Properties

Label 925.2.bb.e.576.12
Level $925$
Weight $2$
Character 925.576
Analytic conductor $7.386$
Analytic rank $0$
Dimension $96$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [925,2,Mod(151,925)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("925.151"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(925, base_ring=CyclotomicField(18)) chi = DirichletCharacter(H, H._module([0, 13])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 925 = 5^{2} \cdot 37 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 925.bb (of order \(18\), degree \(6\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [96,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.38616218697\)
Analytic rank: \(0\)
Dimension: \(96\)
Relative dimension: \(16\) over \(\Q(\zeta_{18})\)
Twist minimal: no (minimal twist has level 185)
Sato-Tate group: $\mathrm{SU}(2)[C_{18}]$

Embedding invariants

Embedding label 576.12
Character \(\chi\) \(=\) 925.576
Dual form 925.2.bb.e.326.12

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.454714 - 1.24932i) q^{2} +(-1.95762 + 0.712514i) q^{3} +(0.178063 + 0.149413i) q^{4} +2.76967i q^{6} +(0.362791 - 2.05749i) q^{7} +(2.57038 - 1.48401i) q^{8} +(1.02645 - 0.861296i) q^{9} +(1.09872 + 1.90303i) q^{11} +(-0.455038 - 0.165620i) q^{12} +(0.0916955 - 0.109278i) q^{13} +(-2.40549 - 1.38881i) q^{14} +(-0.604483 - 3.42819i) q^{16} +(-1.41689 - 1.68858i) q^{17} +(-0.609289 - 1.67401i) q^{18} +(1.39535 + 3.83370i) q^{19} +(0.755786 + 4.28627i) q^{21} +(2.87709 - 0.507309i) q^{22} +(2.41756 + 1.39578i) q^{23} +(-3.97445 + 4.73656i) q^{24} +(-0.0948281 - 0.164247i) q^{26} +(1.72916 - 2.99500i) q^{27} +(0.372015 - 0.312158i) q^{28} +(2.08912 - 1.20615i) q^{29} -7.10743i q^{31} +(1.28810 + 0.227127i) q^{32} +(-3.50681 - 2.94256i) q^{33} +(-2.75385 + 1.00232i) q^{34} +0.311462 q^{36} +(5.77175 + 1.92013i) q^{37} +5.42399 q^{38} +(-0.101642 + 0.279260i) q^{39} +(3.30254 + 2.77116i) q^{41} +(5.69858 + 1.00481i) q^{42} +0.637427i q^{43} +(-0.0886964 + 0.503022i) q^{44} +(2.84307 - 2.38562i) q^{46} +(2.51859 - 4.36233i) q^{47} +(3.62598 + 6.28039i) q^{48} +(2.47619 + 0.901260i) q^{49} +(3.97686 + 2.29604i) q^{51} +(0.0326552 - 0.00575799i) q^{52} +(-2.11651 - 12.0033i) q^{53} +(-2.95542 - 3.52214i) q^{54} +(-2.12083 - 5.82693i) q^{56} +(-5.46313 - 6.51071i) q^{57} +(-0.556915 - 3.15842i) q^{58} +(13.3122 - 2.34730i) q^{59} +(6.93152 - 8.26066i) q^{61} +(-8.87943 - 3.23185i) q^{62} +(-1.39972 - 2.42439i) q^{63} +(4.35055 - 7.53537i) q^{64} +(-5.27078 + 3.04309i) q^{66} +(-0.555953 + 3.15297i) q^{67} -0.512375i q^{68} +(-5.72717 - 1.00985i) q^{69} +(-7.56215 + 2.75240i) q^{71} +(1.36020 - 3.73713i) q^{72} -1.78846 q^{73} +(5.02334 - 6.33763i) q^{74} +(-0.324343 + 0.891124i) q^{76} +(4.31408 - 1.57020i) q^{77} +(0.302665 + 0.253966i) q^{78} +(15.4992 + 2.73292i) q^{79} +(-1.94909 + 11.0539i) q^{81} +(4.96377 - 2.86583i) q^{82} +(-2.54512 + 2.13561i) q^{83} +(-0.505846 + 0.876151i) q^{84} +(0.796348 + 0.289847i) q^{86} +(-3.23029 + 3.84971i) q^{87} +(5.64825 + 3.26102i) q^{88} +(-18.4072 + 3.24569i) q^{89} +(-0.191573 - 0.228308i) q^{91} +(0.221931 + 0.609751i) q^{92} +(5.06414 + 13.9136i) q^{93} +(-4.30469 - 5.13013i) q^{94} +(-2.68343 + 0.473162i) q^{96} +(-8.28814 - 4.78516i) q^{97} +(2.25192 - 2.68373i) q^{98} +(2.76686 + 1.00705i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 96 q + 12 q^{4} + 6 q^{9} - 30 q^{11} + 36 q^{14} + 18 q^{19} - 24 q^{21} - 96 q^{24} + 48 q^{26} + 18 q^{29} + 54 q^{34} + 24 q^{36} + 36 q^{39} + 72 q^{41} + 84 q^{44} - 18 q^{46} + 6 q^{49} - 18 q^{51}+ \cdots + 24 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/925\mathbb{Z}\right)^\times\).

\(n\) \(76\) \(852\)
\(\chi(n)\) \(e\left(\frac{11}{18}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.454714 1.24932i 0.321531 0.883400i −0.668646 0.743581i \(-0.733126\pi\)
0.990177 0.139819i \(-0.0446520\pi\)
\(3\) −1.95762 + 0.712514i −1.13023 + 0.411370i −0.838376 0.545092i \(-0.816495\pi\)
−0.291855 + 0.956463i \(0.594272\pi\)
\(4\) 0.178063 + 0.149413i 0.0890315 + 0.0747063i
\(5\) 0 0
\(6\) 2.76967i 1.13071i
\(7\) 0.362791 2.05749i 0.137122 0.777659i −0.836236 0.548370i \(-0.815249\pi\)
0.973358 0.229289i \(-0.0736402\pi\)
\(8\) 2.57038 1.48401i 0.908768 0.524677i
\(9\) 1.02645 0.861296i 0.342151 0.287099i
\(10\) 0 0
\(11\) 1.09872 + 1.90303i 0.331276 + 0.573786i 0.982762 0.184874i \(-0.0591876\pi\)
−0.651487 + 0.758660i \(0.725854\pi\)
\(12\) −0.455038 0.165620i −0.131358 0.0478104i
\(13\) 0.0916955 0.109278i 0.0254318 0.0303084i −0.753179 0.657816i \(-0.771480\pi\)
0.778610 + 0.627508i \(0.215925\pi\)
\(14\) −2.40549 1.38881i −0.642895 0.371175i
\(15\) 0 0
\(16\) −0.604483 3.42819i −0.151121 0.857049i
\(17\) −1.41689 1.68858i −0.343645 0.409541i 0.566346 0.824168i \(-0.308357\pi\)
−0.909992 + 0.414627i \(0.863912\pi\)
\(18\) −0.609289 1.67401i −0.143611 0.394567i
\(19\) 1.39535 + 3.83370i 0.320116 + 0.879511i 0.990502 + 0.137499i \(0.0439063\pi\)
−0.670386 + 0.742013i \(0.733871\pi\)
\(20\) 0 0
\(21\) 0.755786 + 4.28627i 0.164926 + 0.935342i
\(22\) 2.87709 0.507309i 0.613398 0.108159i
\(23\) 2.41756 + 1.39578i 0.504096 + 0.291040i 0.730404 0.683016i \(-0.239332\pi\)
−0.226307 + 0.974056i \(0.572665\pi\)
\(24\) −3.97445 + 4.73656i −0.811280 + 0.966846i
\(25\) 0 0
\(26\) −0.0948281 0.164247i −0.0185973 0.0322115i
\(27\) 1.72916 2.99500i 0.332778 0.576388i
\(28\) 0.372015 0.312158i 0.0703043 0.0589923i
\(29\) 2.08912 1.20615i 0.387940 0.223977i −0.293327 0.956012i \(-0.594763\pi\)
0.681267 + 0.732035i \(0.261429\pi\)
\(30\) 0 0
\(31\) 7.10743i 1.27653i −0.769816 0.638266i \(-0.779652\pi\)
0.769816 0.638266i \(-0.220348\pi\)
\(32\) 1.28810 + 0.227127i 0.227706 + 0.0401507i
\(33\) −3.50681 2.94256i −0.610457 0.512234i
\(34\) −2.75385 + 1.00232i −0.472281 + 0.171896i
\(35\) 0 0
\(36\) 0.311462 0.0519103
\(37\) 5.77175 + 1.92013i 0.948870 + 0.315667i
\(38\) 5.42399 0.879888
\(39\) −0.101642 + 0.279260i −0.0162758 + 0.0447173i
\(40\) 0 0
\(41\) 3.30254 + 2.77116i 0.515770 + 0.432783i 0.863154 0.504940i \(-0.168486\pi\)
−0.347384 + 0.937723i \(0.612930\pi\)
\(42\) 5.69858 + 1.00481i 0.879310 + 0.155046i
\(43\) 0.637427i 0.0972067i 0.998818 + 0.0486034i \(0.0154770\pi\)
−0.998818 + 0.0486034i \(0.984523\pi\)
\(44\) −0.0886964 + 0.503022i −0.0133715 + 0.0758335i
\(45\) 0 0
\(46\) 2.84307 2.38562i 0.419187 0.351740i
\(47\) 2.51859 4.36233i 0.367374 0.636311i −0.621780 0.783192i \(-0.713590\pi\)
0.989154 + 0.146881i \(0.0469235\pi\)
\(48\) 3.62598 + 6.28039i 0.523366 + 0.906496i
\(49\) 2.47619 + 0.901260i 0.353742 + 0.128751i
\(50\) 0 0
\(51\) 3.97686 + 2.29604i 0.556871 + 0.321510i
\(52\) 0.0326552 0.00575799i 0.00452846 0.000798489i
\(53\) −2.11651 12.0033i −0.290725 1.64879i −0.684086 0.729401i \(-0.739799\pi\)
0.393360 0.919384i \(-0.371312\pi\)
\(54\) −2.95542 3.52214i −0.402182 0.479302i
\(55\) 0 0
\(56\) −2.12083 5.82693i −0.283408 0.778656i
\(57\) −5.46313 6.51071i −0.723610 0.862364i
