Properties

Label 925.2.bb.e.576.7
Level $925$
Weight $2$
Character 925.576
Analytic conductor $7.386$
Analytic rank $0$
Dimension $96$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [925,2,Mod(151,925)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("925.151"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(925, base_ring=CyclotomicField(18)) chi = DirichletCharacter(H, H._module([0, 13])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 925 = 5^{2} \cdot 37 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 925.bb (of order \(18\), degree \(6\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [96,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.38616218697\)
Analytic rank: \(0\)
Dimension: \(96\)
Relative dimension: \(16\) over \(\Q(\zeta_{18})\)
Twist minimal: no (minimal twist has level 185)
Sato-Tate group: $\mathrm{SU}(2)[C_{18}]$

Embedding invariants

Embedding label 576.7
Character \(\chi\) \(=\) 925.576
Dual form 925.2.bb.e.326.7

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.138747 + 0.381204i) q^{2} +(-2.85950 + 1.04077i) q^{3} +(1.40602 + 1.17979i) q^{4} -1.23446i q^{6} +(0.311866 - 1.76868i) q^{7} +(-1.34746 + 0.777958i) q^{8} +(4.79540 - 4.02382i) q^{9} +(-0.401914 - 0.696135i) q^{11} +(-5.24842 - 1.91027i) q^{12} +(-0.619185 + 0.737916i) q^{13} +(0.630958 + 0.364284i) q^{14} +(0.527835 + 2.99350i) q^{16} +(4.16945 + 4.96895i) q^{17} +(0.868548 + 2.38632i) q^{18} +(1.57597 + 4.32995i) q^{19} +(0.949014 + 5.38213i) q^{21} +(0.321134 - 0.0566245i) q^{22} +(2.01842 + 1.16533i) q^{23} +(3.04339 - 3.62697i) q^{24} +(-0.195387 - 0.338419i) q^{26} +(-4.96003 + 8.59103i) q^{27} +(2.52517 - 2.11887i) q^{28} +(-8.39549 + 4.84714i) q^{29} -5.05958i q^{31} +(-4.27892 - 0.754490i) q^{32} +(1.87379 + 1.57230i) q^{33} +(-2.47268 + 0.899982i) q^{34} +11.4897 q^{36} +(-5.87563 + 1.57385i) q^{37} -1.86926 q^{38} +(1.00256 - 2.75450i) q^{39} +(1.50630 + 1.26393i) q^{41} +(-2.18336 - 0.384985i) q^{42} -8.69915i q^{43} +(0.256195 - 1.45296i) q^{44} +(-0.724279 + 0.607742i) q^{46} +(1.25173 - 2.16806i) q^{47} +(-4.62490 - 8.01056i) q^{48} +(3.54687 + 1.29096i) q^{49} +(-17.0941 - 9.86927i) q^{51} +(-1.74118 + 0.307017i) q^{52} +(1.54232 + 8.74695i) q^{53} +(-2.58674 - 3.08276i) q^{54} +(0.955732 + 2.62585i) q^{56} +(-9.01299 - 10.7413i) q^{57} +(-0.682900 - 3.87292i) q^{58} +(-3.73942 + 0.659360i) q^{59} +(-1.10354 + 1.31515i) q^{61} +(1.92873 + 0.702001i) q^{62} +(-5.62133 - 9.73643i) q^{63} +(-2.15838 + 3.73842i) q^{64} +(-0.859348 + 0.496145i) q^{66} +(-2.17053 + 12.3097i) q^{67} +11.9055i q^{68} +(-6.98451 - 1.23156i) q^{69} +(-12.4371 + 4.52672i) q^{71} +(-3.33126 + 9.15255i) q^{72} -2.72964 q^{73} +(0.215268 - 2.45818i) q^{74} +(-2.89259 + 7.94734i) q^{76} +(-1.35658 + 0.493756i) q^{77} +(0.910926 + 0.764357i) q^{78} +(-8.15046 - 1.43715i) q^{79} +(1.98082 - 11.2338i) q^{81} +(-0.690810 + 0.398839i) q^{82} +(0.555832 - 0.466399i) q^{83} +(-5.01546 + 8.68704i) q^{84} +(3.31615 + 1.20698i) q^{86} +(18.9621 - 22.5982i) q^{87} +(1.08313 + 0.625343i) q^{88} +(-4.75128 + 0.837778i) q^{89} +(1.11204 + 1.32527i) q^{91} +(1.46309 + 4.01980i) q^{92} +(5.26588 + 14.4679i) q^{93} +(0.652799 + 0.777976i) q^{94} +(13.0208 - 2.29592i) q^{96} +(4.98157 + 2.87611i) q^{97} +(-0.984235 + 1.17297i) q^{98} +(-4.72845 - 1.72102i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 96 q + 12 q^{4} + 6 q^{9} - 30 q^{11} + 36 q^{14} + 18 q^{19} - 24 q^{21} - 96 q^{24} + 48 q^{26} + 18 q^{29} + 54 q^{34} + 24 q^{36} + 36 q^{39} + 72 q^{41} + 84 q^{44} - 18 q^{46} + 6 q^{49} - 18 q^{51}+ \cdots + 24 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/925\mathbb{Z}\right)^\times\).

\(n\) \(76\) \(852\)
\(\chi(n)\) \(e\left(\frac{11}{18}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.138747 + 0.381204i −0.0981088 + 0.269552i −0.979032 0.203708i \(-0.934701\pi\)
0.880923 + 0.473260i \(0.156923\pi\)
\(3\) −2.85950 + 1.04077i −1.65093 + 0.600890i −0.988900 0.148584i \(-0.952528\pi\)
−0.662033 + 0.749475i \(0.730306\pi\)
\(4\) 1.40602 + 1.17979i 0.703012 + 0.589897i
\(5\) 0 0
\(6\) 1.23446i 0.503965i
\(7\) 0.311866 1.76868i 0.117874 0.668499i −0.867412 0.497590i \(-0.834218\pi\)
0.985287 0.170909i \(-0.0546704\pi\)
\(8\) −1.34746 + 0.777958i −0.476400 + 0.275050i
\(9\) 4.79540 4.02382i 1.59847 1.34127i
\(10\) 0 0
\(11\) −0.401914 0.696135i −0.121182 0.209893i 0.799052 0.601261i \(-0.205335\pi\)
−0.920234 + 0.391369i \(0.872002\pi\)
\(12\) −5.24842 1.91027i −1.51509 0.551447i
\(13\) −0.619185 + 0.737916i −0.171731 + 0.204661i −0.845044 0.534696i \(-0.820426\pi\)
0.673313 + 0.739357i \(0.264871\pi\)
\(14\) 0.630958 + 0.364284i 0.168631 + 0.0973589i
\(15\) 0 0
\(16\) 0.527835 + 2.99350i 0.131959 + 0.748375i
\(17\) 4.16945 + 4.96895i 1.01124 + 1.20515i 0.978619 + 0.205680i \(0.0659406\pi\)
0.0326197 + 0.999468i \(0.489615\pi\)
\(18\) 0.868548 + 2.38632i 0.204719 + 0.562460i
\(19\) 1.57597 + 4.32995i 0.361553 + 0.993359i 0.978481 + 0.206339i \(0.0661550\pi\)
−0.616927 + 0.787020i \(0.711623\pi\)
\(20\) 0 0
\(21\) 0.949014 + 5.38213i 0.207092 + 1.17448i
\(22\) 0.321134 0.0566245i 0.0684659 0.0120724i
\(23\) 2.01842 + 1.16533i 0.420869 + 0.242989i 0.695449 0.718575i \(-0.255205\pi\)
−0.274580 + 0.961564i \(0.588539\pi\)
\(24\) 3.04339 3.62697i 0.621229 0.740352i
\(25\) 0 0
\(26\) −0.195387 0.338419i −0.0383185 0.0663695i
\(27\) −4.96003 + 8.59103i −0.954559 + 1.65334i
\(28\) 2.52517 2.11887i 0.477213 0.400429i
\(29\) −8.39549 + 4.84714i −1.55900 + 0.900092i −0.561652 + 0.827374i \(0.689834\pi\)
−0.997353 + 0.0727177i \(0.976833\pi\)
\(30\) 0 0
\(31\) 5.05958i 0.908728i −0.890816 0.454364i \(-0.849867\pi\)
0.890816 0.454364i \(-0.150133\pi\)
\(32\) −4.27892 0.754490i −0.756414 0.133376i
\(33\) 1.87379 + 1.57230i 0.326185 + 0.273702i
\(34\) −2.47268 + 0.899982i −0.424061 + 0.154346i
\(35\) 0 0
\(36\) 11.4897 1.91495
\(37\) −5.87563 + 1.57385i −0.965947 + 0.258739i
\(38\) −1.86926 −0.303233
\(39\) 1.00256 2.75450i 0.160538 0.441073i
\(40\) 0 0
\(41\) 1.50630 + 1.26393i 0.235244 + 0.197393i 0.752787 0.658264i \(-0.228709\pi\)
−0.517543 + 0.855657i \(0.673153\pi\)
\(42\) −2.18336 0.384985i −0.336900 0.0594045i
\(43\) 8.69915i 1.32661i −0.748350 0.663304i \(-0.769154\pi\)
0.748350 0.663304i \(-0.230846\pi\)
\(44\) 0.256195 1.45296i 0.0386229 0.219041i
\(45\) 0 0
\(46\) −0.724279 + 0.607742i −0.106789 + 0.0896067i
\(47\) 1.25173 2.16806i 0.182584 0.316244i −0.760176 0.649717i \(-0.774887\pi\)
0.942760 + 0.333473i \(0.108221\pi\)
\(48\) −4.62490 8.01056i −0.667546 1.15622i
\(49\) 3.54687 + 1.29096i 0.506696 + 0.184422i
\(50\) 0 0
\(51\) −17.0941 9.86927i −2.39365 1.38197i
\(52\) −1.74118 + 0.307017i −0.241458 + 0.0425756i
\(53\) 1.54232 + 8.74695i 0.211854 + 1.20149i 0.886282 + 0.463145i \(0.153279\pi\)
−0.674428 + 0.738341i \(0.735610\pi\)
\(54\) −2.58674 3.08276i −0.352011 0.419511i
\(55\) 0 0
\(56\) 0.955732 + 2.62585i 0.127715 + 0.350894i
\(57\) −9.01299 10.7413i −1.19380 1.42272i
