Properties

Label 925.2.bb.e.326.6
Level $925$
Weight $2$
Character 925.326
Analytic conductor $7.386$
Analytic rank $0$
Dimension $96$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [925,2,Mod(151,925)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("925.151"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(925, base_ring=CyclotomicField(18)) chi = DirichletCharacter(H, H._module([0, 13])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 925 = 5^{2} \cdot 37 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 925.bb (of order \(18\), degree \(6\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [96,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.38616218697\)
Analytic rank: \(0\)
Dimension: \(96\)
Relative dimension: \(16\) over \(\Q(\zeta_{18})\)
Twist minimal: no (minimal twist has level 185)
Sato-Tate group: $\mathrm{SU}(2)[C_{18}]$

Embedding invariants

Embedding label 326.6
Character \(\chi\) \(=\) 925.326
Dual form 925.2.bb.e.576.6

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.326264 - 0.896403i) q^{2} +(-0.266913 - 0.0971484i) q^{3} +(0.834998 - 0.700647i) q^{4} +0.270958i q^{6} +(-0.0138149 - 0.0783483i) q^{7} +(-2.55275 - 1.47383i) q^{8} +(-2.23633 - 1.87650i) q^{9} +(2.24001 - 3.87981i) q^{11} +(-0.290938 + 0.105893i) q^{12} +(-0.539440 - 0.642880i) q^{13} +(-0.0657244 + 0.0379460i) q^{14} +(-0.109719 + 0.622249i) q^{16} +(-3.04924 + 3.63394i) q^{17} +(-0.952469 + 2.61689i) q^{18} +(-0.698848 + 1.92007i) q^{19} +(-0.00392403 + 0.0222543i) q^{21} +(-4.20871 - 0.742109i) q^{22} +(0.00393731 - 0.00227321i) q^{23} +(0.538182 + 0.641381i) q^{24} +(-0.400280 + 0.693304i) q^{26} +(0.840670 + 1.45608i) q^{27} +(-0.0664299 - 0.0557413i) q^{28} +(0.499013 + 0.288105i) q^{29} -5.06627i q^{31} +(-5.21218 + 0.919048i) q^{32} +(-0.974805 + 0.817959i) q^{33} +(4.25234 + 1.54772i) q^{34} -3.18209 q^{36} +(-4.52888 - 4.06070i) q^{37} +1.94917 q^{38} +(0.0815288 + 0.223999i) q^{39} +(-4.55042 + 3.81825i) q^{41} +(0.0212291 - 0.00374326i) q^{42} -1.01783i q^{43} +(-0.847972 - 4.80909i) q^{44} +(-0.00332232 - 0.00278775i) q^{46} +(-3.97780 - 6.88975i) q^{47} +(0.0897359 - 0.155427i) q^{48} +(6.57190 - 2.39198i) q^{49} +(1.16691 - 0.673718i) q^{51} +(-0.900863 - 0.158846i) q^{52} +(-0.138996 + 0.788285i) q^{53} +(1.03096 - 1.22865i) q^{54} +(-0.0802061 + 0.220365i) q^{56} +(0.373063 - 0.444599i) q^{57} +(0.0954485 - 0.541315i) q^{58} +(-7.84732 - 1.38369i) q^{59} +(-2.86116 - 3.40979i) q^{61} +(-4.54142 + 1.65294i) q^{62} +(-0.116126 + 0.201136i) q^{63} +(3.15623 + 5.46676i) q^{64} +(1.05127 + 0.606948i) q^{66} +(0.563037 + 3.19314i) q^{67} +5.17077i q^{68} +(-0.00127176 + 0.000224245i) q^{69} +(5.63810 + 2.05210i) q^{71} +(2.94314 + 8.08622i) q^{72} +9.38629 q^{73} +(-2.16241 + 5.38456i) q^{74} +(0.761753 + 2.09290i) q^{76} +(-0.334922 - 0.121902i) q^{77} +(0.174193 - 0.146165i) q^{78} +(6.85173 - 1.20814i) q^{79} +(1.43787 + 8.15459i) q^{81} +(4.90733 + 2.83325i) q^{82} +(-10.7389 - 9.01103i) q^{83} +(0.0123158 + 0.0213316i) q^{84} +(-0.912382 + 0.332080i) q^{86} +(-0.105204 - 0.125377i) q^{87} +(-11.4364 + 6.60280i) q^{88} +(-10.5904 - 1.86737i) q^{89} +(-0.0429162 + 0.0511455i) q^{91} +(0.00169493 - 0.00465679i) q^{92} +(-0.492180 + 1.35225i) q^{93} +(-4.87818 + 5.81359i) q^{94} +(1.48048 + 0.261049i) q^{96} +(-6.13702 + 3.54321i) q^{97} +(-4.28835 - 5.11066i) q^{98} +(-12.2899 + 4.47315i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 96 q + 12 q^{4} + 6 q^{9} - 30 q^{11} + 36 q^{14} + 18 q^{19} - 24 q^{21} - 96 q^{24} + 48 q^{26} + 18 q^{29} + 54 q^{34} + 24 q^{36} + 36 q^{39} + 72 q^{41} + 84 q^{44} - 18 q^{46} + 6 q^{49} - 18 q^{51}+ \cdots + 24 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/925\mathbb{Z}\right)^\times\).

