Properties

Label 185.2.f.b.43.1
Level $185$
Weight $2$
Character 185.43
Analytic conductor $1.477$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [185,2,Mod(43,185)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(185, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([3, 3])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("185.43"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 185 = 5 \cdot 37 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 185.f (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,0,4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.47723243739\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(i)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 43.1
Root \(-1.00000i\) of defining polynomial
Character \(\chi\) \(=\) 185.43
Dual form 185.2.f.b.142.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000i q^{2} +(2.00000 - 2.00000i) q^{3} +1.00000 q^{4} +(-2.00000 - 1.00000i) q^{5} +(2.00000 + 2.00000i) q^{6} +3.00000i q^{8} -5.00000i q^{9} +(1.00000 - 2.00000i) q^{10} +4.00000i q^{11} +(2.00000 - 2.00000i) q^{12} -4.00000i q^{13} +(-6.00000 + 2.00000i) q^{15} -1.00000 q^{16} -2.00000 q^{17} +5.00000 q^{18} +(-2.00000 - 1.00000i) q^{20} -4.00000 q^{22} +4.00000i q^{23} +(6.00000 + 6.00000i) q^{24} +(3.00000 + 4.00000i) q^{25} +4.00000 q^{26} +(-4.00000 - 4.00000i) q^{27} +(1.00000 + 1.00000i) q^{29} +(-2.00000 - 6.00000i) q^{30} +(-6.00000 + 6.00000i) q^{31} +5.00000i q^{32} +(8.00000 + 8.00000i) q^{33} -2.00000i q^{34} -5.00000i q^{36} +(-6.00000 + 1.00000i) q^{37} +(-8.00000 - 8.00000i) q^{39} +(3.00000 - 6.00000i) q^{40} -12.0000i q^{43} +4.00000i q^{44} +(-5.00000 + 10.0000i) q^{45} -4.00000 q^{46} +(8.00000 - 8.00000i) q^{47} +(-2.00000 + 2.00000i) q^{48} +7.00000i q^{49} +(-4.00000 + 3.00000i) q^{50} +(-4.00000 + 4.00000i) q^{51} -4.00000i q^{52} +(-9.00000 - 9.00000i) q^{53} +(4.00000 - 4.00000i) q^{54} +(4.00000 - 8.00000i) q^{55} +(-1.00000 + 1.00000i) q^{58} +(-4.00000 + 4.00000i) q^{59} +(-6.00000 + 2.00000i) q^{60} +(1.00000 - 1.00000i) q^{61} +(-6.00000 - 6.00000i) q^{62} -7.00000 q^{64} +(-4.00000 + 8.00000i) q^{65} +(-8.00000 + 8.00000i) q^{66} +(6.00000 + 6.00000i) q^{67} -2.00000 q^{68} +(8.00000 + 8.00000i) q^{69} -4.00000 q^{71} +15.0000 q^{72} +(11.0000 - 11.0000i) q^{73} +(-1.00000 - 6.00000i) q^{74} +(14.0000 + 2.00000i) q^{75} +(8.00000 - 8.00000i) q^{78} +(6.00000 - 6.00000i) q^{79} +(2.00000 + 1.00000i) q^{80} -1.00000 q^{81} +(-2.00000 - 2.00000i) q^{83} +(4.00000 + 2.00000i) q^{85} +12.0000 q^{86} +4.00000 q^{87} -12.0000 q^{88} +(1.00000 + 1.00000i) q^{89} +(-10.0000 - 5.00000i) q^{90} +4.00000i q^{92} +24.0000i q^{93} +(8.00000 + 8.00000i) q^{94} +(10.0000 + 10.0000i) q^{96} +4.00000 q^{97} -7.00000 q^{98} +20.0000 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 4 q^{3} + 2 q^{4} - 4 q^{5} + 4 q^{6} + 2 q^{10} + 4 q^{12} - 12 q^{15} - 2 q^{16} - 4 q^{17} + 10 q^{18} - 4 q^{20} - 8 q^{22} + 12 q^{24} + 6 q^{25} + 8 q^{26} - 8 q^{27} + 2 q^{29} - 4 q^{30} - 12 q^{31}+ \cdots + 40 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/185\mathbb{Z}\right)^\times\).

\(n\) \(76\) \(112\)
\(\chi(n)\) \(e\left(\frac{3}{4}\right)\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000i 0.707107i 0.935414 + 0.353553i \(0.115027\pi\)
−0.935414 + 0.353553i \(0.884973\pi\)
\(3\) 2.00000 2.00000i 1.15470 1.15470i 0.169102 0.985599i \(-0.445913\pi\)
0.985599 0.169102i \(-0.0540867\pi\)
\(4\) 1.00000 0.500000
\(5\) −2.00000 1.00000i −0.894427 0.447214i
\(6\) 2.00000 + 2.00000i 0.816497 + 0.816497i
\(7\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(8\) 3.00000i 1.06066i
\(9\) 5.00000i 1.66667i
\(10\) 1.00000 2.00000i 0.316228 0.632456i
\(11\) 4.00000i 1.20605i 0.797724 + 0.603023i \(0.206037\pi\)
−0.797724 + 0.603023i \(0.793963\pi\)
\(12\) 2.00000 2.00000i 0.577350 0.577350i
\(13\) 4.00000i 1.10940i −0.832050 0.554700i \(-0.812833\pi\)
0.832050 0.554700i \(-0.187167\pi\)
\(14\) 0 0
\(15\) −6.00000 + 2.00000i −1.54919 + 0.516398i
\(16\) −1.00000 −0.250000
\(17\) −2.00000 −0.485071 −0.242536 0.970143i \(-0.577979\pi\)
−0.242536 + 0.970143i \(0.577979\pi\)
\(18\) 5.00000 1.17851
\(19\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(20\) −2.00000 1.00000i −0.447214 0.223607i
\(21\) 0 0
\(22\) −4.00000 −0.852803
\(23\) 4.00000i 0.834058i 0.908893 + 0.417029i \(0.136929\pi\)
−0.908893 + 0.417029i \(0.863071\pi\)
\(24\) 6.00000 + 6.00000i 1.22474 + 1.22474i
\(25\) 3.00000 + 4.00000i 0.600000 + 0.800000i
\(26\) 4.00000 0.784465
\(27\) −4.00000 4.00000i −0.769800 0.769800i
\(28\) 0 0
\(29\) 1.00000 + 1.00000i 0.185695 + 0.185695i 0.793832 0.608137i \(-0.208083\pi\)
−0.608137 + 0.793832i \(0.708083\pi\)
\(30\) −2.00000 6.00000i −0.365148 1.09545i
\(31\) −6.00000 + 6.00000i −1.07763 + 1.07763i −0.0809104 + 0.996721i \(0.525783\pi\)
−0.996721 + 0.0809104i \(0.974217\pi\)
\(32\) 5.00000i 0.883883i
\(33\) 8.00000 + 8.00000i 1.39262 + 1.39262i
\(34\) 2.00000i 0.342997i
\(35\) 0 0
\(36\) 5.00000i 0.833333i
\(37\) −6.00000 + 1.00000i −0.986394 + 0.164399i
\(38\) 0 0
\(39\) −8.00000 8.00000i −1.28103 1.28103i
\(40\) 3.00000 6.00000i 0.474342 0.948683i
\(41\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(42\) 0 0
\(43\) 12.0000i 1.82998i −0.403473 0.914991i \(-0.632197\pi\)
0.403473 0.914991i \(-0.367803\pi\)
\(44\) 4.00000i 0.603023i
\(45\) −5.00000 + 10.0000i −0.745356 + 1.49071i
\(46\) −4.00000 −0.589768
\(47\) 8.00000 8.00000i 1.16692 1.16692i 0.183992 0.982928i \(-0.441098\pi\)
0.982928 0.183992i \(-0.0589021\pi\)
\(48\) −2.00000 + 2.00000i −0.288675 + 0.288675i
\(49\) 7.00000i 1.00000i
\(50\) −4.00000 + 3.00000i −0.565685 + 0.424264i
\(51\) −4.00000 + 4.00000i −0.560112 + 0.560112i
\(52\) 4.00000i 0.554700i
\(53\) −9.00000 9.00000i −1.23625 1.23625i −0.961524 0.274721i \(-0.911414\pi\)
−0.274721 0.961524i \(-0.588586\pi\)
\(54\) 4.00000 4.00000i 0.544331 0.544331i
\(55\) 4.00000 8.00000i 0.539360 1.07872i
\(56\) 0 0
\(57\) 0 0
\(58\) −1.00000 + 1.00000i −0.131306 + 0.131306i
\(59\) −4.00000 + 4.00000i −0.520756 + 0.520756i −0.917800 0.397044i \(-0.870036\pi\)
0.397044 + 0.917800i \(0.370036\pi\)
\(60\) −6.00000 + 2.00000i −0.774597 + 0.258199i
\(61\) 1.00000 1.00000i 0.128037 0.128037i −0.640184 0.768221i \(-0.721142\pi\)