\(58\) −0.556915 3.15842i −0.0731266 0.414721i
\(59\) 13.3122 2.34730i 1.73310 0.305592i 0.784046 0.620703i \(-0.213153\pi\)
0.949055 + 0.315111i \(0.102042\pi\)
\(60\) 0 0
\(61\) 6.93152 8.26066i 0.887490 1.05767i −0.110474 0.993879i \(-0.535237\pi\)
0.997963 0.0637899i \(-0.0203188\pi\)
\(62\) −8.87943 3.23185i −1.12769 0.410445i
\(63\) −1.39972 2.42439i −0.176348 0.305444i
\(64\) 4.35055 7.53537i 0.543819 0.941921i
\(65\) 0 0
\(66\) −5.27078 + 3.04309i −0.648788 + 0.374578i
\(67\) −0.555953 + 3.15297i −0.0679205 + 0.385196i 0.931831 + 0.362893i \(0.118211\pi\)
−0.999751 + 0.0223030i \(0.992900\pi\)
\(68\) 0.512375i 0.0621345i
\(69\) −5.72717 1.00985i −0.689470 0.121572i
\(70\) 0 0
\(71\) −7.56215 + 2.75240i −0.897462 + 0.326649i −0.749235 0.662304i \(-0.769579\pi\)
−0.148227 + 0.988953i \(0.547357\pi\)
\(72\) 1.36020 3.73713i 0.160302 0.440425i
\(73\) −1.78846 −0.209323 −0.104662 0.994508i \(-0.533376\pi\)
−0.104662 + 0.994508i \(0.533376\pi\)
\(74\) 5.02334 6.33763i 0.583951 0.736735i
\(75\) 0 0
\(76\) −0.324343 + 0.891124i −0.0372047 + 0.102219i
\(77\) 4.31408 1.57020i 0.491635 0.178941i
\(78\) 0.302665 + 0.253966i 0.0342701 + 0.0287560i
\(79\) 15.4992 + 2.73292i 1.74379 + 0.307478i 0.952631 0.304129i \(-0.0983653\pi\)
0.791162 + 0.611606i \(0.209476\pi\)
\(80\) 0 0
\(81\) −1.94909 + 11.0539i −0.216566 + 1.22821i
\(82\) 4.96377 2.86583i 0.548156 0.316478i
\(83\) −2.54512 + 2.13561i −0.279363 + 0.234413i −0.771693 0.635995i \(-0.780590\pi\)
0.492330 + 0.870409i \(0.336145\pi\)
\(84\) −0.505846 + 0.876151i −0.0551923 + 0.0955959i
\(85\) 0 0
\(86\) 0.796348 + 0.289847i 0.0858724 + 0.0312550i
\(87\) −3.23029 + 3.84971i −0.346324 + 0.412732i
\(88\) 5.64825 + 3.26102i 0.602105 + 0.347626i
\(89\) −18.4072 + 3.24569i −1.95116 + 0.344043i −0.951869 + 0.306505i \(0.900840\pi\)
−0.999295 + 0.0375378i \(0.988049\pi\)
\(90\) 0 0
\(91\) −0.191573 0.228308i −0.0200823 0.0239332i
\(92\) 0.221931 + 0.609751i 0.0231379 + 0.0635709i
\(93\) 5.06414 + 13.9136i 0.525127 + 1.44278i
\(94\) −4.30469 5.13013i −0.443995 0.529132i
\(95\) 0 0
\(96\) −2.68343 + 0.473162i −0.273877 + 0.0482919i
\(97\) −8.28814 4.78516i −0.841533 0.485859i 0.0162519 0.999868i \(-0.494827\pi\)
−0.857785 + 0.514009i \(0.828160\pi\)
\(98\) 2.25192 2.68373i 0.227478 0.271098i
\(99\) 2.76686 + 1.00705i 0.278080 + 0.101213i
\(100\) 0 0
\(101\) 0.914760 1.58441i 0.0910220 0.157655i −0.816919 0.576752i \(-0.804320\pi\)
0.907941 + 0.419097i \(0.137653\pi\)
\(102\) 4.67681 3.92431i 0.463073 0.388565i
\(103\) −11.0853 + 6.40012i −1.09227 + 0.630623i −0.934180 0.356802i \(-0.883867\pi\)
−0.158090 + 0.987425i \(0.550534\pi\)
\(104\) 0.0735221 0.416965i 0.00720944 0.0408868i
\(105\) 0 0
\(106\) −15.9584 2.81389i −1.55001 0.273309i
\(107\) 5.67934 + 4.76553i 0.549042 + 0.460701i 0.874617 0.484815i \(-0.161113\pi\)
−0.325574 + 0.945517i \(0.605558\pi\)
\(108\) 0.755391 0.274940i 0.0726875 0.0264561i
\(109\) 2.87069 7.88717i 0.274963 0.755454i −0.722951 0.690899i \(-0.757215\pi\)
0.997914 0.0645550i \(-0.0205628\pi\)
\(110\) 0 0
\(111\) −12.6670 + 0.353584i −1.20230 + 0.0335607i
\(112\) −7.27278 −0.687213
\(113\) −4.25150 + 11.6809i −0.399947 + 1.09885i 0.562363 + 0.826891i \(0.309893\pi\)
−0.962310 + 0.271955i \(0.912330\pi\)
\(114\) −10.6181 + 3.86467i −0.994476 + 0.361960i
\(115\) 0 0
\(116\) 0.552209 + 0.0973694i 0.0512714 + 0.00904052i
\(117\) 0.191146i 0.0176715i
\(118\) 3.12072 17.6985i 0.287286 1.62928i
\(119\) −3.98827 + 2.30263i −0.365604 + 0.211082i
\(120\) 0 0
\(121\) 3.08564 5.34449i 0.280513 0.485862i
\(122\) −7.16832 12.4159i −0.648989 1.12408i
\(123\) −8.43960 3.07176i −0.760973 0.276972i
\(124\) 1.06194 1.26557i 0.0953650 0.113652i
\(125\) 0 0
\(126\) −3.66530 + 0.646291i −0.326531 + 0.0575762i
\(127\) 3.57911 + 20.2981i 0.317594 + 1.80117i 0.557289 + 0.830318i \(0.311841\pi\)
−0.239695 + 0.970848i \(0.577047\pi\)
\(128\) −5.75431 6.85772i −0.508614 0.606143i
\(129\) −0.454176 1.24784i −0.0399879 0.109866i
\(130\) 0 0
\(131\) 0.580925 + 0.692320i 0.0507557 + 0.0604883i 0.790825 0.612042i \(-0.209652\pi\)
−0.740069 + 0.672531i \(0.765207\pi\)
\(132\) −0.184777 1.04792i −0.0160828 0.0912099i
\(133\) 8.39403 1.48009i 0.727855 0.128340i
\(134\) 3.68625 + 2.12826i 0.318444 + 0.183853i
\(135\) 0 0
\(136\) −6.14781 2.23762i −0.527171 0.191874i
\(137\) 1.29879 + 2.24956i 0.110963 + 0.192193i 0.916159 0.400816i \(-0.131273\pi\)
−0.805196 + 0.593009i \(0.797940\pi\)
\(138\) −3.86585 + 6.69585i −0.329083 + 0.569989i
\(139\) −12.1476 + 10.1930i −1.03035 + 0.864563i −0.990892 0.134658i \(-0.957006\pi\)
−0.0394541 + 0.999221i \(0.512562\pi\)
\(140\) 0 0
\(141\) −1.82222 + 10.3343i −0.153458 + 0.870305i
\(142\) 10.6991i 0.897846i
\(143\) 0.308708 + 0.0544336i 0.0258155 + 0.00455196i
\(144\) −3.57316 2.99824i −0.297764 0.249853i
\(145\) 0 0
\(146\) −0.813238 + 2.23435i −0.0673040 + 0.184916i
\(147\) −5.48960 −0.452774
\(148\) 0.740845 + 1.20428i 0.0608971 + 0.0989909i
\(149\) −19.1935 −1.57240 −0.786198 0.617975i \(-0.787953\pi\)
−0.786198 + 0.617975i \(0.787953\pi\)
\(150\) 0 0
\(151\) 11.2417 4.09164i 0.914836 0.332973i 0.158654 0.987334i \(-0.449285\pi\)
0.756182 + 0.654361i \(0.227062\pi\)
\(152\) 9.27585 + 7.78336i 0.752371 + 0.631314i
\(153\) −2.90873 0.512888i −0.235157 0.0414646i
\(154\) 6.10364i 0.491846i
\(155\) 0 0
\(156\) −0.0598237 + 0.0345392i −0.00478973 + 0.00276535i
\(157\) 0.0632556 0.0530778i 0.00504835 0.00423607i −0.640260 0.768158i \(-0.721173\pi\)
0.645308 + 0.763922i \(0.276729\pi\)
\(158\) 10.4620 18.1207i 0.832310 1.44160i
\(159\) 12.6959 + 21.9899i 1.00685 + 1.74391i
\(160\) 0 0
\(161\) 3.74887 4.46774i 0.295453 0.352107i
\(162\) 12.9235 + 7.46137i 1.01536 + 0.586221i
\(163\) 22.2419 3.92185i 1.74212 0.307183i 0.790046 0.613047i \(-0.210057\pi\)
0.952075 + 0.305864i \(0.0989454\pi\)
\(164\) 0.174014 + 0.986883i 0.0135882 + 0.0770626i
\(165\) 0 0
\(166\) 1.51075 + 4.15075i 0.117257 + 0.322160i
\(167\) 3.23359 + 8.88421i 0.250223 + 0.687481i 0.999677 + 0.0254245i \(0.00809375\pi\)
−0.749454 + 0.662056i \(0.769684\pi\)
\(168\) 8.30354 + 9.89577i 0.640632 + 0.763475i
\(169\) 2.25389 + 12.7825i 0.173376 + 0.983266i
\(170\) 0 0
\(171\) 4.73422 + 2.73330i 0.362035 + 0.209021i
\(172\) −0.0952397 + 0.113502i −0.00726196 + 0.00865446i
\(173\) −19.9871 7.27472i −1.51959 0.553086i −0.558546 0.829474i \(-0.688641\pi\)
−0.961046 + 0.276387i \(0.910863\pi\)
\(174\) 3.34065 + 5.78617i 0.253254 + 0.438649i
\(175\) 0 0
\(176\) 5.85981 4.91697i 0.441700 0.370630i
\(177\) −24.3877 + 14.0802i −1.83309 + 1.05834i
\(178\) −4.31513 + 24.4723i −0.323433 + 1.83428i
\(179\) 9.99260i 0.746882i −0.927654 0.373441i \(-0.878178\pi\)
0.927654 0.373441i \(-0.121822\pi\)
\(180\) 0 0
\(181\) −9.05557 7.59852i −0.673095 0.564794i 0.240885 0.970554i \(-0.422562\pi\)
−0.913980 + 0.405760i \(0.867007\pi\)
\(182\) −0.372340 + 0.135521i −0.0275997 + 0.0100455i
\(183\) −7.68341 + 21.1100i −0.567974 + 1.56050i
\(184\) 8.28541 0.610809
\(185\) 0 0
\(186\) 19.6852 1.44339
