(538\) −14.0000 −0.603583
\(539\) −28.0000 −1.20605
\(540\) 0 0
\(541\) 19.0000 + 19.0000i 0.816874 + 0.816874i 0.985654 0.168780i \(-0.0539827\pi\)
−0.168780 + 0.985654i \(0.553983\pi\)
\(542\) 20.0000i 0.859074i
\(543\) 16.0000 16.0000i 0.686626 0.686626i
\(544\) 10.0000i 0.428746i
\(545\) 0 0
\(546\) 0 0
\(547\) 8.00000i 0.342055i 0.985266 + 0.171028i \(0.0547087\pi\)
−0.985266 + 0.171028i \(0.945291\pi\)
\(548\) 7.00000 7.00000i 0.299025 0.299025i
\(549\) −5.00000 5.00000i −0.213395 0.213395i
\(550\) 0 0
\(551\) 0 0
\(552\) 24.0000 24.0000i 1.02151 1.02151i
\(553\) 0 0
\(554\) −4.00000 −0.169944
\(555\) 0 0
\(556\) −4.00000 −0.169638
\(557\) 28.0000i 1.18640i 0.805056 + 0.593199i \(0.202135\pi\)
−0.805056 + 0.593199i \(0.797865\pi\)
\(558\) 30.0000 30.0000i 1.27000 1.27000i
\(559\) −48.0000 −2.03018
\(560\) 0 0
\(561\) −16.0000 16.0000i −0.675521 0.675521i
\(562\) −15.0000 + 15.0000i −0.632737 + 0.632737i
\(563\) 24.0000i 1.01148i −0.862686 0.505740i \(-0.831220\pi\)
0.862686 0.505740i \(-0.168780\pi\)
\(564\) 32.0000i 1.34744i
\(565\) 0 0
\(566\) 4.00000i 0.168133i
\(567\) 0 0
\(568\) 12.0000i 0.503509i
\(569\) 11.0000 + 11.0000i 0.461144 + 0.461144i 0.899030 0.437886i \(-0.144273\pi\)
−0.437886 + 0.899030i \(0.644273\pi\)
\(570\) 0 0
\(571\) 20.0000 0.836974 0.418487 0.908223i \(-0.362561\pi\)
0.418487 + 0.908223i \(0.362561\pi\)
\(572\) −16.0000 −0.668994
\(573\) 56.0000 2.33943
\(574\) 0 0
\(575\) 0 0
\(576\) 35.0000i 1.45833i
\(577\) 30.0000 1.24892 0.624458 0.781058i \(-0.285320\pi\)
0.624458 + 0.781058i \(0.285320\pi\)
\(578\) 13.0000i 0.540729i
\(579\) 28.0000 + 28.0000i 1.16364 + 1.16364i
\(580\) 0 0
\(581\) 0 0
\(582\) −8.00000 8.00000i −0.331611 0.331611i
\(583\) −36.0000 + 36.0000i −1.49097 + 1.49097i
\(584\) 33.0000 + 33.0000i 1.36555 + 1.36555i
\(585\) 0 0
\(586\) −1.00000 + 1.00000i −0.0413096 + 0.0413096i
\(587\) 12.0000i 0.495293i 0.968850 + 0.247647i \(0.0796572\pi\)
−0.968850 + 0.247647i \(0.920343\pi\)
\(588\) −14.0000 14.0000i −0.577350 0.577350i
\(589\) 0 0
\(590\) 0 0
\(591\) 20.0000i 0.822690i
\(592\) −6.00000 + 1.00000i −0.246598 + 0.0410997i
\(593\) 9.00000 + 9.00000i 0.369586 + 0.369586i 0.867326 0.497740i \(-0.165837\pi\)
−0.497740 + 0.867326i \(0.665837\pi\)
\(594\) 16.0000 + 16.0000i 0.656488 + 0.656488i
\(595\) 0 0
\(596\) 10.0000i 0.409616i
\(597\) −72.0000 −2.94676
\(598\) 16.0000i 0.654289i
\(599\) 24.0000i 0.980613i −0.871550 0.490307i \(-0.836885\pi\)
0.871550 0.490307i \(-0.163115\pi\)
\(600\) 0 0
\(601\) −40.0000 −1.63163 −0.815817 0.578310i \(-0.803712\pi\)
−0.815817 + 0.578310i \(0.803712\pi\)
\(602\) 0 0
\(603\) −30.0000 + 30.0000i −1.22169 + 1.22169i
\(604\) 8.00000i 0.325515i