0.768221 + 0.640184i \(0.221142\pi\)
\(62\) −6.00000 6.00000i −0.762001 0.762001i
\(63\) 0 0
\(64\) −7.00000 −0.875000
\(65\) −4.00000 + 8.00000i −0.496139 + 0.992278i
\(66\) −8.00000 + 8.00000i −0.984732 + 0.984732i
\(67\) 6.00000 + 6.00000i 0.733017 + 0.733017i 0.971216 0.238200i \(-0.0765572\pi\)
−0.238200 + 0.971216i \(0.576557\pi\)
\(68\) −2.00000 −0.242536
\(69\) 8.00000 + 8.00000i 0.963087 + 0.963087i
\(70\) 0 0
\(71\) −4.00000 −0.474713 −0.237356 0.971423i \(-0.576281\pi\)
−0.237356 + 0.971423i \(0.576281\pi\)
\(72\) 15.0000 1.76777
\(73\) 11.0000 11.0000i 1.28745 1.28745i 0.351123 0.936329i \(-0.385800\pi\)
0.936329 0.351123i \(-0.114200\pi\)
\(74\) −1.00000 6.00000i −0.116248 0.697486i
\(75\) 14.0000 + 2.00000i 1.61658 + 0.230940i
\(76\) 0 0
\(77\) 0 0
\(78\) 8.00000 8.00000i 0.905822 0.905822i
\(79\) 6.00000 6.00000i 0.675053 0.675053i −0.283824 0.958876i \(-0.591603\pi\)
0.958876 + 0.283824i \(0.0916031\pi\)
\(80\) 2.00000 + 1.00000i 0.223607 + 0.111803i
\(81\) −1.00000 −0.111111
\(82\) 0 0
\(83\) −2.00000 2.00000i −0.219529 0.219529i 0.588771 0.808300i \(-0.299612\pi\)
−0.808300 + 0.588771i \(0.799612\pi\)
\(84\) 0 0
\(85\) 4.00000 + 2.00000i 0.433861 + 0.216930i
\(86\) 12.0000 1.29399
\(87\) 4.00000 0.428845
\(88\) −12.0000 −1.27920
\(89\) 1.00000 + 1.00000i 0.106000 + 0.106000i 0.758118 0.652118i \(-0.226119\pi\)
−0.652118 + 0.758118i \(0.726119\pi\)
\(90\) −10.0000 5.00000i −1.05409 0.527046i
\(91\) 0 0
\(92\) 4.00000i 0.417029i
\(93\) 24.0000i 2.48868i
\(94\) 8.00000 + 8.00000i 0.825137 + 0.825137i
\(95\) 0 0
\(96\) 10.0000 + 10.0000i 1.02062 + 1.02062i
\(97\) 4.00000 0.406138 0.203069 0.979164i \(-0.434908\pi\)
0.203069 + 0.979164i \(0.434908\pi\)
\(98\) −7.00000 −0.707107
\(99\) 20.0000 2.01008
\(100\) 3.00000 + 4.00000i 0.300000 + 0.400000i
\(101\) 6.00000i 0.597022i −0.954406 0.298511i \(-0.903510\pi\)
0.954406 0.298511i \(-0.0964900\pi\)
\(102\) −4.00000 4.00000i −0.396059 0.396059i
\(103\) −4.00000 −0.394132 −0.197066 0.980390i \(-0.563141\pi\)
−0.197066 + 0.980390i \(0.563141\pi\)
\(104\) 12.0000 1.17670
\(105\) 0 0
\(106\) 9.00000 9.00000i 0.874157 0.874157i
\(107\) −6.00000 + 6.00000i −0.580042 + 0.580042i −0.934915 0.354873i \(-0.884524\pi\)
0.354873 + 0.934915i \(0.384524\pi\)
\(108\) −4.00000 4.00000i −0.384900 0.384900i
\(109\) −3.00000 + 3.00000i −0.287348 + 0.287348i −0.836031 0.548683i \(-0.815129\pi\)
0.548683 + 0.836031i \(0.315129\pi\)
\(110\) 8.00000 + 4.00000i 0.762770 + 0.381385i
\(111\) −10.0000 + 14.0000i −0.949158 + 1.32882i
\(112\) 0 0
\(113\) −2.00000 −0.188144 −0.0940721 0.995565i \(-0.529988\pi\)
−0.0940721 + 0.995565i \(0.529988\pi\)
\(114\) 0 0
\(115\) 4.00000 8.00000i 0.373002 0.746004i
\(116\) 1.00000 + 1.00000i 0.0928477 + 0.0928477i
\(117\) −20.0000 −1.84900
\(118\) −4.00000 4.00000i −0.368230 0.368230i
\(119\) 0 0
\(120\) −6.00000 18.0000i −0.547723 1.64317i
\(121\) −5.00000 −0.454545
\(122\) 1.00000 + 1.00000i 0.0905357 + 0.0905357i
\(123\) 0 0
\(124\) −6.00000 + 6.00000i −0.538816 + 0.538816i
\(125\) −2.00000 11.0000i −0.178885 0.983870i
\(126\) 0 0
\(127\) 12.0000 12.0000i 1.06483 1.06483i 0.0670802 0.997748i \(-0.478632\pi\)
0.997748 0.0670802i \(-0.0213683\pi\)
\(128\) 3.00000i 0.265165i
\(129\) −24.0000 24.0000i −2.11308 2.11308i
\(130\) −8.00000 4.00000i −0.701646 0.350823i
\(131\) 16.0000 16.0000i 1.39793 1.39793i 0.591957 0.805970i \(-0.298356\pi\)
0.805970 0.591957i \(-0.201644\pi\)
\(132\) 8.00000 + 8.00000i 0.696311 + 0.696311i
\(133\) 0 0
\(134\) −6.00000 + 6.00000i −0.518321 + 0.518321i
\(135\) 4.00000 + 12.0000i 0.344265 + 1.03280i
\(136\) 6.00000i 0.514496i
\(137\) −7.00000 + 7.00000i −0.598050 + 0.598050i −0.939793 0.341743i \(-0.888983\pi\)
0.341743 + 0.939793i \(0.388983\pi\)
\(138\) −8.00000 + 8.00000i −0.681005 + 0.681005i
\(139\) −4.00000 −0.339276 −0.169638 0.985506i \(-0.554260\pi\)
−0.169638 + 0.985506i \(0.554260\pi\)
\(140\) 0 0
\(141\) 32.0000i 2.69489i
\(142\) 4.00000i 0.335673i
\(143\) 16.0000 1.33799
\(144\) 5.00000i 0.416667i
\(145\) −1.00000 3.00000i −0.0830455 0.249136i
\(146\) 11.0000 + 11.0000i 0.910366 + 0.910366i
\(147\) 14.0000 + 14.0000i 1.15470 + 1.15470i
\(148\) −6.00000 + 1.00000i −0.493197 + 0.0821995i
\(149\) 10.0000i 0.819232i −0.912258 0.409616i \(-0.865663\pi\)
0.912258 0.409616i \(-0.134337\pi\)
\(150\) −2.00000 + 14.0000i −0.163299 + 1.14310i
\(151\) 8.00000i 0.651031i 0.945537 + 0.325515i \(0.105538\pi\)
−0.945537 + 0.325515i \(0.894462\pi\)
\(152\) 0 0
\(153\) 10.0000i 0.808452i
\(154\) 0 0
\(155\) 18.0000 6.00000i 1.44579 0.481932i
\(156\) −8.00000 8.00000i −0.640513 0.640513i
\(157\) −15.0000 + 15.0000i −1.19713 + 1.19713i −0.222108 + 0.975022i \(0.571294\pi\)
−0.975022 + 0.222108i \(0.928706\pi\)
\(158\) 6.00000 + 6.00000i 0.477334 + 0.477334i
\(159\) −36.0000 −2.85499
\(160\) 5.00000 10.0000i 0.395285 0.790569i
\(161\) 0 0
\(162\) 1.00000i 0.0785674i
\(163\) 4.00000 0.313304 0.156652 0.987654i \(-0.449930\pi\)
0.156652 + 0.987654i \(0.449930\pi\)
\(164\) 0 0
\(165\) −8.00000 24.0000i −0.622799 1.86840i
\(166\) 2.00000 2.00000i 0.155230 0.155230i
\(167\) −12.0000 −0.928588 −0.464294 0.885681i \(-0.653692\pi\)
−0.464294 + 0.885681i \(0.653692\pi\)
\(168\) 0 0
\(169\) −3.00000 −0.230769
\(170\) −2.00000 + 4.00000i −0.153393 + 0.306786i
\(171\) 0 0
\(172\) 12.0000i 0.914991i
\(173\) 5.00000 5.00000i 0.380143 0.380143i −0.491011 0.871154i \(-0.663372\pi\)
0.871154 + 0.491011i \(0.163372\pi\)
\(174\) 4.00000i 0.303239i
\(175\) 0 0
\(176\) 4.00000i 0.301511i
\(177\) 16.0000i 1.20263i
\(178\) −1.00000 + 1.00000i −0.0749532 + 0.0749532i
\(179\) 16.0000 + 16.0000i 1.19590 + 1.19590i 0.975384 + 0.220512i \(0.0707728\pi\)
0.220512 + 0.975384i \(0.429227\pi\)
\(180\) −5.00000 + 10.0000i −0.372678 + 0.745356i
\(181\) −8.00000 −0.594635 −0.297318 0.954779i \(-0.596092\pi\)
−0.297318 + 0.954779i \(0.596092\pi\)
\(182\) 0 0
\(183\) 4.00000i 0.295689i
\(184\) −12.0000 −0.884652
\(185\) 13.0000 + 4.00000i 0.955779 + 0.294086i
\(186\) −24.0000 −1.75977
\(187\) 8.00000i 0.585018i
\(188\) 8.00000 8.00000i 0.583460 0.583460i
\(189\) 0 0
\(190\) 0 0
\(191\) −14.0000 14.0000i −1.01300 1.01300i −0.999914 0.0130901i \(-0.995833\pi\)
−0.0130901 0.999914i \(-0.504167\pi\)