\(187\) 1.65667 4.55166i 0.121148 0.332850i
\(188\) 1.10026 0.400460i 0.0802444 0.0292066i
\(189\) −5.53486 4.64430i −0.402602 0.337823i
\(190\) 0 0
\(191\) 18.9524i 1.37135i −0.727909 0.685674i \(-0.759507\pi\)
0.727909 0.685674i \(-0.240493\pi\)
\(192\) −3.14765 + 17.8512i −0.227162 + 1.28830i
\(193\) −12.1967 + 7.04176i −0.877937 + 0.506877i −0.869978 0.493091i \(-0.835867\pi\)
−0.00795950 + 0.999968i \(0.502534\pi\)
\(194\) −9.74691 + 8.17863i −0.699787 + 0.587191i
\(195\) 0 0
\(196\) 0.306259 + 0.530456i 0.0218756 + 0.0378897i
\(197\) −13.3080 4.84371i −0.948154 0.345100i −0.178773 0.983890i \(-0.557213\pi\)
−0.769381 + 0.638790i \(0.779435\pi\)
\(198\) 2.51626 2.99876i 0.178823 0.213112i
\(199\) 8.71697 + 5.03275i 0.617930 + 0.356762i 0.776063 0.630656i \(-0.217214\pi\)
−0.158133 + 0.987418i \(0.550547\pi\)
\(200\) 0 0
\(201\) −1.15819 6.56842i −0.0816924 0.463301i
\(202\) −1.56348 1.86328i −0.110006 0.131100i
\(203\) −1.72374 4.73593i −0.120983 0.332397i
\(204\) 0.365074 + 1.00303i 0.0255603 + 0.0702264i
\(205\) 0 0
\(206\) 2.95512 + 16.7593i 0.205893 + 1.16768i
\(207\) 3.68369 0.649534i 0.256034 0.0451457i
\(208\) −0.430056 0.248293i −0.0298190 0.0172160i
\(209\) −5.76257 + 6.86756i −0.398605 + 0.475039i
\(210\) 0 0
\(211\) 6.02963 + 10.4436i 0.415097 + 0.718969i 0.995439 0.0954044i \(-0.0304144\pi\)
−0.580342 + 0.814373i \(0.697081\pi\)
\(212\) 1.41658 2.45359i 0.0972910 0.168513i
\(213\) 12.8427 10.7763i 0.879965 0.738378i
\(214\) 8.53613 4.92834i 0.583518 0.336894i
\(215\) 0 0
\(216\) 10.2644i 0.698403i
\(217\) −14.6235 2.57851i −0.992706 0.175041i
\(218\) −8.54822 7.17281i −0.578959 0.485804i
\(219\) 3.50112 1.27430i 0.236584 0.0861094i
\(220\) 0 0
\(221\) −0.314448 −0.0211520
\(222\) −5.31812 + 15.9859i −0.356929 + 1.07290i
\(223\) 1.11069 0.0743776 0.0371888 0.999308i \(-0.488160\pi\)
0.0371888 + 0.999308i \(0.488160\pi\)
\(224\) 0.934622 2.56785i 0.0624471 0.171572i
\(225\) 0 0
\(226\) 12.6599 + 10.6229i 0.842125 + 0.706627i
\(227\) −9.58318 1.68977i −0.636058 0.112154i −0.153685 0.988120i \(-0.549114\pi\)
−0.482373 + 0.875966i \(0.660225\pi\)
\(228\) 1.97558i 0.130836i
\(229\) 2.60606 14.7797i 0.172213 0.976669i −0.769098 0.639130i \(-0.779294\pi\)
0.941312 0.337539i \(-0.109594\pi\)
\(230\) 0 0
\(231\) −7.32653 + 6.14769i −0.482050 + 0.404488i
\(232\) 3.57989 6.20055i 0.235031 0.407086i
\(233\) 11.1145 + 19.2509i 0.728134 + 1.26117i 0.957671 + 0.287866i \(0.0929456\pi\)
−0.229537 + 0.973300i \(0.573721\pi\)
\(234\) −0.238802 0.0869168i −0.0156110 0.00568193i
\(235\) 0 0
\(236\) 2.72113 + 1.57104i 0.177130 + 0.102266i
\(237\) −32.2887 + 5.69337i −2.09738 + 0.369824i
\(238\) 1.06319 + 6.02965i 0.0689164 + 0.390844i
\(239\) −3.56934 4.25378i −0.230882 0.275154i 0.638148 0.769913i \(-0.279701\pi\)
−0.869030 + 0.494759i \(0.835256\pi\)
\(240\) 0 0
\(241\) 4.93122 + 13.5484i 0.317648 + 0.872731i 0.991054 + 0.133458i \(0.0426082\pi\)
−0.673406 + 0.739272i \(0.735170\pi\)
\(242\) −5.27387 6.28515i −0.339017 0.404025i
\(243\) −2.25886 12.8106i −0.144906 0.821801i
\(244\) 2.46849 0.435262i 0.158029 0.0278648i
\(245\) 0 0
\(246\) −7.67520 + 9.14695i −0.489353 + 0.583188i
\(247\) 0.546889 + 0.199051i 0.0347977 + 0.0126653i
\(248\) −10.5475 18.2688i −0.669767 1.16007i
\(249\) 3.46071 5.99413i 0.219314 0.379863i
\(250\) 0 0
\(251\) −0.243065 + 0.140333i −0.0153421 + 0.00885777i −0.507651 0.861563i \(-0.669486\pi\)
0.492309 + 0.870420i \(0.336153\pi\)
\(252\) 0.112996 0.640830i 0.00711806 0.0403685i
\(253\) 6.13427i 0.385658i
\(254\) 26.9862 + 4.75840i 1.69327 + 0.298569i
\(255\) 0 0
\(256\) 5.16869 1.88125i 0.323043 0.117578i
\(257\) 2.19011 6.01727i 0.136615 0.375347i −0.852454 0.522803i \(-0.824886\pi\)
0.989069 + 0.147456i \(0.0471086\pi\)
\(258\) −1.76546 −0.109913
\(259\) 6.04459 11.1787i 0.375592 0.694612i
\(260\) 0 0
\(261\) 1.10553 3.03741i 0.0684304 0.188011i
\(262\) 1.12908 0.410952i 0.0697548 0.0253887i
\(263\) −17.4300 14.6255i −1.07478 0.901850i −0.0793057 0.996850i \(-0.525270\pi\)
−0.995477 + 0.0950004i \(0.969715\pi\)
\(264\) −13.3806 2.35937i −0.823521 0.145209i
\(265\) 0 0
\(266\) 1.96778 11.1598i 0.120652 0.684252i
\(267\) 33.7217 19.4692i 2.06374 1.19150i
\(268\) −0.570088 + 0.478360i −0.0348237 + 0.0292205i
\(269\) −6.24891 + 10.8234i −0.381003 + 0.659916i −0.991206 0.132329i \(-0.957754\pi\)
0.610203 + 0.792245i \(0.291088\pi\)
\(270\) 0 0
\(271\) 9.15858 + 3.33345i 0.556344 + 0.202493i 0.604863 0.796329i \(-0.293228\pi\)
−0.0485187 + 0.998822i \(0.515450\pi\)
\(272\) −4.93230 + 5.87808i −0.299064 + 0.356411i
\(273\) 0.537700 + 0.310441i 0.0325431 + 0.0187887i
\(274\) 3.40099 0.599687i 0.205462 0.0362284i
\(275\) 0 0
\(276\) −0.868912 1.03553i −0.0523024 0.0623316i
\(277\) 7.47266 + 20.5310i 0.448988 + 1.23359i 0.933429 + 0.358761i \(0.116801\pi\)
−0.484441 + 0.874824i \(0.660977\pi\)
\(278\) 7.21066 + 19.8111i 0.432466 + 1.18819i
\(279\) −6.12160 7.29544i −0.366491 0.436767i
\(280\) 0 0
\(281\) −19.9371 + 3.51546i −1.18935 + 0.209715i −0.733090 0.680132i \(-0.761923\pi\)
−0.456260 + 0.889846i \(0.650811\pi\)
\(282\) 12.0822 + 6.97567i 0.719485 + 0.415395i
\(283\) −16.1985 + 19.3047i −0.962903 + 1.14754i 0.0261013 + 0.999659i \(0.491691\pi\)
−0.989005 + 0.147884i \(0.952754\pi\)
\(284\) −1.75778 0.639781i −0.104305 0.0379640i
\(285\) 0 0
\(286\) 0.208379 0.360922i 0.0123217 0.0213418i
\(287\) 6.89977 5.78960i 0.407281 0.341749i
\(288\) 1.51780 0.876300i 0.0894370 0.0516365i
\(289\) 2.10829 11.9567i 0.124017 0.703334i
\(290\) 0 0
\(291\) 19.6345 + 3.46209i 1.15099 + 0.202951i
\(292\) −0.318459 0.267219i −0.0186364 0.0156378i
\(293\) −7.46503 + 2.71705i −0.436112 + 0.158732i −0.550740 0.834677i \(-0.685654\pi\)
0.114628 + 0.993408i \(0.463432\pi\)
\(294\) −2.49620 + 6.85824i −0.145581 + 0.399981i
\(295\) 0 0
\(296\) 17.6851 3.62989i 1.02793 0.210983i
\(297\) 7.59944 0.440965
\(298\) −8.72757 + 23.9788i −0.505574 + 1.38905i
\(299\) 0.374208 0.136201i 0.0216410 0.00787669i
\(300\) 0 0
\(301\) 1.31150 + 0.231253i 0.0755937 + 0.0133292i
\(302\) 15.9050i 0.915228i
\(303\) −0.661834 + 3.75345i −0.0380214 + 0.215630i
\(304\) 12.2992 7.10095i 0.705408 0.407267i
\(305\) 0 0
\(306\) −1.96340 + 3.40071i −0.112240 + 0.194406i
\(307\) 8.25618 + 14.3001i 0.471205 + 0.816151i 0.999457 0.0329361i \(-0.0104858\pi\)
−0.528252 + 0.849087i \(0.677152\pi\)
\(308\) 1.00279 + 0.364984i 0.0571391 + 0.0207969i
\(309\) 17.1407 20.4274i 0.975098 1.16208i
\(310\) 0 0
\(311\) −21.6718 + 3.82132i −1.22889 + 0.216687i −0.750150 0.661268i \(-0.770019\pi\)
−0.478743 + 0.877955i \(0.658907\pi\)
\(312\) 0.153165 + 0.868643i 0.00867127 + 0.0491772i
\(313\) −3.34370 3.98487i −0.188997 0.225238i 0.663222 0.748422i \(-0.269188\pi\)
−0.852220 + 0.523184i \(0.824744\pi\)
\(314\) −0.0375477 0.103161i −0.00211894 0.00582174i
\(315\) 0 0
\(316\) 2.35150 + 2.80241i 0.132282 + 0.157648i
\(317\) −0.936949 5.31370i −0.0526243 0.298447i 0.947124 0.320867i \(-0.103974\pi\)
−0.999749 + 0.0224194i \(0.992863\pi\)
\(318\) 33.2453 5.86205i 1.86430 0.328727i