\(n\) \(76\) \(852\)
\(\chi(n)\) \(e\left(\frac{7}{18}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.326264 0.896403i −0.230704 0.633853i 0.769284 0.638907i \(-0.220613\pi\)
−0.999987 + 0.00505447i \(0.998391\pi\)
\(3\) −0.266913 0.0971484i −0.154102 0.0560886i 0.263817 0.964573i \(-0.415018\pi\)
−0.417920 + 0.908484i \(0.637241\pi\)
\(4\) 0.834998 0.700647i 0.417499 0.350323i
\(5\) 0 0
\(6\) 0.270958i 0.110618i
\(7\) −0.0138149 0.0783483i −0.00522155 0.0296129i 0.982086 0.188435i \(-0.0603415\pi\)
−0.987307 + 0.158822i \(0.949230\pi\)
\(8\) −2.55275 1.47383i −0.902534 0.521078i
\(9\) −2.23633 1.87650i −0.745443 0.625501i
\(10\) 0 0
\(11\) 2.24001 3.87981i 0.675389 1.16981i −0.300967 0.953635i \(-0.597309\pi\)
0.976355 0.216173i \(-0.0693574\pi\)
\(12\) −0.290938 + 0.105893i −0.0839867 + 0.0305687i
\(13\) −0.539440 0.642880i −0.149614 0.178303i 0.686032 0.727571i \(-0.259351\pi\)
−0.835646 + 0.549268i \(0.814906\pi\)
\(14\) −0.0657244 + 0.0379460i −0.0175656 + 0.0101415i
\(15\) 0 0
\(16\) −0.109719 + 0.622249i −0.0274298 + 0.155562i
\(17\) −3.04924 + 3.63394i −0.739549 + 0.881360i −0.996373 0.0850980i \(-0.972880\pi\)
0.256823 + 0.966458i \(0.417324\pi\)
\(18\) −0.952469 + 2.61689i −0.224499 + 0.616806i
\(19\) −0.698848 + 1.92007i −0.160327 + 0.440494i −0.993680 0.112246i \(-0.964196\pi\)
0.833354 + 0.552740i \(0.186418\pi\)
\(20\) 0 0
\(21\) −0.00392403 + 0.0222543i −0.000856293 + 0.00485628i
\(22\) −4.20871 0.742109i −0.897300 0.158218i
\(23\) 0.00393731 0.00227321i 0.000820986 0.000473997i −0.499589 0.866262i \(-0.666516\pi\)
0.500410 + 0.865788i \(0.333182\pi\)
\(24\) 0.538182 + 0.641381i 0.109856 + 0.130921i
\(25\) 0 0
\(26\) −0.400280 + 0.693304i −0.0785013 + 0.135968i
\(27\) 0.840670 + 1.45608i 0.161787 + 0.280223i
\(28\) −0.0664299 0.0557413i −0.0125541 0.0105341i
\(29\) 0.499013 + 0.288105i 0.0926644 + 0.0534998i 0.545616 0.838035i \(-0.316296\pi\)
−0.452952 + 0.891535i \(0.649629\pi\)
\(30\) 0 0
\(31\) 5.06627i 0.909929i −0.890510 0.454965i \(-0.849652\pi\)
0.890510 0.454965i \(-0.150348\pi\)
\(32\) −5.21218 + 0.919048i −0.921392 + 0.162466i
\(33\) −0.974805 + 0.817959i −0.169692 + 0.142388i
\(34\) 4.25234 + 1.54772i 0.729270 + 0.265432i
\(35\) 0 0
\(36\) −3.18209 −0.530349
\(37\) −4.52888 4.06070i −0.744543 0.667575i
\(38\) 1.94917 0.316196
\(39\) 0.0815288 + 0.223999i 0.0130551 + 0.0358685i
\(40\) 0 0
\(41\) −4.55042 + 3.81825i −0.710656 + 0.596311i −0.924783 0.380495i \(-0.875754\pi\)
0.214127 + 0.976806i \(0.431309\pi\)
\(42\) 0.0212291 0.00374326i 0.00327572 0.000577597i
\(43\) 1.01783i 0.155217i −0.996984 0.0776084i \(-0.975272\pi\)
0.996984 0.0776084i \(-0.0247284\pi\)
\(44\) −0.847972 4.80909i −0.127837 0.724998i
\(45\) 0 0
\(46\) −0.00332232 0.00278775i −0.000489849 0.000411032i
\(47\) −3.97780 6.88975i −0.580222 1.00497i −0.995453 0.0952574i \(-0.969633\pi\)
0.415231 0.909716i \(-0.363701\pi\)
\(48\) 0.0897359 0.155427i 0.0129523 0.0224340i
\(49\) 6.57190 2.39198i 0.938843 0.341711i
\(50\) 0 0
\(51\) 1.16691 0.673718i 0.163401 0.0943393i
\(52\) −0.900863 0.158846i −0.124927 0.0220280i
\(53\) −0.138996 + 0.788285i −0.0190926 + 0.108279i −0.992865 0.119246i \(-0.961952\pi\)
0.973772 + 0.227525i \(0.0730634\pi\)
\(54\) 1.03096 1.22865i 0.140296 0.167198i
\(55\) 0 0
\(56\) −0.0802061 + 0.220365i −0.0107180 + 0.0294475i
\(57\) 0.373063 0.444599i 0.0494134 0.0588886i
\(58\) 0.0954485 0.541315i 0.0125330 0.0710782i
\(59\) −7.84732 1.38369i −1.02163 0.180142i −0.362355 0.932040i \(-0.618027\pi\)
−0.659279 + 0.751898i \(0.729138\pi\)
\(60\) 0 0
\(61\) −2.86116 3.40979i −0.366333 0.436579i 0.551118 0.834427i \(-0.314201\pi\)
−0.917451 + 0.397848i \(0.869757\pi\)
\(62\) −4.54142 + 1.65294i −0.576761 + 0.209924i
\(63\) −0.116126 + 0.201136i −0.0146305 + 0.0253408i
\(64\) 3.15623 + 5.46676i 0.394529 + 0.683345i
\(65\) 0 0
\(66\) 1.05127 + 0.606948i 0.129402 + 0.0747102i
\(67\) 0.563037 + 3.19314i 0.0687859 + 0.390104i 0.999691 + 0.0248440i \(0.00790889\pi\)
−0.930905 + 0.365260i \(0.880980\pi\)
\(68\) 5.17077i 0.627048i
\(69\) −0.00127176 0.000224245i −0.000153102 2.69960e-5i
\(70\) 0 0
\(71\) 5.63810 + 2.05210i 0.669119 + 0.243539i 0.654168 0.756349i \(-0.273019\pi\)
0.0149505 + 0.999888i \(0.495241\pi\)
\(72\) 2.94314 + 8.08622i 0.346853 + 0.952970i
\(73\) 9.38629 1.09858 0.549291 0.835631i \(-0.314898\pi\)
0.549291 + 0.835631i \(0.314898\pi\)
\(74\) −2.16241 + 5.38456i −0.251376 + 0.625943i
\(75\) 0 0
\(76\) 0.761753 + 2.09290i 0.0873791 + 0.240072i
\(77\) −0.334922 0.121902i −0.0381679 0.0138920i
\(78\) 0.174193 0.146165i 0.0197235 0.0165500i
\(79\) 6.85173 1.20814i 0.770879 0.135927i 0.225644 0.974210i \(-0.427551\pi\)
0.545235 + 0.838283i \(0.316440\pi\)
\(80\) 0 0
\(81\) 1.43787 + 8.15459i 0.159764 + 0.906065i
\(82\) 4.90733 + 2.83325i 0.541924 + 0.312880i