\(192\) −14.0000 + 14.0000i −1.01036 + 1.01036i
\(193\) 14.0000i 1.00774i 0.863779 + 0.503871i \(0.168091\pi\)
−0.863779 + 0.503871i \(0.831909\pi\)
\(194\) 4.00000i 0.287183i
\(195\) 8.00000 + 24.0000i 0.572892 + 1.71868i
\(196\) 7.00000i 0.500000i
\(197\) −5.00000 + 5.00000i −0.356235 + 0.356235i −0.862423 0.506188i \(-0.831054\pi\)
0.506188 + 0.862423i \(0.331054\pi\)
\(198\) 20.0000i 1.42134i
\(199\) 18.0000 + 18.0000i 1.27599 + 1.27599i 0.942894 + 0.333092i \(0.108092\pi\)
0.333092 + 0.942894i \(0.391908\pi\)
\(200\) −12.0000 + 9.00000i −0.848528 + 0.636396i
\(201\) 24.0000 1.69283
\(202\) 6.00000 0.422159
\(203\) 0 0
\(204\) −4.00000 + 4.00000i −0.280056 + 0.280056i
\(205\) 0 0
\(206\) 4.00000i 0.278693i
\(207\) 20.0000 1.39010
\(208\) 4.00000i 0.277350i
\(209\) 0 0
\(210\) 0 0
\(211\) 8.00000 0.550743 0.275371 0.961338i \(-0.411199\pi\)
0.275371 + 0.961338i \(0.411199\pi\)
\(212\) −9.00000 9.00000i −0.618123 0.618123i
\(213\) −8.00000 + 8.00000i −0.548151 + 0.548151i
\(214\) −6.00000 6.00000i −0.410152 0.410152i
\(215\) −12.0000 + 24.0000i −0.818393 + 1.63679i
\(216\) 12.0000 12.0000i 0.816497 0.816497i
\(217\) 0 0
\(218\) −3.00000 3.00000i −0.203186 0.203186i
\(219\) 44.0000i 2.97324i
\(220\) 4.00000 8.00000i 0.269680 0.539360i
\(221\) 8.00000i 0.538138i
\(222\) −14.0000 10.0000i −0.939618 0.671156i
\(223\) −4.00000 4.00000i −0.267860 0.267860i 0.560378 0.828237i \(-0.310656\pi\)
−0.828237 + 0.560378i \(0.810656\pi\)
\(224\) 0 0
\(225\) 20.0000 15.0000i 1.33333 1.00000i
\(226\) 2.00000i 0.133038i
\(227\) 16.0000 1.06196 0.530979 0.847385i \(-0.321824\pi\)
0.530979 + 0.847385i \(0.321824\pi\)
\(228\) 0 0
\(229\) 16.0000i 1.05731i −0.848837 0.528655i \(-0.822697\pi\)
0.848837 0.528655i \(-0.177303\pi\)
\(230\) 8.00000 + 4.00000i 0.527504 + 0.263752i
\(231\) 0 0
\(232\) −3.00000 + 3.00000i −0.196960 + 0.196960i
\(233\) −13.0000 + 13.0000i −0.851658 + 0.851658i −0.990337 0.138679i \(-0.955714\pi\)
0.138679 + 0.990337i \(0.455714\pi\)
\(234\) 20.0000i 1.30744i
\(235\) −24.0000 + 8.00000i −1.56559 + 0.521862i
\(236\) −4.00000 + 4.00000i −0.260378 + 0.260378i
\(237\) 24.0000i 1.55897i
\(238\) 0 0
\(239\) 14.0000 14.0000i 0.905585 0.905585i −0.0903274 0.995912i \(-0.528791\pi\)
0.995912 + 0.0903274i \(0.0287913\pi\)
\(240\) 6.00000 2.00000i 0.387298 0.129099i
\(241\) 13.0000 + 13.0000i 0.837404 + 0.837404i 0.988517 0.151113i \(-0.0482857\pi\)
−0.151113 + 0.988517i \(0.548286\pi\)
\(242\) 5.00000i 0.321412i
\(243\) 10.0000 10.0000i 0.641500 0.641500i
\(244\) 1.00000 1.00000i 0.0640184 0.0640184i
\(245\) 7.00000 14.0000i 0.447214 0.894427i
\(246\) 0 0
\(247\) 0 0
\(248\) −18.0000 18.0000i −1.14300 1.14300i
\(249\) −8.00000 −0.506979
\(250\) 11.0000 2.00000i 0.695701 0.126491i
\(251\) 4.00000 4.00000i 0.252478 0.252478i −0.569508 0.821986i \(-0.692866\pi\)
0.821986 + 0.569508i \(0.192866\pi\)
\(252\) 0 0
\(253\) −16.0000 −1.00591
\(254\) 12.0000 + 12.0000i 0.752947 + 0.752947i
\(255\) 12.0000 4.00000i 0.751469 0.250490i
\(256\) −17.0000 −1.06250
\(257\) −14.0000 −0.873296 −0.436648 0.899632i \(-0.643834\pi\)
−0.436648 + 0.899632i \(0.643834\pi\)
\(258\) 24.0000 24.0000i 1.49417 1.49417i
\(259\) 0 0
\(260\) −4.00000 + 8.00000i −0.248069 + 0.496139i
\(261\) 5.00000 5.00000i 0.309492 0.309492i
\(262\) 16.0000 + 16.0000i 0.988483 + 0.988483i
\(263\) −8.00000 + 8.00000i −0.493301 + 0.493301i −0.909345 0.416044i \(-0.863416\pi\)
0.416044 + 0.909345i \(0.363416\pi\)
\(264\) −24.0000 + 24.0000i −1.47710 + 1.47710i
\(265\) 9.00000 + 27.0000i 0.552866 + 1.65860i
\(266\) 0 0
\(267\) 4.00000 0.244796
\(268\) 6.00000 + 6.00000i 0.366508 + 0.366508i
\(269\) 14.0000i 0.853595i −0.904347 0.426798i \(-0.859642\pi\)
0.904347 0.426798i \(-0.140358\pi\)
\(270\) −12.0000 + 4.00000i −0.730297 + 0.243432i
\(271\) −20.0000 −1.21491 −0.607457 0.794353i \(-0.707810\pi\)
−0.607457 + 0.794353i \(0.707810\pi\)
\(272\) 2.00000 0.121268
\(273\) 0 0
\(274\) −7.00000 7.00000i −0.422885 0.422885i
\(275\) −16.0000 + 12.0000i −0.964836 + 0.723627i
\(276\) 8.00000 + 8.00000i 0.481543 + 0.481543i
\(277\) 4.00000i 0.240337i 0.992754 + 0.120168i \(0.0383434\pi\)
−0.992754 + 0.120168i \(0.961657\pi\)
\(278\) 4.00000i 0.239904i
\(279\) 30.0000 + 30.0000i 1.79605 + 1.79605i
\(280\) 0 0
\(281\) −15.0000 15.0000i −0.894825 0.894825i 0.100148 0.994973i \(-0.468068\pi\)
−0.994973 + 0.100148i \(0.968068\pi\)
\(282\) 32.0000 1.90557
\(283\) −4.00000 −0.237775 −0.118888 0.992908i \(-0.537933\pi\)
−0.118888 + 0.992908i \(0.537933\pi\)
\(284\) −4.00000 −0.237356
\(285\) 0 0
\(286\) 16.0000i 0.946100i
\(287\) 0 0
\(288\) 25.0000 1.47314
\(289\) −13.0000 −0.764706
\(290\) 3.00000 1.00000i 0.176166 0.0587220i
\(291\) 8.00000 8.00000i 0.468968 0.468968i
\(292\) 11.0000 11.0000i 0.643726 0.643726i
\(293\) 1.00000 + 1.00000i 0.0584206 + 0.0584206i 0.735714 0.677293i \(-0.236847\pi\)
−0.677293 + 0.735714i \(0.736847\pi\)
\(294\) −14.0000 + 14.0000i −0.816497 + 0.816497i
\(295\) 12.0000 4.00000i 0.698667 0.232889i
\(296\) −3.00000 18.0000i −0.174371 1.04623i
\(297\) 16.0000 16.0000i 0.928414 0.928414i
\(298\) 10.0000 0.579284
\(299\) 16.0000 0.925304
\(300\) 14.0000 + 2.00000i 0.808290 + 0.115470i
\(301\) 0 0
\(302\) −8.00000 −0.460348
\(303\) −12.0000 12.0000i −0.689382 0.689382i
\(304\) 0 0
\(305\) −3.00000 + 1.00000i −0.171780 + 0.0572598i
\(306\) −10.0000 −0.571662
\(307\) −6.00000 6.00000i −0.342438 0.342438i 0.514845 0.857283i \(-0.327849\pi\)
−0.857283 + 0.514845i \(0.827849\pi\)
\(308\) 0 0
\(309\) −8.00000 + 8.00000i −0.455104 + 0.455104i
\(310\) 6.00000 + 18.0000i 0.340777 + 1.02233i
\(311\) −6.00000 + 6.00000i −0.340229 + 0.340229i −0.856453 0.516225i \(-0.827337\pi\)
0.516225 + 0.856453i \(0.327337\pi\)
\(312\) 24.0000 24.0000i 1.35873 1.35873i
\(313\) 6.00000i 0.339140i 0.985518 + 0.169570i \(0.0542379\pi\)
−0.985518 + 0.169570i \(0.945762\pi\)
\(314\) −15.0000 15.0000i −0.846499 0.846499i
\(315\) 0 0
\(316\) 6.00000 6.00000i 0.337526 0.337526i
\(317\) 19.0000 + 19.0000i 1.06715 + 1.06715i 0.997577 + 0.0695692i \(0.0221625\pi\)
0.0695692 + 0.997577i \(0.477838\pi\)
\(318\) 36.0000i 2.01878i
\(319\) −4.00000 + 4.00000i −0.223957 + 0.223957i
\(320\) 14.0000 + 7.00000i 0.782624 + 0.391312i
\(321\) 24.0000i 1.33955i
\(322\) 0 0
\(323\) 0 0
