L(s) = 1 | − i·2-s + (−2 + 2i)3-s + 4-s + (2 + 2i)6-s − 3i·8-s − 5i·9-s + 4i·11-s + (−2 + 2i)12-s + 4i·13-s − 16-s + 2·17-s − 5·18-s + 4·22-s − 4i·23-s + (6 + 6i)24-s + ⋯ |
L(s) = 1 | − 0.707i·2-s + (−1.15 + 1.15i)3-s + 0.5·4-s + (0.816 + 0.816i)6-s − 1.06i·8-s − 1.66i·9-s + 1.20i·11-s + (−0.577 + 0.577i)12-s + 1.10i·13-s − 0.250·16-s + 0.485·17-s − 1.17·18-s + 0.852·22-s − 0.834i·23-s + (1.22 + 1.22i)24-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 925 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.148 - 0.988i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 925 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.148 - 0.988i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.780181 + 0.671637i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.780181 + 0.671637i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 5 | \( 1 \) |
| 37 | \( 1 + (-6 + i)T \) |
good | 2 | \( 1 + iT - 2T^{2} \) |
| 3 | \( 1 + (2 - 2i)T - 3iT^{2} \) |
| 7 | \( 1 - 7iT^{2} \) |
| 11 | \( 1 - 4iT - 11T^{2} \) |
| 13 | \( 1 - 4iT - 13T^{2} \) |
| 17 | \( 1 - 2T + 17T^{2} \) |
| 19 | \( 1 - 19iT^{2} \) |
| 23 | \( 1 + 4iT - 23T^{2} \) |
| 29 | \( 1 + (-1 - i)T + 29iT^{2} \) |
| 31 | \( 1 + (6 - 6i)T - 31iT^{2} \) |
| 41 | \( 1 - 41T^{2} \) |
| 43 | \( 1 - 12iT - 43T^{2} \) |
| 47 | \( 1 + (8 - 8i)T - 47iT^{2} \) |
| 53 | \( 1 + (-9 - 9i)T + 53iT^{2} \) |
| 59 | \( 1 + (4 - 4i)T - 59iT^{2} \) |
| 61 | \( 1 + (-1 + i)T - 61iT^{2} \) |
| 67 | \( 1 + (6 + 6i)T + 67iT^{2} \) |
| 71 | \( 1 + 4T + 71T^{2} \) |
| 73 | \( 1 + (11 - 11i)T - 73iT^{2} \) |
| 79 | \( 1 + (-6 + 6i)T - 79iT^{2} \) |
| 83 | \( 1 + (-2 - 2i)T + 83iT^{2} \) |
| 89 | \( 1 + (-1 - i)T + 89iT^{2} \) |
| 97 | \( 1 + 4T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.44089392987637913027668278704, −9.702382855399671134386940558248, −9.171408600694710737707743373604, −7.53989996397920585443481198158, −6.65349216783918861382462476589, −5.91395047500636452854609912703, −4.65316115058200631171302220406, −4.22077069816108407412976478957, −2.91866971272006117984646547494, −1.47462677904579787382958312205,
0.57023921872925163619902988851, 1.98767477040767958338361305856, 3.37986431811293627670780505606, 5.38462908507685789230307794023, 5.62154317448142772340247265444, 6.40170516112092006994373073307, 7.26975271555471798583373292786, 7.83979133182160503979625978214, 8.616112214286251165235790292915, 10.14600525657120403437343948259