\(319\) 4.59070 + 2.65044i 0.257030 + 0.148396i
\(320\) 0 0
\(321\) −14.5135 5.28247i −0.810063 0.294839i
\(322\) −3.87695 6.71507i −0.216054 0.374216i
\(323\) 4.49645 7.78809i 0.250189 0.433341i
\(324\) −1.99865 + 1.67706i −0.111036 + 0.0931703i
\(325\) 0 0
\(326\) 5.21408 29.5705i 0.288781 1.63776i
\(327\) 17.4855i 0.966948i
\(328\) 12.6012 + 2.22194i 0.695786 + 0.122686i
\(329\) −8.06173 6.76460i −0.444458 0.372944i
\(330\) 0 0
\(331\) −0.834469 + 2.29269i −0.0458666 + 0.126017i −0.960511 0.278242i \(-0.910248\pi\)
0.914645 + 0.404259i \(0.132471\pi\)
\(332\) −0.772279 −0.0423843
\(333\) 7.57823 3.00027i 0.415284 0.164414i
\(334\) 12.5695 0.687775
\(335\) 0 0
\(336\) 14.2373 5.18196i 0.776710 0.282699i
\(337\) −13.5936 11.4063i −0.740488 0.621343i 0.192481 0.981301i \(-0.438347\pi\)
−0.932969 + 0.359958i \(0.882791\pi\)
\(338\) 16.9942 + 2.99654i 0.924363 + 0.162990i
\(339\) 25.8960i 1.40648i
\(340\) 0 0
\(341\) 13.5257 7.80906i 0.732457 0.422884i
\(342\) 5.56747 4.67166i 0.301054 0.252615i
\(343\) 10.0650 17.4331i 0.543458 0.941297i
\(344\) 0.945949 + 1.63843i 0.0510021 + 0.0883383i
\(345\) 0 0
\(346\) −18.1768 + 21.6623i −0.977193 + 1.16457i
\(347\) 10.2882 + 5.93991i 0.552301 + 0.318871i 0.750049 0.661382i \(-0.230030\pi\)
−0.197749 + 0.980253i \(0.563363\pi\)
\(348\) −1.15039 + 0.202845i −0.0616674 + 0.0108736i
\(349\) −4.87443 27.6443i −0.260922 1.47976i −0.780401 0.625280i \(-0.784985\pi\)
0.519479 0.854483i \(-0.326126\pi\)
\(350\) 0 0
\(351\) −0.168732 0.463588i −0.00900626 0.0247445i
\(352\) 0.983027 + 2.70084i 0.0523955 + 0.143955i
\(353\) −13.9243 16.5944i −0.741117 0.883228i 0.255382 0.966840i \(-0.417799\pi\)
−0.996498 + 0.0836120i \(0.973354\pi\)
\(354\) 6.50125 + 36.8704i 0.345537 + 1.95964i
\(355\) 0 0
\(356\) −3.76260 2.17234i −0.199417 0.115134i
\(357\) 6.16685 7.34937i 0.326384 0.388970i
\(358\) −12.4839 4.54377i −0.659795 0.240146i
\(359\) 13.0696 + 22.6372i 0.689786 + 1.19474i 0.971907 + 0.235366i \(0.0756288\pi\)
−0.282121 + 0.959379i \(0.591038\pi\)
\(360\) 0 0
\(361\) 1.80459 1.51423i 0.0949784 0.0796963i
\(362\) −13.6106 + 7.85811i −0.715360 + 0.413013i
\(363\) −2.23248 + 12.6610i −0.117175 + 0.664531i
\(364\) 0.0692767i 0.00363109i
\(365\) 0 0
\(366\) 22.8793 + 19.1980i 1.19592 + 1.00350i
\(367\) 10.6051 3.85993i 0.553580 0.201487i −0.0500565 0.998746i \(-0.515940\pi\)
0.603636 + 0.797260i \(0.293718\pi\)
\(368\) 3.32363 9.13159i 0.173256 0.476017i
\(369\) 5.77669 0.300723
\(370\) 0 0
\(371\) −25.4646 −1.32206
\(372\) −1.17713 + 3.23415i −0.0610316 + 0.167683i
\(373\) −10.2653 + 3.73627i −0.531519 + 0.193457i −0.593816 0.804601i \(-0.702379\pi\)
0.0622977 + 0.998058i \(0.480157\pi\)
\(374\) −4.93315 4.13940i −0.255087 0.214043i
\(375\) 0 0
\(376\) 14.9505i 0.771012i
\(377\) 0.0597562 0.338894i 0.00307760 0.0174540i
\(378\) −8.31897 + 4.80296i −0.427882 + 0.247038i
\(379\) −19.4059 + 16.2835i −0.996813 + 0.836425i −0.986540 0.163522i \(-0.947715\pi\)
−0.0102730 + 0.999947i \(0.503270\pi\)
\(380\) 0 0
\(381\) −21.4692 37.1858i −1.09990 1.90508i
\(382\) −23.6776 8.61792i −1.21145 0.440931i
\(383\) 11.0543 13.1740i 0.564850 0.673162i −0.405715 0.913999i \(-0.632978\pi\)
0.970565 + 0.240837i \(0.0774220\pi\)
\(384\) 16.1510 + 9.32476i 0.824200 + 0.475852i
\(385\) 0 0
\(386\) 3.25138 + 18.4395i 0.165491 + 0.938546i
\(387\) 0.549013 + 0.654289i 0.0279079 + 0.0332594i
\(388\) −0.760848 2.09041i −0.0386262 0.106125i
\(389\) 5.33010 + 14.6443i 0.270247 + 0.742497i 0.998371 + 0.0570519i \(0.0181700\pi\)
−0.728124 + 0.685445i \(0.759608\pi\)
\(390\) 0 0
\(391\) −1.06852 6.05991i −0.0540376 0.306463i
\(392\) 7.70224 1.35811i 0.389022 0.0685951i
\(393\) −1.63052 0.941379i −0.0822487 0.0474863i
\(394\) −12.1026 + 14.4234i −0.609722 + 0.726639i
\(395\) 0 0
\(396\) 0.342209 + 0.592723i 0.0171966 + 0.0297854i
\(397\) 1.10014 1.90550i 0.0552144 0.0956341i −0.837097 0.547054i \(-0.815749\pi\)
0.892311 + 0.451420i \(0.149082\pi\)
\(398\) 10.2512 8.60179i 0.513847 0.431169i
\(399\) −15.3777 + 8.87832i −0.769848 + 0.444472i
\(400\) 0 0
\(401\) 21.3109i 1.06422i 0.846677 + 0.532108i \(0.178600\pi\)
−0.846677 + 0.532108i \(0.821400\pi\)
\(402\) −8.73268 1.53981i −0.435546 0.0767986i
\(403\) −0.776689 0.651719i −0.0386896 0.0324645i
\(404\) 0.399616 0.145448i 0.0198816 0.00723632i
\(405\) 0 0
\(406\) −6.70047 −0.332539
\(407\) 2.68746 + 13.0935i 0.133212 + 0.649022i
\(408\) 13.6294 0.674756
\(409\) −4.65509 + 12.7898i −0.230179 + 0.632413i −0.999983 0.00586827i \(-0.998132\pi\)
0.769803 + 0.638281i \(0.220354\pi\)
\(410\) 0 0
\(411\) −4.14537 3.47838i −0.204476 0.171576i
\(412\) −2.93015 0.516664i −0.144358 0.0254542i
\(413\) 28.2413i 1.38966i
\(414\) 0.863552 4.89745i 0.0424413 0.240696i
\(415\) 0 0
\(416\) 0.142933 0.119935i 0.00700786 0.00588030i
\(417\) 16.5177 28.6094i 0.808873 1.40101i
\(418\) 5.95943 + 10.3220i 0.291485 + 0.504867i
\(419\) −16.0684 5.84843i −0.784994 0.285714i −0.0817404 0.996654i \(-0.526048\pi\)
−0.703253 + 0.710939i \(0.748270\pi\)
\(420\) 0 0
\(421\) 8.59287 + 4.96110i 0.418791 + 0.241789i 0.694560 0.719435i \(-0.255599\pi\)
−0.275769 + 0.961224i \(0.588932\pi\)
\(422\) 15.7891 2.78405i 0.768603 0.135525i
\(423\) −1.17204 6.64698i −0.0569866 0.323187i
\(424\) −23.2533 27.7123i −1.12928 1.34583i
\(425\) 0 0
\(426\) −7.62324 20.9447i −0.369347 1.01477i
\(427\) −14.4815 17.2584i −0.700811 0.835194i
\(428\) 0.299250 + 1.69713i 0.0144648 + 0.0820339i
\(429\) −0.643117 + 0.113399i −0.0310500 + 0.00547495i
\(430\) 0 0
\(431\) −5.07276 + 6.04548i −0.244346 + 0.291201i −0.874253 0.485470i \(-0.838649\pi\)
0.629907 + 0.776671i \(0.283093\pi\)
\(432\) −11.3127 4.11748i −0.544282 0.198102i
\(433\) 2.04140 + 3.53581i 0.0981036 + 0.169920i 0.910900 0.412628i \(-0.135389\pi\)
−0.812796 + 0.582548i \(0.802056\pi\)
\(434\) −9.87088 + 17.0969i −0.473817 + 0.820676i
\(435\) 0 0
\(436\) 1.68961 0.975496i 0.0809175 0.0467178i
\(437\) −1.97765 + 11.2158i −0.0946038 + 0.536525i
\(438\) 4.95345i 0.236685i
\(439\) −22.3347 3.93820i −1.06598 0.187960i −0.386969 0.922093i \(-0.626478\pi\)
−0.679006 + 0.734132i \(0.737589\pi\)
\(440\) 0 0
\(441\) 3.31795 1.20763i 0.157997 0.0575064i
\(442\) −0.142984 + 0.392844i −0.00680104 + 0.0186857i
\(443\) 4.29550 0.204085 0.102043 0.994780i \(-0.467462\pi\)
0.102043 + 0.994780i \(0.467462\pi\)
\(444\) −2.30835 1.82965i −0.109550 0.0868313i
\(445\) 0 0
\(446\) 0.505048 1.38761i 0.0239147 0.0657051i
\(447\) 37.5736 13.6757i 1.77717 0.646837i
\(448\) −13.9256 11.6850i −0.657924 0.552064i
\(449\) −13.3603 2.35578i −0.630512 0.111176i −0.150746 0.988573i \(-0.548168\pi\)
−0.479767 + 0.877396i \(0.659279\pi\)
\(450\) 0 0
\(451\) −1.64505 + 9.32957i −0.0774626 + 0.439312i
\(452\) −2.50231 + 1.44471i −0.117699 + 0.0679534i
\(453\) −19.0916 + 16.0197i −0.897001 + 0.752673i
\(454\) −6.46866 + 11.2041i −0.303589 + 0.525832i
\(455\) 0 0
\(456\) −23.7043 8.62766i −1.11006 0.404027i
\(457\) 15.4454 18.4071i 0.722504 0.861047i −0.272368 0.962193i \(-0.587807\pi\)