\(83\) −10.7389 9.01103i −1.17875 0.989089i −0.999986 0.00519711i \(-0.998346\pi\)
−0.178764 0.983892i \(-0.557210\pi\)
\(84\) 0.0123158 + 0.0213316i 0.00134377 + 0.00232747i
\(85\) 0 0
\(86\) −0.912382 + 0.332080i −0.0983847 + 0.0358091i
\(87\) −0.105204 0.125377i −0.0112791 0.0134419i
\(88\) −11.4364 + 6.60280i −1.21912 + 0.703861i
\(89\) −10.5904 1.86737i −1.12258 0.197941i −0.418607 0.908167i \(-0.637482\pi\)
−0.703974 + 0.710226i \(0.748593\pi\)
\(90\) 0 0
\(91\) −0.0429162 + 0.0511455i −0.00449884 + 0.00536151i
\(92\) 0.00169493 0.00465679i 0.000176709 0.000485504i
\(93\) −0.492180 + 1.35225i −0.0510367 + 0.140222i
\(94\) −4.87818 + 5.81359i −0.503146 + 0.599626i
\(95\) 0 0
\(96\) 1.48048 + 0.261049i 0.151101 + 0.0266432i
\(97\) −6.13702 + 3.54321i −0.623120 + 0.359759i −0.778083 0.628162i \(-0.783808\pi\)
0.154962 + 0.987920i \(0.450474\pi\)
\(98\) −4.28835 5.11066i −0.433189 0.516254i
\(99\) −12.2899 + 4.47315i −1.23518 + 0.449568i
\(100\) 0 0
\(101\) 3.69395 + 6.39812i 0.367562 + 0.636636i 0.989184 0.146681i \(-0.0468592\pi\)
−0.621622 + 0.783318i \(0.713526\pi\)
\(102\) −0.984645 0.826215i −0.0974944 0.0818075i
\(103\) 9.21085 + 5.31788i 0.907572 + 0.523987i 0.879649 0.475623i \(-0.157777\pi\)
0.0279226 + 0.999610i \(0.491111\pi\)
\(104\) 0.429560 + 2.43616i 0.0421218 + 0.238885i
\(105\) 0 0
\(106\) 0.751971 0.132593i 0.0730379 0.0128785i
\(107\) 8.83539 7.41377i 0.854149 0.716716i −0.106550 0.994307i \(-0.533980\pi\)
0.960699 + 0.277591i \(0.0895360\pi\)
\(108\) 1.72216 + 0.626814i 0.165715 + 0.0603152i
\(109\) −3.70141 10.1695i −0.354531 0.974066i −0.980895 0.194535i \(-0.937680\pi\)
0.626365 0.779530i \(-0.284542\pi\)
\(110\) 0 0
\(111\) 0.814326 + 1.52383i 0.0772924 + 0.144635i
\(112\) 0.0502679 0.00474987
\(113\) −6.18933 17.0050i −0.582243 1.59970i −0.784338 0.620334i \(-0.786997\pi\)
0.202095 0.979366i \(-0.435225\pi\)
\(114\) −0.520258 0.189358i −0.0487266 0.0177350i
\(115\) 0 0
\(116\) 0.618535 0.109064i 0.0574295 0.0101264i
\(117\) 2.44995i 0.226498i
\(118\) 1.31995 + 7.48582i 0.121511 + 0.689125i
\(119\) 0.326838 + 0.188700i 0.0299612 + 0.0172981i
\(120\) 0 0
\(121\) −4.53529 7.85536i −0.412299 0.714123i
\(122\) −2.12306 + 3.67724i −0.192213 + 0.332922i
\(123\) 1.58550 0.577076i 0.142960 0.0520332i
\(124\) −3.54967 4.23033i −0.318769 0.379895i
\(125\) 0 0
\(126\) 0.218187 + 0.0384723i 0.0194376 + 0.00342738i
\(127\) 1.54564 8.76576i 0.137153 0.777835i −0.836183 0.548451i \(-0.815218\pi\)
0.973336 0.229384i \(-0.0736712\pi\)
\(128\) −2.93336 + 3.49585i −0.259275 + 0.308992i
\(129\) −0.0988801 + 0.271671i −0.00870591 + 0.0239193i
\(130\) 0 0
\(131\) −13.7521 + 16.3891i −1.20152 + 1.43192i −0.328317 + 0.944567i \(0.606482\pi\)
−0.873206 + 0.487352i \(0.837963\pi\)
\(132\) −0.240860 + 1.36599i −0.0209642 + 0.118894i
\(133\) 0.160089 + 0.0282279i 0.0138814 + 0.00244767i
\(134\) 2.67864 1.54652i 0.231400 0.133599i
\(135\) 0 0
\(136\) 13.1398 4.78249i 1.12673 0.410095i
\(137\) 10.2571 17.7659i 0.876327 1.51784i 0.0209840 0.999780i \(-0.493320\pi\)
0.855343 0.518063i \(-0.173347\pi\)
\(138\) 0.000615943 0.00106685i 5.24326e−5 9.08159e-5i
\(139\) 16.1848 + 13.5807i 1.37278 + 1.15190i 0.971799 + 0.235810i \(0.0757743\pi\)
0.400979 + 0.916087i \(0.368670\pi\)
\(140\) 0 0
\(141\) 0.392398 + 2.22540i 0.0330459 + 0.187413i
\(142\) 5.72354i 0.480308i
\(143\) −3.70260 + 0.652869i −0.309627 + 0.0545956i
\(144\) 1.41302 1.18566i 0.117752 0.0988054i
\(145\) 0 0
\(146\) −3.06241 8.41391i −0.253447 0.696340i
\(147\) −1.98650 −0.163844
\(148\) −6.62672 0.217533i −0.544713 0.0178811i
\(149\) 15.0751 1.23500 0.617501 0.786570i \(-0.288145\pi\)
0.617501 + 0.786570i \(0.288145\pi\)
\(150\) 0 0
\(151\) −9.99530 3.63799i −0.813406 0.296056i −0.0983759 0.995149i \(-0.531365\pi\)
−0.715030 + 0.699094i \(0.753587\pi\)
\(152\) 4.61384 3.87148i 0.374232 0.314018i
\(153\) 13.6382 2.40478i 1.10258 0.194415i
\(154\) 0.339997i 0.0273978i
\(155\) 0 0
\(156\) 0.225020 + 0.129916i 0.0180160 + 0.0104016i
\(157\) 13.7743 + 11.5580i 1.09931 + 0.922432i 0.997379 0.0723591i \(-0.0230528\pi\)
0.101933 + 0.994791i \(0.467497\pi\)
\(158\) −3.31846 5.74774i −0.264002 0.457265i
\(159\) 0.113680 0.196900i 0.00901545 0.0156152i
\(160\) 0 0
\(161\) −0.000232496 0 0.000277077i −1.83232e−5 0 2.18368e-5i
\(162\) 6.84067 3.94947i 0.537454 0.310299i
\(163\) 22.3930 + 3.94850i 1.75396 + 0.309270i 0.955984 0.293420i \(-0.0947935\pi\)
0.797975 + 0.602690i \(0.205905\pi\)
\(164\) −1.12434 + 6.37647i −0.0877965 + 0.497918i
\(165\) 0 0
\(166\) −4.57379 + 12.5664i −0.354995 + 0.975341i
\(167\) −5.07057 + 13.9313i −0.392372 + 1.07803i 0.573543 + 0.819176i \(0.305569\pi\)
−0.965915 + 0.258859i \(0.916654\pi\)
\(168\) 0.0428161 0.0510263i 0.00330334 0.00393676i
\(169\) 2.13513 12.1089i 0.164241 0.931455i
\(170\) 0 0
\(171\) 5.16587 2.98252i 0.395044 0.228079i