\(605\) 0 0
\(606\) 12.0000 12.0000i 0.487467 0.487467i
\(607\) 4.00000i 0.162355i 0.996700 + 0.0811775i \(0.0258681\pi\)
−0.996700 + 0.0811775i \(0.974132\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −32.0000 32.0000i −1.29458 1.29458i
\(612\) 10.0000i 0.404226i
\(613\) −3.00000 + 3.00000i −0.121169 + 0.121169i −0.765091 0.643922i \(-0.777306\pi\)
0.643922 + 0.765091i \(0.277306\pi\)
\(614\) 6.00000 6.00000i 0.242140 0.242140i
\(615\) 0 0
\(616\) 0 0
\(617\) 17.0000 + 17.0000i 0.684394 + 0.684394i 0.960987 0.276593i \(-0.0892054\pi\)
−0.276593 + 0.960987i \(0.589205\pi\)
\(618\) 8.00000 + 8.00000i 0.321807 + 0.321807i
\(619\) −16.0000 −0.643094 −0.321547 0.946894i \(-0.604203\pi\)
−0.321547 + 0.946894i \(0.604203\pi\)
\(620\) 0 0
\(621\) 16.0000 16.0000i 0.642058 0.642058i
\(622\) 6.00000 + 6.00000i 0.240578 + 0.240578i
\(623\) 0 0
\(624\) 8.00000 + 8.00000i 0.320256 + 0.320256i
\(625\) 0 0
\(626\) −6.00000 −0.239808
\(627\) 0 0
\(628\) 15.0000 15.0000i 0.598565 0.598565i
\(629\) 12.0000 2.00000i 0.478471 0.0797452i
\(630\) 0 0
\(631\) 26.0000 26.0000i 1.03504 1.03504i 0.0356804 0.999363i \(-0.488640\pi\)
0.999363 0.0356804i \(-0.0113598\pi\)
\(632\) −18.0000 18.0000i −0.716002 0.716002i
\(633\) −16.0000 + 16.0000i −0.635943 + 0.635943i
\(634\) −19.0000 + 19.0000i −0.754586 + 0.754586i
\(635\) 0 0
\(636\) −36.0000 −1.42749
\(637\) −28.0000 −1.10940
\(638\) 4.00000 + 4.00000i 0.158362 + 0.158362i
\(639\) 20.0000i 0.791188i
\(640\) 0 0
\(641\) −24.0000 −0.947943 −0.473972 0.880540i \(-0.657180\pi\)
−0.473972 + 0.880540i \(0.657180\pi\)
\(642\) 24.0000 0.947204
\(643\) 8.00000 0.315489 0.157745 0.987480i \(-0.449578\pi\)
0.157745 + 0.987480i \(0.449578\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(648\) 3.00000i 0.117851i
\(649\) −16.0000 16.0000i −0.628055 0.628055i
\(650\) 0 0
\(651\) 0 0
\(652\) −4.00000 −0.156652
\(653\) −36.0000 −1.40879 −0.704394 0.709809i \(-0.748781\pi\)
−0.704394 + 0.709809i \(0.748781\pi\)
\(654\) −12.0000 −0.469237
\(655\) 0 0
\(656\) 0 0
\(657\) 55.0000 + 55.0000i 2.14575 + 2.14575i
\(658\) 0 0
\(659\) 28.0000 1.09073 0.545363 0.838200i \(-0.316392\pi\)
0.545363 + 0.838200i \(0.316392\pi\)
\(660\) 0 0
\(661\) 21.0000 21.0000i 0.816805 0.816805i −0.168838 0.985644i \(-0.554002\pi\)
0.985644 + 0.168838i \(0.0540016\pi\)
\(662\) −4.00000 + 4.00000i −0.155464 + 0.155464i
\(663\) −16.0000 16.0000i −0.621389 0.621389i
\(664\) 6.00000 6.00000i 0.232845 0.232845i
\(665\) 0 0
\(666\) −30.0000 + 5.00000i −1.16248 + 0.193746i
\(667\) 4.00000 4.00000i 0.154881 0.154881i
\(668\) 12.0000 0.464294
\(669\) −16.0000 −0.618596
\(670\) 0 0
\(671\) 4.00000 + 4.00000i 0.154418 + 0.154418i
\(672\) 0 0