0.994872 + 0.101147i \(0.0322511\pi\)
\(458\) −17.2795 9.97632i −0.807418 0.466163i
\(459\) −7.50732 + 1.32374i −0.350412 + 0.0617870i
\(460\) 0 0
\(461\) −10.2581 12.2251i −0.477766 0.569379i 0.472296 0.881440i \(-0.343425\pi\)
−0.950062 + 0.312061i \(0.898981\pi\)
\(462\) 4.34893 + 11.9486i 0.202331 + 0.555899i
\(463\) 10.7194 + 29.4514i 0.498175 + 1.36872i 0.893037 + 0.449984i \(0.148570\pi\)
−0.394862 + 0.918741i \(0.629207\pi\)
\(464\) −5.39776 6.43280i −0.250585 0.298635i
\(465\) 0 0
\(466\) 29.1043 5.13188i 1.34823 0.237730i
\(467\) −32.5560 18.7962i −1.50651 0.869786i −0.999971 0.00757047i \(-0.997590\pi\)
−0.506542 0.862215i \(-0.669076\pi\)
\(468\) 0.0285597 0.0340361i 0.00132017 0.00157332i
\(469\) 6.28551 + 2.28774i 0.290238 + 0.105638i
\(470\) 0 0
\(471\) −0.0860116 + 0.148976i −0.00396321 + 0.00686447i
\(472\) 30.7340 25.7889i 1.41465 1.18703i
\(473\) −1.21305 + 0.700352i −0.0557759 + 0.0322022i
\(474\) −7.56930 + 42.9276i −0.347669 + 1.97173i
\(475\) 0 0
\(476\) −1.05421 0.185885i −0.0483195 0.00852003i
\(477\) −12.5109 10.4979i −0.572836 0.480667i
\(478\) −6.93734 + 2.52499i −0.317307 + 0.115490i
\(479\) 6.18829 17.0022i 0.282750 0.776850i −0.714281 0.699859i \(-0.753246\pi\)
0.997032 0.0769916i \(-0.0245315\pi\)
\(480\) 0 0
\(481\) 0.739072 0.454661i 0.0336988 0.0207308i
\(482\) 19.1686 0.873104
\(483\) −4.15553 + 11.4172i −0.189083 + 0.519502i
\(484\) 1.34797 0.490622i 0.0612715 0.0223010i
\(485\) 0 0
\(486\) −17.0316 3.00314i −0.772571 0.136225i
\(487\) 4.82913i 0.218829i 0.993996 + 0.109414i \(0.0348975\pi\)
−0.993996 + 0.109414i \(0.965102\pi\)
\(488\) 5.55774 31.5195i 0.251587 1.42682i
\(489\) −40.7468 + 23.5252i −1.84263 + 1.06384i
\(490\) 0 0
\(491\) −17.3191 + 29.9976i −0.781601 + 1.35377i 0.149408 + 0.988776i \(0.452263\pi\)
−0.931009 + 0.364997i \(0.881070\pi\)
\(492\) −1.04382 1.80795i −0.0470591 0.0815087i
\(493\) −4.99673 1.81866i −0.225041 0.0819084i
\(494\) 0.497356 0.592725i 0.0223771 0.0266680i
\(495\) 0 0
\(496\) −24.3656 + 4.29632i −1.09405 + 0.192911i
\(497\) 2.91955 + 16.5576i 0.130960 + 0.742710i
\(498\) −5.91493 7.04914i −0.265054 0.315880i
\(499\) 6.97162 + 19.1544i 0.312092 + 0.857467i 0.992234 + 0.124386i \(0.0396961\pi\)
−0.680141 + 0.733081i \(0.738082\pi\)
\(500\) 0 0
\(501\) −12.6602 15.0879i −0.565618 0.674078i
\(502\) 0.0647959 + 0.367476i 0.00289198 + 0.0164013i
\(503\) 6.19494 1.09234i 0.276219 0.0487048i −0.0338227 0.999428i \(-0.510768\pi\)
0.310042 + 0.950723i \(0.399657\pi\)
\(504\) −7.19564 4.15441i −0.320519 0.185052i
\(505\) 0 0
\(506\) 7.66364 + 2.78934i 0.340690 + 0.124001i
\(507\) −13.5199 23.4172i −0.600442 1.04000i
\(508\) −2.39549 + 4.14911i −0.106283 + 0.184087i
\(509\) 20.1589 16.9153i 0.893526 0.749757i −0.0753881 0.997154i \(-0.524020\pi\)
0.968914 + 0.247397i \(0.0795751\pi\)
\(510\) 0 0
\(511\) −0.648838 + 3.67974i −0.0287029 + 0.162782i
\(512\) 25.2170i 1.11444i
\(513\) 13.8947 + 2.45001i 0.613467 + 0.108171i
\(514\) −6.52159 5.47227i −0.287655 0.241371i
\(515\) 0 0
\(516\) 0.105571 0.290053i 0.00464750 0.0127689i
\(517\) 11.0689 0.486809
\(518\) −11.2172 12.6347i −0.492856 0.555138i
\(519\) 44.3104 1.94501
\(520\) 0 0
\(521\) −10.5656 + 3.84556i −0.462887 + 0.168477i −0.562928 0.826506i \(-0.690325\pi\)
0.100040 + 0.994983i \(0.468103\pi\)
\(522\) −3.29198 2.76230i −0.144086 0.120903i
\(523\) 22.4946 + 3.96641i 0.983621 + 0.173439i 0.642255 0.766491i \(-0.277999\pi\)
0.341367 + 0.939930i \(0.389110\pi\)
\(524\) 0.210074i 0.00917713i
\(525\) 0 0
\(526\) −26.1976 + 15.1252i −1.14227 + 0.659490i
\(527\) −12.0015 + 10.0704i −0.522792 + 0.438674i
\(528\) −7.96786 + 13.8007i −0.346757 + 0.600600i
\(529\) −7.60360 13.1698i −0.330591 0.572601i
\(530\) 0 0
\(531\) 11.6426 13.8751i 0.505247 0.602130i
\(532\) 1.71581 + 0.990625i 0.0743899 + 0.0429490i
\(533\) 0.605656 0.106794i 0.0262339 0.00462574i
\(534\) −8.98951 50.9820i −0.389014 2.20621i
\(535\) 0 0
\(536\) 3.25002 + 8.92937i 0.140380 + 0.385690i
\(537\) 7.11987 + 19.5617i 0.307245 + 0.844149i
\(538\) 10.6804 + 12.7284i 0.460465 + 0.548761i
\(539\) 1.00551 + 5.70251i 0.0433102 + 0.245624i
\(540\) 0 0
\(541\) −0.0544889 0.0314592i −0.00234266 0.00135254i 0.498828 0.866701i \(-0.333764\pi\)
−0.501171 + 0.865348i \(0.667097\pi\)
\(542\) 8.32907 9.92620i 0.357764 0.426367i
\(543\) 23.1414 + 8.42277i 0.993092 + 0.361456i
\(544\) −1.44157 2.49687i −0.0618068 0.107052i
\(545\) 0 0
\(546\) 0.632338 0.530595i 0.0270616 0.0227074i
\(547\) −2.77677 + 1.60317i −0.118726 + 0.0685464i −0.558187 0.829715i \(-0.688503\pi\)
0.439461 + 0.898262i \(0.355169\pi\)
\(548\) −0.104847 + 0.594620i −0.00447886 + 0.0254009i
\(549\) 14.4493i 0.616679i
\(550\) 0 0
\(551\) 7.53909 + 6.32605i 0.321176 + 0.269499i
\(552\) −16.2197 + 5.90347i −0.690354 + 0.251268i
\(553\) 11.2459 30.8979i 0.478226 1.31391i
\(554\) 29.0476 1.23411
\(555\) 0 0
\(556\) −3.68601 −0.156322
\(557\) 5.13642 14.1122i 0.217637 0.597953i −0.782044 0.623224i \(-0.785823\pi\)
0.999681 + 0.0252709i \(0.00804485\pi\)
\(558\) −11.8979 + 4.33048i −0.503678 + 0.183324i
\(559\) 0.0696570 + 0.0584492i 0.00294618 + 0.00247214i
\(560\) 0 0
\(561\) 10.0908i 0.426034i
\(562\) −4.67378 + 26.5063i −0.197151 + 1.11810i
\(563\) 29.3696 16.9565i 1.23778 0.714633i 0.269141 0.963101i \(-0.413260\pi\)
0.968640 + 0.248468i \(0.0799269\pi\)
\(564\) −1.86854 + 1.56789i −0.0786799 + 0.0660203i
\(565\) 0 0
\(566\) 16.7519 + 29.0152i 0.704136 + 1.21960i
\(567\) 22.0361 + 8.02049i 0.925430 + 0.336829i
\(568\) −15.3530 + 18.2970i −0.644199 + 0.767726i
\(569\) 21.1609 + 12.2173i 0.887111 + 0.512174i 0.872997 0.487726i \(-0.162174\pi\)
0.0141148 + 0.999900i \(0.495507\pi\)
\(570\) 0 0
\(571\) −1.40560 7.97157i −0.0588227 0.333600i 0.941168 0.337939i \(-0.109730\pi\)
−0.999991 + 0.00433936i \(0.998619\pi\)
\(572\) 0.0468365 + 0.0558175i 0.00195833 + 0.00233385i
\(573\) 13.5039 + 37.1016i 0.564132 + 1.54994i
\(574\) −4.09561 11.2526i −0.170948 0.469675i
\(575\) 0 0
\(576\) −2.02455 11.4818i −0.0843564 0.478409i
\(577\) 13.2954 2.34435i 0.553497 0.0975964i 0.110098 0.993921i \(-0.464884\pi\)
0.443399 + 0.896324i \(0.353772\pi\)
\(578\) −13.9790 8.07078i −0.581450 0.335700i
\(579\) 18.8591 22.4754i 0.783757 0.934045i
\(580\) 0 0
\(581\) 3.47065 + 6.01134i 0.143987 + 0.249392i
\(582\) 13.2533 22.9554i 0.549368 0.951533i
\(583\) 20.5173 17.2161i 0.849741 0.713017i
\(584\) −4.59703 + 2.65410i −0.190226 + 0.109827i
\(585\) 0 0
\(586\) 10.5617i 0.436298i
\(587\) 12.2159 + 2.15400i 0.504205 + 0.0889050i 0.419965 0.907540i \(-0.362042\pi\)
0.0842405 + 0.996445i \(0.473154\pi\)
\(588\) −0.977495 0.820215i −0.0403112 0.0338251i
\(589\) 27.2478 9.91737i 1.12272 0.408638i
\(590\) 0 0
\(591\) 29.5031 1.21360
\(592\) 3.09364 20.9474i 0.127148 0.860932i
\(593\) −7.59807 −0.312015 −0.156008 0.987756i \(-0.549862\pi\)
−0.156008 + 0.987756i \(0.549862\pi\)
\(594\) 3.45557 9.49411i 0.141784 0.389548i
\(595\) 0 0
\(596\) −3.41766 2.86776i −0.139993 0.117468i
\(597\) −20.6504 3.64122i −0.845164 0.149025i