\(172\) −0.713136 0.849882i −0.0543761 0.0648029i
\(173\) 21.1475 7.69707i 1.60782 0.585198i 0.626811 0.779171i \(-0.284360\pi\)
0.981007 + 0.193974i \(0.0621376\pi\)
\(174\) −0.0780643 + 0.135211i −0.00591804 + 0.0102503i
\(175\) 0 0
\(176\) 2.16844 + 1.81953i 0.163452 + 0.137153i
\(177\) 1.96013 + 1.13168i 0.147332 + 0.0850623i
\(178\) 1.78135 + 10.1025i 0.133518 + 0.757217i
\(179\) 10.0280i 0.749526i −0.927121 0.374763i \(-0.877724\pi\)
0.927121 0.374763i \(-0.122276\pi\)
\(180\) 0 0
\(181\) −6.29551 + 5.28256i −0.467942 + 0.392650i −0.846043 0.533114i \(-0.821022\pi\)
0.378101 + 0.925764i \(0.376577\pi\)
\(182\) 0.0598490 + 0.0217833i 0.00443631 + 0.00161468i
\(183\) 0.432424 + 1.18807i 0.0319657 + 0.0878250i
\(184\) −0.0134013 −0.000987958
\(185\) 0 0
\(186\) 1.37275 0.100655
\(187\) 7.26868 + 19.9705i 0.531539 + 1.46039i
\(188\) −8.14873 2.96590i −0.594308 0.216310i
\(189\) 0.102468 0.0859807i 0.00745344 0.00625418i
\(190\) 0 0
\(191\) 22.0191i 1.59324i −0.604478 0.796622i \(-0.706618\pi\)
0.604478 0.796622i \(-0.293382\pi\)
\(192\) −0.311353 1.76577i −0.0224700 0.127434i
\(193\) −5.10229 2.94581i −0.367271 0.212044i 0.304995 0.952354i \(-0.401345\pi\)
−0.672265 + 0.740310i \(0.734679\pi\)
\(194\) 5.17844 + 4.34523i 0.371790 + 0.311969i
\(195\) 0 0
\(196\) 3.81159 6.60187i 0.272257 0.471562i
\(197\) 6.28009 2.28577i 0.447438 0.162854i −0.108467 0.994100i \(-0.534594\pi\)
0.555905 + 0.831246i \(0.312372\pi\)
\(198\) 8.01949 + 9.55726i 0.569921 + 0.679205i
\(199\) 9.14409 5.27934i 0.648207 0.374243i −0.139562 0.990213i \(-0.544569\pi\)
0.787769 + 0.615971i \(0.211236\pi\)
\(200\) 0 0
\(201\) 0.159927 0.906989i 0.0112804 0.0639741i
\(202\) 4.53009 5.39875i 0.318736 0.379855i
\(203\) 0.0156787 0.0430769i 0.00110043 0.00302341i
\(204\) 0.502332 1.38015i 0.0351703 0.0966296i
\(205\) 0 0
\(206\) 1.76180 9.99167i 0.122750 0.696153i
\(207\) −0.0130708 0.00230474i −0.000908484 0.000160190i
\(208\) 0.459218 0.265130i 0.0318410 0.0183834i
\(209\) 5.88408 + 7.01237i 0.407010 + 0.485056i
\(210\) 0 0
\(211\) 5.33976 9.24874i 0.367605 0.636710i −0.621586 0.783346i \(-0.713511\pi\)
0.989190 + 0.146636i \(0.0468447\pi\)
\(212\) 0.436248 + 0.755604i 0.0299616 + 0.0518951i
\(213\) −1.30552 1.09546i −0.0894530 0.0750600i
\(214\) −9.52840 5.50122i −0.651348 0.376056i
\(215\) 0 0
\(216\) 4.95603i 0.337215i
\(217\) −0.396934 + 0.0699901i −0.0269456 + 0.00475124i
\(218\) −7.90838 + 6.63592i −0.535623 + 0.449441i
\(219\) −2.50532 0.911863i −0.169294 0.0616180i
\(220\) 0 0
\(221\) 3.98107 0.267796
\(222\) 1.10028 1.22713i 0.0738458 0.0823599i
\(223\) 14.5288 0.972917 0.486459 0.873704i \(-0.338288\pi\)
0.486459 + 0.873704i \(0.338288\pi\)
\(224\) 0.144012 + 0.395669i 0.00962218 + 0.0264367i
\(225\) 0 0
\(226\) −13.2240 + 11.0963i −0.879649 + 0.738113i
\(227\) 22.3876 3.94753i 1.48591 0.262007i 0.628976 0.777425i \(-0.283474\pi\)
0.856939 + 0.515418i \(0.172363\pi\)
\(228\) 0.632625i 0.0418966i
\(229\) −0.748417 4.24448i −0.0494568 0.280483i 0.950043 0.312120i \(-0.101039\pi\)
−0.999499 + 0.0316367i \(0.989928\pi\)
\(230\) 0 0
\(231\) 0.0775525 + 0.0650743i 0.00510258 + 0.00428157i
\(232\) −0.849237 1.47092i −0.0557552 0.0965708i
\(233\) 2.79779 4.84592i 0.183289 0.317467i −0.759709 0.650263i \(-0.774659\pi\)
0.942999 + 0.332796i \(0.107992\pi\)
\(234\) 2.19614 0.799331i 0.143566 0.0522539i
\(235\) 0 0
\(236\) −7.52198 + 4.34282i −0.489639 + 0.282693i
\(237\) −1.94618 0.343165i −0.126418 0.0222909i
\(238\) 0.0625158 0.354545i 0.00405230 0.0229817i
\(239\) −13.5730 + 16.1757i −0.877966 + 1.04632i 0.120595 + 0.992702i \(0.461520\pi\)
−0.998562 + 0.0536175i \(0.982925\pi\)
\(240\) 0 0
\(241\) 2.32326 6.38312i 0.149655 0.411173i −0.842100 0.539321i \(-0.818681\pi\)
0.991755 + 0.128148i \(0.0409033\pi\)
\(242\) −5.56187 + 6.62837i −0.357530 + 0.426088i
\(243\) 1.28430 7.28364i 0.0823881 0.467246i
\(244\) −4.77812 0.842511i −0.305888 0.0539362i
\(245\) 0 0
\(246\) −1.03459 1.23297i −0.0659628 0.0786114i
\(247\) 1.61136 0.586487i 0.102528 0.0373173i
\(248\) −7.46683 + 12.9329i −0.474144 + 0.821242i
\(249\) 1.99095 + 3.44843i 0.126171 + 0.218535i
\(250\) 0 0
\(251\) 4.04419 + 2.33491i 0.255267 + 0.147379i 0.622174 0.782879i \(-0.286250\pi\)
−0.366907 + 0.930258i \(0.619583\pi\)
\(252\) 0.0439604 + 0.249312i 0.00276924 + 0.0157052i
\(253\) 0.0203680i 0.00128053i
\(254\) −8.36194 + 1.47444i −0.524675 + 0.0925144i
\(255\) 0 0
\(256\) 15.9543 + 5.80689i 0.997144 + 0.362931i
\(257\) −5.75524 15.8124i −0.359002 0.986350i −0.979376 0.202044i \(-0.935241\pi\)
0.620374 0.784306i \(-0.286981\pi\)
\(258\) 0.275788 0.0171698
\(259\) −0.255583 + 0.410928i −0.0158811 + 0.0255338i
\(260\) 0 0
\(261\) −0.575327 1.58070i −0.0356118 0.0978427i
\(262\) 19.1780 + 6.98023i 1.18482 + 0.431240i
\(263\) −19.3334 + 16.2226i −1.19215 + 1.00033i −0.192329 + 0.981331i \(0.561604\pi\)