\(58\) −0.682900 3.87292i −0.0896692 0.508539i
\(59\) −3.73942 + 0.659360i −0.486831 + 0.0858414i −0.411676 0.911330i \(-0.635056\pi\)
−0.0751552 + 0.997172i \(0.523945\pi\)
\(60\) 0 0
\(61\) −1.10354 + 1.31515i −0.141294 + 0.168387i −0.832050 0.554700i \(-0.812833\pi\)
0.690757 + 0.723087i \(0.257277\pi\)
\(62\) 1.92873 + 0.702001i 0.244949 + 0.0891543i
\(63\) −5.62133 9.73643i −0.708221 1.22667i
\(64\) −2.15838 + 3.73842i −0.269797 + 0.467303i
\(65\) 0 0
\(66\) −0.859348 + 0.496145i −0.105778 + 0.0610712i
\(67\) −2.17053 + 12.3097i −0.265172 + 1.50387i 0.503372 + 0.864070i \(0.332093\pi\)
−0.768544 + 0.639797i \(0.779019\pi\)
\(68\) 11.9055i 1.44376i
\(69\) −6.98451 1.23156i −0.840836 0.148262i
\(70\) 0 0
\(71\) −12.4371 + 4.52672i −1.47601 + 0.537223i −0.949725 0.313086i \(-0.898637\pi\)
−0.526283 + 0.850309i \(0.676415\pi\)
\(72\) −3.33126 + 9.15255i −0.392592 + 1.07864i
\(73\) −2.72964 −0.319480 −0.159740 0.987159i \(-0.551066\pi\)
−0.159740 + 0.987159i \(0.551066\pi\)
\(74\) 0.215268 2.45818i 0.0250244 0.285757i
\(75\) 0 0
\(76\) −2.89259 + 7.94734i −0.331803 + 0.911622i
\(77\) −1.35658 + 0.493756i −0.154597 + 0.0562688i
\(78\) 0.910926 + 0.764357i 0.103142 + 0.0865464i
\(79\) −8.15046 1.43715i −0.916999 0.161692i −0.304819 0.952410i \(-0.598596\pi\)
−0.612180 + 0.790719i \(0.709707\pi\)
\(80\) 0 0
\(81\) 1.98082 11.2338i 0.220091 1.24820i
\(82\) −0.690810 + 0.398839i −0.0762872 + 0.0440444i
\(83\) 0.555832 0.466399i 0.0610105 0.0511939i −0.611772 0.791034i \(-0.709543\pi\)
0.672783 + 0.739840i \(0.265099\pi\)
\(84\) −5.01546 + 8.68704i −0.547232 + 0.947834i
\(85\) 0 0
\(86\) 3.31615 + 1.20698i 0.357590 + 0.130152i
\(87\) 18.9621 22.5982i 2.03295 2.42278i
\(88\) 1.08313 + 0.625343i 0.115462 + 0.0666618i
\(89\) −4.75128 + 0.837778i −0.503634 + 0.0888043i −0.419693 0.907666i \(-0.637862\pi\)
−0.0839418 + 0.996471i \(0.526751\pi\)
\(90\) 0 0
\(91\) 1.11204 + 1.32527i 0.116573 + 0.138926i
\(92\) 1.46309 + 4.01980i 0.152537 + 0.419093i
\(93\) 5.26588 + 14.4679i 0.546046 + 1.50025i
\(94\) 0.652799 + 0.777976i 0.0673311 + 0.0802421i
\(95\) 0 0
\(96\) 13.0208 2.29592i 1.32893 0.234327i
\(97\) 4.98157 + 2.87611i 0.505802 + 0.292025i 0.731106 0.682263i \(-0.239004\pi\)
−0.225304 + 0.974288i \(0.572338\pi\)
\(98\) −0.984235 + 1.17297i −0.0994227 + 0.118487i
\(99\) −4.72845 1.72102i −0.475227 0.172969i
\(100\) 0 0
\(101\) −4.94450 + 8.56413i −0.491996 + 0.852163i −0.999958 0.00921726i \(-0.997066\pi\)
0.507961 + 0.861380i \(0.330399\pi\)
\(102\) 6.13395 5.14700i 0.607352 0.509629i
\(103\) 13.8852 8.01661i 1.36815 0.789900i 0.377456 0.926028i \(-0.376799\pi\)
0.990691 + 0.136128i \(0.0434657\pi\)
\(104\) 0.260261 1.47601i 0.0255207 0.144735i
\(105\) 0 0
\(106\) −3.54836 0.625672i −0.344648 0.0607707i
\(107\) −9.05075 7.59448i −0.874969 0.734186i 0.0901690 0.995926i \(-0.471259\pi\)
−0.965138 + 0.261740i \(0.915704\pi\)
\(108\) −17.1096 + 6.22737i −1.64637 + 0.599229i
\(109\) 3.91897 10.7673i 0.375369 1.03132i −0.597884 0.801582i \(-0.703992\pi\)
0.973253 0.229735i \(-0.0737860\pi\)
\(110\) 0 0
\(111\) 15.1633 10.6156i 1.43924 1.00759i
\(112\) 5.45916 0.515843
\(113\) −5.50132 + 15.1148i −0.517521 + 1.42188i 0.355723 + 0.934592i \(0.384235\pi\)
−0.873243 + 0.487285i \(0.837987\pi\)
\(114\) 5.34514 1.94547i 0.500618 0.182210i
\(115\) 0 0
\(116\) −17.5229 3.08976i −1.62696 0.286877i
\(117\) 6.03009i 0.557482i
\(118\) 0.267482 1.51696i 0.0246237 0.139648i
\(119\) 10.0888 5.82477i 0.924839 0.533956i
\(120\) 0 0
\(121\) 5.17693 8.96671i 0.470630 0.815155i
\(122\) −0.348226 0.603145i −0.0315269 0.0546062i
\(123\) −5.62272 2.04650i −0.506983 0.184527i
\(124\) 5.96926 7.11389i 0.536056 0.638846i
\(125\) 0 0
\(126\) 4.49150 0.791973i 0.400135 0.0705546i
\(127\) −0.389870 2.21106i −0.0345953 0.196200i 0.962612 0.270884i \(-0.0873161\pi\)
−0.997207 + 0.0746845i \(0.976205\pi\)
\(128\) −6.71137 7.99830i −0.593207 0.706956i
\(129\) 9.05384 + 24.8752i 0.797146 + 2.19014i
\(130\) 0 0
\(131\) 7.71599 + 9.19555i 0.674149 + 0.803419i 0.989342 0.145608i \(-0.0465139\pi\)
−0.315193 + 0.949027i \(0.602069\pi\)
\(132\) 0.779607 + 4.42137i 0.0678561 + 0.384831i
\(133\) 8.14980 1.43703i 0.706677 0.124606i
\(134\) −4.39134 2.53534i −0.379354 0.219020i
\(135\) 0 0
\(136\) −9.48380 3.45182i −0.813229 0.295991i
\(137\) 9.14384 + 15.8376i 0.781211 + 1.35310i 0.931237 + 0.364415i \(0.118731\pi\)
−0.150026 + 0.988682i \(0.547936\pi\)
\(138\) 1.43855 2.49165i 0.122458 0.212103i
\(139\) 8.43096 7.07442i 0.715105 0.600044i −0.210922 0.977503i \(-0.567646\pi\)
0.926026 + 0.377459i \(0.123202\pi\)
\(140\) 0 0
\(141\) −1.32286 + 7.50233i −0.111405 + 0.631810i
\(142\) 5.36913i 0.450567i
\(143\) 0.762548 + 0.134458i 0.0637675 + 0.0112439i
\(144\) 14.5765 + 12.2311i 1.21471 + 1.01926i
\(145\) 0 0
\(146\) 0.378729 1.04055i 0.0313439 0.0861165i
\(147\) −11.4859 −0.947339
\(148\) −10.1181 4.71916i −0.831701 0.387913i
\(149\) 9.75416 0.799092 0.399546 0.916713i \(-0.369168\pi\)
0.399546 + 0.916713i \(0.369168\pi\)
\(150\) 0 0
\(151\) −16.7537 + 6.09785i −1.36340 + 0.496236i −0.917103 0.398650i \(-0.869479\pi\)
−0.446294 + 0.894886i \(0.647256\pi\)
\(152\) −5.49208 4.60840i −0.445467 0.373791i
\(153\) 39.9883 + 7.05101i 3.23286 + 0.570041i
\(154\) 0.585642i 0.0471924i
\(155\) 0 0
\(156\) 4.65936 2.69008i 0.373048 0.215379i
\(157\) −1.22447 + 1.02745i −0.0977231 + 0.0819994i −0.690340 0.723485i \(-0.742539\pi\)
0.592617 + 0.805484i \(0.298095\pi\)
\(158\) 1.67870 2.90759i 0.133550 0.231315i
\(159\) −13.5139 23.4067i −1.07172 1.85627i
\(160\) 0 0
\(161\) 2.69058 3.20651i 0.212048 0.252708i
\(162\) 4.00753 + 2.31375i 0.314861 + 0.181785i
\(163\) −4.58162 + 0.807863i −0.358860 + 0.0632767i −0.350172 0.936686i \(-0.613877\pi\)
−0.00868851 + 0.999962i \(0.502766\pi\)
\(164\) 0.626708 + 3.55424i 0.0489376 + 0.277539i
\(165\) 0 0
\(166\) 0.100673 + 0.276597i 0.00781374 + 0.0214681i
\(167\) 4.35935 + 11.9772i 0.337337 + 0.926825i 0.986147 + 0.165875i \(0.0530447\pi\)
−0.648810 + 0.760950i \(0.724733\pi\)
\(168\) −5.46583 6.51392i −0.421698 0.502560i
\(169\) 2.09630 + 11.8887i 0.161254 + 0.914514i
\(170\) 0 0
\(171\) 24.9803 + 14.4224i 1.91029 + 1.10291i
\(172\) 10.2632 12.2312i 0.782562 0.932621i
\(173\) −19.0279 6.92557i −1.44666 0.526542i −0.505004 0.863117i \(-0.668509\pi\)
−0.941657 + 0.336575i \(0.890731\pi\)
\(174\) 5.98358 + 10.3639i 0.453614 + 0.785683i
\(175\) 0 0
\(176\) 1.87174 1.57057i 0.141087 0.118386i
\(177\) 10.0066 5.77732i 0.752144 0.434250i
\(178\) 0.339860 1.92744i 0.0254736 0.144468i
\(179\) 1.15180i 0.0860896i 0.999073 + 0.0430448i \(0.0137058\pi\)
−0.999073 + 0.0430448i \(0.986294\pi\)
\(180\) 0 0
\(181\) 12.8650 + 10.7950i 0.956250 + 0.802389i 0.980339 0.197321i \(-0.0632240\pi\)
−0.0240888 + 0.999710i \(0.507668\pi\)
\(182\) −0.659491 + 0.240035i −0.0488847 + 0.0177926i
\(183\) 1.78680 4.90919i 0.132084 0.362898i
\(184\) −3.62632 −0.267336
\(185\) 0 0
\(186\) −6.24583 −0.457967