\(598\) 0.529437i 0.0216503i
\(599\) 0.841380 4.77171i 0.0343779 0.194967i −0.962782 0.270279i \(-0.912884\pi\)
0.997160 + 0.0753120i \(0.0239953\pi\)
\(600\) 0 0
\(601\) 1.41912 1.19078i 0.0578870 0.0485729i −0.613385 0.789784i \(-0.710193\pi\)
0.671272 + 0.741211i \(0.265748\pi\)
\(602\) 0.885266 1.53333i 0.0360807 0.0624937i
\(603\) 2.14498 + 3.71521i 0.0873502 + 0.151295i
\(604\) 2.61308 + 0.951082i 0.106325 + 0.0386990i
\(605\) 0 0
\(606\) 4.38830 + 2.53358i 0.178262 + 0.102920i
\(607\) 1.87362 0.330369i 0.0760478 0.0134093i −0.135495 0.990778i \(-0.543262\pi\)
0.211543 + 0.977369i \(0.432151\pi\)
\(608\) 0.926617 + 5.25511i 0.0375793 + 0.213123i
\(609\) 6.74883 + 8.04294i 0.273476 + 0.325916i
\(610\) 0 0
\(611\) −0.245765 0.675234i −0.00994259 0.0273170i
\(612\) −0.441306 0.525928i −0.0178387 0.0212594i
\(613\) −4.26097 24.1651i −0.172099 0.976021i −0.941440 0.337182i \(-0.890526\pi\)
0.769341 0.638839i \(-0.220585\pi\)
\(614\) 21.6196 3.81211i 0.872495 0.153844i
\(615\) 0 0
\(616\) 8.75865 10.4382i 0.352896 0.420565i
\(617\) −26.8031 9.75554i −1.07905 0.392743i −0.259498 0.965744i \(-0.583557\pi\)
−0.819555 + 0.573000i \(0.805779\pi\)
\(618\) −17.7262 30.7027i −0.713054 1.23505i
\(619\) −9.57288 + 16.5807i −0.384767 + 0.666435i −0.991737 0.128289i \(-0.959051\pi\)
0.606970 + 0.794725i \(0.292385\pi\)
\(620\) 0 0
\(621\) 8.36071 4.82706i 0.335504 0.193703i
\(622\) −5.08042 + 28.8125i −0.203706 + 1.15528i
\(623\) 39.0503i 1.56452i
\(624\) 1.01880 + 0.179641i 0.0407845 + 0.00719141i
\(625\) 0 0
\(626\) −6.49879 + 2.36537i −0.259744 + 0.0945390i
\(627\) 6.38766 17.5500i 0.255099 0.700878i
\(628\) 0.0191940 0.000765924
\(629\) −4.93563 12.4667i −0.196797 0.497078i
\(630\) 0 0
\(631\) 5.02154 13.7966i 0.199905 0.549233i −0.798718 0.601706i \(-0.794488\pi\)
0.998622 + 0.0524726i \(0.0167102\pi\)
\(632\) 43.8945 15.9763i 1.74603 0.635503i
\(633\) −19.2449 16.1484i −0.764917 0.641842i
\(634\) −7.06454 1.24567i −0.280569 0.0494718i
\(635\) 0 0
\(636\) −1.02490 + 5.81251i −0.0406400 + 0.230481i
\(637\) 0.325544 0.187953i 0.0128985 0.00744697i
\(638\) 5.39870 4.53004i 0.213736 0.179346i
\(639\) −5.39156 + 9.33846i −0.213287 + 0.369424i
\(640\) 0 0
\(641\) 24.9108 + 9.06678i 0.983916 + 0.358116i 0.783361 0.621566i \(-0.213503\pi\)
0.200555 + 0.979683i \(0.435726\pi\)
\(642\) −13.1990 + 15.7299i −0.520921 + 0.620810i
\(643\) 11.5181 + 6.64999i 0.454230 + 0.262250i 0.709615 0.704590i \(-0.248869\pi\)
−0.255385 + 0.966839i \(0.582202\pi\)
\(644\) 1.33507 0.235409i 0.0526092 0.00927643i
\(645\) 0 0
\(646\) −7.68518 9.15884i −0.302369 0.360350i
\(647\) 10.1382 + 27.8545i 0.398574 + 1.09507i 0.962979 + 0.269576i \(0.0868836\pi\)
−0.564405 + 0.825498i \(0.690894\pi\)
\(648\) 11.3941 + 31.3051i 0.447604 + 1.22978i
\(649\) 19.0933 + 22.7545i 0.749479 + 0.893194i
\(650\) 0 0
\(651\) 30.4644 5.37169i 1.19399 0.210533i
\(652\) 4.54644 + 2.62489i 0.178052 + 0.102799i
\(653\) −13.4223 + 15.9960i −0.525253 + 0.625972i −0.961815 0.273702i \(-0.911752\pi\)
0.436561 + 0.899675i \(0.356196\pi\)
\(654\) 21.8449 + 7.95088i 0.854202 + 0.310904i
\(655\) 0 0
\(656\) 7.50375 12.9969i 0.292972 0.507443i
\(657\) −1.83577 + 1.54039i −0.0716202 + 0.0600965i
\(658\) −12.1169 + 6.99569i −0.472366 + 0.272721i
\(659\) 3.22331 18.2803i 0.125562 0.712099i −0.855410 0.517952i \(-0.826695\pi\)
0.980972 0.194148i \(-0.0621942\pi\)
\(660\) 0 0
\(661\) 19.6481 + 3.46449i 0.764222 + 0.134753i 0.542155 0.840278i \(-0.317608\pi\)
0.222067 + 0.975031i \(0.428720\pi\)
\(662\) 2.48484 + 2.08503i 0.0965762 + 0.0810371i
\(663\) 0.615568 0.224048i 0.0239067 0.00870132i
\(664\) −3.37266 + 9.26631i −0.130885 + 0.359603i
\(665\) 0 0
\(666\) −0.302358 10.8319i −0.0117162 0.419726i
\(667\) 6.73409 0.260745
\(668\) −0.751631 + 2.06509i −0.0290815 + 0.0799007i
\(669\) −2.17431 + 0.791385i −0.0840638 + 0.0305967i
\(670\) 0 0
\(671\) 23.3361 + 4.11478i 0.900880 + 0.158849i
\(672\) 5.69280i 0.219605i
\(673\) 0.914124 5.18426i 0.0352369 0.199838i −0.962107 0.272671i \(-0.912093\pi\)
0.997344 + 0.0728329i \(0.0232040\pi\)
\(674\) −20.4313 + 11.7960i −0.786984 + 0.454366i
\(675\) 0 0
\(676\) −1.50853 + 2.61284i −0.0580202 + 0.100494i
\(677\) −9.17542 15.8923i −0.352640 0.610791i 0.634071 0.773275i \(-0.281383\pi\)
−0.986711 + 0.162484i \(0.948049\pi\)
\(678\) −32.3522 11.7753i −1.24248 0.452226i
\(679\) −12.8523 + 15.3168i −0.493226 + 0.587804i
\(680\) 0 0
\(681\) 19.9642 3.52022i 0.765029 0.134895i
\(682\) −3.60566 20.4487i −0.138068 0.783023i
\(683\) −1.40769 1.67762i −0.0538636 0.0641922i 0.738440 0.674319i \(-0.235563\pi\)
−0.792304 + 0.610127i \(0.791118\pi\)
\(684\) 0.434599 + 1.19405i 0.0166173 + 0.0456557i
\(685\) 0 0
\(686\) −17.2027 20.5014i −0.656803 0.782748i
\(687\) 5.42907 + 30.7898i 0.207132 + 1.17470i
\(688\) 2.18522 0.385314i 0.0833109 0.0146900i
\(689\) −1.50578 0.869363i −0.0573657 0.0331201i
\(690\) 0 0
\(691\) 21.0301 + 7.65434i 0.800023 + 0.291185i 0.709496 0.704709i \(-0.248923\pi\)
0.0905272 + 0.995894i \(0.471145\pi\)
\(692\) −2.47203 4.28169i −0.0939726 0.162765i
\(693\) 3.07580 5.32744i 0.116840 0.202373i
\(694\) 12.0990 10.1523i 0.459272 0.385375i
\(695\) 0 0
\(696\) −2.59007 + 14.6890i −0.0981764 + 0.556786i
\(697\) 9.50302i 0.359953i
\(698\) −36.7529 6.48052i −1.39112 0.245291i
\(699\) −35.4744 29.7666i −1.34177 1.12587i
\(700\) 0 0
\(701\) 16.5034 45.3428i 0.623326 1.71257i −0.0753692 0.997156i \(-0.524014\pi\)
0.698695 0.715419i \(-0.253764\pi\)
\(702\) −0.655893 −0.0247551
\(703\) 0.692441 + 24.8064i 0.0261159 + 0.935592i
\(704\) 19.1201 0.720616
\(705\) 0 0
\(706\) −27.0632 + 9.85019i −1.01854 + 0.370717i
\(707\) −2.92804 2.45692i −0.110120 0.0924020i
\(708\) −6.44631 1.13666i −0.242267 0.0427183i
\(709\) 35.8242i 1.34540i 0.739913 + 0.672702i \(0.234867\pi\)
−0.739913 + 0.672702i \(0.765133\pi\)
\(710\) 0 0
\(711\) 18.2630 10.5442i 0.684917 0.395437i
\(712\) −42.4970 + 35.6592i −1.59264 + 1.33639i
\(713\) 9.92040 17.1826i 0.371522 0.643495i
\(714\) −6.37753 11.0462i −0.238673 0.413394i
\(715\) 0 0
\(716\) 1.49302 1.77931i 0.0557968 0.0664961i
\(717\) 10.0183 + 5.78406i 0.374140 + 0.216010i
\(718\) 34.2239 6.03460i 1.27722 0.225209i
\(719\) 0.902323 + 5.11733i 0.0336510 + 0.190844i 0.996999 0.0774090i \(-0.0246647\pi\)
−0.963348 + 0.268253i \(0.913554\pi\)
\(720\) 0 0
\(721\) 9.14653 + 25.1299i 0.340635 + 0.935886i
\(722\) −1.07118 2.94304i −0.0398652 0.109529i
\(723\) −19.3069 23.0090i −0.718031 0.855716i
\(724\) −0.477147 2.70603i −0.0177330 0.100569i
\(725\) 0 0
\(726\) 14.8025 + 8.54621i 0.549371 + 0.317180i
\(727\) −10.7663 + 12.8308i −0.399302 + 0.475869i −0.927807 0.373061i \(-0.878308\pi\)
0.528505 + 0.848930i \(0.322753\pi\)
\(728\) −0.831228 0.302542i −0.0308074 0.0112130i
\(729\) −3.28685 5.69300i −0.121735 0.210852i
\(730\) 0 0
\(731\) 1.07635 0.903162i 0.0398101 0.0334046i
\(732\) −4.52223 + 2.61091i −0.167147 + 0.0965021i
\(733\) 3.75680 21.3058i 0.138760 0.786949i −0.833407 0.552660i \(-0.813613\pi\)