\(324\) −1.00000 −0.0555556
\(325\) 16.0000 12.0000i 0.887520 0.665640i
\(326\) 4.00000i 0.221540i
\(327\) 12.0000i 0.663602i
\(328\) 0 0
\(329\) 0 0
\(330\) 24.0000 8.00000i 1.32116 0.440386i
\(331\) −4.00000 4.00000i −0.219860 0.219860i 0.588579 0.808439i \(-0.299687\pi\)
−0.808439 + 0.588579i \(0.799687\pi\)
\(332\) −2.00000 2.00000i −0.109764 0.109764i
\(333\) 5.00000 + 30.0000i 0.273998 + 1.64399i
\(334\) 12.0000i 0.656611i
\(335\) −6.00000 18.0000i −0.327815 0.983445i
\(336\) 0 0
\(337\) 15.0000 + 15.0000i 0.817102 + 0.817102i 0.985687 0.168585i \(-0.0539198\pi\)
−0.168585 + 0.985687i \(0.553920\pi\)
\(338\) 3.00000i 0.163178i
\(339\) −4.00000 + 4.00000i −0.217250 + 0.217250i
\(340\) 4.00000 + 2.00000i 0.216930 + 0.108465i
\(341\) −24.0000 24.0000i −1.29967 1.29967i
\(342\) 0 0
\(343\) 0 0
\(344\) 36.0000 1.94099
\(345\) −8.00000 24.0000i −0.430706 1.29212i
\(346\) 5.00000 + 5.00000i 0.268802 + 0.268802i
\(347\) 28.0000i 1.50312i −0.659665 0.751559i \(-0.729302\pi\)
0.659665 0.751559i \(-0.270698\pi\)
\(348\) 4.00000 0.214423
\(349\) 34.0000i 1.81998i 0.414632 + 0.909989i \(0.363910\pi\)
−0.414632 + 0.909989i \(0.636090\pi\)
\(350\) 0 0
\(351\) −16.0000 + 16.0000i −0.854017 + 0.854017i
\(352\) −20.0000 −1.06600
\(353\) −4.00000 −0.212899 −0.106449 0.994318i \(-0.533948\pi\)
−0.106449 + 0.994318i \(0.533948\pi\)
\(354\) −16.0000 −0.850390
\(355\) 8.00000 + 4.00000i 0.424596 + 0.212298i
\(356\) 1.00000 + 1.00000i 0.0529999 + 0.0529999i
\(357\) 0 0
\(358\) −16.0000 + 16.0000i −0.845626 + 0.845626i
\(359\) 20.0000i 1.05556i 0.849381 + 0.527780i \(0.176975\pi\)
−0.849381 + 0.527780i \(0.823025\pi\)
\(360\) −30.0000 15.0000i −1.58114 0.790569i
\(361\) 19.0000i 1.00000i
\(362\) 8.00000i 0.420471i
\(363\) −10.0000 + 10.0000i −0.524864 + 0.524864i
\(364\) 0 0
\(365\) −33.0000 + 11.0000i −1.72730 + 0.575766i
\(366\) 4.00000 0.209083
\(367\) −16.0000 + 16.0000i −0.835193 + 0.835193i −0.988222 0.153029i \(-0.951097\pi\)
0.153029 + 0.988222i \(0.451097\pi\)
\(368\) 4.00000i 0.208514i
\(369\) 0 0
\(370\) −4.00000 + 13.0000i −0.207950 + 0.675838i
\(371\) 0 0
\(372\) 24.0000i 1.24434i
\(373\) −9.00000 + 9.00000i −0.466002 + 0.466002i −0.900617 0.434614i \(-0.856885\pi\)
0.434614 + 0.900617i \(0.356885\pi\)
\(374\) 8.00000 0.413670
\(375\) −26.0000 18.0000i −1.34263 0.929516i
\(376\) 24.0000 + 24.0000i 1.23771 + 1.23771i
\(377\) 4.00000 4.00000i 0.206010 0.206010i
\(378\) 0 0
\(379\) 8.00000i 0.410932i −0.978664 0.205466i \(-0.934129\pi\)
0.978664 0.205466i \(-0.0658711\pi\)
\(380\) 0 0
\(381\) 48.0000i 2.45911i
\(382\) 14.0000 14.0000i 0.716302 0.716302i
\(383\) 20.0000i 1.02195i 0.859595 + 0.510976i \(0.170716\pi\)
−0.859595 + 0.510976i \(0.829284\pi\)
\(384\) 6.00000 + 6.00000i 0.306186 + 0.306186i
\(385\) 0 0
\(386\) −14.0000 −0.712581
\(387\) −60.0000 −3.04997
\(388\) 4.00000 0.203069
\(389\) 1.00000 1.00000i 0.0507020 0.0507020i −0.681301 0.732003i \(-0.738586\pi\)
0.732003 + 0.681301i \(0.238586\pi\)
\(390\) −24.0000 + 8.00000i −1.21529 + 0.405096i
\(391\) 8.00000i 0.404577i
\(392\) −21.0000 −1.06066
\(393\) 64.0000i 3.22837i
\(394\) −5.00000 5.00000i −0.251896 0.251896i
\(395\) −18.0000 + 6.00000i −0.905678 + 0.301893i
\(396\) 20.0000 1.00504
\(397\) 1.00000 + 1.00000i 0.0501886 + 0.0501886i 0.731756 0.681567i \(-0.238701\pi\)
−0.681567 + 0.731756i \(0.738701\pi\)
\(398\) −18.0000 + 18.0000i −0.902258 + 0.902258i
\(399\) 0 0
\(400\) −3.00000 4.00000i −0.150000 0.200000i
\(401\) 1.00000 1.00000i 0.0499376 0.0499376i −0.681697 0.731635i \(-0.738758\pi\)
0.731635 + 0.681697i \(0.238758\pi\)
\(402\) 24.0000i 1.19701i
\(403\) 24.0000 + 24.0000i 1.19553 + 1.19553i
\(404\) 6.00000i 0.298511i
\(405\) 2.00000 + 1.00000i 0.0993808 + 0.0496904i
\(406\) 0 0
\(407\) −4.00000 24.0000i −0.198273 1.18964i
\(408\) −12.0000 12.0000i −0.594089 0.594089i
\(409\) −3.00000 3.00000i −0.148340 0.148340i 0.629036 0.777376i \(-0.283450\pi\)
−0.777376 + 0.629036i \(0.783450\pi\)
\(410\) 0 0
\(411\) 28.0000i 1.38114i
\(412\) −4.00000 −0.197066
\(413\) 0 0
\(414\) 20.0000i 0.982946i
\(415\) 2.00000 + 6.00000i 0.0981761 + 0.294528i
\(416\) 20.0000 0.980581
\(417\) −8.00000 + 8.00000i −0.391762 + 0.391762i
\(418\) 0 0
\(419\) 16.0000i 0.781651i −0.920465 0.390826i \(-0.872190\pi\)
0.920465 0.390826i \(-0.127810\pi\)
\(420\) 0 0
\(421\) 3.00000 3.00000i 0.146211 0.146211i −0.630212 0.776423i \(-0.717032\pi\)
0.776423 + 0.630212i \(0.217032\pi\)
\(422\) 8.00000i 0.389434i
\(423\) −40.0000 40.0000i −1.94487 1.94487i
\(424\) 27.0000 27.0000i 1.31124 1.31124i
\(425\) −6.00000 8.00000i −0.291043 0.388057i
\(426\) −8.00000 8.00000i −0.387601 0.387601i
\(427\) 0 0
\(428\) −6.00000 + 6.00000i −0.290021 + 0.290021i
\(429\) 32.0000 32.0000i 1.54497 1.54497i
\(430\) −24.0000 12.0000i −1.15738 0.578691i
\(431\) 2.00000 2.00000i 0.0963366 0.0963366i −0.657296 0.753633i \(-0.728300\pi\)
0.753633 + 0.657296i \(0.228300\pi\)
\(432\) 4.00000 + 4.00000i 0.192450 + 0.192450i
\(433\) 11.0000 + 11.0000i 0.528626 + 0.528626i 0.920163 0.391536i \(-0.128056\pi\)
−0.391536 + 0.920163i \(0.628056\pi\)
\(434\) 0 0
\(435\) −8.00000 4.00000i −0.383571 0.191785i
\(436\) −3.00000 + 3.00000i −0.143674 + 0.143674i
\(437\) 0 0
\(438\) 44.0000 2.10240
\(439\) 10.0000 + 10.0000i 0.477274 + 0.477274i 0.904259 0.426985i \(-0.140424\pi\)
−0.426985 + 0.904259i \(0.640424\pi\)
\(440\) 24.0000 + 12.0000i 1.14416 + 0.572078i
\(441\) 35.0000 1.66667
\(442\) −8.00000 −0.380521
\(443\) 2.00000 2.00000i 0.0950229 0.0950229i −0.657997 0.753020i \(-0.728596\pi\)
0.753020 + 0.657997i \(0.228596\pi\)
\(444\) −10.0000 + 14.0000i −0.474579 + 0.664411i
\(445\) −1.00000 3.00000i −0.0474045 0.142214i
\(446\) 4.00000 4.00000i 0.189405 0.189405i
\(447\) −20.0000 20.0000i −0.945968 0.945968i
\(448\) 0 0
\(449\) −23.0000 + 23.0000i −1.08544 + 1.08544i −0.0894454 + 0.995992i \(0.528509\pi\)
−0.995992 + 0.0894454i \(0.971491\pi\)
\(450\) 15.0000 + 20.0000i 0.707107 + 0.942809i
\(451\) 0 0
\(452\) −2.00000 −0.0940721
\(453\) 16.0000 + 16.0000i 0.751746 + 0.751746i
\(454\) 16.0000i 0.750917i
\(455\) 0 0
\(456\) 0 0
\(457\) −20.0000 −0.935561 −0.467780 0.883845i \(-0.654946\pi\)
−0.467780 + 0.883845i \(0.654946\pi\)
\(458\) 16.0000 0.747631
\(459\) 8.00000 + 8.00000i 0.373408 + 0.373408i