\(187\) 1.78330 4.89959i 0.130408 0.358293i
\(188\) 4.31782 1.57156i 0.314910 0.114618i
\(189\) 13.6479 + 11.4520i 0.992741 + 0.833009i
\(190\) 0 0
\(191\) 8.38059i 0.606398i −0.952927 0.303199i \(-0.901945\pi\)
0.952927 0.303199i \(-0.0980547\pi\)
\(192\) 2.28104 12.9364i 0.164620 0.933604i
\(193\) 5.66918 3.27310i 0.408076 0.235603i −0.281887 0.959448i \(-0.590960\pi\)
0.689963 + 0.723845i \(0.257627\pi\)
\(194\) −1.78756 + 1.49994i −0.128340 + 0.107690i
\(195\) 0 0
\(196\) 3.46392 + 5.99969i 0.247423 + 0.428549i
\(197\) −2.73633 0.995942i −0.194955 0.0709580i 0.242697 0.970102i \(-0.421968\pi\)
−0.437653 + 0.899144i \(0.644190\pi\)
\(198\) 1.31212 1.56372i 0.0932480 0.111129i
\(199\) −7.93604 4.58187i −0.562571 0.324800i 0.191606 0.981472i \(-0.438630\pi\)
−0.754177 + 0.656671i \(0.771964\pi\)
\(200\) 0 0
\(201\) −6.60495 37.4585i −0.465877 2.64212i
\(202\) −2.57865 3.07311i −0.181433 0.216223i
\(203\) 5.95478 + 16.3606i 0.417944 + 1.14829i
\(204\) −12.3910 34.0439i −0.867541 2.38355i
\(205\) 0 0
\(206\) 1.12944 + 6.40536i 0.0786917 + 0.446283i
\(207\) 14.3682 2.53350i 0.998659 0.176091i
\(208\) −2.53578 1.46403i −0.175825 0.101512i
\(209\) 2.38082 2.83736i 0.164685 0.196264i
\(210\) 0 0
\(211\) 5.64904 + 9.78442i 0.388896 + 0.673587i 0.992301 0.123847i \(-0.0395233\pi\)
−0.603405 + 0.797435i \(0.706190\pi\)
\(212\) −8.15105 + 14.1180i −0.559817 + 0.969631i
\(213\) 30.8525 25.8883i 2.11398 1.77384i
\(214\) 4.15081 2.39647i 0.283744 0.163819i
\(215\) 0 0
\(216\) 15.4348i 1.05020i
\(217\) −8.94880 1.57791i −0.607484 0.107116i
\(218\) 3.56078 + 2.98785i 0.241167 + 0.202363i
\(219\) 7.80541 2.84094i 0.527441 0.191973i
\(220\) 0 0
\(221\) −6.24833 −0.420308
\(222\) 1.94285 + 7.25321i 0.130395 + 0.486803i
\(223\) 17.5376 1.17440 0.587202 0.809441i \(-0.300230\pi\)
0.587202 + 0.809441i \(0.300230\pi\)
\(224\) −2.66890 + 7.33276i −0.178324 + 0.489940i
\(225\) 0 0
\(226\) −4.99851 4.19425i −0.332496 0.278997i
\(227\) 17.7806 + 3.13521i 1.18014 + 0.208091i 0.729098 0.684410i \(-0.239940\pi\)
0.451046 + 0.892501i \(0.351051\pi\)
\(228\) 25.7359i 1.70440i
\(229\) −1.79675 + 10.1899i −0.118733 + 0.673367i 0.866101 + 0.499868i \(0.166618\pi\)
−0.984834 + 0.173498i \(0.944493\pi\)
\(230\) 0 0
\(231\) 3.36527 2.82379i 0.221418 0.185792i
\(232\) 7.54174 13.0627i 0.495139 0.857607i
\(233\) 7.00549 + 12.1339i 0.458945 + 0.794916i 0.998905 0.0467742i \(-0.0148941\pi\)
−0.539960 + 0.841690i \(0.681561\pi\)
\(234\) −2.29869 0.836656i −0.150270 0.0546939i
\(235\) 0 0
\(236\) −6.03562 3.48467i −0.392885 0.226832i
\(237\) 24.8020 4.37326i 1.61106 0.284074i
\(238\) 0.820636 + 4.65406i 0.0531940 + 0.301678i
\(239\) 4.76612 + 5.68005i 0.308295 + 0.367412i 0.897838 0.440325i \(-0.145137\pi\)
−0.589543 + 0.807737i \(0.700692\pi\)
\(240\) 0 0
\(241\) 2.48441 + 6.82587i 0.160035 + 0.439693i 0.993631 0.112682i \(-0.0359440\pi\)
−0.833596 + 0.552375i \(0.813722\pi\)
\(242\) 2.69986 + 3.21757i 0.173554 + 0.206833i
\(243\) 0.859861 + 4.87651i 0.0551601 + 0.312828i
\(244\) −3.10320 + 0.547178i −0.198662 + 0.0350295i
\(245\) 0 0
\(246\) 1.56027 1.85946i 0.0994791 0.118555i
\(247\) −4.17096 1.51811i −0.265392 0.0965948i
\(248\) 3.93614 + 6.81760i 0.249945 + 0.432918i
\(249\) −1.10399 + 1.91216i −0.0699623 + 0.121178i
\(250\) 0 0
\(251\) 0.716785 0.413836i 0.0452431 0.0261211i −0.477208 0.878790i \(-0.658351\pi\)
0.522451 + 0.852669i \(0.325018\pi\)
\(252\) 3.58325 20.3216i 0.225724 1.28014i
\(253\) 1.87345i 0.117783i
\(254\) 0.896958 + 0.158158i 0.0562802 + 0.00992371i
\(255\) 0 0
\(256\) −4.13268 + 1.50417i −0.258293 + 0.0940109i
\(257\) 5.47478 15.0418i 0.341508 0.938285i −0.643450 0.765488i \(-0.722498\pi\)
0.984958 0.172796i \(-0.0552802\pi\)
\(258\) −10.7387 −0.668563
\(259\) 0.951227 + 10.8829i 0.0591064 + 0.676234i
\(260\) 0 0
\(261\) −20.7557 + 57.0259i −1.28475 + 3.52981i
\(262\) −4.57595 + 1.66551i −0.282703 + 0.102896i
\(263\) −11.7430 9.85352i −0.724102 0.607594i 0.204415 0.978884i \(-0.434471\pi\)
−0.928517 + 0.371291i \(0.878915\pi\)
\(264\) −3.74804 0.660881i −0.230676 0.0406744i
\(265\) 0 0
\(266\) −0.582958 + 3.30612i −0.0357434 + 0.202711i
\(267\) 12.7143 7.34063i 0.778105 0.449239i
\(268\) −17.5747 + 14.7469i −1.07355 + 0.900811i
\(269\) 1.73271 3.00115i 0.105645 0.182983i −0.808356 0.588694i \(-0.799642\pi\)
0.914002 + 0.405710i \(0.132976\pi\)
\(270\) 0 0
\(271\) 9.00650 + 3.27810i 0.547106 + 0.199130i 0.600760 0.799429i \(-0.294865\pi\)
−0.0536543 + 0.998560i \(0.517087\pi\)
\(272\) −12.6738 + 15.1040i −0.768461 + 0.915816i
\(273\) −4.55918 2.63224i −0.275934 0.159311i
\(274\) −7.30603 + 1.28825i −0.441374 + 0.0778261i
\(275\) 0 0
\(276\) −8.36740 9.97188i −0.503658 0.600237i
\(277\) −3.33544 9.16404i −0.200407 0.550614i 0.798255 0.602319i \(-0.205757\pi\)
−0.998662 + 0.0517054i \(0.983534\pi\)
\(278\) 1.52703 + 4.19547i 0.0915849 + 0.251627i
\(279\) −20.3588 24.2627i −1.21885 1.45257i
\(280\) 0 0
\(281\) 8.72852 1.53907i 0.520700 0.0918135i 0.0928798 0.995677i \(-0.470393\pi\)
0.427820 + 0.903864i \(0.359282\pi\)
\(282\) −2.67637 1.54521i −0.159376 0.0920157i
\(283\) −13.6131 + 16.2235i −0.809214 + 0.964384i −0.999851 0.0172765i \(-0.994500\pi\)
0.190636 + 0.981661i \(0.438945\pi\)
\(284\) −22.8274 8.30849i −1.35456 0.493018i
\(285\) 0 0
\(286\) −0.157057 + 0.272031i −0.00928698 + 0.0160855i
\(287\) 2.70526 2.26998i 0.159686 0.133993i
\(288\) −23.5551 + 13.5995i −1.38800 + 0.801360i
\(289\) −4.35418 + 24.6938i −0.256129 + 1.45258i
\(290\) 0 0
\(291\) −17.2382 3.03956i −1.01052 0.178182i
\(292\) −3.83794 3.22041i −0.224598 0.188460i
\(293\) −0.211381 + 0.0769364i −0.0123490 + 0.00449467i −0.348187 0.937425i \(-0.613203\pi\)
0.335838 + 0.941920i \(0.390980\pi\)
\(294\) 1.59363 4.37846i 0.0929423 0.255357i
\(295\) 0 0
\(296\) 6.69280 6.69169i 0.389011 0.388947i
\(297\) 7.97402 0.462700
\(298\) −1.35336 + 3.71832i −0.0783980 + 0.215397i
\(299\) −2.10969 + 0.767866i −0.122007 + 0.0444068i
\(300\) 0 0
\(301\) −15.3860 2.71297i −0.886836 0.156373i
\(302\) 7.23263i 0.416191i
\(303\) 5.22549 29.6352i 0.300197 1.70250i
\(304\) −12.1299 + 7.00318i −0.695695 + 0.401660i
\(305\) 0 0
\(306\) −8.23612 + 14.2654i −0.470828 + 0.815498i
\(307\) 4.07607 + 7.05996i 0.232634 + 0.402933i 0.958582 0.284816i \(-0.0919323\pi\)
−0.725949 + 0.687749i \(0.758599\pi\)
\(308\) −2.48992 0.906257i −0.141876 0.0516388i
\(309\) −31.3612 + 37.3748i −1.78408 + 2.12618i
\(310\) 0 0
\(311\) 13.7812 2.42999i 0.781459 0.137792i 0.231334 0.972874i \(-0.425691\pi\)
0.550125 + 0.835082i \(0.314580\pi\)
\(312\) 0.791979 + 4.49153i 0.0448370 + 0.254283i
\(313\) −14.5358 17.3231i −0.821611 0.979158i 0.178377 0.983962i \(-0.442915\pi\)
−0.999988 + 0.00480401i \(0.998471\pi\)
\(314\) −0.221777 0.609327i −0.0125156 0.0343863i
\(315\) 0 0
\(316\) −9.76420 11.6365i −0.549279 0.654606i
\(317\) −0.972720 5.51657i −0.0546334 0.309842i 0.945229 0.326407i \(-0.105838\pi\)
−0.999863 + 0.0165653i \(0.994727\pi\)
\(318\) 10.7977 1.90393i 0.605506 0.106767i