\(673\) −9.00000 9.00000i −0.346925 0.346925i 0.512038 0.858963i \(-0.328891\pi\)
−0.858963 + 0.512038i \(0.828891\pi\)
\(674\) −15.0000 + 15.0000i −0.577778 + 0.577778i
\(675\) 0 0
\(676\) −3.00000 −0.115385
\(677\) −23.0000 23.0000i −0.883962 0.883962i 0.109973 0.993935i \(-0.464924\pi\)
−0.993935 + 0.109973i \(0.964924\pi\)
\(678\) 4.00000 + 4.00000i 0.153619 + 0.153619i
\(679\) 0 0
\(680\) 0 0
\(681\) 32.0000 32.0000i 1.22624 1.22624i
\(682\) −24.0000 + 24.0000i −0.919007 + 0.919007i
\(683\) 4.00000i 0.153056i −0.997067 0.0765279i \(-0.975617\pi\)
0.997067 0.0765279i \(-0.0243834\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 32.0000 + 32.0000i 1.22088 + 1.22088i
\(688\) 12.0000i 0.457496i
\(689\) −36.0000 + 36.0000i −1.37149 + 1.37149i
\(690\) 0 0
\(691\) 16.0000i 0.608669i 0.952565 + 0.304334i \(0.0984340\pi\)
−0.952565 + 0.304334i \(0.901566\pi\)
\(692\) −5.00000 + 5.00000i −0.190071 + 0.190071i
\(693\) 0 0
\(694\) 28.0000 1.06287
\(695\) 0 0
\(696\) 12.0000i 0.454859i
\(697\) 0 0
\(698\) 34.0000 1.28692
\(699\) 52.0000i 1.96682i
\(700\) 0 0
\(701\) 15.0000 + 15.0000i 0.566542 + 0.566542i 0.931158 0.364616i \(-0.118800\pi\)
−0.364616 + 0.931158i \(0.618800\pi\)
\(702\) 16.0000 + 16.0000i 0.603881 + 0.603881i
\(703\) 0 0
\(704\) 28.0000i 1.05529i
\(705\) 0 0
\(706\) 4.00000i 0.150542i
\(707\) 0 0
\(708\) 16.0000i 0.601317i
\(709\) 3.00000 3.00000i 0.112667 0.112667i −0.648526 0.761193i \(-0.724614\pi\)
0.761193 + 0.648526i \(0.224614\pi\)
\(710\) 0 0
\(711\) −30.0000 30.0000i −1.12509 1.12509i
\(712\) 3.00000 3.00000i 0.112430 0.112430i
\(713\) 24.0000 + 24.0000i 0.898807 + 0.898807i
\(714\) 0 0
\(715\) 0 0
\(716\) 16.0000 + 16.0000i 0.597948 + 0.597948i
\(717\) 56.0000i 2.09136i
\(718\) 20.0000 0.746393
\(719\) 8.00000i 0.298350i −0.988811 0.149175i \(-0.952338\pi\)
0.988811 0.149175i \(-0.0476617\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 19.0000 0.707107
\(723\) −52.0000 −1.93390
\(724\) −8.00000 −0.297318
\(725\) 0 0
\(726\) −10.0000 10.0000i −0.371135 0.371135i
\(727\) 12.0000i 0.445055i −0.974926 0.222528i \(-0.928569\pi\)
0.974926 0.222528i \(-0.0714308\pi\)
\(728\) 0 0
\(729\) 43.0000i 1.59259i
\(730\) 0 0
\(731\) 24.0000i 0.887672i
\(732\) 4.00000i 0.147844i
\(733\) 9.00000 9.00000i 0.332423 0.332423i −0.521083 0.853506i \(-0.674472\pi\)
0.853506 + 0.521083i \(0.174472\pi\)
\(734\) −16.0000 16.0000i −0.590571 0.590571i
\(735\) 0 0
\(736\) −20.0000 −0.737210
\(737\) 24.0000 24.0000i 0.884051 0.884051i
\(738\) 0 0
\(739\) −20.0000 −0.735712 −0.367856 0.929883i \(-0.619908\pi\)
−0.367856 + 0.929883i \(0.619908\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −16.0000 + 16.0000i −0.586983 + 0.586983i −0.936813 0.349830i \(-0.886239\pi\)