\(460\) 4.00000 8.00000i 0.186501 0.373002i
\(461\) 21.0000 + 21.0000i 0.978068 + 0.978068i 0.999765 0.0216971i \(-0.00690694\pi\)
−0.0216971 + 0.999765i \(0.506907\pi\)
\(462\) 0 0
\(463\) 20.0000i 0.929479i −0.885448 0.464739i \(-0.846148\pi\)
0.885448 0.464739i \(-0.153852\pi\)
\(464\) −1.00000 1.00000i −0.0464238 0.0464238i
\(465\) 24.0000 48.0000i 1.11297 2.22595i
\(466\) −13.0000 13.0000i −0.602213 0.602213i
\(467\) −4.00000 −0.185098 −0.0925490 0.995708i \(-0.529501\pi\)
−0.0925490 + 0.995708i \(0.529501\pi\)
\(468\) −20.0000 −0.924500
\(469\) 0 0
\(470\) −8.00000 24.0000i −0.369012 1.10704i
\(471\) 60.0000i 2.76465i
\(472\) −12.0000 12.0000i −0.552345 0.552345i
\(473\) 48.0000 2.20704
\(474\) 24.0000 1.10236
\(475\) 0 0
\(476\) 0 0
\(477\) −45.0000 + 45.0000i −2.06041 + 2.06041i
\(478\) 14.0000 + 14.0000i 0.640345 + 0.640345i
\(479\) 10.0000 10.0000i 0.456912 0.456912i −0.440729 0.897640i \(-0.645280\pi\)
0.897640 + 0.440729i \(0.145280\pi\)
\(480\) −10.0000 30.0000i −0.456435 1.36931i
\(481\) 4.00000 + 24.0000i 0.182384 + 1.09431i
\(482\) −13.0000 + 13.0000i −0.592134 + 0.592134i
\(483\) 0 0
\(484\) −5.00000 −0.227273
\(485\) −8.00000 4.00000i −0.363261 0.181631i
\(486\) 10.0000 + 10.0000i 0.453609 + 0.453609i
\(487\) 20.0000 0.906287 0.453143 0.891438i \(-0.350303\pi\)
0.453143 + 0.891438i \(0.350303\pi\)
\(488\) 3.00000 + 3.00000i 0.135804 + 0.135804i
\(489\) 8.00000 8.00000i 0.361773 0.361773i
\(490\) 14.0000 + 7.00000i 0.632456 + 0.316228i
\(491\) 8.00000 0.361035 0.180517 0.983572i \(-0.442223\pi\)
0.180517 + 0.983572i \(0.442223\pi\)
\(492\) 0 0
\(493\) −2.00000 2.00000i −0.0900755 0.0900755i
\(494\) 0 0
\(495\) −40.0000 20.0000i −1.79787 0.898933i
\(496\) 6.00000 6.00000i 0.269408 0.269408i
\(497\) 0 0
\(498\) 8.00000i 0.358489i
\(499\) −12.0000 12.0000i −0.537194 0.537194i 0.385510 0.922704i \(-0.374026\pi\)
−0.922704 + 0.385510i \(0.874026\pi\)
\(500\) −2.00000 11.0000i −0.0894427 0.491935i
\(501\) −24.0000 + 24.0000i −1.07224 + 1.07224i
\(502\) 4.00000 + 4.00000i 0.178529 + 0.178529i
\(503\) 24.0000i 1.07011i 0.844818 + 0.535054i \(0.179709\pi\)
−0.844818 + 0.535054i \(0.820291\pi\)
\(504\) 0 0
\(505\) −6.00000 + 12.0000i −0.266996 + 0.533993i
\(506\) 16.0000i 0.711287i
\(507\) −6.00000 + 6.00000i −0.266469 + 0.266469i
\(508\) 12.0000 12.0000i 0.532414 0.532414i
\(509\) 18.0000 0.797836 0.398918 0.916987i \(-0.369386\pi\)
0.398918 + 0.916987i \(0.369386\pi\)
\(510\) 4.00000 + 12.0000i 0.177123 + 0.531369i
\(511\) 0 0
\(512\) 11.0000i 0.486136i
\(513\) 0 0
\(514\) 14.0000i 0.617514i
\(515\) 8.00000 + 4.00000i 0.352522 + 0.176261i
\(516\) −24.0000 24.0000i −1.05654 1.05654i
\(517\) 32.0000 + 32.0000i 1.40736 + 1.40736i
\(518\) 0 0
\(519\) 20.0000i 0.877903i
\(520\) −24.0000 12.0000i −1.05247 0.526235i
\(521\) 2.00000i 0.0876216i −0.999040 0.0438108i \(-0.986050\pi\)
0.999040 0.0438108i \(-0.0139499\pi\)
\(522\) 5.00000 + 5.00000i 0.218844 + 0.218844i
\(523\) 40.0000i 1.74908i −0.484955 0.874539i \(-0.661164\pi\)
0.484955 0.874539i \(-0.338836\pi\)
\(524\) 16.0000 16.0000i 0.698963 0.698963i
\(525\) 0 0
\(526\) −8.00000 8.00000i −0.348817 0.348817i
\(527\) 12.0000 12.0000i 0.522728 0.522728i
\(528\) −8.00000 8.00000i −0.348155 0.348155i
\(529\) 7.00000 0.304348
\(530\) −27.0000 + 9.00000i −1.17281 + 0.390935i
\(531\) 20.0000 + 20.0000i 0.867926 + 0.867926i
\(532\) 0 0
\(533\) 0 0
\(534\) 4.00000i 0.173097i
\(535\) 18.0000 6.00000i 0.778208 0.259403i
\(536\) −18.0000 + 18.0000i −0.777482 + 0.777482i
\(537\) 64.0000 2.76180
\(538\) 14.0000 0.603583
\(539\) −28.0000 −1.20605
\(540\) 4.00000 + 12.0000i 0.172133 + 0.516398i
\(541\) 19.0000 + 19.0000i 0.816874 + 0.816874i 0.985654 0.168780i \(-0.0539827\pi\)
−0.168780 + 0.985654i \(0.553983\pi\)
\(542\) 20.0000i 0.859074i
\(543\) −16.0000 + 16.0000i −0.686626 + 0.686626i
\(544\) 10.0000i 0.428746i
\(545\) 9.00000 3.00000i 0.385518 0.128506i
\(546\) 0 0
\(547\) 8.00000i 0.342055i −0.985266 0.171028i \(-0.945291\pi\)
0.985266 0.171028i \(-0.0547087\pi\)
\(548\) −7.00000 + 7.00000i −0.299025 + 0.299025i
\(549\) −5.00000 5.00000i −0.213395 0.213395i
\(550\) −12.0000 16.0000i −0.511682 0.682242i
\(551\) 0 0
\(552\) −24.0000 + 24.0000i −1.02151 + 1.02151i
\(553\) 0 0
\(554\) −4.00000 −0.169944
\(555\) 34.0000 18.0000i 1.44322 0.764057i
\(556\) −4.00000 −0.169638
\(557\) 28.0000i 1.18640i −0.805056 0.593199i \(-0.797865\pi\)
0.805056 0.593199i \(-0.202135\pi\)
\(558\) −30.0000 + 30.0000i −1.27000 + 1.27000i
\(559\) −48.0000 −2.03018
\(560\) 0 0
\(561\) −16.0000 16.0000i −0.675521 0.675521i
\(562\) 15.0000 15.0000i 0.632737 0.632737i
\(563\) 24.0000i 1.01148i 0.862686 + 0.505740i \(0.168780\pi\)
−0.862686 + 0.505740i \(0.831220\pi\)
\(564\) 32.0000i 1.34744i
\(565\) 4.00000 + 2.00000i 0.168281 + 0.0841406i
\(566\) 4.00000i 0.168133i
\(567\) 0 0
\(568\) 12.0000i 0.503509i
\(569\) 11.0000 + 11.0000i 0.461144 + 0.461144i 0.899030 0.437886i \(-0.144273\pi\)
−0.437886 + 0.899030i \(0.644273\pi\)
\(570\) 0 0
\(571\) 20.0000 0.836974 0.418487 0.908223i \(-0.362561\pi\)
0.418487 + 0.908223i \(0.362561\pi\)
\(572\) 16.0000 0.668994
\(573\) −56.0000 −2.33943
\(574\) 0 0
\(575\) −16.0000 + 12.0000i −0.667246 + 0.500435i
\(576\) 35.0000i 1.45833i
\(577\) −30.0000 −1.24892 −0.624458 0.781058i \(-0.714680\pi\)
−0.624458 + 0.781058i \(0.714680\pi\)
\(578\) 13.0000i 0.540729i
\(579\) 28.0000 + 28.0000i 1.16364 + 1.16364i
\(580\) −1.00000 3.00000i −0.0415227 0.124568i
\(581\) 0 0
\(582\) 8.00000 + 8.00000i 0.331611 + 0.331611i
\(583\) 36.0000 36.0000i 1.49097 1.49097i
\(584\) 33.0000 + 33.0000i 1.36555 + 1.36555i
\(585\) 40.0000 + 20.0000i 1.65380 + 0.826898i
\(586\) −1.00000 + 1.00000i −0.0413096 + 0.0413096i
\(587\) 12.0000i 0.495293i −0.968850 0.247647i \(-0.920343\pi\)
0.968850 0.247647i \(-0.0796572\pi\)
\(588\) 14.0000 + 14.0000i 0.577350 + 0.577350i
\(589\) 0 0
\(590\) 4.00000 + 12.0000i 0.164677 + 0.494032i
\(591\) 20.0000i 0.822690i
\(592\) 6.00000 1.00000i 0.246598 0.0410997i
\(593\) −9.00000 9.00000i −0.369586 0.369586i 0.497740 0.867326i \(-0.334163\pi\)
−0.867326 + 0.497740i \(0.834163\pi\)
\(594\) 16.0000 + 16.0000i 0.656488 + 0.656488i
\(595\) 0 0
\(596\) 10.0000i 0.409616i
\(597\) 72.0000 2.94676
\(598\) 16.0000i 0.654289i