\(319\) 6.74853 + 3.89626i 0.377845 + 0.218149i
\(320\) 0 0
\(321\) 33.7848 + 12.2966i 1.88568 + 0.686332i
\(322\) 0.849024 + 1.47055i 0.0473143 + 0.0819507i
\(323\) −14.9444 + 25.8844i −0.831528 + 1.44025i
\(324\) 16.0386 13.4580i 0.891035 0.747667i
\(325\) 0 0
\(326\) 0.327725 1.85862i 0.0181510 0.102939i
\(327\) 34.8678i 1.92819i
\(328\) −3.01296 0.531266i −0.166363 0.0293343i
\(329\) −3.44424 2.89006i −0.189887 0.159334i
\(330\) 0 0
\(331\) 8.16552 22.4346i 0.448818 1.23312i −0.484730 0.874664i \(-0.661082\pi\)
0.933548 0.358453i \(-0.116696\pi\)
\(332\) 1.33177 0.0730902
\(333\) −21.8431 + 31.1897i −1.19699 + 1.70918i
\(334\) −5.17061 −0.282923
\(335\) 0 0
\(336\) −15.6105 + 5.68175i −0.851621 + 0.309965i
\(337\) 10.9802 + 9.21347i 0.598129 + 0.501890i 0.890844 0.454310i \(-0.150114\pi\)
−0.292715 + 0.956200i \(0.594559\pi\)
\(338\) −4.82287 0.850402i −0.262329 0.0462558i
\(339\) 48.9462i 2.65840i
\(340\) 0 0
\(341\) −3.52215 + 2.03352i −0.190735 + 0.110121i
\(342\) −8.96382 + 7.52154i −0.484708 + 0.406718i
\(343\) 9.67533 16.7582i 0.522418 0.904855i
\(344\) 6.76757 + 11.7218i 0.364883 + 0.631996i
\(345\) 0 0
\(346\) 5.28011 6.29259i 0.283860 0.338292i
\(347\) −18.5439 10.7063i −0.995488 0.574745i −0.0885777 0.996069i \(-0.528232\pi\)
−0.906910 + 0.421324i \(0.861565\pi\)
\(348\) 53.3224 9.40218i 2.85838 0.504010i
\(349\) −2.33228 13.2270i −0.124844 0.708025i −0.981400 0.191972i \(-0.938512\pi\)
0.856557 0.516053i \(-0.172599\pi\)
\(350\) 0 0
\(351\) −3.26828 8.97953i −0.174448 0.479292i
\(352\) 1.19453 + 3.28195i 0.0636687 + 0.174928i
\(353\) 1.27057 + 1.51420i 0.0676254 + 0.0805928i 0.798797 0.601601i \(-0.205470\pi\)
−0.731171 + 0.682194i \(0.761026\pi\)
\(354\) 0.813951 + 4.61615i 0.0432610 + 0.245345i
\(355\) 0 0
\(356\) −7.66881 4.42759i −0.406446 0.234662i
\(357\) −22.7867 + 27.1561i −1.20600 + 1.43725i
\(358\) −0.439071 0.159809i −0.0232056 0.00844615i
\(359\) 11.2420 + 19.4717i 0.593330 + 1.02768i 0.993780 + 0.111359i \(0.0355202\pi\)
−0.400451 + 0.916318i \(0.631146\pi\)
\(360\) 0 0
\(361\) −1.70994 + 1.43481i −0.0899970 + 0.0755165i
\(362\) −5.90009 + 3.40642i −0.310102 + 0.179038i
\(363\) −5.47113 + 31.0283i −0.287160 + 1.62856i
\(364\) 3.17534i 0.166433i
\(365\) 0 0
\(366\) 1.62349 + 1.36227i 0.0848612 + 0.0712070i
\(367\) −14.9160 + 5.42899i −0.778611 + 0.283391i −0.700593 0.713561i \(-0.747081\pi\)
−0.0780174 + 0.996952i \(0.524859\pi\)
\(368\) −2.42304 + 6.65724i −0.126309 + 0.347032i
\(369\) 12.3091 0.640787
\(370\) 0 0
\(371\) 15.9516 0.828164
\(372\) −9.66516 + 26.5548i −0.501115 + 1.37680i
\(373\) 24.9041 9.06435i 1.28949 0.469334i 0.395927 0.918282i \(-0.370423\pi\)
0.893558 + 0.448948i \(0.148201\pi\)
\(374\) 1.62031 + 1.35960i 0.0837844 + 0.0703035i
\(375\) 0 0
\(376\) 3.89517i 0.200878i
\(377\) 1.62158 9.19645i 0.0835158 0.473641i
\(378\) −6.25915 + 3.61372i −0.321936 + 0.185870i
\(379\) 22.0851 18.5316i 1.13444 0.951906i 0.135195 0.990819i \(-0.456834\pi\)
0.999243 + 0.0389130i \(0.0123895\pi\)
\(380\) 0 0
\(381\) 3.41604 + 5.91676i 0.175009 + 0.303125i
\(382\) 3.19471 + 1.16278i 0.163456 + 0.0594930i
\(383\) 2.72116 3.24296i 0.139045 0.165707i −0.692028 0.721870i \(-0.743283\pi\)
0.831073 + 0.556163i \(0.187727\pi\)
\(384\) 27.5156 + 15.8861i 1.40415 + 0.810685i
\(385\) 0 0
\(386\) 0.461138 + 2.61524i 0.0234713 + 0.133112i
\(387\) −35.0038 41.7159i −1.77934 2.12054i
\(388\) 3.61099 + 9.92111i 0.183320 + 0.503668i
\(389\) −3.67317 10.0919i −0.186237 0.511682i 0.811076 0.584941i \(-0.198882\pi\)
−0.997313 + 0.0732588i \(0.976660\pi\)
\(390\) 0 0
\(391\) 2.62519 + 14.8882i 0.132762 + 0.752929i
\(392\) −5.78358 + 1.01980i −0.292115 + 0.0515078i
\(393\) −31.6343 18.2641i −1.59574 0.921302i
\(394\) 0.759314 0.904915i 0.0382537 0.0455890i
\(395\) 0 0
\(396\) −4.61787 7.99839i −0.232057 0.401934i
\(397\) 16.1531 27.9779i 0.810700 1.40417i −0.101676 0.994818i \(-0.532420\pi\)
0.912375 0.409355i \(-0.134246\pi\)
\(398\) 2.84773 2.38953i 0.142744 0.119776i
\(399\) −21.8087 + 12.5913i −1.09180 + 0.630352i
\(400\) 0 0
\(401\) 4.27679i 0.213573i −0.994282 0.106786i \(-0.965944\pi\)
0.994282 0.106786i \(-0.0340561\pi\)
\(402\) 15.1958 + 2.67942i 0.757896 + 0.133637i
\(403\) 3.73355 + 3.13282i 0.185981 + 0.156057i
\(404\) −17.0560 + 6.20787i −0.848567 + 0.308853i
\(405\) 0 0
\(406\) −7.06294 −0.350528
\(407\) 3.45711 + 3.45768i 0.171362 + 0.171391i
\(408\) 30.7115 1.52045
\(409\) 9.55320 26.2472i 0.472375 1.29784i −0.443463 0.896293i \(-0.646250\pi\)
0.915838 0.401548i \(-0.131528\pi\)
\(410\) 0 0
\(411\) −42.6301 35.7709i −2.10279 1.76445i
\(412\) 28.9808 + 5.11010i 1.42778 + 0.251757i
\(413\) 6.81947i 0.335564i
\(414\) −1.02776 + 5.82873i −0.0505118 + 0.286466i
\(415\) 0 0
\(416\) 3.20620 2.69032i 0.157197 0.131904i
\(417\) −16.7455 + 29.0040i −0.820029 + 1.42033i
\(418\) 0.751279 + 1.30125i 0.0367463 + 0.0636464i
\(419\) 27.4357 + 9.98578i 1.34032 + 0.487837i 0.909914 0.414797i \(-0.136147\pi\)
0.430408 + 0.902634i \(0.358370\pi\)
\(420\) 0 0
\(421\) −1.75178 1.01139i −0.0853766 0.0492922i 0.456704 0.889619i \(-0.349030\pi\)
−0.542081 + 0.840327i \(0.682363\pi\)
\(422\) −4.51365 + 0.795878i −0.219721 + 0.0387427i
\(423\) −2.72133 15.4334i −0.132316 0.750399i
\(424\) −8.88298 10.5863i −0.431395 0.514117i
\(425\) 0 0
\(426\) 5.58804 + 15.3530i 0.270741 + 0.743856i
\(427\) 1.98192 + 2.36196i 0.0959118 + 0.114303i
\(428\) −3.76565 21.3560i −0.182019 1.03228i
\(429\) −2.32045 + 0.409157i −0.112032 + 0.0197543i
\(430\) 0 0
\(431\) −0.140774 + 0.167768i −0.00678084 + 0.00808109i −0.769424 0.638738i \(-0.779457\pi\)
0.762643 + 0.646819i \(0.223901\pi\)
\(432\) −28.3353 10.3132i −1.36328 0.496195i
\(433\) 6.79454 + 11.7685i 0.326525 + 0.565558i 0.981820 0.189815i \(-0.0607890\pi\)
−0.655295 + 0.755373i \(0.727456\pi\)
\(434\) 1.84312 3.19238i 0.0884728 0.153239i
\(435\) 0 0
\(436\) 18.2133 10.5155i 0.872260 0.503599i
\(437\) −1.86487 + 10.5762i −0.0892087 + 0.505927i
\(438\) 3.36962i 0.161007i
\(439\) 7.42186 + 1.30867i 0.354226 + 0.0624596i 0.347930 0.937521i \(-0.386885\pi\)
0.00629609 + 0.999980i \(0.497996\pi\)
\(440\) 0 0
\(441\) 22.2032 8.08131i 1.05730 0.384824i
\(442\) 0.866936 2.38189i 0.0412359 0.113295i
\(443\) −13.6578 −0.648902 −0.324451 0.945902i \(-0.605180\pi\)
−0.324451 + 0.945902i \(0.605180\pi\)
\(444\) 33.8442 + 2.96381i 1.60618 + 0.140656i
\(445\) 0 0
\(446\) −2.43328 + 6.68539i −0.115219 + 0.316563i
\(447\) −27.8920 + 10.1519i −1.31925 + 0.480167i
\(448\) 5.93895 + 4.98337i 0.280589 + 0.235442i
\(449\) 6.70947 + 1.18306i 0.316639 + 0.0558321i 0.329709 0.944083i \(-0.393049\pi\)
−0.0130699 + 0.999915i \(0.504160\pi\)
\(450\) 0 0
\(451\) 0.274466 1.55658i 0.0129241 0.0732963i
\(452\) −25.5673 + 14.7613i −1.20258 + 0.694312i
\(453\) 41.5607 34.8736i 1.95269 1.63850i
\(454\) −3.66216 + 6.34305i −0.171874 + 0.297694i
\(455\) 0 0
\(456\) 20.5009 + 7.46172i 0.960043 + 0.349427i
\(457\) −14.0045 + 16.6899i −0.655102 + 0.780720i −0.986674 0.162710i \(-0.947977\pi\)