0.349830 + 0.936813i \(0.386239\pi\)
\(744\) −72.0000 −2.63965
\(745\) 0 0
\(746\) −9.00000 9.00000i −0.329513 0.329513i
\(747\) 10.0000 10.0000i 0.365881 0.365881i
\(748\) 8.00000i 0.292509i
\(749\) 0 0
\(750\) 0 0
\(751\) 4.00000i 0.145962i −0.997333 0.0729810i \(-0.976749\pi\)
0.997333 0.0729810i \(-0.0232513\pi\)
\(752\) 8.00000 8.00000i 0.291730 0.291730i
\(753\) 16.0000i 0.583072i
\(754\) 4.00000 + 4.00000i 0.145671 + 0.145671i
\(755\) 0 0
\(756\) 0 0
\(757\) −12.0000 −0.436147 −0.218074 0.975932i \(-0.569977\pi\)
−0.218074 + 0.975932i \(0.569977\pi\)
\(758\) −8.00000 −0.290573
\(759\) −32.0000 + 32.0000i −1.16153 + 1.16153i
\(760\) 0 0
\(761\) 16.0000i 0.580000i −0.957027 0.290000i \(-0.906345\pi\)
0.957027 0.290000i \(-0.0936552\pi\)
\(762\) −48.0000 −1.73886
\(763\) 0 0
\(764\) −14.0000 14.0000i −0.506502 0.506502i
\(765\) 0 0
\(766\) −20.0000 −0.722629
\(767\) −16.0000 16.0000i −0.577727 0.577727i
\(768\) 34.0000 34.0000i 1.22687 1.22687i
\(769\) 3.00000 + 3.00000i 0.108183 + 0.108183i 0.759126 0.650943i \(-0.225627\pi\)
−0.650943 + 0.759126i \(0.725627\pi\)
\(770\) 0 0
\(771\) −28.0000 + 28.0000i −1.00840 + 1.00840i
\(772\) 14.0000i 0.503871i
\(773\) 29.0000 + 29.0000i 1.04306 + 1.04306i 0.999030 + 0.0440272i \(0.0140188\pi\)
0.0440272 + 0.999030i \(0.485981\pi\)
\(774\) 60.0000i 2.15666i
\(775\) 0 0
\(776\) 12.0000i 0.430775i
\(777\) 0 0
\(778\) −1.00000 1.00000i −0.0358517 0.0358517i
\(779\) 0 0
\(780\) 0 0
\(781\) 16.0000i 0.572525i
\(782\) −8.00000 −0.286079
\(783\) 8.00000i 0.285897i
\(784\) 7.00000i 0.250000i
\(785\) 0 0
\(786\) 64.0000 2.28280
\(787\) 18.0000 18.0000i 0.641631 0.641631i −0.309326 0.950956i \(-0.600103\pi\)
0.950956 + 0.309326i \(0.100103\pi\)
\(788\) 5.00000 5.00000i 0.178118 0.178118i
\(789\) 32.0000i 1.13923i
\(790\) 0 0
\(791\) 0 0
\(792\) 60.0000i 2.13201i
\(793\) 4.00000 + 4.00000i 0.142044 + 0.142044i
\(794\) −1.00000 + 1.00000i −0.0354887 + 0.0354887i
\(795\) 0 0
\(796\) 18.0000 + 18.0000i 0.637993 + 0.637993i
\(797\) 20.0000i 0.708436i 0.935163 + 0.354218i \(0.115253\pi\)
−0.935163 + 0.354218i \(0.884747\pi\)
\(798\) 0 0
\(799\) −16.0000 + 16.0000i −0.566039 + 0.566039i
\(800\) 0 0
\(801\) 5.00000 5.00000i 0.176666 0.176666i
\(802\) −1.00000 1.00000i −0.0353112 0.0353112i
\(803\) −44.0000 44.0000i −1.55273 1.55273i
\(804\) 24.0000 0.846415
\(805\) 0 0
\(806\) −24.0000 + 24.0000i −0.845364 + 0.845364i
\(807\) 28.0000 + 28.0000i 0.985647 + 0.985647i
\(808\) −18.0000 −0.633238
\(809\) −1.00000 1.00000i −0.0351581 0.0351581i 0.689309 0.724467i \(-0.257914\pi\)
−0.724467 + 0.689309i \(0.757914\pi\)
\(810\) 0 0