\(599\) 24.0000i 0.980613i −0.871550 0.490307i \(-0.836885\pi\)
0.871550 0.490307i \(-0.163115\pi\)
\(600\) −6.00000 + 42.0000i −0.244949 + 1.71464i
\(601\) −40.0000 −1.63163 −0.815817 0.578310i \(-0.803712\pi\)
−0.815817 + 0.578310i \(0.803712\pi\)
\(602\) 0 0
\(603\) 30.0000 30.0000i 1.22169 1.22169i
\(604\) 8.00000i 0.325515i
\(605\) 10.0000 + 5.00000i 0.406558 + 0.203279i
\(606\) 12.0000 12.0000i 0.487467 0.487467i
\(607\) 4.00000i 0.162355i −0.996700 0.0811775i \(-0.974132\pi\)
0.996700 0.0811775i \(-0.0258681\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) −1.00000 3.00000i −0.0404888 0.121466i
\(611\) −32.0000 32.0000i −1.29458 1.29458i
\(612\) 10.0000i 0.404226i
\(613\) 3.00000 3.00000i 0.121169 0.121169i −0.643922 0.765091i \(-0.722694\pi\)
0.765091 + 0.643922i \(0.222694\pi\)
\(614\) 6.00000 6.00000i 0.242140 0.242140i
\(615\) 0 0
\(616\) 0 0
\(617\) −17.0000 17.0000i −0.684394 0.684394i 0.276593 0.960987i \(-0.410795\pi\)
−0.960987 + 0.276593i \(0.910795\pi\)
\(618\) −8.00000 8.00000i −0.321807 0.321807i
\(619\) −16.0000 −0.643094 −0.321547 0.946894i \(-0.604203\pi\)
−0.321547 + 0.946894i \(0.604203\pi\)
\(620\) 18.0000 6.00000i 0.722897 0.240966i
\(621\) 16.0000 16.0000i 0.642058 0.642058i
\(622\) −6.00000 6.00000i −0.240578 0.240578i
\(623\) 0 0
\(624\) 8.00000 + 8.00000i 0.320256 + 0.320256i
\(625\) −7.00000 + 24.0000i −0.280000 + 0.960000i
\(626\) −6.00000 −0.239808
\(627\) 0 0
\(628\) −15.0000 + 15.0000i −0.598565 + 0.598565i
\(629\) 12.0000 2.00000i 0.478471 0.0797452i
\(630\) 0 0
\(631\) 26.0000 26.0000i 1.03504 1.03504i 0.0356804 0.999363i \(-0.488640\pi\)
0.999363 0.0356804i \(-0.0113598\pi\)
\(632\) 18.0000 + 18.0000i 0.716002 + 0.716002i
\(633\) 16.0000 16.0000i 0.635943 0.635943i
\(634\) −19.0000 + 19.0000i −0.754586 + 0.754586i
\(635\) −36.0000 + 12.0000i −1.42862 + 0.476205i
\(636\) −36.0000 −1.42749
\(637\) 28.0000 1.10940
\(638\) −4.00000 4.00000i −0.158362 0.158362i
\(639\) 20.0000i 0.791188i
\(640\) 3.00000 6.00000i 0.118585 0.237171i
\(641\) −24.0000 −0.947943 −0.473972 0.880540i \(-0.657180\pi\)
−0.473972 + 0.880540i \(0.657180\pi\)
\(642\) −24.0000 −0.947204
\(643\) −8.00000 −0.315489 −0.157745 0.987480i \(-0.550422\pi\)
−0.157745 + 0.987480i \(0.550422\pi\)
\(644\) 0 0
\(645\) 24.0000 + 72.0000i 0.944999 + 2.83500i
\(646\) 0 0
\(647\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(648\) 3.00000i 0.117851i
\(649\) −16.0000 16.0000i −0.628055 0.628055i
\(650\) 12.0000 + 16.0000i 0.470679 + 0.627572i
\(651\) 0 0
\(652\) 4.00000 0.156652
\(653\) 36.0000 1.40879 0.704394 0.709809i \(-0.251219\pi\)
0.704394 + 0.709809i \(0.251219\pi\)
\(654\) −12.0000 −0.469237
\(655\) −48.0000 + 16.0000i −1.87552 + 0.625172i
\(656\) 0 0
\(657\) −55.0000 55.0000i −2.14575 2.14575i
\(658\) 0 0
\(659\) 28.0000 1.09073 0.545363 0.838200i \(-0.316392\pi\)
0.545363 + 0.838200i \(0.316392\pi\)
\(660\) −8.00000 24.0000i −0.311400 0.934199i
\(661\) 21.0000 21.0000i 0.816805 0.816805i −0.168838 0.985644i \(-0.554002\pi\)
0.985644 + 0.168838i \(0.0540016\pi\)
\(662\) 4.00000 4.00000i 0.155464 0.155464i
\(663\) 16.0000 + 16.0000i 0.621389 + 0.621389i
\(664\) 6.00000 6.00000i 0.232845 0.232845i
\(665\) 0 0
\(666\) −30.0000 + 5.00000i −1.16248 + 0.193746i
\(667\) −4.00000 + 4.00000i −0.154881 + 0.154881i
\(668\) −12.0000 −0.464294
\(669\) −16.0000 −0.618596
\(670\) 18.0000 6.00000i 0.695401 0.231800i
\(671\) 4.00000 + 4.00000i 0.154418 + 0.154418i
\(672\) 0 0
\(673\) 9.00000 + 9.00000i 0.346925 + 0.346925i 0.858963 0.512038i \(-0.171109\pi\)
−0.512038 + 0.858963i \(0.671109\pi\)
\(674\) −15.0000 + 15.0000i −0.577778 + 0.577778i
\(675\) 4.00000 28.0000i 0.153960 1.07772i
\(676\) −3.00000 −0.115385
\(677\) 23.0000 + 23.0000i 0.883962 + 0.883962i 0.993935 0.109973i \(-0.0350764\pi\)
−0.109973 + 0.993935i \(0.535076\pi\)
\(678\) −4.00000 4.00000i −0.153619 0.153619i
\(679\) 0 0
\(680\) −6.00000 + 12.0000i −0.230089 + 0.460179i
\(681\) 32.0000 32.0000i 1.22624 1.22624i
\(682\) 24.0000 24.0000i 0.919007 0.919007i
\(683\) 4.00000i 0.153056i 0.997067 + 0.0765279i \(0.0243834\pi\)
−0.997067 + 0.0765279i \(0.975617\pi\)
\(684\) 0 0
\(685\) 21.0000 7.00000i 0.802369 0.267456i
\(686\) 0 0
\(687\) −32.0000 32.0000i −1.22088 1.22088i
\(688\) 12.0000i 0.457496i
\(689\) −36.0000 + 36.0000i −1.37149 + 1.37149i
\(690\) 24.0000 8.00000i 0.913664 0.304555i
\(691\) 16.0000i 0.608669i 0.952565 + 0.304334i \(0.0984340\pi\)
−0.952565 + 0.304334i \(0.901566\pi\)
\(692\) 5.00000 5.00000i 0.190071 0.190071i
\(693\) 0 0
\(694\) 28.0000 1.06287
\(695\) 8.00000 + 4.00000i 0.303457 + 0.151729i
\(696\) 12.0000i 0.454859i
\(697\) 0 0
\(698\) −34.0000 −1.28692
\(699\) 52.0000i 1.96682i
\(700\) 0 0
\(701\) 15.0000 + 15.0000i 0.566542 + 0.566542i 0.931158 0.364616i \(-0.118800\pi\)
−0.364616 + 0.931158i \(0.618800\pi\)
\(702\) −16.0000 16.0000i −0.603881 0.603881i
\(703\) 0 0
\(704\) 28.0000i 1.05529i
\(705\) −32.0000 + 64.0000i −1.20519 + 2.41038i
\(706\) 4.00000i 0.150542i
\(707\) 0 0
\(708\) 16.0000i 0.601317i
\(709\) 3.00000 3.00000i 0.112667 0.112667i −0.648526 0.761193i \(-0.724614\pi\)
0.761193 + 0.648526i \(0.224614\pi\)
\(710\) −4.00000 + 8.00000i −0.150117 + 0.300235i
\(711\) −30.0000 30.0000i −1.12509 1.12509i
\(712\) −3.00000 + 3.00000i −0.112430 + 0.112430i
\(713\) −24.0000 24.0000i −0.898807 0.898807i
\(714\) 0 0
\(715\) −32.0000 16.0000i −1.19673 0.598366i
\(716\) 16.0000 + 16.0000i 0.597948 + 0.597948i
\(717\) 56.0000i 2.09136i
\(718\) −20.0000 −0.746393
\(719\) 8.00000i 0.298350i −0.988811 0.149175i \(-0.952338\pi\)
0.988811 0.149175i \(-0.0476617\pi\)
\(720\) 5.00000 10.0000i 0.186339 0.372678i
\(721\) 0 0
\(722\) −19.0000 −0.707107
\(723\) 52.0000 1.93390
\(724\) −8.00000 −0.297318
\(725\) −1.00000 + 7.00000i −0.0371391 + 0.259973i
\(726\) −10.0000 10.0000i −0.371135 0.371135i
\(727\) 12.0000i 0.445055i 0.974926 + 0.222528i \(0.0714308\pi\)
−0.974926 + 0.222528i \(0.928569\pi\)
\(728\) 0 0
\(729\) 43.0000i 1.59259i
\(730\) −11.0000 33.0000i −0.407128 1.22138i
\(731\) 24.0000i 0.887672i
\(732\) 4.00000i 0.147844i
\(733\) −9.00000 + 9.00000i −0.332423 + 0.332423i −0.853506 0.521083i \(-0.825528\pi\)
0.521083 + 0.853506i \(0.325528\pi\)
\(734\) −16.0000 16.0000i −0.590571 0.590571i
\(735\) −14.0000 42.0000i −0.516398 1.54919i