−0.999819 + 0.0190003i \(0.993952\pi\)
\(264\) 3.69397 0.651346i 0.227348 0.0400876i
\(265\) 0 0
\(266\) −0.0269276 0.152714i −0.00165103 0.00936348i
\(267\) 2.64530 + 1.52727i 0.161890 + 0.0934672i
\(268\) 2.70740 + 2.27178i 0.165381 + 0.138771i
\(269\) −8.30018 14.3763i −0.506071 0.876541i −0.999975 0.00702440i \(-0.997764\pi\)
0.493904 0.869516i \(-0.335569\pi\)
\(270\) 0 0
\(271\) 3.10033 1.12843i 0.188331 0.0685470i −0.246133 0.969236i \(-0.579160\pi\)
0.434464 + 0.900689i \(0.356938\pi\)
\(272\) −1.92666 2.29610i −0.116821 0.139221i
\(273\) 0.0164236 0.00948217i 0.000994001 0.000573887i
\(274\) −19.2719 3.39816i −1.16426 0.205291i
\(275\) 0 0
\(276\) −0.000904799 0.00107830i −5.44625e−5 6.49059e-5i
\(277\) 5.93054 16.2940i 0.356332 0.979013i −0.623960 0.781456i \(-0.714477\pi\)
0.980291 0.197557i \(-0.0633006\pi\)
\(278\) 6.89323 18.9390i 0.413429 1.13589i
\(279\) −9.50687 + 11.3298i −0.569162 + 0.678300i
\(280\) 0 0
\(281\) 18.8706 + 3.32740i 1.12573 + 0.198496i 0.705354 0.708855i \(-0.250788\pi\)
0.420374 + 0.907351i \(0.361899\pi\)
\(282\) 1.86683 1.07782i 0.111168 0.0641830i
\(283\) −0.388913 0.463488i −0.0231185 0.0275515i 0.754361 0.656459i \(-0.227947\pi\)
−0.777480 + 0.628908i \(0.783502\pi\)
\(284\) 6.14560 2.23681i 0.364674 0.132730i
\(285\) 0 0
\(286\) 1.79326 + 3.10602i 0.106038 + 0.183663i
\(287\) 0.362017 + 0.303768i 0.0213692 + 0.0179309i
\(288\) 13.3807 + 7.72538i 0.788468 + 0.455222i
\(289\) −0.955655 5.41979i −0.0562150 0.318811i
\(290\) 0 0
\(291\) 1.98227 0.349527i 0.116203 0.0204897i
\(292\) 7.83754 6.57647i 0.458657 0.384859i
\(293\) −14.4365 5.25445i −0.843388 0.306968i −0.116046 0.993244i \(-0.537022\pi\)
−0.727341 + 0.686276i \(0.759244\pi\)
\(294\) 0.648125 + 1.78071i 0.0377994 + 0.103853i
\(295\) 0 0
\(296\) 5.57631 + 17.0408i 0.324117 + 0.990474i
\(297\) 7.53244 0.437076
\(298\) −4.91847 13.5134i −0.284919 0.782809i
\(299\) −0.00358534 0.00130496i −0.000207346 7.54677e-5i
\(300\) 0 0
\(301\) −0.0797449 + 0.0140612i −0.00459642 + 0.000810472i
\(302\) 10.1468i 0.583881i
\(303\) −0.364398 2.06660i −0.0209341 0.118723i
\(304\) −1.11808 0.645526i −0.0641265 0.0370234i
\(305\) 0 0
\(306\) −6.60531 11.4407i −0.377601 0.654023i
\(307\) −14.7246 + 25.5038i −0.840378 + 1.45558i 0.0491975 + 0.998789i \(0.484334\pi\)
−0.889575 + 0.456788i \(0.849000\pi\)
\(308\) −0.365069 + 0.132874i −0.0208018 + 0.00757122i
\(309\) −1.94187 2.31423i −0.110469 0.131652i
\(310\) 0 0
\(311\) 2.29988 + 0.405531i 0.130414 + 0.0229956i 0.238474 0.971149i \(-0.423353\pi\)
−0.108060 + 0.994144i \(0.534464\pi\)
\(312\) 0.122013 0.691973i 0.00690765 0.0391752i
\(313\) 2.19805 2.61953i 0.124241 0.148065i −0.700338 0.713811i \(-0.746967\pi\)
0.824579 + 0.565746i \(0.191412\pi\)
\(314\) 5.86660 16.1183i 0.331071 0.909611i
\(315\) 0 0
\(316\) 4.87469 5.80944i 0.274223 0.326806i
\(317\) 1.67589 9.50445i 0.0941274 0.533823i −0.900884 0.434060i \(-0.857080\pi\)
0.995011 0.0997628i \(-0.0318084\pi\)
\(318\) −0.213592 0.0376620i −0.0119776 0.00211198i
\(319\) 2.23559 1.29072i 0.125169 0.0722663i
\(320\) 0 0
\(321\) −3.07852 + 1.12049i −0.171826 + 0.0625395i
\(322\) −0.000172518 0 0.000298810i −9.61406e−6 0 1.66520e-5i
\(323\) −4.84646 8.39432i −0.269665 0.467073i
\(324\) 6.91411 + 5.80162i 0.384117 + 0.322312i
\(325\) 0 0
\(326\) −3.76660 21.3615i −0.208613 1.18310i
\(327\) 3.07397i 0.169991i
\(328\) 17.2435 3.04050i 0.952116 0.167884i
\(329\) −0.484847 + 0.406835i −0.0267305 + 0.0224295i
\(330\) 0 0
\(331\) 3.72850 + 10.2440i 0.204937 + 0.563059i 0.998997 0.0447803i \(-0.0142588\pi\)
−0.794060 + 0.607839i \(0.792037\pi\)
\(332\) −15.2805 −0.838628
\(333\) 2.50815 + 17.5795i 0.137446 + 0.963351i
\(334\) 14.1424 0.773837
\(335\) 0 0
\(336\) −0.0134171 0.00488344i −0.000731965 0.000266414i
\(337\) 22.7726 19.1085i 1.24050 1.04091i 0.243019 0.970021i \(-0.421862\pi\)
0.997484 0.0708850i \(-0.0225823\pi\)
\(338\) −11.5511 + 2.03677i −0.628296 + 0.110786i
\(339\) 5.14015i 0.279175i
\(340\) 0 0
\(341\) −19.6562 11.3485i −1.06444 0.614556i
\(342\) −4.35897 3.65761i −0.235706 0.197781i
\(343\) −0.556647 0.964140i −0.0300561 0.0520587i
\(344\) −1.50010 + 2.59826i −0.0808802 + 0.140089i
\(345\) 0 0
\(346\) −13.7994 16.4454i −0.741859 0.884113i
\(347\) −18.5136 + 10.6888i −0.993863 + 0.573807i −0.906427 0.422363i \(-0.861201\pi\)
−0.0874362 + 0.996170i \(0.527867\pi\)
\(348\) −0.175690 0.0309789i −0.00941799 0.00166065i
\(349\) −1.56915 + 8.89911i −0.0839948 + 0.476358i 0.913574 + 0.406672i \(0.133311\pi\)
−0.997569 + 0.0696862i \(0.977800\pi\)
\(350\) 0 0
\(351\) 0.482595 1.32592i 0.0257590 0.0707723i
\(352\) −8.10961 + 22.2810i −0.432243 + 1.18758i
\(353\) 13.4451 16.0232i 0.715609 0.852830i −0.278587 0.960411i \(-0.589866\pi\)
0.994196 + 0.107581i \(0.0343105\pi\)
\(354\) 0.374923 2.12629i 0.0199269 0.113011i