0.972167 0.234289i \(-0.0752762\pi\)
\(734\) 15.0042i 0.553817i
\(735\) 0 0
\(736\) 2.79704 + 2.34699i 0.103100 + 0.0865113i
\(737\) −6.61104 + 2.40622i −0.243521 + 0.0886343i
\(738\) 2.62674 7.21691i 0.0966917 0.265658i
\(739\) −1.79050 −0.0658646 −0.0329323 0.999458i \(-0.510485\pi\)
−0.0329323 + 0.999458i \(0.510485\pi\)
\(740\) 0 0
\(741\) −1.21243 −0.0445395
\(742\) −11.5791 + 31.8134i −0.425083 + 1.16791i
\(743\) 32.4307 11.8038i 1.18977 0.433040i 0.330126 0.943937i \(-0.392909\pi\)
0.859642 + 0.510897i \(0.170687\pi\)
\(744\) 33.6648 + 28.2481i 1.23421 + 1.03563i
\(745\) 0 0
\(746\) 14.5236i 0.531746i
\(747\) −0.773053 + 4.38420i −0.0282845 + 0.160410i
\(748\) 0.975066 0.562955i 0.0356520 0.0205837i
\(749\) 11.8655 9.95630i 0.433554 0.363795i
\(750\) 0 0
\(751\) −5.48231 9.49563i −0.200052 0.346501i 0.748493 0.663143i \(-0.230778\pi\)
−0.948545 + 0.316642i \(0.897444\pi\)
\(752\) −16.4774 5.99727i −0.600867 0.218698i
\(753\) 0.375838 0.447906i 0.0136963 0.0163226i
\(754\) −0.396214 0.228754i −0.0144293 0.00833075i
\(755\) 0 0
\(756\) −0.291637 1.65396i −0.0106067 0.0601538i
\(757\) 19.8187 + 23.6190i 0.720323 + 0.858447i 0.994662 0.103186i \(-0.0329036\pi\)
−0.274339 + 0.961633i \(0.588459\pi\)
\(758\) 11.5191 + 31.6484i 0.418391 + 1.14952i
\(759\) −4.37075 12.0085i −0.158648 0.435883i
\(760\) 0 0
\(761\) 2.55661 + 14.4993i 0.0926772 + 0.525598i 0.995434 + 0.0954479i \(0.0304283\pi\)
−0.902757 + 0.430150i \(0.858461\pi\)
\(762\) −56.2191 + 9.91295i −2.03660 + 0.359108i
\(763\) −15.1863 8.76783i −0.549782 0.317417i
\(764\) 2.83173 3.37473i 0.102448 0.122093i
\(765\) 0 0
\(766\) −11.4320 19.8008i −0.413054 0.715431i
\(767\) 0.964160 1.66997i 0.0348138 0.0602992i
\(768\) −8.77789 + 7.36553i −0.316745 + 0.265781i
\(769\) −23.3973 + 13.5084i −0.843728 + 0.487127i −0.858530 0.512764i \(-0.828622\pi\)
0.0148015 + 0.999890i \(0.495288\pi\)
\(770\) 0 0
\(771\) 13.3400i 0.480428i
\(772\) −3.22391 0.568462i −0.116031 0.0204594i
\(773\) 16.3941 + 13.7563i 0.589654 + 0.494778i 0.888101 0.459648i \(-0.152024\pi\)
−0.298447 + 0.954426i \(0.596469\pi\)
\(774\) 1.06706 0.388377i 0.0383546 0.0139599i
\(775\) 0 0
\(776\) −28.4049 −1.01968
\(777\) −3.86798 + 26.1905i −0.138763 + 0.939579i
\(778\) 20.7191 0.742814
\(779\) −6.01559 + 16.5277i −0.215531 + 0.592166i
\(780\) 0 0
\(781\) −13.5466 11.3669i −0.484734 0.406740i
\(782\) −8.05661 1.42060i −0.288104 0.0508005i
\(783\) 8.34254i 0.298138i
\(784\) 1.59288 9.03367i 0.0568885 0.322631i
\(785\) 0 0
\(786\) −1.91750 + 1.60897i −0.0683949 + 0.0573901i
\(787\) 5.56426 9.63758i 0.198344 0.343543i −0.749647 0.661838i \(-0.769777\pi\)
0.947992 + 0.318295i \(0.103110\pi\)
\(788\) −1.64595 2.85087i −0.0586345 0.101558i
\(789\) 44.5423 + 16.2121i 1.58575 + 0.577165i
\(790\) 0 0
\(791\) 22.4909 + 12.9852i 0.799686 + 0.461699i
\(792\) 8.60636 1.51753i 0.305814 0.0539232i
\(793\) −0.267123 1.51493i −0.00948582 0.0537968i
\(794\) −1.88032 2.24088i −0.0667300 0.0795257i
\(795\) 0 0
\(796\) 0.800215 + 2.19857i 0.0283629 + 0.0779263i
\(797\) −14.3465 17.0974i −0.508177 0.605622i 0.449566 0.893247i \(-0.351579\pi\)
−0.957743 + 0.287625i \(0.907134\pi\)
\(798\) 4.09938 + 23.2487i 0.145116 + 0.822995i
\(799\) −10.9347 + 1.92808i −0.386842 + 0.0682106i
\(800\) 0 0
\(801\) −16.0987 + 19.1856i −0.568818 + 0.677891i
\(802\) 26.6240 + 9.69036i 0.940127 + 0.342178i
\(803\) −1.96501 3.40350i −0.0693438 0.120107i
\(804\) 0.775175 1.34264i 0.0273383 0.0473513i
\(805\) 0 0
\(806\) −1.16737 + 0.673984i −0.0411190 + 0.0237401i
\(807\) 4.52112 25.6405i 0.159151 0.902590i
\(808\) 5.43005i 0.191029i
\(809\) 45.1641 + 7.96366i 1.58789 + 0.279987i 0.896683 0.442673i \(-0.145970\pi\)
0.691203 + 0.722660i \(0.257081\pi\)
\(810\) 0 0
\(811\) 19.3106 7.02847i 0.678086 0.246803i 0.0200603 0.999799i \(-0.493614\pi\)
0.658025 + 0.752996i \(0.271392\pi\)
\(812\) 0.400674 1.10084i 0.0140609 0.0386320i
\(813\) −20.3041 −0.712097
\(814\) 17.5800 + 2.59632i 0.616177 + 0.0910009i
\(815\) 0 0
\(816\) 5.46733 15.0214i 0.191395 0.525853i
\(817\) −2.44370 + 0.889436i −0.0854944 + 0.0311174i
\(818\) 13.8617 + 11.6314i 0.484664 + 0.406681i
\(819\) −0.393282 0.0693462i −0.0137424 0.00242315i
\(820\) 0 0
\(821\) 7.67867 43.5479i 0.267987 1.51983i −0.492404 0.870367i \(-0.663882\pi\)
0.760392 0.649465i \(-0.225007\pi\)
\(822\) −6.23056 + 3.59721i −0.217316 + 0.125467i
\(823\) 10.1418 8.50996i 0.353520 0.296639i −0.448682 0.893692i \(-0.648106\pi\)
0.802202 + 0.597053i \(0.203662\pi\)
\(824\) −18.9957 + 32.9015i −0.661747 + 1.14618i
\(825\) 0 0
\(826\) −35.2823 12.8417i −1.22763 0.446821i
\(827\) −34.8089 + 41.4837i −1.21042 + 1.44253i −0.347138 + 0.937814i \(0.612847\pi\)
−0.863287 + 0.504714i \(0.831598\pi\)
\(828\) 0.752978 + 0.434732i 0.0261678 + 0.0151080i
\(829\) −47.4160 + 8.36072i −1.64683 + 0.290380i −0.918668 0.395031i \(-0.870734\pi\)
−0.728157 + 0.685410i \(0.759623\pi\)
\(830\) 0 0
\(831\) −29.2572 34.8674i −1.01492 1.20954i
\(832\) −0.424528 1.16638i −0.0147179 0.0404370i
\(833\) −1.98663 5.45823i −0.0688328 0.189117i
\(834\) −28.2314 33.6449i −0.977573 1.16503i
\(835\) 0 0
\(836\) −2.05220 + 0.361858i −0.0709768 + 0.0125151i
\(837\) −21.2867 12.2899i −0.735777 0.424801i
\(838\) −14.6131 + 17.4152i −0.504800 + 0.601597i
\(839\) −44.9348 16.3549i −1.55132 0.564635i −0.582595 0.812762i \(-0.697963\pi\)
−0.968728 + 0.248127i \(0.920185\pi\)
\(840\) 0 0
\(841\) −11.5904 + 20.0751i −0.399669 + 0.692246i
\(842\) 10.1053 8.47933i 0.348251 0.292217i
\(843\) 36.5245 21.0874i 1.25797 0.726289i
\(844\) −0.486755 + 2.76053i −0.0167548 + 0.0950212i
\(845\) 0 0
\(846\) −8.83712 1.55822i −0.303826 0.0535728i
\(847\) −9.87679 8.28761i −0.339371 0.284766i
\(848\) −39.8704 + 14.5116i −1.36915 + 0.498332i
\(849\) 17.9557 49.3328i 0.616237 1.69310i
\(850\) 0 0
\(851\) 11.2735 + 12.6981i 0.386450 + 0.435286i
\(852\) 3.89692 0.133506
\(853\) −14.0194 + 38.5181i −0.480016 + 1.31883i 0.429464 + 0.903084i \(0.358703\pi\)
−0.909479 + 0.415749i \(0.863520\pi\)
\(854\) −28.1462 + 10.2444i −0.963143 + 0.350555i
\(855\) 0 0
\(856\) 21.6702 + 3.82104i 0.740672 + 0.130600i
\(857\) 25.8675i 0.883618i 0.897109 + 0.441809i \(0.145663\pi\)
−0.897109 + 0.441809i \(0.854337\pi\)
\(858\) −0.150763 + 0.855020i −0.00514697 + 0.0291899i
\(859\) −22.6747 + 13.0913i −0.773652 + 0.446668i −0.834176 0.551499i \(-0.814056\pi\)
0.0605241 + 0.998167i \(0.480723\pi\)
\(860\) 0 0
\(861\) −9.38194 + 16.2500i −0.319736 + 0.553798i
\(862\) 5.24606 + 9.08645i 0.178682 + 0.309486i
\(863\) −1.71410 0.623881i −0.0583486 0.0212371i 0.312681 0.949858i \(-0.398773\pi\)
−0.371030 + 0.928621i \(0.620995\pi\)
\(864\) 2.90758 3.46511i 0.0989178 0.117886i
\(865\) 0 0
\(866\) 5.34560 0.942574i 0.181651 0.0320300i
\(867\) 4.39209 + 24.9088i 0.149163 + 0.845946i
\(868\) −2.21864 2.64407i −0.0753055 0.0897456i
\(869\) 11.8284 + 32.4982i 0.401250 + 1.10242i
\(870\) 0 0
\(871\) 0.293573 + 0.349867i 0.00994734 + 0.0118548i
\(872\) −4.32586 24.5332i −0.146492 0.830799i