\(811\) −28.0000 −0.983213 −0.491606 0.870817i \(-0.663590\pi\)
−0.491606 + 0.870817i \(0.663590\pi\)
\(812\) 0 0
\(813\) 40.0000 40.0000i 1.40286 1.40286i
\(814\) 24.0000 4.00000i 0.841200 0.140200i
\(815\) 0 0
\(816\) 4.00000 4.00000i 0.140028 0.140028i
\(817\) 0 0
\(818\) −3.00000 + 3.00000i −0.104893 + 0.104893i
\(819\) 0 0
\(820\) 0 0
\(821\) 42.0000 1.46581 0.732905 0.680331i \(-0.238164\pi\)
0.732905 + 0.680331i \(0.238164\pi\)
\(822\) 28.0000 0.976612
\(823\) 4.00000 + 4.00000i 0.139431 + 0.139431i 0.773377 0.633946i \(-0.218566\pi\)
−0.633946 + 0.773377i \(0.718566\pi\)
\(824\) 12.0000i 0.418040i
\(825\) 0 0
\(826\) 0 0
\(827\) −8.00000 −0.278187 −0.139094 0.990279i \(-0.544419\pi\)
−0.139094 + 0.990279i \(0.544419\pi\)
\(828\) −20.0000 −0.695048
\(829\) 27.0000 + 27.0000i 0.937749 + 0.937749i 0.998173 0.0604240i \(-0.0192453\pi\)
−0.0604240 + 0.998173i \(0.519245\pi\)
\(830\) 0 0
\(831\) 8.00000 + 8.00000i 0.277517 + 0.277517i
\(832\) 28.0000i 0.970725i
\(833\) 14.0000i 0.485071i
\(834\) −8.00000 8.00000i −0.277017 0.277017i
\(835\) 0 0
\(836\) 0 0
\(837\) −48.0000 −1.65912
\(838\) −16.0000 −0.552711
\(839\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(840\) 0 0
\(841\) 27.0000i 0.931034i
\(842\) −3.00000 3.00000i −0.103387 0.103387i
\(843\) 60.0000 2.06651
\(844\) 8.00000 0.275371
\(845\) 0 0
\(846\) 40.0000 40.0000i 1.37523 1.37523i
\(847\) 0 0
\(848\) −9.00000 9.00000i −0.309061 0.309061i
\(849\) −8.00000 + 8.00000i −0.274559 + 0.274559i
\(850\) 0 0
\(851\) −4.00000 24.0000i −0.137118 0.822709i
\(852\) 8.00000 8.00000i 0.274075 0.274075i
\(853\) 28.0000 0.958702 0.479351 0.877623i \(-0.340872\pi\)
0.479351 + 0.877623i \(0.340872\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) −18.0000 18.0000i −0.615227 0.615227i
\(857\) −52.0000 −1.77629 −0.888143 0.459567i \(-0.848005\pi\)
−0.888143 + 0.459567i \(0.848005\pi\)
\(858\) −32.0000 32.0000i −1.09246 1.09246i
\(859\) 32.0000 32.0000i 1.09183 1.09183i 0.0964922 0.995334i \(-0.469238\pi\)
0.995334 0.0964922i \(-0.0307623\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) −2.00000 2.00000i −0.0681203 0.0681203i
\(863\) −24.0000 24.0000i −0.816970 0.816970i 0.168698 0.985668i \(-0.446044\pi\)
−0.985668 + 0.168698i \(0.946044\pi\)
\(864\) 20.0000 20.0000i 0.680414 0.680414i
\(865\) 0 0
\(866\) −11.0000 + 11.0000i −0.373795 + 0.373795i
\(867\) 26.0000 26.0000i 0.883006 0.883006i
\(868\) 0 0
\(869\) 24.0000 + 24.0000i 0.814144 + 0.814144i
\(870\) 0 0
\(871\) 24.0000 24.0000i 0.813209 0.813209i
\(872\) 9.00000 + 9.00000i 0.304778 + 0.304778i
\(873\) 20.0000i 0.676897i
\(874\) 0 0
\(875\) 0 0
\(876\) 44.0000i 1.48662i
\(877\) −1.00000 + 1.00000i −0.0337676 + 0.0337676i −0.723789 0.690021i \(-0.757601\pi\)