\(355\) 0 0
\(356\) −10.1513 + 5.86088i −0.538020 + 0.310626i
\(357\) −0.0689054 0.0821183i −0.00364686 0.00434616i
\(358\) −8.98911 + 3.27177i −0.475089 + 0.172918i
\(359\) 1.20188 2.08172i 0.0634328 0.109869i −0.832565 0.553927i \(-0.813128\pi\)
0.895998 + 0.444059i \(0.146462\pi\)
\(360\) 0 0
\(361\) 11.3566 + 9.52929i 0.597714 + 0.501542i
\(362\) 6.78931 + 3.91981i 0.356838 + 0.206021i
\(363\) 0.447393 + 2.53729i 0.0234821 + 0.133173i
\(364\) 0.0727755i 0.00381447i
\(365\) 0 0
\(366\) 0.923910 0.775252i 0.0482935 0.0405231i
\(367\) −13.6333 4.96213i −0.711655 0.259021i −0.0392761 0.999228i \(-0.512505\pi\)
−0.672379 + 0.740207i \(0.734727\pi\)
\(368\) 0.000982502 0.00269940i 5.12165e−5 0.000140716i
\(369\) 17.3412 0.902746
\(370\) 0 0
\(371\) 0.0636810 0.00330615
\(372\) 0.536482 + 1.47397i 0.0278153 + 0.0764220i
\(373\) −30.6899 11.1702i −1.58907 0.578372i −0.611915 0.790923i \(-0.709601\pi\)
−0.977150 + 0.212551i \(0.931823\pi\)
\(374\) 15.5302 13.0313i 0.803045 0.673835i
\(375\) 0 0
\(376\) 23.4504i 1.20936i
\(377\) −0.0839705 0.476221i −0.00432470 0.0245266i
\(378\) −0.110505 0.0638001i −0.00568377 0.00328152i
\(379\) −5.35493 4.49332i −0.275064 0.230806i 0.494811 0.869001i \(-0.335237\pi\)
−0.769875 + 0.638194i \(0.779682\pi\)
\(380\) 0 0
\(381\) −1.26413 + 2.18954i −0.0647634 + 0.112173i
\(382\) −19.7380 + 7.18403i −1.00988 + 0.367567i
\(383\) 14.2017 + 16.9250i 0.725675 + 0.864826i 0.995169 0.0981762i \(-0.0313009\pi\)
−0.269494 + 0.963002i \(0.586856\pi\)
\(384\) 1.12257 0.648116i 0.0572859 0.0330740i
\(385\) 0 0
\(386\) −0.975938 + 5.53482i −0.0496739 + 0.281715i
\(387\) −1.90995 + 2.27619i −0.0970883 + 0.115705i
\(388\) −2.64186 + 7.25846i −0.134120 + 0.368492i
\(389\) −11.8837 + 32.6501i −0.602525 + 1.65542i 0.143614 + 0.989634i \(0.454128\pi\)
−0.746139 + 0.665790i \(0.768094\pi\)
\(390\) 0 0
\(391\) −0.00374510 + 0.0212395i −0.000189398 + 0.00107413i
\(392\) −20.3018 3.57976i −1.02540 0.180805i
\(393\) 5.26277 3.03846i 0.265472 0.153270i
\(394\) −4.09794 4.88373i −0.206451 0.246039i
\(395\) 0 0
\(396\) −7.12793 + 12.3459i −0.358192 + 0.620406i
\(397\) −16.5516 28.6683i −0.830702 1.43882i −0.897482 0.441051i \(-0.854606\pi\)
0.0667799 0.997768i \(-0.478727\pi\)
\(398\) −7.71581 6.47433i −0.386759 0.324529i
\(399\) −0.0399874 0.0230868i −0.00200188 0.00115578i
\(400\) 0 0
\(401\) 9.52924i 0.475868i 0.971281 + 0.237934i \(0.0764701\pi\)
−0.971281 + 0.237934i \(0.923530\pi\)
\(402\) −0.865206 + 0.152559i −0.0431526 + 0.00760896i
\(403\) −3.25700 + 2.73295i −0.162243 + 0.136138i
\(404\) 7.56726 + 2.75426i 0.376485 + 0.137029i
\(405\) 0 0
\(406\) −0.0437297 −0.00217027
\(407\) −25.8995 + 8.47518i −1.28379 + 0.420099i
\(408\) −3.97179 −0.196633
\(409\) 5.48437 + 15.0682i 0.271185 + 0.745074i 0.998285 + 0.0585427i \(0.0186454\pi\)
−0.727100 + 0.686531i \(0.759132\pi\)
\(410\) 0 0
\(411\) −4.46369 + 3.74548i −0.220178 + 0.184751i
\(412\) 11.4170 2.01312i 0.562475 0.0991795i
\(413\) 0.633940i 0.0311941i
\(414\) 0.00219856 + 0.0124687i 0.000108053 + 0.000612802i
\(415\) 0 0
\(416\) 3.40250 + 2.85503i 0.166821 + 0.139980i
\(417\) −3.00060 5.19719i −0.146940 0.254507i
\(418\) 4.36615 7.56240i 0.213555 0.369889i
\(419\) 4.35092 1.58361i 0.212557 0.0773643i −0.233547 0.972345i \(-0.575033\pi\)
0.446104 + 0.894981i \(0.352811\pi\)
\(420\) 0 0
\(421\) 7.17774 4.14407i 0.349822 0.201970i −0.314785 0.949163i \(-0.601932\pi\)
0.664607 + 0.747193i \(0.268599\pi\)
\(422\) −10.0328 1.76905i −0.488388 0.0861160i
\(423\) −4.03297 + 22.8721i −0.196090 + 1.11208i
\(424\) 1.51662 1.80744i 0.0736537 0.0877770i
\(425\) 0 0
\(426\) −0.556032 + 1.52769i −0.0269399 + 0.0740166i
\(427\) −0.227625 + 0.271273i −0.0110155 + 0.0131278i
\(428\) 2.18310 12.3810i 0.105524 0.598457i
\(429\) 1.05170 + 0.185443i 0.0507765 + 0.00895326i
\(430\) 0 0
\(431\) −0.202710 0.241581i −0.00976422 0.0116365i 0.761140 0.648587i \(-0.224640\pi\)
−0.770904 + 0.636951i \(0.780195\pi\)
\(432\) −0.998284 + 0.363346i −0.0480300 + 0.0174815i
\(433\) 4.56186 7.90137i 0.219229 0.379716i −0.735343 0.677695i \(-0.762979\pi\)
0.954572 + 0.297979i \(0.0963125\pi\)
\(434\) 0.192245 + 0.332977i 0.00922804 + 0.0159834i
\(435\) 0 0
\(436\) −10.2159 5.89817i −0.489254 0.282471i
\(437\) 0.00161313 + 0.00914854i 7.71667e−5 + 0.000437634i
\(438\) 2.54329i 0.121523i
\(439\) 19.7260 3.47823i 0.941473 0.166007i 0.318211 0.948020i \(-0.396918\pi\)
0.623262 + 0.782013i \(0.285807\pi\)
\(440\) 0 0
\(441\) −19.1855 6.98294i −0.913594 0.332521i
\(442\) −1.29888 3.56864i −0.0617814 0.169743i
\(443\) −25.8163 −1.22657 −0.613284 0.789862i \(-0.710152\pi\)
−0.613284 + 0.789862i \(0.710152\pi\)
\(444\) 1.74762 + 0.701837i 0.0829386 + 0.0333077i
\(445\) 0 0
\(446\) −4.74021 13.0236i −0.224456 0.616686i
\(447\) −4.02374 1.46452i −0.190317 0.0692695i
\(448\) 0.384708 0.322808i 0.0181757 0.0152513i