0.331572 + 0.943430i \(0.392421\pi\)
\(458\) −3.63513 2.09874i −0.169859 0.0980679i
\(459\) −63.3690 + 11.1737i −2.95781 + 0.521542i
\(460\) 0 0
\(461\) −0.244773 0.291709i −0.0114002 0.0135863i 0.760314 0.649555i \(-0.225045\pi\)
−0.771714 + 0.635969i \(0.780601\pi\)
\(462\) 0.609521 + 1.67464i 0.0283575 + 0.0779115i
\(463\) 2.80442 + 7.70509i 0.130333 + 0.358086i 0.987644 0.156712i \(-0.0500893\pi\)
−0.857312 + 0.514798i \(0.827867\pi\)
\(464\) −18.9414 22.5734i −0.879330 1.04794i
\(465\) 0 0
\(466\) −5.59747 + 0.986985i −0.259298 + 0.0457212i
\(467\) −22.2386 12.8394i −1.02908 0.594138i −0.112357 0.993668i \(-0.535840\pi\)
−0.916720 + 0.399530i \(0.869173\pi\)
\(468\) −7.11426 + 8.47845i −0.328857 + 0.391916i
\(469\) 21.0950 + 7.67795i 0.974076 + 0.354535i
\(470\) 0 0
\(471\) 2.43202 4.21239i 0.112062 0.194096i
\(472\) 4.52577 3.79757i 0.208315 0.174797i
\(473\) −6.05578 + 3.49631i −0.278445 + 0.160760i
\(474\) −1.77409 + 10.0614i −0.0814868 + 0.462135i
\(475\) 0 0
\(476\) 21.0571 + 3.71294i 0.965152 + 0.170182i
\(477\) 42.5922 + 35.7391i 1.95016 + 1.63638i
\(478\) −2.82654 + 1.02878i −0.129283 + 0.0470551i
\(479\) −1.01456 + 2.78748i −0.0463563 + 0.127363i −0.960711 0.277552i \(-0.910477\pi\)
0.914354 + 0.404915i \(0.132699\pi\)
\(480\) 0 0
\(481\) 2.47673 5.31023i 0.112929 0.242125i
\(482\) −2.94675 −0.134221
\(483\) −4.35647 + 11.9693i −0.198226 + 0.544622i
\(484\) 17.8577 6.49969i 0.811716 0.295440i
\(485\) 0 0
\(486\) −1.97825 0.348818i −0.0897351 0.0158227i
\(487\) 34.6469i 1.57000i −0.619495 0.785000i \(-0.712663\pi\)
0.619495 0.785000i \(-0.287337\pi\)
\(488\) 0.463848 2.63061i 0.0209974 0.119082i
\(489\) 12.2603 7.07851i 0.554432 0.320101i
\(490\) 0 0
\(491\) −12.8267 + 22.2166i −0.578863 + 1.00262i 0.416747 + 0.909023i \(0.363170\pi\)
−0.995610 + 0.0935978i \(0.970163\pi\)
\(492\) −5.49122 9.51108i −0.247563 0.428792i
\(493\) −59.0898 21.5069i −2.66127 0.968623i
\(494\) 1.15742 1.37935i 0.0520746 0.0620601i
\(495\) 0 0
\(496\) 15.1459 2.67062i 0.680069 0.119915i
\(497\) 4.12763 + 23.4089i 0.185149 + 1.05003i
\(498\) −0.575749 0.686151i −0.0257999 0.0307471i
\(499\) −1.87592 5.15405i −0.0839778 0.230727i 0.890595 0.454796i \(-0.150288\pi\)
−0.974573 + 0.224069i \(0.928066\pi\)
\(500\) 0 0
\(501\) −24.9311 29.7118i −1.11384 1.32742i
\(502\) 0.0583042 + 0.330660i 0.00260225 + 0.0147581i
\(503\) −23.7543 + 4.18852i −1.05915 + 0.186757i −0.675980 0.736920i \(-0.736279\pi\)
−0.383172 + 0.923677i \(0.625168\pi\)
\(504\) 15.1491 + 8.74631i 0.674792 + 0.389592i
\(505\) 0 0
\(506\) 0.714168 + 0.259936i 0.0317486 + 0.0115556i
\(507\) −18.3678 31.8139i −0.815742 1.41291i
\(508\) 2.06043 3.56877i 0.0914168 0.158338i
\(509\) 15.4148 12.9346i 0.683250 0.573315i −0.233704 0.972308i \(-0.575085\pi\)
0.916954 + 0.398993i \(0.130640\pi\)
\(510\) 0 0
\(511\) −0.851284 + 4.82787i −0.0376586 + 0.213572i
\(512\) 22.6662i 1.00171i
\(513\) −45.0156 7.93747i −1.98749 0.350448i
\(514\) 4.97440 + 4.17402i 0.219411 + 0.184108i
\(515\) 0 0
\(516\) −16.6177 + 45.6568i −0.731554 + 2.00993i
\(517\) −2.01235 −0.0885030
\(518\) −4.28060 1.14736i −0.188079 0.0504123i
\(519\) 61.6181 2.70473
\(520\) 0 0
\(521\) 20.5522 7.48040i 0.900410 0.327722i 0.149993 0.988687i \(-0.452075\pi\)
0.750417 + 0.660965i \(0.229853\pi\)
\(522\) −18.8587 15.8243i −0.825423 0.692612i
\(523\) 28.2762 + 4.98587i 1.23643 + 0.218017i 0.753387 0.657578i \(-0.228419\pi\)
0.483047 + 0.875594i \(0.339530\pi\)
\(524\) 22.0324i 0.962491i
\(525\) 0 0
\(526\) 5.38550 3.10932i 0.234819 0.135573i
\(527\) 25.1408 21.0957i 1.09515 0.918941i
\(528\) −3.71762 + 6.43910i −0.161789 + 0.280226i
\(529\) −8.78399 15.2143i −0.381913 0.661492i
\(530\) 0 0
\(531\) −15.2788 + 18.2086i −0.663046 + 0.790187i
\(532\) 13.1542 + 7.59459i 0.570307 + 0.329267i
\(533\) −1.86535 + 0.328912i −0.0807974 + 0.0142468i
\(534\) 1.03420 + 5.86524i 0.0447542 + 0.253814i
\(535\) 0 0
\(536\) −6.65170 18.2754i −0.287310 0.789377i
\(537\) −1.19876 3.29357i −0.0517304 0.142128i
\(538\) 0.903641 + 1.07692i 0.0389587 + 0.0464292i
\(539\) −0.526857 2.98795i −0.0226933 0.128700i
\(540\) 0 0
\(541\) 6.90596 + 3.98716i 0.296911 + 0.171421i 0.641054 0.767496i \(-0.278497\pi\)
−0.344144 + 0.938917i \(0.611831\pi\)
\(542\) −2.49925 + 2.97849i −0.107352 + 0.127937i
\(543\) −48.0227 17.4788i −2.06085 0.750089i
\(544\) −14.0917 24.4076i −0.604177 1.04647i
\(545\) 0 0
\(546\) 1.63599 1.37276i 0.0700140 0.0587487i
\(547\) −23.3631 + 13.4887i −0.998932 + 0.576734i −0.907932 0.419117i \(-0.862340\pi\)
−0.0910002 + 0.995851i \(0.529006\pi\)
\(548\) −5.82864 + 33.0559i −0.248987 + 1.41208i
\(549\) 10.7471i 0.458674i
\(550\) 0 0
\(551\) −34.2190 28.7131i −1.45778 1.22322i
\(552\) 10.3695 3.77418i 0.441354 0.160640i
\(553\) −5.08371 + 13.9674i −0.216181 + 0.593953i
\(554\) 3.95615 0.168081
\(555\) 0 0
\(556\) 20.2005 0.856691
\(557\) −12.5591 + 34.5058i −0.532146 + 1.46206i 0.324367 + 0.945931i \(0.394849\pi\)
−0.856512 + 0.516127i \(0.827373\pi\)
\(558\) 12.0738 4.39449i 0.511123 0.186034i
\(559\) 6.41924 + 5.38639i 0.271505 + 0.227820i
\(560\) 0 0
\(561\) 15.8664i 0.669879i
\(562\) −0.624354 + 3.54089i −0.0263368 + 0.149363i
\(563\) 26.9217 15.5433i 1.13462 0.655070i 0.189524 0.981876i \(-0.439306\pi\)
0.945092 + 0.326806i \(0.105972\pi\)
\(564\) −10.7112 + 8.98775i −0.451022 + 0.378452i
\(565\) 0 0
\(566\) −4.29567 7.44032i −0.180560 0.312740i
\(567\) −19.2512 7.00688i −0.808476 0.294261i
\(568\) 13.2369 15.7751i 0.555407 0.661908i
\(569\) −1.08438 0.626070i −0.0454598 0.0262462i 0.477098 0.878850i \(-0.341689\pi\)
−0.522558 + 0.852604i \(0.675022\pi\)
\(570\) 0 0
\(571\) 0.709326 + 4.02279i 0.0296844 + 0.168349i 0.996046 0.0888384i \(-0.0283155\pi\)
−0.966362 + 0.257187i \(0.917204\pi\)
\(572\) 0.913528 + 1.08870i 0.0381965 + 0.0455209i
\(573\) 8.72229 + 23.9643i 0.364379 + 1.00112i
\(574\) 0.489979 + 1.34621i 0.0204513 + 0.0561896i
\(575\) 0 0
\(576\) 4.69244 + 26.6121i 0.195518 + 1.10884i
\(577\) 5.31998 0.938057i 0.221474 0.0390518i −0.0618100 0.998088i \(-0.519687\pi\)
0.283284 + 0.959036i \(0.408576\pi\)
\(578\) −8.80925 5.08602i −0.366416 0.211551i
\(579\) −12.8045 + 15.2598i −0.532135 + 0.634174i
\(580\) 0 0
\(581\) −0.651566 1.12854i −0.0270315 0.0468199i
\(582\) 3.55043 6.14953i 0.147170 0.254906i
\(583\) 5.46918 4.58918i 0.226510 0.190065i
\(584\) 3.67809 2.12355i 0.152200 0.0878729i
\(585\) 0 0
\(586\) 0.0912540i 0.00376967i
\(587\) 16.2624 + 2.86751i 0.671222 + 0.118355i 0.498865 0.866680i \(-0.333750\pi\)
0.172358 + 0.985034i \(0.444862\pi\)
\(588\) −16.1494 13.5510i −0.665990 0.558832i
\(589\) 21.9078 7.97377i 0.902693 0.328553i
\(590\) 0 0
\(591\) 8.86108 0.364496
\(592\) −7.81268 16.7580i −0.321099 0.688748i
\(593\) 39.9907 1.64222 0.821112 0.570768i \(-0.193354\pi\)
0.821112 + 0.570768i \(0.193354\pi\)
\(594\) −1.10637 + 3.03973i −0.0453949 + 0.124722i
\(595\) 0 0
\(596\) 13.7146 + 11.5079i 0.561771 + 0.471382i