0.690021 + 0.723789i \(0.257601\pi\)
\(878\) 10.0000 10.0000i 0.337484 0.337484i
\(879\) 4.00000 0.134917
\(880\) 0 0
\(881\) 42.0000i 1.41502i −0.706705 0.707508i \(-0.749819\pi\)
0.706705 0.707508i \(-0.250181\pi\)
\(882\) 35.0000i 1.17851i
\(883\) −32.0000 −1.07689 −0.538443 0.842662i \(-0.680987\pi\)
−0.538443 + 0.842662i \(0.680987\pi\)
\(884\) 8.00000i 0.269069i
\(885\) 0 0
\(886\) 2.00000 + 2.00000i 0.0671913 + 0.0671913i
\(887\) −32.0000 32.0000i −1.07445 1.07445i −0.996996 0.0774593i \(-0.975319\pi\)
−0.0774593 0.996996i \(-0.524681\pi\)
\(888\) 42.0000 + 30.0000i 1.40943 + 1.00673i
\(889\) 0 0
\(890\) 0 0
\(891\) 4.00000i 0.134005i
\(892\) 4.00000 + 4.00000i 0.133930 + 0.133930i
\(893\) 0 0
\(894\) 20.0000 20.0000i 0.668900 0.668900i
\(895\) 0 0
\(896\) 0 0
\(897\) −32.0000 + 32.0000i −1.06845 + 1.06845i
\(898\) 23.0000 + 23.0000i 0.767520 + 0.767520i
\(899\) −12.0000 −0.400222
\(900\) 0 0
\(901\) 18.0000 + 18.0000i 0.599667 + 0.599667i
\(902\) 0 0
\(903\) 0 0
\(904\) 6.00000i 0.199557i
\(905\) 0 0
\(906\) −16.0000 + 16.0000i −0.531564 + 0.531564i
\(907\) −32.0000 −1.06254 −0.531271 0.847202i \(-0.678286\pi\)
−0.531271 + 0.847202i \(0.678286\pi\)
\(908\) −16.0000 −0.530979
\(909\) −30.0000 −0.995037
\(910\) 0 0
\(911\) 34.0000 + 34.0000i 1.12647 + 1.12647i 0.990747 + 0.135724i \(0.0433359\pi\)
0.135724 + 0.990747i \(0.456664\pi\)
\(912\) 0 0
\(913\) −8.00000 + 8.00000i −0.264761 + 0.264761i
\(914\) 20.0000i 0.661541i
\(915\) 0 0
\(916\) 16.0000i 0.528655i
\(917\) 0 0
\(918\) 8.00000 8.00000i 0.264039 0.264039i
\(919\) −6.00000 6.00000i −0.197922 0.197922i 0.601187 0.799109i \(-0.294695\pi\)
−0.799109 + 0.601187i \(0.794695\pi\)
\(920\) 0 0
\(921\) −24.0000 −0.790827
\(922\) 21.0000 21.0000i 0.691598 0.691598i
\(923\) 16.0000i 0.526646i
\(924\) 0 0
\(925\) 0 0
\(926\) 20.0000 0.657241
\(927\) 20.0000i 0.656886i
\(928\) 5.00000 5.00000i 0.164133 0.164133i
\(929\) −22.0000 −0.721797 −0.360898 0.932605i \(-0.617530\pi\)
−0.360898 + 0.932605i \(0.617530\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 13.0000 13.0000i 0.425829 0.425829i
\(933\) 24.0000i 0.785725i
\(934\) 4.00000i 0.130884i
\(935\) 0 0
\(936\) 60.0000i 1.96116i
\(937\) 17.0000 17.0000i 0.555366 0.555366i −0.372619 0.927985i \(-0.621540\pi\)
0.927985 + 0.372619i \(0.121540\pi\)
\(938\) 0 0
\(939\) 12.0000 + 12.0000i 0.391605 + 0.391605i
\(940\) 0 0
\(941\) −24.0000 −0.782378 −0.391189 0.920310i \(-0.627936\pi\)
−0.391189 + 0.920310i \(0.627936\pi\)
\(942\) 60.0000 1.95491
\(943\) 0 0
\(944\) 4.00000 4.00000i 0.130189 0.130189i
\(945\) 0 0
\(946\) 48.0000i 1.56061i
\(947\) −12.0000 −0.389948 −0.194974 0.980808i \(-0.562462\pi\)