\(449\) −25.1893 + 4.44155i −1.18876 + 0.209610i −0.732832 0.680409i \(-0.761802\pi\)
−0.455923 + 0.890019i \(0.650691\pi\)
\(450\) 0 0
\(451\) 4.62112 + 26.2077i 0.217600 + 1.23407i
\(452\) −17.0826 9.86264i −0.803498 0.463900i
\(453\) 2.31445 + 1.94205i 0.108742 + 0.0912457i
\(454\) −10.8428 18.7803i −0.508880 0.881405i
\(455\) 0 0
\(456\) −1.60760 + 0.585119i −0.0752829 + 0.0274007i
\(457\) −2.26391 2.69802i −0.105901 0.126208i 0.710490 0.703707i \(-0.248473\pi\)
−0.816391 + 0.577499i \(0.804029\pi\)
\(458\) −3.56059 + 2.05571i −0.166375 + 0.0960569i
\(459\) −7.85473 1.38500i −0.366627 0.0646463i
\(460\) 0 0
\(461\) −6.74610 + 8.03969i −0.314197 + 0.374446i −0.899912 0.436072i \(-0.856369\pi\)
0.585715 + 0.810517i \(0.300814\pi\)
\(462\) 0.0330302 0.0907497i 0.00153670 0.00422206i
\(463\) −4.07686 + 11.2011i −0.189468 + 0.520558i −0.997661 0.0683595i \(-0.978224\pi\)
0.808193 + 0.588918i \(0.200446\pi\)
\(464\) −0.234024 + 0.278899i −0.0108643 + 0.0129476i
\(465\) 0 0
\(466\) −5.25672 0.926901i −0.243513 0.0429379i
\(467\) −1.15024 + 0.664094i −0.0532270 + 0.0307306i −0.526377 0.850251i \(-0.676450\pi\)
0.473150 + 0.880982i \(0.343117\pi\)
\(468\) 1.71655 + 2.04570i 0.0793475 + 0.0945627i
\(469\) 0.242399 0.0882259i 0.0111929 0.00407390i
\(470\) 0 0
\(471\) −2.55370 4.42315i −0.117668 0.203808i
\(472\) 17.9929 + 15.0979i 0.828192 + 0.694936i
\(473\) −3.94897 2.27994i −0.181574 0.104832i
\(474\) 0.327356 + 1.85653i 0.0150360 + 0.0852732i
\(475\) 0 0
\(476\) 0.405121 0.0714338i 0.0185687 0.00327416i
\(477\) 1.79006 1.50204i 0.0819612 0.0687736i
\(478\) 18.9283 + 6.88936i 0.865763 + 0.315112i
\(479\) 13.6672 + 37.5504i 0.624472 + 1.71572i 0.695767 + 0.718268i \(0.255065\pi\)
−0.0712949 + 0.997455i \(0.522713\pi\)
\(480\) 0 0
\(481\) −0.167483 + 5.10203i −0.00763655 + 0.232632i
\(482\) −6.47985 −0.295149
\(483\) 3.51385e−5 0 9.65421e-5i 1.59886e−6 0 4.39282e-6i
\(484\) −9.29079 3.38157i −0.422309 0.153708i
\(485\) 0 0
\(486\) −6.94811 + 1.22514i −0.315172 + 0.0555734i
\(487\) 23.3742i 1.05919i 0.848252 + 0.529593i \(0.177655\pi\)
−0.848252 + 0.529593i \(0.822345\pi\)
\(488\) 2.27836 + 12.9212i 0.103136 + 0.584916i
\(489\) −5.59340 3.22935i −0.252943 0.146036i
\(490\) 0 0
\(491\) 1.94286 + 3.36513i 0.0876800 + 0.151866i 0.906530 0.422141i \(-0.138721\pi\)
−0.818850 + 0.574007i \(0.805388\pi\)
\(492\) 0.919565 1.59273i 0.0414572 0.0718060i
\(493\) −2.56857 + 0.934882i −0.115682 + 0.0421050i
\(494\) −1.05146 1.25308i −0.0473073 0.0563787i
\(495\) 0 0
\(496\) 3.15248 + 0.555867i 0.141551 + 0.0249592i
\(497\) 0.0828886 0.470085i 0.00371806 0.0210862i
\(498\) 2.44161 2.90980i 0.109411 0.130391i
\(499\) 9.60639 26.3933i 0.430041 1.18153i −0.515746 0.856741i \(-0.672485\pi\)
0.945787 0.324787i \(-0.105293\pi\)
\(500\) 0 0
\(501\) 2.70680 3.22584i 0.120931 0.144120i
\(502\) 0.773551 4.38703i 0.0345253 0.195803i
\(503\) 11.7381 + 2.06975i 0.523378 + 0.0922856i 0.429094 0.903260i \(-0.358833\pi\)
0.0942836 + 0.995545i \(0.469944\pi\)
\(504\) 0.592882 0.342301i 0.0264091 0.0152473i
\(505\) 0 0
\(506\) −0.0182580 + 0.00664536i −0.000811666 + 0.000295422i
\(507\) −1.74625 + 3.02460i −0.0775539 + 0.134327i
\(508\) −4.85109 8.40234i −0.215232 0.372793i
\(509\) −12.1400 10.1867i −0.538097 0.451517i 0.332790 0.943001i \(-0.392010\pi\)
−0.870886 + 0.491484i \(0.836454\pi\)
\(510\) 0 0
\(511\) −0.129671 0.735400i −0.00573630 0.0325322i
\(512\) 7.06906i 0.312411i
\(513\) −3.38328 + 0.596564i −0.149376 + 0.0263389i
\(514\) −12.2966 + 10.3180i −0.542378 + 0.455109i
\(515\) 0 0
\(516\) 0.107781 + 0.296125i 0.00474477 + 0.0130362i
\(517\) −35.6412 −1.56750
\(518\) 0.451745 + 0.0950341i 0.0198485 + 0.00417556i
\(519\) −6.39231 −0.280591
\(520\) 0 0
\(521\) −2.75061 1.00114i −0.120507 0.0438608i 0.281063 0.959689i \(-0.409313\pi\)
−0.401570 + 0.915829i \(0.631535\pi\)
\(522\) −1.22923 + 1.03145i −0.0538021 + 0.0451453i
\(523\) 14.4547 2.54875i 0.632060 0.111449i 0.151566 0.988447i \(-0.451568\pi\)
0.480494 + 0.876998i \(0.340457\pi\)
\(524\) 23.3202i 1.01875i
\(525\) 0 0
\(526\) 20.8498 + 12.0377i 0.909096 + 0.524867i
\(527\) 18.4105 + 15.4483i 0.801976 + 0.672937i
\(528\) −0.402019 0.696317i −0.0174956 0.0303033i
\(529\) −11.5000 + 19.9186i −0.500000 + 0.866025i
\(530\) 0 0
\(531\) 14.9527 + 17.8199i 0.648891 + 0.773319i
\(532\) 0.153451 0.0885953i 0.00665297 0.00384109i
\(533\) 4.90935 + 0.865652i 0.212648 + 0.0374955i
\(534\) 0.505980 2.86955i 0.0218959 0.124178i
\(535\) 0 0
\(536\) 3.26886 8.98112i 0.141193 0.387925i
\(537\) −0.974201 + 2.67660i −0.0420399 + 0.115504i
\(538\) −10.1789 + 12.1308i −0.438846 + 0.522996i
\(539\) 5.44071 30.8558i 0.234348 1.32905i
\(540\) 0 0
\(541\) 35.5976 20.5523i 1.53046 0.883611i 0.531119 0.847297i \(-0.321772\pi\)
0.999340 0.0363140i \(-0.0115617\pi\)
\(542\) −2.02305 2.41098i −0.0868974 0.103560i