\(597\) 27.4618 + 4.84225i 1.12394 + 0.198180i
\(598\) 0.910762i 0.0372438i
\(599\) 1.81733 10.3066i 0.0742541 0.421116i −0.924908 0.380191i \(-0.875858\pi\)
0.999162 0.0409251i \(-0.0130305\pi\)
\(600\) 0 0
\(601\) −11.3561 + 9.52890i −0.463225 + 0.388692i −0.844316 0.535846i \(-0.819993\pi\)
0.381091 + 0.924537i \(0.375548\pi\)
\(602\) 3.16896 5.48880i 0.129157 0.223707i
\(603\) 39.1233 + 67.7636i 1.59323 + 2.75955i
\(604\) −30.7503 11.1922i −1.25121 0.455404i
\(605\) 0 0
\(606\) 10.5720 + 6.10377i 0.429460 + 0.247949i
\(607\) −6.61955 + 1.16721i −0.268679 + 0.0473754i −0.306365 0.951914i \(-0.599113\pi\)
0.0376853 + 0.999290i \(0.488002\pi\)
\(608\) −3.47657 19.7166i −0.140993 0.799613i
\(609\) −34.0554 40.5856i −1.37999 1.64461i
\(610\) 0 0
\(611\) 0.824794 + 2.26610i 0.0333676 + 0.0916767i
\(612\) 47.9057 + 57.0918i 1.93647 + 2.30780i
\(613\) 3.18089 + 18.0397i 0.128475 + 0.728617i 0.979183 + 0.202979i \(0.0650623\pi\)
−0.850708 + 0.525638i \(0.823827\pi\)
\(614\) −3.25683 + 0.574266i −0.131435 + 0.0231755i
\(615\) 0 0
\(616\) 1.44382 1.72068i 0.0581734 0.0693283i
\(617\) 3.64931 + 1.32824i 0.146916 + 0.0534730i 0.414431 0.910081i \(-0.363980\pi\)
−0.267516 + 0.963554i \(0.586203\pi\)
\(618\) −9.89615 17.1406i −0.398082 0.689498i
\(619\) −15.3029 + 26.5053i −0.615074 + 1.06534i 0.375297 + 0.926904i \(0.377541\pi\)
−0.990372 + 0.138435i \(0.955793\pi\)
\(620\) 0 0
\(621\) −20.0228 + 11.5602i −0.803489 + 0.463894i
\(622\) −0.985773 + 5.59059i −0.0395259 + 0.224162i
\(623\) 8.66477i 0.347147i
\(624\) 8.77479 + 1.54723i 0.351273 + 0.0619389i
\(625\) 0 0
\(626\) 8.62042 3.13758i 0.344541 0.125403i
\(627\) −3.85492 + 10.5913i −0.153951 + 0.422976i
\(628\) −2.93381 −0.117072
\(629\) −32.3185 22.6336i −1.28862 0.902462i
\(630\) 0 0
\(631\) 15.2339 41.8548i 0.606452 1.66621i −0.131463 0.991321i \(-0.541967\pi\)
0.737915 0.674893i \(-0.235810\pi\)
\(632\) 12.1005 4.40421i 0.481331 0.175190i
\(633\) −26.3368 22.0992i −1.04679 0.878364i
\(634\) 2.23790 + 0.394602i 0.0888784 + 0.0156717i
\(635\) 0 0
\(636\) 8.61426 48.8539i 0.341578 1.93718i
\(637\) −3.14879 + 1.81795i −0.124760 + 0.0720300i
\(638\) −2.42161 + 2.03197i −0.0958724 + 0.0804465i
\(639\) −41.4260 + 71.7519i −1.63879 + 2.83846i
\(640\) 0 0
\(641\) −19.2279 6.99839i −0.759457 0.276420i −0.0668775 0.997761i \(-0.521304\pi\)
−0.692580 + 0.721341i \(0.743526\pi\)
\(642\) −9.37506 + 11.1728i −0.370004 + 0.440954i
\(643\) 11.7364 + 6.77603i 0.462840 + 0.267221i 0.713237 0.700922i \(-0.247228\pi\)
−0.250398 + 0.968143i \(0.580561\pi\)
\(644\) 7.56604 1.33410i 0.298144 0.0525708i
\(645\) 0 0
\(646\) −7.79376 9.28824i −0.306641 0.365441i
\(647\) −4.85094 13.3279i −0.190710 0.523972i 0.807078 0.590445i \(-0.201048\pi\)
−0.997788 + 0.0664728i \(0.978825\pi\)
\(648\) 6.07033 + 16.6781i 0.238465 + 0.655177i
\(649\) 1.96193 + 2.33813i 0.0770124 + 0.0917798i
\(650\) 0 0
\(651\) 27.2313 4.80162i 1.06728 0.188190i
\(652\) −7.39498 4.26949i −0.289610 0.167206i
\(653\) −19.0492 + 22.7020i −0.745453 + 0.888397i −0.996836 0.0794913i \(-0.974670\pi\)
0.251382 + 0.967888i \(0.419115\pi\)
\(654\) −13.2917 4.83779i −0.519748 0.189173i
\(655\) 0 0
\(656\) −2.98851 + 5.17624i −0.116682 + 0.202098i
\(657\) −13.0897 + 10.9836i −0.510678 + 0.428510i
\(658\) 1.57958 0.911970i 0.0615784 0.0355523i
\(659\) 8.14954 46.2183i 0.317461 1.80041i −0.240615 0.970621i \(-0.577349\pi\)
0.558076 0.829790i \(-0.311540\pi\)
\(660\) 0 0
\(661\) 23.7868 + 4.19425i 0.925199 + 0.163138i 0.615897 0.787827i \(-0.288794\pi\)
0.309302 + 0.950964i \(0.399905\pi\)
\(662\) 7.41921 + 6.22546i 0.288356 + 0.241959i
\(663\) 17.8671 6.50309i 0.693901 0.252559i
\(664\) −0.386124 + 1.06087i −0.0149845 + 0.0411697i
\(665\) 0 0
\(666\) −8.85896 12.6541i −0.343278 0.490338i
\(667\) −22.5941 −0.874849
\(668\) −8.00129 + 21.9834i −0.309579 + 0.850562i
\(669\) −50.1487 + 18.2526i −1.93886 + 0.705688i
\(670\) 0 0
\(671\) 1.35905 + 0.239636i 0.0524654 + 0.00925106i
\(672\) 23.7457i 0.916012i
\(673\) 5.36863 30.4470i 0.206946 1.17365i −0.687403 0.726276i \(-0.741249\pi\)
0.894349 0.447370i \(-0.147639\pi\)
\(674\) −5.03568 + 2.90735i −0.193967 + 0.111987i
\(675\) 0 0
\(676\) −11.0788 + 19.1890i −0.426106 + 0.738037i
\(677\) 8.82007 + 15.2768i 0.338983 + 0.587135i 0.984242 0.176829i \(-0.0565838\pi\)
−0.645259 + 0.763964i \(0.723250\pi\)
\(678\) 18.6585 + 6.79114i 0.716575 + 0.260812i
\(679\) 6.64051 7.91386i 0.254840 0.303706i
\(680\) 0 0
\(681\) −54.1068 + 9.54049i −2.07338 + 0.365592i
\(682\) −0.286496 1.62480i −0.0109705 0.0622169i
\(683\) −3.55277 4.23402i −0.135943 0.162010i 0.693778 0.720189i \(-0.255945\pi\)
−0.829721 + 0.558179i \(0.811500\pi\)
\(684\) 18.1075 + 49.7499i 0.692357 + 1.90223i
\(685\) 0 0
\(686\) 5.04585 + 6.01341i 0.192652 + 0.229593i
\(687\) −5.46755 31.0080i −0.208600 1.18303i
\(688\) 26.0409 4.59171i 0.992800 0.175057i
\(689\) −7.40950 4.27788i −0.282280 0.162974i
\(690\) 0 0
\(691\) −22.6364 8.23899i −0.861130 0.313426i −0.126560 0.991959i \(-0.540394\pi\)
−0.734570 + 0.678533i \(0.762616\pi\)
\(692\) −18.5829 32.1865i −0.706414 1.22355i
\(693\) −4.51858 + 7.82640i −0.171647 + 0.297301i
\(694\) 6.65419 5.58353i 0.252590 0.211948i
\(695\) 0 0
\(696\) −7.97032 + 45.2020i −0.302114 + 1.71338i
\(697\) 12.7546i 0.483115i
\(698\) 5.36578 + 0.946131i 0.203098 + 0.0358116i
\(699\) −32.6608 27.4057i −1.23535 1.03658i
\(700\) 0 0
\(701\) −4.40745 + 12.1094i −0.166467 + 0.457365i −0.994676 0.103056i \(-0.967138\pi\)
0.828209 + 0.560420i \(0.189360\pi\)
\(702\) 3.87650 0.146309
\(703\) −16.0745 22.9608i −0.606262 0.865984i
\(704\) 3.46993 0.130778
\(705\) 0 0
\(706\) −0.753506 + 0.274254i −0.0283586 + 0.0103217i
\(707\) 13.6052 + 11.4161i 0.511676 + 0.429347i
\(708\) 20.8856 + 3.68269i 0.784929 + 0.138404i
\(709\) 1.71517i 0.0644146i 0.999481 + 0.0322073i \(0.0102537\pi\)
−0.999481 + 0.0322073i \(0.989746\pi\)
\(710\) 0 0
\(711\) −44.8675 + 25.9043i −1.68266 + 0.971486i
\(712\) 5.75041 4.82517i 0.215506 0.180831i
\(713\) 5.89610 10.2124i 0.220811 0.382456i
\(714\) −7.19043 12.4542i −0.269095 0.466086i
\(715\) 0 0
\(716\) −1.35889 + 1.61946i −0.0507840 + 0.0605220i
\(717\) −19.5404 11.2816i −0.729748 0.421320i
\(718\) −8.98248 + 1.58385i −0.335223 + 0.0591089i
\(719\) −0.0690262 0.391467i −0.00257424 0.0145993i 0.983494 0.180943i \(-0.0579150\pi\)
−0.986068 + 0.166344i \(0.946804\pi\)
\(720\) 0 0
\(721\) −9.84852 27.0586i −0.366778 1.00771i
\(722\) −0.309707 0.850913i −0.0115261 0.0316677i
\(723\) −14.2084 16.9329i −0.528415 0.629740i
\(724\) 5.35261 + 30.3562i 0.198928 + 1.12818i
\(725\) 0 0
\(726\) −11.0690 6.39069i −0.410809 0.237181i
\(727\) −28.5791 + 34.0593i −1.05994 + 1.26319i −0.0964811 + 0.995335i \(0.530759\pi\)
−0.963460 + 0.267853i \(0.913686\pi\)
\(728\) −2.52943 0.920638i −0.0937470 0.0341211i
\(729\) 9.57652 + 16.5870i 0.354686 + 0.614334i
\(730\) 0 0
\(731\) 43.2256 36.2706i 1.59876 1.34152i
\(732\) 8.30411 4.79438i 0.306929 0.177205i