−0.194974 + 0.980808i \(0.562462\pi\)
\(948\) 24.0000i 0.779484i
\(949\) −44.0000 44.0000i −1.42830 1.42830i
\(950\) 0 0
\(951\) 76.0000 2.46447
\(952\) 0 0
\(953\) 41.0000 41.0000i 1.32812 1.32812i 0.421111 0.907009i \(-0.361640\pi\)
0.907009 0.421111i \(-0.138360\pi\)
\(954\) −45.0000 45.0000i −1.45693 1.45693i
\(955\) 0 0
\(956\) 14.0000 14.0000i 0.452792 0.452792i
\(957\) 16.0000i 0.517207i
\(958\) −10.0000 10.0000i −0.323085 0.323085i
\(959\) 0 0
\(960\) 0 0
\(961\) 41.0000i 1.32258i
\(962\) 24.0000 4.00000i 0.773791 0.128965i
\(963\) −30.0000 30.0000i −0.966736 0.966736i
\(964\) 13.0000 + 13.0000i 0.418702 + 0.418702i
\(965\) 0 0
\(966\) 0 0
\(967\) 40.0000 1.28631 0.643157 0.765735i \(-0.277624\pi\)
0.643157 + 0.765735i \(0.277624\pi\)
\(968\) 15.0000i 0.482118i
\(969\) 0 0
\(970\) 0 0
\(971\) −48.0000 −1.54039 −0.770197 0.637806i \(-0.779842\pi\)
−0.770197 + 0.637806i \(0.779842\pi\)
\(972\) −10.0000 + 10.0000i −0.320750 + 0.320750i
\(973\) 0 0
\(974\) 20.0000i 0.640841i
\(975\) 0 0
\(976\) −1.00000 + 1.00000i −0.0320092 + 0.0320092i
\(977\) 18.0000i 0.575871i 0.957650 + 0.287936i \(0.0929689\pi\)
−0.957650 + 0.287936i \(0.907031\pi\)
\(978\) −8.00000 8.00000i −0.255812 0.255812i
\(979\) −4.00000 + 4.00000i −0.127841 + 0.127841i
\(980\) 0 0
\(981\) 15.0000 + 15.0000i 0.478913 + 0.478913i
\(982\) 8.00000i 0.255290i
\(983\) 12.0000 12.0000i 0.382741 0.382741i −0.489348 0.872089i \(-0.662765\pi\)
0.872089 + 0.489348i \(0.162765\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 2.00000 2.00000i 0.0636930 0.0636930i
\(987\) 0 0
\(988\) 0 0
\(989\) 48.0000 1.52631
\(990\) 0 0
\(991\) −18.0000 + 18.0000i −0.571789 + 0.571789i −0.932628 0.360839i \(-0.882490\pi\)
0.360839 + 0.932628i \(0.382490\pi\)
\(992\) 30.0000 + 30.0000i 0.952501 + 0.952501i
\(993\) 16.0000 0.507745
\(994\) 0 0
\(995\) 0 0
\(996\) −8.00000 −0.253490
\(997\) −28.0000 −0.886769 −0.443384 0.896332i \(-0.646222\pi\)
−0.443384 + 0.896332i \(0.646222\pi\)
\(998\) −12.0000 + 12.0000i −0.379853 + 0.379853i
\(999\) 28.0000 + 20.0000i 0.885881 + 0.632772i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 925.2.f.a.43.1 2
5.2 odd 4 925.2.k.b.857.1 2
5.3 odd 4 185.2.k.a.117.1 yes 2
5.4 even 2 185.2.f.b.43.1 2
37.31 odd 4 925.2.k.b.68.1 2
185.68 even 4 185.2.f.b.142.1 yes 2
185.142 even 4 inner 925.2.f.a.882.1 2
185.179 odd 4 185.2.k.a.68.1 yes 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
185.2.f.b.43.1 2 5.4 even 2
185.2.f.b.142.1 yes 2 185.68 even 4
185.2.k.a.68.1 yes 2 185.179 odd 4
185.2.k.a.117.1 yes 2 5.3 odd 4
925.2.f.a.43.1 2 1.1 even 1 trivial
925.2.f.a.882.1 2 185.142 even 4 inner
925.2.k.b.68.1 2 37.31 odd 4
925.2.k.b.857.1 2 5.2 odd 4