\(736\) −20.0000 −0.737210
\(737\) −24.0000 + 24.0000i −0.884051 + 0.884051i
\(738\) 0 0
\(739\) −20.0000 −0.735712 −0.367856 0.929883i \(-0.619908\pi\)
−0.367856 + 0.929883i \(0.619908\pi\)
\(740\) 13.0000 + 4.00000i 0.477890 + 0.147043i
\(741\) 0 0
\(742\) 0 0
\(743\) 16.0000 16.0000i 0.586983 0.586983i −0.349830 0.936813i \(-0.613761\pi\)
0.936813 + 0.349830i \(0.113761\pi\)
\(744\) −72.0000 −2.63965
\(745\) −10.0000 + 20.0000i −0.366372 + 0.732743i
\(746\) −9.00000 9.00000i −0.329513 0.329513i
\(747\) −10.0000 + 10.0000i −0.365881 + 0.365881i
\(748\) 8.00000i 0.292509i
\(749\) 0 0
\(750\) 18.0000 26.0000i 0.657267 0.949386i
\(751\) 4.00000i 0.145962i −0.997333 0.0729810i \(-0.976749\pi\)
0.997333 0.0729810i \(-0.0232513\pi\)
\(752\) −8.00000 + 8.00000i −0.291730 + 0.291730i
\(753\) 16.0000i 0.583072i
\(754\) 4.00000 + 4.00000i 0.145671 + 0.145671i
\(755\) 8.00000 16.0000i 0.291150 0.582300i
\(756\) 0 0
\(757\) 12.0000 0.436147 0.218074 0.975932i \(-0.430023\pi\)
0.218074 + 0.975932i \(0.430023\pi\)
\(758\) 8.00000 0.290573
\(759\) −32.0000 + 32.0000i −1.16153 + 1.16153i
\(760\) 0 0
\(761\) 16.0000i 0.580000i −0.957027 0.290000i \(-0.906345\pi\)
0.957027 0.290000i \(-0.0936552\pi\)
\(762\) 48.0000 1.73886
\(763\) 0 0
\(764\) −14.0000 14.0000i −0.506502 0.506502i
\(765\) 10.0000 20.0000i 0.361551 0.723102i
\(766\) −20.0000 −0.722629
\(767\) 16.0000 + 16.0000i 0.577727 + 0.577727i
\(768\) −34.0000 + 34.0000i −1.22687 + 1.22687i
\(769\) 3.00000 + 3.00000i 0.108183 + 0.108183i 0.759126 0.650943i \(-0.225627\pi\)
−0.650943 + 0.759126i \(0.725627\pi\)
\(770\) 0 0
\(771\) −28.0000 + 28.0000i −1.00840 + 1.00840i
\(772\) 14.0000i 0.503871i
\(773\) −29.0000 29.0000i −1.04306 1.04306i −0.999030 0.0440272i \(-0.985981\pi\)
−0.0440272 0.999030i \(-0.514019\pi\)
\(774\) 60.0000i 2.15666i
\(775\) −42.0000 6.00000i −1.50868 0.215526i
\(776\) 12.0000i 0.430775i
\(777\) 0 0
\(778\) 1.00000 + 1.00000i 0.0358517 + 0.0358517i
\(779\) 0 0
\(780\) 8.00000 + 24.0000i 0.286446 + 0.859338i
\(781\) 16.0000i 0.572525i
\(782\) 8.00000 0.286079
\(783\) 8.00000i 0.285897i
\(784\) 7.00000i 0.250000i
\(785\) 45.0000 15.0000i 1.60612 0.535373i
\(786\) 64.0000 2.28280
\(787\) −18.0000 + 18.0000i −0.641631 + 0.641631i −0.950956 0.309326i \(-0.899897\pi\)
0.309326 + 0.950956i \(0.399897\pi\)
\(788\) −5.00000 + 5.00000i −0.178118 + 0.178118i
\(789\) 32.0000i 1.13923i
\(790\) −6.00000 18.0000i −0.213470 0.640411i
\(791\) 0 0
\(792\) 60.0000i 2.13201i
\(793\) −4.00000 4.00000i −0.142044 0.142044i
\(794\) −1.00000 + 1.00000i −0.0354887 + 0.0354887i
\(795\) 72.0000 + 36.0000i 2.55358 + 1.27679i
\(796\) 18.0000 + 18.0000i 0.637993 + 0.637993i
\(797\) 20.0000i 0.708436i −0.935163 0.354218i \(-0.884747\pi\)
0.935163 0.354218i \(-0.115253\pi\)
\(798\) 0 0
\(799\) −16.0000 + 16.0000i −0.566039 + 0.566039i
\(800\) −20.0000 + 15.0000i −0.707107 + 0.530330i
\(801\) 5.00000 5.00000i 0.176666 0.176666i
\(802\) 1.00000 + 1.00000i 0.0353112 + 0.0353112i
\(803\) 44.0000 + 44.0000i 1.55273 + 1.55273i
\(804\) 24.0000 0.846415
\(805\) 0 0
\(806\) −24.0000 + 24.0000i −0.845364 + 0.845364i
\(807\) −28.0000 28.0000i −0.985647 0.985647i
\(808\) 18.0000 0.633238
\(809\) −1.00000 1.00000i −0.0351581 0.0351581i 0.689309 0.724467i \(-0.257914\pi\)
−0.724467 + 0.689309i \(0.757914\pi\)
\(810\) −1.00000 + 2.00000i −0.0351364 + 0.0702728i
\(811\) −28.0000 −0.983213 −0.491606 0.870817i \(-0.663590\pi\)
−0.491606 + 0.870817i \(0.663590\pi\)
\(812\) 0 0
\(813\) −40.0000 + 40.0000i −1.40286 + 1.40286i
\(814\) 24.0000 4.00000i 0.841200 0.140200i
\(815\) −8.00000 4.00000i −0.280228 0.140114i
\(816\) 4.00000 4.00000i 0.140028 0.140028i
\(817\) 0 0
\(818\) 3.00000 3.00000i 0.104893 0.104893i
\(819\) 0 0
\(820\) 0 0
\(821\) 42.0000 1.46581 0.732905 0.680331i \(-0.238164\pi\)
0.732905 + 0.680331i \(0.238164\pi\)
\(822\) −28.0000 −0.976612
\(823\) −4.00000 4.00000i −0.139431 0.139431i 0.633946 0.773377i \(-0.281434\pi\)
−0.773377 + 0.633946i \(0.781434\pi\)
\(824\) 12.0000i 0.418040i
\(825\) −8.00000 + 56.0000i −0.278524 + 1.94967i
\(826\) 0 0
\(827\) 8.00000 0.278187 0.139094 0.990279i \(-0.455581\pi\)
0.139094 + 0.990279i \(0.455581\pi\)
\(828\) 20.0000 0.695048
\(829\) 27.0000 + 27.0000i 0.937749 + 0.937749i 0.998173 0.0604240i \(-0.0192453\pi\)
−0.0604240 + 0.998173i \(0.519245\pi\)
\(830\) −6.00000 + 2.00000i −0.208263 + 0.0694210i
\(831\) 8.00000 + 8.00000i 0.277517 + 0.277517i
\(832\) 28.0000i 0.970725i
\(833\) 14.0000i 0.485071i
\(834\) −8.00000 8.00000i −0.277017 0.277017i
\(835\) 24.0000 + 12.0000i 0.830554 + 0.415277i
\(836\) 0 0
\(837\) 48.0000 1.65912
\(838\) 16.0000 0.552711
\(839\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(840\) 0 0
\(841\) 27.0000i 0.931034i
\(842\) 3.00000 + 3.00000i 0.103387 + 0.103387i
\(843\) −60.0000 −2.06651
\(844\) 8.00000 0.275371
\(845\) 6.00000 + 3.00000i 0.206406 + 0.103203i
\(846\) 40.0000 40.0000i 1.37523 1.37523i
\(847\) 0 0
\(848\) 9.00000 + 9.00000i 0.309061 + 0.309061i
\(849\) −8.00000 + 8.00000i −0.274559 + 0.274559i
\(850\) 8.00000 6.00000i 0.274398 0.205798i
\(851\) −4.00000 24.0000i −0.137118 0.822709i
\(852\) −8.00000 + 8.00000i −0.274075 + 0.274075i
\(853\) −28.0000 −0.958702 −0.479351 0.877623i \(-0.659128\pi\)
−0.479351 + 0.877623i \(0.659128\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) −18.0000 18.0000i −0.615227 0.615227i
\(857\) 52.0000 1.77629 0.888143 0.459567i \(-0.151995\pi\)
0.888143 + 0.459567i \(0.151995\pi\)
\(858\) 32.0000 + 32.0000i 1.09246 + 1.09246i
\(859\) 32.0000 32.0000i 1.09183 1.09183i 0.0964922 0.995334i \(-0.469238\pi\)
0.995334 0.0964922i \(-0.0307623\pi\)
\(860\) −12.0000 + 24.0000i −0.409197 + 0.818393i
\(861\) 0 0
\(862\) 2.00000 + 2.00000i 0.0681203 + 0.0681203i
\(863\) 24.0000 + 24.0000i 0.816970 + 0.816970i 0.985668 0.168698i \(-0.0539563\pi\)
−0.168698 + 0.985668i \(0.553956\pi\)
\(864\) 20.0000 20.0000i 0.680414 0.680414i
\(865\) −15.0000 + 5.00000i −0.510015 + 0.170005i
\(866\) −11.0000 + 11.0000i −0.373795 + 0.373795i
\(867\) −26.0000 + 26.0000i −0.883006 + 0.883006i
\(868\) 0 0
\(869\) 24.0000 + 24.0000i 0.814144 + 0.814144i
\(870\) 4.00000 8.00000i 0.135613 0.271225i
\(871\) 24.0000 24.0000i 0.813209 0.813209i