\(733\) −2.88933 + 16.3862i −0.106720 + 0.605238i 0.883800 + 0.467865i \(0.154977\pi\)
−0.990519 + 0.137372i \(0.956134\pi\)
\(734\) 6.43930i 0.237679i
\(735\) 0 0
\(736\) −7.75742 6.50925i −0.285942 0.239934i
\(737\) 9.44156 3.43645i 0.347784 0.126583i
\(738\) −1.70785 + 4.69228i −0.0628669 + 0.172725i
\(739\) −2.89588 −0.106527 −0.0532634 0.998580i \(-0.516962\pi\)
−0.0532634 + 0.998580i \(0.516962\pi\)
\(740\) 0 0
\(741\) 13.5069 0.496187
\(742\) −2.21323 + 6.08080i −0.0812503 + 0.223233i
\(743\) −25.2611 + 9.19428i −0.926739 + 0.337306i −0.760916 0.648850i \(-0.775250\pi\)
−0.165823 + 0.986156i \(0.553028\pi\)
\(744\) −18.3510 15.3983i −0.672779 0.564529i
\(745\) 0 0
\(746\) 10.7512i 0.393629i
\(747\) 0.788734 4.47313i 0.0288583 0.163663i
\(748\) 8.28786 4.78500i 0.303034 0.174957i
\(749\) −16.2549 + 13.6394i −0.593939 + 0.498374i
\(750\) 0 0
\(751\) 14.5769 + 25.2479i 0.531918 + 0.921309i 0.999306 + 0.0372569i \(0.0118620\pi\)
−0.467387 + 0.884053i \(0.654805\pi\)
\(752\) 7.15079 + 2.60268i 0.260763 + 0.0949098i
\(753\) −1.61894 + 1.92937i −0.0589974 + 0.0703103i
\(754\) 3.28073 + 1.89413i 0.119477 + 0.0689802i
\(755\) 0 0
\(756\) 5.67834 + 32.2035i 0.206519 + 1.17123i
\(757\) 20.5151 + 24.4489i 0.745634 + 0.888612i 0.996849 0.0793195i \(-0.0252747\pi\)
−0.251216 + 0.967931i \(0.580830\pi\)
\(758\) 4.00009 + 10.9901i 0.145290 + 0.399180i
\(759\) 1.94984 + 5.35714i 0.0707747 + 0.194452i
\(760\) 0 0
\(761\) −3.89898 22.1122i −0.141338 0.801568i −0.970235 0.242166i \(-0.922142\pi\)
0.828897 0.559402i \(-0.188969\pi\)
\(762\) −2.72946 + 0.481277i −0.0988778 + 0.0174348i
\(763\) −17.8217 10.2894i −0.645189 0.372500i
\(764\) 9.88737 11.7833i 0.357712 0.426305i
\(765\) 0 0
\(766\) 0.858674 + 1.48727i 0.0310252 + 0.0537372i
\(767\) 1.82884 3.16764i 0.0660356 0.114377i
\(768\) 10.2519 8.60237i 0.369934 0.310411i
\(769\) 6.35195 3.66730i 0.229057 0.132246i −0.381080 0.924542i \(-0.624448\pi\)
0.610137 + 0.792296i \(0.291114\pi\)
\(770\) 0 0
\(771\) 48.7102i 1.75425i
\(772\) 11.8326 + 2.08640i 0.425864 + 0.0750913i
\(773\) 36.3314 + 30.4856i 1.30675 + 1.09649i 0.988937 + 0.148338i \(0.0473923\pi\)
0.317811 + 0.948154i \(0.397052\pi\)
\(774\) 20.7589 7.55563i 0.746164 0.271581i
\(775\) 0 0
\(776\) −8.94997 −0.321285
\(777\) −14.0467 30.1298i −0.503923 1.08090i
\(778\) 4.35673 0.156196
\(779\) −3.09888 + 8.51411i −0.111029 + 0.305050i
\(780\) 0 0
\(781\) 8.14983 + 6.83852i 0.291624 + 0.244702i
\(782\) −6.03968 1.06496i −0.215979 0.0380828i
\(783\) 96.1679i 3.43676i
\(784\) −1.99231 + 11.2990i −0.0711541 + 0.403535i
\(785\) 0 0
\(786\) 11.3515 9.52505i 0.404895 0.339747i
\(787\) 7.10871 12.3126i 0.253398 0.438898i −0.711061 0.703130i \(-0.751785\pi\)
0.964459 + 0.264232i \(0.0851184\pi\)
\(788\) −2.67234 4.62862i −0.0951980 0.164888i
\(789\) 43.8343 + 15.9544i 1.56054 + 0.567991i
\(790\) 0 0
\(791\) 25.0175 + 14.4439i 0.889520 + 0.513565i
\(792\) 7.71029 1.35953i 0.273973 0.0483089i
\(793\) −0.287173 1.62864i −0.0101978 0.0578346i
\(794\) 8.42411 + 10.0395i 0.298961 + 0.356287i
\(795\) 0 0
\(796\) −5.75259 15.8051i −0.203895 0.560197i
\(797\) −27.8445 33.1838i −0.986303 1.17543i −0.984492 0.175431i \(-0.943868\pi\)
−0.00181088 0.999998i \(-0.500576\pi\)
\(798\) −1.77395 10.0606i −0.0627972 0.356140i
\(799\) 15.9920 2.81982i 0.565756 0.0997581i
\(800\) 0 0
\(801\) −19.4132 + 23.1357i −0.685931 + 0.817461i
\(802\) 1.63033 + 0.593392i 0.0575690 + 0.0209534i
\(803\) 1.09708 + 1.90020i 0.0387151 + 0.0670566i
\(804\) 34.9066 60.4601i 1.23106 2.13226i
\(805\) 0 0
\(806\) −1.71226 + 0.988575i −0.0603118 + 0.0348211i
\(807\) −1.83118 + 10.3851i −0.0644606 + 0.365574i
\(808\) 15.3865i 0.541293i
\(809\) 0.512621 + 0.0903888i 0.0180228 + 0.00317790i 0.182652 0.983178i \(-0.441532\pi\)
−0.164630 + 0.986355i \(0.552643\pi\)
\(810\) 0 0
\(811\) 40.9174 14.8927i 1.43680 0.522954i 0.497931 0.867217i \(-0.334093\pi\)
0.938873 + 0.344263i \(0.111871\pi\)
\(812\) −10.9296 + 30.0288i −0.383554 + 1.05381i
\(813\) −29.1658 −1.02289
\(814\) −1.79774 + 0.838120i −0.0630109 + 0.0293761i
\(815\) 0 0
\(816\) 20.5208 56.3805i 0.718372 1.97371i
\(817\) 37.6669 13.7096i 1.31780 0.479639i
\(818\) 8.68006 + 7.28343i 0.303491 + 0.254659i
\(819\) 10.6653 + 1.88058i 0.372676 + 0.0657129i
\(820\) 0 0
\(821\) 3.17102 17.9837i 0.110669 0.627637i −0.878134 0.478414i \(-0.841212\pi\)
0.988804 0.149223i \(-0.0476771\pi\)
\(822\) 19.5508 11.2877i 0.681913 0.393703i
\(823\) −5.26394 + 4.41697i −0.183489 + 0.153966i −0.729906 0.683548i \(-0.760436\pi\)
0.546416 + 0.837514i \(0.315992\pi\)
\(824\) −12.4732 + 21.6042i −0.434523 + 0.752616i
\(825\) 0 0
\(826\) −2.59961 0.946181i −0.0904520 0.0329218i
\(827\) 6.98918 8.32938i 0.243038 0.289641i −0.630712 0.776017i \(-0.717237\pi\)
0.873750 + 0.486376i \(0.161682\pi\)
\(828\) 23.1910 + 13.3893i 0.805944 + 0.465312i
\(829\) −39.4462 + 6.95543i −1.37002 + 0.241572i −0.809769 0.586748i \(-0.800408\pi\)
−0.560255 + 0.828320i \(0.689297\pi\)
\(830\) 0 0
\(831\) 19.0754 + 22.7331i 0.661717 + 0.788604i
\(832\) −1.42221 3.90748i −0.0493061 0.135467i
\(833\) 8.37379 + 23.0068i 0.290135 + 0.797139i
\(834\) −8.73306 10.4077i −0.302401 0.360387i
\(835\) 0 0
\(836\) 6.69499 1.18051i 0.231551 0.0408287i
\(837\) 43.4670 + 25.0957i 1.50244 + 0.867434i
\(838\) −7.61324 + 9.07311i −0.262995 + 0.313425i
\(839\) 9.24284 + 3.36412i 0.319098 + 0.116142i 0.496603 0.867978i \(-0.334580\pi\)
−0.177505 + 0.984120i \(0.556803\pi\)
\(840\) 0 0
\(841\) 32.4896 56.2736i 1.12033 1.94047i
\(842\) 0.628601 0.527459i 0.0216630 0.0181774i
\(843\) −23.3574 + 13.4854i −0.804471 + 0.464462i
\(844\) −3.60092 + 20.4218i −0.123949 + 0.702948i
\(845\) 0 0
\(846\) 6.26086 + 1.10396i 0.215253 + 0.0379549i
\(847\) −14.2447 11.9528i −0.489455 0.410702i
\(848\) −25.3699 + 9.23389i −0.871206 + 0.317093i
\(849\) 22.0417 60.5591i 0.756469 2.07838i
\(850\) 0 0
\(851\) −13.6935 3.67038i −0.469408 0.125819i
\(852\) 73.9222 2.53253
\(853\) 14.2889 39.2583i 0.489241 1.34418i −0.412128 0.911126i \(-0.635214\pi\)
0.901369 0.433052i \(-0.142564\pi\)
\(854\) −1.17537 + 0.427801i −0.0402204 + 0.0146390i
\(855\) 0 0
\(856\) 18.1037 + 3.19218i 0.618773 + 0.109106i
\(857\) 22.3532i 0.763572i −0.924251 0.381786i \(-0.875309\pi\)
0.924251 0.381786i \(-0.124691\pi\)
\(858\) 0.165982 0.941333i 0.00566654 0.0321366i
\(859\) −10.1552 + 5.86311i −0.346491 + 0.200047i −0.663139 0.748496i \(-0.730776\pi\)
0.316648 + 0.948543i \(0.397443\pi\)
\(860\) 0 0
\(861\) −5.37315 + 9.30657i −0.183116 + 0.317167i
\(862\) −0.0444218 0.0769408i −0.00151301 0.00262061i
\(863\) −17.7138 6.44728i −0.602983 0.219468i 0.0224469 0.999748i \(-0.492854\pi\)
−0.625430 + 0.780280i \(0.715077\pi\)
\(864\) 27.7054 33.0181i 0.942559 1.12330i
\(865\) 0 0
\(866\) −5.42892 + 0.957264i −0.184482 + 0.0325292i
\(867\) −13.2499 75.1436i −0.449989 2.55201i
\(868\) −10.7206 12.7763i −0.363881 0.433656i
\(869\) 2.27533 + 6.25143i 0.0771854 + 0.212065i
\(870\) 0 0
\(871\) −7.73955 9.22364i −0.262245 0.312531i