\(873\) −12.6288 + 2.22680i −0.427421 + 0.0753658i
\(874\) 13.1128 + 7.57069i 0.443548 + 0.256083i
\(875\) 0 0
\(876\) 0.813817 + 0.296205i 0.0274963 + 0.0100078i
\(877\) −28.2870 48.9945i −0.955184 1.65443i −0.733946 0.679208i \(-0.762323\pi\)
−0.221239 0.975220i \(-0.571010\pi\)
\(878\) −15.0759 + 26.1123i −0.508789 + 0.881248i
\(879\) 12.6777 10.6379i 0.427609 0.358807i
\(880\) 0 0
\(881\) −7.41720 + 42.0650i −0.249892 + 1.41721i 0.558960 + 0.829195i \(0.311201\pi\)
−0.808852 + 0.588013i \(0.799911\pi\)
\(882\) 4.69429i 0.158065i
\(883\) −24.7822 4.36976i −0.833986 0.147054i −0.259680 0.965695i \(-0.583617\pi\)
−0.574306 + 0.818641i \(0.694728\pi\)
\(884\) −0.0559915 0.0469825i −0.00188320 0.00158019i
\(885\) 0 0
\(886\) 1.95322 5.36643i 0.0656198 0.180289i
\(887\) 39.2137 1.31667 0.658333 0.752727i \(-0.271262\pi\)
0.658333 + 0.752727i \(0.271262\pi\)
\(888\) −32.0343 + 19.7068i −1.07500 + 0.661317i
\(889\) 43.0617 1.44424
\(890\) 0 0
\(891\) −23.1774 + 8.43587i −0.776471 + 0.282612i
\(892\) 0.197774 + 0.165952i 0.00662195 + 0.00555648i
\(893\) 20.2382 + 3.56854i 0.677245 + 0.119417i
\(894\) 53.1598i 1.77793i
\(895\) 0 0
\(896\) −16.1973 + 9.35153i −0.541115 + 0.312413i
\(897\) −0.635511 + 0.533257i −0.0212191 + 0.0178049i
\(898\) −9.01824 + 15.6201i −0.300943 + 0.521248i
\(899\) −8.57265 14.8483i −0.285914 0.495217i
\(900\) 0 0
\(901\) −17.2697 + 20.5813i −0.575339 + 0.685662i
\(902\) 10.9076 + 6.29748i 0.363182 + 0.209683i
\(903\) −2.73219 + 0.481758i −0.0909215 + 0.0160319i
\(904\) 6.40660 + 36.3336i 0.213080 + 1.20844i
\(905\) 0 0
\(906\) 11.3325 + 31.1358i 0.376497 + 1.03442i
\(907\) 14.1364 + 38.8394i 0.469391 + 1.28964i 0.918237 + 0.396031i \(0.129613\pi\)
−0.448847 + 0.893609i \(0.648165\pi\)
\(908\) −1.45394 1.73273i −0.0482506 0.0575028i
\(909\) −0.425689 2.41420i −0.0141192 0.0800740i
\(910\) 0 0
\(911\) −37.9514 21.9112i −1.25739 0.725952i −0.284820 0.958581i \(-0.591934\pi\)
−0.972565 + 0.232629i \(0.925267\pi\)
\(912\) −19.0176 + 22.6643i −0.629736 + 0.750490i
\(913\) −6.86050 2.49702i −0.227049 0.0826392i
\(914\) −15.9730 27.6661i −0.528341 0.915113i
\(915\) 0 0
\(916\) 2.67232 2.24234i 0.0882958 0.0740890i
\(917\) 1.63520 0.944081i 0.0539990 0.0311763i
\(918\) −1.75991 + 9.98094i −0.0580857 + 0.329420i
\(919\) 6.58051i 0.217071i 0.994093 + 0.108535i \(0.0346161\pi\)
−0.994093 + 0.108535i \(0.965384\pi\)
\(920\) 0 0
\(921\) −26.3515 22.1115i −0.868311 0.728599i
\(922\) −19.9375 + 7.25665i −0.656606 + 0.238985i
\(923\) −0.392638 + 1.07876i −0.0129238 + 0.0355079i
\(924\) −2.22313 −0.0731355
\(925\) 0 0
\(926\) 41.6684 1.36931
\(927\) −5.86617 + 16.1172i −0.192670 + 0.529358i
\(928\) 2.96494 1.07915i 0.0973289 0.0354248i
\(929\) 29.3245 + 24.6062i 0.962106 + 0.807303i 0.981294 0.192513i \(-0.0616638\pi\)
−0.0191883 + 0.999816i \(0.506108\pi\)
\(930\) 0 0
\(931\) 10.7506i 0.352335i
\(932\) −0.897242 + 5.08851i −0.0293901 + 0.166680i
\(933\) 39.7023 22.9221i 1.29979 0.750436i
\(934\) −38.2861 + 32.1259i −1.25276 + 1.05119i
\(935\) 0 0
\(936\) −0.283663 0.491319i −0.00927182 0.0160593i
\(937\) 26.4954 + 9.64352i 0.865565 + 0.315040i 0.736370 0.676579i \(-0.236538\pi\)
0.129195 + 0.991619i \(0.458761\pi\)
\(938\) 5.71621 6.81232i 0.186641 0.222430i
\(939\) 9.38496 + 5.41841i 0.306267 + 0.176823i
\(940\) 0 0
\(941\) 4.01276 + 22.7575i 0.130812 + 0.741873i 0.977685 + 0.210077i \(0.0673715\pi\)
−0.846873 + 0.531796i \(0.821517\pi\)
\(942\) 0.147008 + 0.175197i 0.00478978 + 0.00570824i
\(943\) 4.11616 + 11.3091i 0.134041 + 0.368274i
\(944\) −16.0940 44.2179i −0.523815 1.43917i
\(945\) 0 0
\(946\) 0.323373 + 1.83394i 0.0105137 + 0.0596264i
\(947\) 35.6167 6.28019i 1.15739 0.204079i 0.438189 0.898883i \(-0.355620\pi\)
0.719199 + 0.694804i \(0.244509\pi\)
\(948\) −6.60008 3.81056i −0.214361 0.123761i
\(949\) −0.163994 + 0.195440i −0.00532346 + 0.00634426i
\(950\) 0 0
\(951\) 5.62028 + 9.73460i 0.182250 + 0.315666i
\(952\) −6.83426 + 11.8373i −0.221500 + 0.383649i
\(953\) −2.54903 + 2.13889i −0.0825712 + 0.0692855i −0.683139 0.730288i \(-0.739386\pi\)
0.600568 + 0.799574i \(0.294941\pi\)
\(954\) −18.8041 + 10.8566i −0.608806 + 0.351494i
\(955\) 0 0
\(956\) 1.29075i 0.0417457i
\(957\) −10.8753 1.91761i −0.351549 0.0619875i
\(958\) −18.4272 15.4623i −0.595356 0.499563i
\(959\) 5.09965 1.85612i 0.164676 0.0599373i
\(960\) 0 0
\(961\) −19.5156 −0.629534
\(962\) −0.231949 1.13008i −0.00747834 0.0364351i
\(963\) 9.93411 0.320122
\(964\) −1.14624 + 3.14926i −0.0369178 + 0.101431i
\(965\) 0 0
\(966\) 12.3742 + 10.3832i 0.398132 + 0.334072i
\(967\) −8.67808 1.53018i −0.279068 0.0492073i 0.0323622 0.999476i \(-0.489697\pi\)
−0.311430 + 0.950269i \(0.600808\pi\)
\(968\) 18.3165i 0.588715i
\(969\) −3.25321 + 18.4499i −0.104508 + 0.592695i
\(970\) 0 0
\(971\) 19.8224 16.6330i 0.636132 0.533778i −0.266695 0.963781i \(-0.585932\pi\)
0.902828 + 0.430003i \(0.141487\pi\)
\(972\) 1.51185 2.61860i 0.0484926 0.0839916i
\(973\) 16.5651 + 28.6915i 0.531052 + 0.919809i
\(974\) 6.03311 + 2.19587i 0.193313 + 0.0703603i
\(975\) 0 0
\(976\) −32.5091 18.7692i −1.04059 0.600786i
\(977\) −28.4487 + 5.01628i −0.910156 + 0.160485i −0.609074 0.793113i \(-0.708459\pi\)
−0.301082 + 0.953598i \(0.597348\pi\)
\(978\) 10.8622 + 61.6028i 0.347336 + 1.96984i
\(979\) −26.4010 31.4635i −0.843780 1.00558i
\(980\) 0 0
\(981\) −3.84656 10.5683i −0.122811 0.337421i
\(982\) 29.6012 + 35.2774i 0.944613 + 1.12575i
\(983\) 3.68171 + 20.8800i 0.117428 + 0.665969i 0.985519 + 0.169564i \(0.0542358\pi\)
−0.868091 + 0.496405i \(0.834653\pi\)
\(984\) −26.2515 + 4.62885i −0.836868 + 0.147562i
\(985\) 0 0
\(986\) −4.54416 + 5.41552i −0.144716 + 0.172465i
\(987\) 20.6016 + 7.49839i 0.655758 + 0.238676i
\(988\) 0.0676399 + 0.117156i 0.00215191 + 0.00372722i
\(989\) −0.889707 + 1.54102i −0.0282910 + 0.0490015i
\(990\) 0 0
\(991\) −32.8374 + 18.9587i −1.04311 + 0.602242i −0.920714 0.390238i \(-0.872393\pi\)
−0.122401 + 0.992481i \(0.539059\pi\)
\(992\) 1.61429 9.15507i 0.0512536 0.290674i
\(993\) 5.08277i 0.161297i
\(994\) 22.0132 + 3.88153i 0.698218 + 0.123115i
\(995\) 0 0
\(996\) 1.51183 0.550259i 0.0479040 0.0174356i
\(997\) −3.57007 + 9.80869i −0.113065 + 0.310644i −0.983300 0.181993i \(-0.941745\pi\)
0.870234 + 0.492638i \(0.163967\pi\)
\(998\) 27.0999 0.857834
\(999\) 15.7311 13.9662i 0.497709 0.441870i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 925.2.bb.e.576.12 96
5.2 odd 4 185.2.v.a.169.12 yes 96
5.3 odd 4 185.2.v.a.169.5 yes 96
5.4 even 2 inner 925.2.bb.e.576.5 96
37.30 even 18 inner 925.2.bb.e.326.12 96
185.67 odd 36 185.2.v.a.104.5 96
185.104 even 18 inner 925.2.bb.e.326.5 96
185.178 odd 36 185.2.v.a.104.12 yes 96
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
185.2.v.a.104.5 96 185.67 odd 36
185.2.v.a.104.12 yes 96 185.178 odd 36
185.2.v.a.169.5 yes 96 5.3 odd 4
185.2.v.a.169.12 yes 96 5.2 odd 4
925.2.bb.e.326.5 96 185.104 even 18 inner
925.2.bb.e.326.12 96 37.30 even 18 inner
925.2.bb.e.576.5 96 5.4 even 2 inner
925.2.bb.e.576.12 96 1.1 even 1 trivial