\(872\) −9.00000 9.00000i −0.304778 0.304778i
\(873\) 20.0000i 0.676897i
\(874\) 0 0
\(875\) 0 0
\(876\) 44.0000i 1.48662i
\(877\) 1.00000 1.00000i 0.0337676 0.0337676i −0.690021 0.723789i \(-0.742399\pi\)
0.723789 + 0.690021i \(0.242399\pi\)
\(878\) −10.0000 + 10.0000i −0.337484 + 0.337484i
\(879\) 4.00000 0.134917
\(880\) −4.00000 + 8.00000i −0.134840 + 0.269680i
\(881\) 42.0000i 1.41502i −0.706705 0.707508i \(-0.749819\pi\)
0.706705 0.707508i \(-0.250181\pi\)
\(882\) 35.0000i 1.17851i
\(883\) 32.0000 1.07689 0.538443 0.842662i \(-0.319013\pi\)
0.538443 + 0.842662i \(0.319013\pi\)
\(884\) 8.00000i 0.269069i
\(885\) 16.0000 32.0000i 0.537834 1.07567i
\(886\) 2.00000 + 2.00000i 0.0671913 + 0.0671913i
\(887\) 32.0000 + 32.0000i 1.07445 + 1.07445i 0.996996 + 0.0774593i \(0.0246808\pi\)
0.0774593 + 0.996996i \(0.475319\pi\)
\(888\) −42.0000 30.0000i −1.40943 1.00673i
\(889\) 0 0
\(890\) 3.00000 1.00000i 0.100560 0.0335201i
\(891\) 4.00000i 0.134005i
\(892\) −4.00000 4.00000i −0.133930 0.133930i
\(893\) 0 0
\(894\) 20.0000 20.0000i 0.668900 0.668900i
\(895\) −16.0000 48.0000i −0.534821 1.60446i
\(896\) 0 0
\(897\) 32.0000 32.0000i 1.06845 1.06845i
\(898\) −23.0000 23.0000i −0.767520 0.767520i
\(899\) −12.0000 −0.400222
\(900\) 20.0000 15.0000i 0.666667 0.500000i
\(901\) 18.0000 + 18.0000i 0.599667 + 0.599667i
\(902\) 0 0
\(903\) 0 0
\(904\) 6.00000i 0.199557i
\(905\) 16.0000 + 8.00000i 0.531858 + 0.265929i
\(906\) −16.0000 + 16.0000i −0.531564 + 0.531564i
\(907\) 32.0000 1.06254 0.531271 0.847202i \(-0.321714\pi\)
0.531271 + 0.847202i \(0.321714\pi\)
\(908\) 16.0000 0.530979
\(909\) −30.0000 −0.995037
\(910\) 0 0
\(911\) 34.0000 + 34.0000i 1.12647 + 1.12647i 0.990747 + 0.135724i \(0.0433359\pi\)
0.135724 + 0.990747i \(0.456664\pi\)
\(912\) 0 0
\(913\) 8.00000 8.00000i 0.264761 0.264761i
\(914\) 20.0000i 0.661541i
\(915\) −4.00000 + 8.00000i −0.132236 + 0.264472i
\(916\) 16.0000i 0.528655i
\(917\) 0 0
\(918\) −8.00000 + 8.00000i −0.264039 + 0.264039i
\(919\) −6.00000 6.00000i −0.197922 0.197922i 0.601187 0.799109i \(-0.294695\pi\)
−0.799109 + 0.601187i \(0.794695\pi\)
\(920\) 24.0000 + 12.0000i 0.791257 + 0.395628i
\(921\) −24.0000 −0.790827
\(922\) −21.0000 + 21.0000i −0.691598 + 0.691598i
\(923\) 16.0000i 0.526646i
\(924\) 0 0
\(925\) −22.0000 21.0000i −0.723356 0.690476i
\(926\) 20.0000 0.657241
\(927\) 20.0000i 0.656886i
\(928\) −5.00000 + 5.00000i −0.164133 + 0.164133i
\(929\) −22.0000 −0.721797 −0.360898 0.932605i \(-0.617530\pi\)
−0.360898 + 0.932605i \(0.617530\pi\)
\(930\) 48.0000 + 24.0000i 1.57398 + 0.786991i
\(931\) 0 0
\(932\) −13.0000 + 13.0000i −0.425829 + 0.425829i
\(933\) 24.0000i 0.785725i
\(934\) 4.00000i 0.130884i
\(935\) −8.00000 + 16.0000i −0.261628 + 0.523256i
\(936\) 60.0000i 1.96116i
\(937\) −17.0000 + 17.0000i −0.555366 + 0.555366i −0.927985 0.372619i \(-0.878460\pi\)
0.372619 + 0.927985i \(0.378460\pi\)
\(938\) 0 0
\(939\) 12.0000 + 12.0000i 0.391605 + 0.391605i
\(940\) −24.0000 + 8.00000i −0.782794 + 0.260931i
\(941\) −24.0000 −0.782378 −0.391189 0.920310i \(-0.627936\pi\)
−0.391189 + 0.920310i \(0.627936\pi\)
\(942\) −60.0000 −1.95491
\(943\) 0 0
\(944\) 4.00000 4.00000i 0.130189 0.130189i
\(945\) 0 0
\(946\) 48.0000i 1.56061i
\(947\) 12.0000 0.389948 0.194974 0.980808i \(-0.437538\pi\)
0.194974 + 0.980808i \(0.437538\pi\)
\(948\) 24.0000i 0.779484i
\(949\) −44.0000 44.0000i −1.42830 1.42830i
\(950\) 0 0
\(951\) 76.0000 2.46447
\(952\) 0 0
\(953\) −41.0000 + 41.0000i −1.32812 + 1.32812i −0.421111 + 0.907009i \(0.638360\pi\)
−0.907009 + 0.421111i \(0.861640\pi\)
\(954\) −45.0000 45.0000i −1.45693 1.45693i
\(955\) 14.0000 + 42.0000i 0.453029 + 1.35909i
\(956\) 14.0000 14.0000i 0.452792 0.452792i
\(957\) 16.0000i 0.517207i
\(958\) 10.0000 + 10.0000i 0.323085 + 0.323085i
\(959\) 0 0
\(960\) 42.0000 14.0000i 1.35554 0.451848i
\(961\) 41.0000i 1.32258i
\(962\) −24.0000 + 4.00000i −0.773791 + 0.128965i
\(963\) 30.0000 + 30.0000i 0.966736 + 0.966736i
\(964\) 13.0000 + 13.0000i 0.418702 + 0.418702i
\(965\) 14.0000 28.0000i 0.450676 0.901352i
\(966\) 0 0
\(967\) −40.0000 −1.28631 −0.643157 0.765735i \(-0.722376\pi\)
−0.643157 + 0.765735i \(0.722376\pi\)
\(968\) 15.0000i 0.482118i
\(969\) 0 0
\(970\) 4.00000 8.00000i 0.128432 0.256865i
\(971\) −48.0000 −1.54039 −0.770197 0.637806i \(-0.779842\pi\)
−0.770197 + 0.637806i \(0.779842\pi\)
\(972\) 10.0000 10.0000i 0.320750 0.320750i
\(973\) 0 0
\(974\) 20.0000i 0.640841i
\(975\) 8.00000 56.0000i 0.256205 1.79344i
\(976\) −1.00000 + 1.00000i −0.0320092 + 0.0320092i
\(977\) 18.0000i 0.575871i −0.957650 0.287936i \(-0.907031\pi\)
0.957650 0.287936i \(-0.0929689\pi\)
\(978\) 8.00000 + 8.00000i 0.255812 + 0.255812i
\(979\) −4.00000 + 4.00000i −0.127841 + 0.127841i
\(980\) 7.00000 14.0000i 0.223607 0.447214i
\(981\) 15.0000 + 15.0000i 0.478913 + 0.478913i
\(982\) 8.00000i 0.255290i
\(983\) −12.0000 + 12.0000i −0.382741 + 0.382741i −0.872089 0.489348i \(-0.837235\pi\)
0.489348 + 0.872089i \(0.337235\pi\)
\(984\) 0 0
\(985\) 15.0000 5.00000i 0.477940 0.159313i
\(986\) 2.00000 2.00000i 0.0636930 0.0636930i
\(987\) 0 0
\(988\) 0 0
\(989\) 48.0000 1.52631
\(990\) 20.0000 40.0000i 0.635642 1.27128i
\(991\) −18.0000 + 18.0000i −0.571789 + 0.571789i −0.932628 0.360839i \(-0.882490\pi\)
0.360839 + 0.932628i \(0.382490\pi\)
\(992\) −30.0000 30.0000i −0.952501 0.952501i
\(993\) −16.0000 −0.507745
\(994\) 0 0
\(995\) −18.0000 54.0000i −0.570638 1.71192i
\(996\) −8.00000 −0.253490
\(997\) 28.0000 0.886769 0.443384 0.896332i \(-0.353778\pi\)
0.443384 + 0.896332i \(0.353778\pi\)
\(998\) 12.0000 12.0000i 0.379853 0.379853i
\(999\) 28.0000 + 20.0000i 0.885881 + 0.632772i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 185.2.f.b.43.1 2
5.2 odd 4 185.2.k.a.117.1 yes 2
5.3 odd 4 925.2.k.b.857.1 2
5.4 even 2 925.2.f.a.43.1 2
37.31 odd 4 185.2.k.a.68.1 yes 2
185.68 even 4 925.2.f.a.882.1 2
185.142 even 4 inner 185.2.f.b.142.1 yes 2
185.179 odd 4 925.2.k.b.68.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
185.2.f.b.43.1 2 1.1 even 1 trivial
185.2.f.b.142.1 yes 2 185.142 even 4 inner
185.2.k.a.68.1 yes 2 37.31 odd 4
185.2.k.a.117.1 yes 2 5.2 odd 4
925.2.f.a.43.1 2 5.4 even 2
925.2.f.a.882.1 2 185.68 even 4
925.2.k.b.68.1 2 185.179 odd 4
925.2.k.b.857.1 2 5.3 odd 4