\(872\) 3.09582 + 17.5573i 0.104838 + 0.594565i
\(873\) 35.4616 6.25283i 1.20019 0.211626i
\(874\) −3.77294 2.17831i −0.127622 0.0736823i
\(875\) 0 0
\(876\) 14.3263 + 5.21435i 0.484041 + 0.176177i
\(877\) 21.7882 + 37.7383i 0.735735 + 1.27433i 0.954400 + 0.298531i \(0.0964965\pi\)
−0.218665 + 0.975800i \(0.570170\pi\)
\(878\) −1.52863 + 2.64767i −0.0515888 + 0.0893544i
\(879\) 0.524371 0.439999i 0.0176866 0.0148408i
\(880\) 0 0
\(881\) 5.57697 31.6286i 0.187893 1.06559i −0.734289 0.678837i \(-0.762484\pi\)
0.922182 0.386757i \(-0.126405\pi\)
\(882\) 9.58521i 0.322751i
\(883\) 46.3909 + 8.17997i 1.56118 + 0.275278i 0.886463 0.462799i \(-0.153155\pi\)
0.674716 + 0.738077i \(0.264266\pi\)
\(884\) −8.78530 7.37174i −0.295482 0.247938i
\(885\) 0 0
\(886\) 1.89498 5.20641i 0.0636630 0.174913i
\(887\) 14.8997 0.500281 0.250141 0.968210i \(-0.419523\pi\)
0.250141 + 0.968210i \(0.419523\pi\)
\(888\) −12.1735 + 26.1006i −0.408517 + 0.875878i
\(889\) −4.03225 −0.135237
\(890\) 0 0
\(891\) −8.61635 + 3.13609i −0.288659 + 0.105063i
\(892\) 24.6582 + 20.6907i 0.825619 + 0.692777i
\(893\) 11.3603 + 2.00312i 0.380157 + 0.0670320i
\(894\) 12.0411i 0.402714i
\(895\) 0 0
\(896\) −16.2395 + 9.37588i −0.542524 + 0.313226i
\(897\) 5.23349 4.39142i 0.174741 0.146625i
\(898\) −1.38190 + 2.39353i −0.0461148 + 0.0798731i
\(899\) 24.5245 + 42.4777i 0.817938 + 1.41671i
\(900\) 0 0
\(901\) −37.0325 + 44.1337i −1.23373 + 1.47031i
\(902\) 0.555292 + 0.320598i 0.0184892 + 0.0106747i
\(903\) 46.8199 8.25562i 1.55807 0.274730i
\(904\) −4.34582 24.6463i −0.144540 0.819725i
\(905\) 0 0
\(906\) 7.52753 + 20.6817i 0.250085 + 0.687104i
\(907\) −6.30664 17.3274i −0.209409 0.575346i 0.789872 0.613272i \(-0.210147\pi\)
−0.999281 + 0.0379264i \(0.987925\pi\)
\(908\) 21.3011 + 25.3857i 0.706902 + 0.842453i
\(909\) 10.7496 + 60.9642i 0.356543 + 2.02205i
\(910\) 0 0
\(911\) 29.9054 + 17.2659i 0.990810 + 0.572045i 0.905516 0.424311i \(-0.139484\pi\)
0.0852940 + 0.996356i \(0.472817\pi\)
\(912\) 27.3966 32.6500i 0.907192 1.08115i
\(913\) −0.548073 0.199482i −0.0181386 0.00660190i
\(914\) −4.41917 7.65423i −0.146173 0.253179i
\(915\) 0 0
\(916\) −14.5482 + 12.2074i −0.480687 + 0.403345i
\(917\) 18.6704 10.7793i 0.616550 0.355965i
\(918\) 4.53281 25.7068i 0.149605 0.848451i
\(919\) 16.9978i 0.560706i 0.959897 + 0.280353i \(0.0904515\pi\)
−0.959897 + 0.280353i \(0.909549\pi\)
\(920\) 0 0
\(921\) −19.0033 15.9457i −0.626181 0.525429i
\(922\) 0.145162 0.0528347i 0.00478066 0.00174002i
\(923\) 4.36051 11.9804i 0.143528 0.394339i
\(924\) 8.06313 0.265258
\(925\) 0 0
\(926\) −3.32632 −0.109310
\(927\) 34.3276 94.3142i 1.12747 3.09769i
\(928\) 39.5808 14.4062i 1.29930 0.472908i
\(929\) 31.1560 + 26.1430i 1.02219 + 0.857723i 0.989902 0.141755i \(-0.0452746\pi\)
0.0322928 + 0.999478i \(0.489719\pi\)
\(930\) 0 0
\(931\) 17.3923i 0.570010i
\(932\) −4.46558 + 25.3255i −0.146275 + 0.829566i
\(933\) −36.8782 + 21.2916i −1.20734 + 0.697057i
\(934\) 7.97997 6.69599i 0.261113 0.219100i
\(935\) 0 0
\(936\) −4.69115 8.12532i −0.153335 0.265584i
\(937\) −3.84156 1.39821i −0.125498 0.0456776i 0.278508 0.960434i \(-0.410160\pi\)
−0.404006 + 0.914756i \(0.632382\pi\)
\(938\) −5.85373 + 6.97620i −0.191131 + 0.227781i
\(939\) 59.5945 + 34.4069i 1.94479 + 1.12283i
\(940\) 0 0
\(941\) 0.261499 + 1.48304i 0.00852463 + 0.0483456i 0.988773 0.149423i \(-0.0477416\pi\)
−0.980249 + 0.197769i \(0.936631\pi\)
\(942\) 1.26834 + 1.51155i 0.0413248 + 0.0492490i
\(943\) 1.56743 + 4.30648i 0.0510426 + 0.140238i
\(944\) −3.94759 10.8459i −0.128483 0.353004i
\(945\) 0 0
\(946\) −0.492585 2.79359i −0.0160153 0.0908274i
\(947\) 17.5708 3.09820i 0.570973 0.100678i 0.119295 0.992859i \(-0.461937\pi\)
0.451678 + 0.892181i \(0.350826\pi\)
\(948\) 40.0317 + 23.1123i 1.30017 + 0.750653i
\(949\) 1.69015 2.01425i 0.0548647 0.0653852i
\(950\) 0 0
\(951\) 8.52299 + 14.7623i 0.276377 + 0.478699i
\(952\) −9.06285 + 15.6973i −0.293729 + 0.508753i
\(953\) 21.0267 17.6435i 0.681123 0.571530i −0.235212 0.971944i \(-0.575578\pi\)
0.916334 + 0.400415i \(0.131134\pi\)
\(954\) −19.5334 + 11.2776i −0.632417 + 0.365126i
\(955\) 0 0
\(956\) 13.6093i 0.440157i
\(957\) −23.3525 4.11768i −0.754880 0.133106i
\(958\) −0.921830 0.773507i −0.0297830 0.0249909i
\(959\) 30.8633 11.2333i 0.996629 0.362743i
\(960\) 0 0
\(961\) 5.40061 0.174213
\(962\) 1.68064 + 1.68092i 0.0541860 + 0.0541950i
\(963\) −73.9608 −2.38335
\(964\) −4.55998 + 12.5284i −0.146867 + 0.403514i
\(965\) 0 0
\(966\) −3.95830 3.32141i −0.127356 0.106864i
\(967\) −0.515395 0.0908781i −0.0165740 0.00292244i 0.165355 0.986234i \(-0.447123\pi\)
−0.181929 + 0.983312i \(0.558234\pi\)
\(968\) 16.1097i 0.517786i
\(969\) 15.7936 89.5702i 0.507365 2.87741i
\(970\) 0 0
\(971\) −23.5867 + 19.7916i −0.756934 + 0.635143i −0.937327 0.348452i \(-0.886708\pi\)
0.180393 + 0.983595i \(0.442263\pi\)
\(972\) −4.54429 + 7.87095i −0.145758 + 0.252461i
\(973\) −9.88306 17.1180i −0.316836 0.548777i
\(974\) 13.2075 + 4.80715i 0.423197 + 0.154031i
\(975\) 0 0
\(976\) −4.51938 2.60926i −0.144662 0.0835205i
\(977\) 29.8543 5.26411i 0.955123 0.168414i 0.325697 0.945474i \(-0.394401\pi\)
0.629426 + 0.777060i \(0.283290\pi\)
\(978\) 0.997272 + 5.65581i 0.0318892 + 0.180853i
\(979\) 2.49281 + 2.97081i 0.0796705 + 0.0949476i
\(980\) 0 0
\(981\) −24.5325 67.4025i −0.783263 2.15200i
\(982\) −6.68938 7.97209i −0.213467 0.254400i
\(983\) −7.25467 41.1433i −0.231388 1.31227i −0.850088 0.526640i \(-0.823452\pi\)
0.618700 0.785627i \(-0.287660\pi\)
\(984\) 9.16849 1.61665i 0.292281 0.0515370i
\(985\) 0 0
\(986\) 16.3970 19.5412i 0.522188 0.622320i
\(987\) 12.8567 + 4.67945i 0.409233 + 0.148949i
\(988\) −4.07342 7.05537i −0.129593 0.224461i
\(989\) 10.1374 17.5585i 0.322351 0.558328i
\(990\) 0 0
\(991\) −28.7917 + 16.6229i −0.914598 + 0.528043i −0.881908 0.471422i \(-0.843741\pi\)
−0.0326900 + 0.999466i \(0.510407\pi\)
\(992\) −3.81740 + 21.6496i −0.121203 + 0.687375i
\(993\) 72.6501i 2.30548i
\(994\) −9.49628 1.67445i −0.301204 0.0531103i
\(995\) 0 0
\(996\) −3.80819 + 1.38607i −0.120667 + 0.0439192i
\(997\) 2.94764 8.09857i 0.0933526 0.256484i −0.884224 0.467062i \(-0.845312\pi\)
0.977577 + 0.210578i \(0.0675346\pi\)
\(998\) 2.22502 0.0704319
\(999\) 15.6223 58.2840i 0.494269 1.84403i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 925.2.bb.e.576.7 96
5.2 odd 4 185.2.v.a.169.7 yes 96
5.3 odd 4 185.2.v.a.169.10 yes 96
5.4 even 2 inner 925.2.bb.e.576.10 96
37.30 even 18 inner 925.2.bb.e.326.7 96
185.67 odd 36 185.2.v.a.104.10 yes 96
185.104 even 18 inner 925.2.bb.e.326.10 96
185.178 odd 36 185.2.v.a.104.7 96
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
185.2.v.a.104.7 96 185.178 odd 36
185.2.v.a.104.10 yes 96 185.67 odd 36
185.2.v.a.169.7 yes 96 5.2 odd 4
185.2.v.a.169.10 yes 96 5.3 odd 4
925.2.bb.e.326.7 96 37.30 even 18 inner
925.2.bb.e.326.10 96 185.104 even 18 inner
925.2.bb.e.576.7 96 1.1 even 1 trivial
925.2.bb.e.576.10 96 5.4 even 2 inner