\(543\) 2.19355 0.798386i 0.0941341 0.0342620i
\(544\) 12.5534 21.7432i 0.538223 0.932230i
\(545\) 0 0
\(546\) −0.0138583 0.0116285i −0.000593079 0.000497653i
\(547\) 6.83527 + 3.94634i 0.292255 + 0.168734i 0.638958 0.769241i \(-0.279366\pi\)
−0.346703 + 0.937975i \(0.612699\pi\)
\(548\) −3.88292 22.0211i −0.165870 0.940695i
\(549\) 12.9944i 0.554587i
\(550\) 0 0
\(551\) −0.901916 + 0.756797i −0.0384229 + 0.0322406i
\(552\) 0.00357698 + 0.00130192i 0.000152247 + 5.54132e-5i
\(553\) −0.189312 0.520130i −0.00805037 0.0221182i
\(554\) −16.5409 −0.702757
\(555\) 0 0
\(556\) 23.0295 0.976670
\(557\) 8.29054 + 22.7781i 0.351281 + 0.965137i 0.981959 + 0.189093i \(0.0605547\pi\)
−0.630678 + 0.776045i \(0.717223\pi\)
\(558\) 13.2579 + 4.82547i 0.561250 + 0.204278i
\(559\) −0.654339 + 0.549056i −0.0276756 + 0.0232226i
\(560\) 0 0
\(561\) 6.03654i 0.254863i
\(562\) −3.17412 18.0013i −0.133892 0.759340i
\(563\) −30.4693 17.5915i −1.28413 0.741391i −0.306527 0.951862i \(-0.599167\pi\)
−0.977600 + 0.210471i \(0.932500\pi\)
\(564\) 1.88687 + 1.58327i 0.0794516 + 0.0666678i
\(565\) 0 0
\(566\) −0.288584 + 0.499842i −0.0121301 + 0.0210099i
\(567\) 0.619034 0.225310i 0.0259970 0.00946213i
\(568\) −11.3682 13.5481i −0.477000 0.568466i
\(569\) 27.2904 15.7561i 1.14407 0.660531i 0.196638 0.980476i \(-0.436998\pi\)
0.947436 + 0.319945i \(0.103664\pi\)
\(570\) 0 0
\(571\) −2.32777 + 13.2014i −0.0974141 + 0.552463i 0.896567 + 0.442909i \(0.146053\pi\)
−0.993981 + 0.109554i \(0.965058\pi\)
\(572\) −2.63424 + 3.13936i −0.110143 + 0.131263i
\(573\) −2.13912 + 5.87718i −0.0893629 + 0.245523i
\(574\) 0.154186 0.423622i 0.00643559 0.0176817i
\(575\) 0 0
\(576\) 3.20001 18.1481i 0.133334 0.756173i
\(577\) −1.03944 0.183282i −0.0432726 0.00763013i 0.151970 0.988385i \(-0.451438\pi\)
−0.195243 + 0.980755i \(0.562549\pi\)
\(578\) −4.54652 + 2.62493i −0.189110 + 0.109183i
\(579\) 1.07569 + 1.28195i 0.0447040 + 0.0532761i
\(580\) 0 0
\(581\) −0.557641 + 0.965863i −0.0231349 + 0.0400708i
\(582\) −0.960061 1.66287i −0.0397958 0.0689284i
\(583\) 2.74705 + 2.30505i 0.113771 + 0.0954652i
\(584\) −23.9609 13.8338i −0.991508 0.572447i
\(585\) 0 0
\(586\) 14.6552i 0.605402i
\(587\) 7.74311 1.36532i 0.319592 0.0563528i −0.0115508 0.999933i \(-0.503677\pi\)
0.331143 + 0.943581i \(0.392566\pi\)
\(588\) −1.65873 + 1.39184i −0.0684047 + 0.0573983i
\(589\) 9.72759 + 3.54055i 0.400818 + 0.145886i
\(590\) 0 0
\(591\) −1.89830 −0.0780855
\(592\) 3.02367 2.37255i 0.124272 0.0975113i
\(593\) −28.8879 −1.18628 −0.593142 0.805098i \(-0.702113\pi\)
−0.593142 + 0.805098i \(0.702113\pi\)
\(594\) −2.45757 6.75211i −0.100835 0.277042i
\(595\) 0 0
\(596\) 12.5877 10.5623i 0.515612 0.432650i
\(597\) −2.95356 + 0.520792i −0.120881 + 0.0213146i
\(598\) 0.00363968i 0.000148837i
\(599\) 7.63439 + 43.2968i 0.311933 + 1.76906i 0.588927 + 0.808187i \(0.299551\pi\)
−0.276994 + 0.960872i \(0.589338\pi\)
\(600\) 0 0
\(601\) −16.3655 13.7323i −0.667563 0.560152i 0.244780 0.969579i \(-0.421284\pi\)
−0.912343 + 0.409427i \(0.865729\pi\)
\(602\) 0.0386224 + 0.0668959i 0.00157413 + 0.00272647i
\(603\) 4.73280 8.19745i 0.192735 0.333826i
\(604\) −10.8950 + 3.96546i −0.443311 + 0.161352i
\(605\) 0 0
\(606\) −1.73362 + 1.00091i −0.0704235 + 0.0406590i
\(607\) −20.8955 3.68445i −0.848124 0.149547i −0.267337 0.963603i \(-0.586144\pi\)
−0.580787 + 0.814056i \(0.697255\pi\)
\(608\) 1.87789 10.6500i 0.0761583 0.431915i
\(609\) −0.00836971 + 0.00997463i −0.000339158 + 0.000404192i
\(610\) 0 0
\(611\) −2.28350 + 6.27385i −0.0923803 + 0.253813i
\(612\) 9.70297 11.5635i 0.392219 0.467429i
\(613\) −5.03066 + 28.5303i −0.203187 + 1.15233i 0.697081 + 0.716992i \(0.254482\pi\)
−0.900268 + 0.435336i \(0.856630\pi\)
\(614\) 27.6658 + 4.87822i 1.11650 + 0.196869i
\(615\) 0 0
\(616\) 0.675310 + 0.804804i 0.0272090 + 0.0324265i
\(617\) −24.4424 + 8.89630i −0.984014 + 0.358152i −0.783399 0.621519i \(-0.786516\pi\)
−0.200614 + 0.979670i \(0.564294\pi\)
\(618\) −1.44092 + 2.49575i −0.0579624 + 0.100394i
\(619\) −20.5919 35.6662i −0.827658 1.43355i −0.899871 0.436156i \(-0.856340\pi\)
0.0722132 0.997389i \(-0.476994\pi\)
\(620\) 0 0
\(621\) 0.00661996 + 0.00382204i 0.000265650 + 0.000153373i
\(622\) −0.386849 2.19393i −0.0155112 0.0879686i
\(623\) 0.855538i 0.0342764i
\(624\) −0.148328 + 0.0261543i −0.00593788 + 0.00104701i
\(625\) 0 0
\(626\) −3.06530 1.11568i −0.122514 0.0445915i
\(627\) −0.889296 2.44332i −0.0355151 0.0975769i
\(628\) 19.5996 0.782111
\(629\) 28.5660 4.07563i 1.13900 0.162506i
\(630\) 0 0
\(631\) −12.7116 34.9248i −0.506040 1.39033i −0.885290 0.465039i \(-0.846040\pi\)
0.379251 0.925294i \(-0.376182\pi\)
\(632\) −19.2714 7.01420i −0.766573 0.279010i
\(633\) −2.32375 + 1.94986i −0.0923609 + 0.0775000i
\(634\) −9.06660 + 1.59869i −0.360081 + 0.0634920i
\(635\) 0 0
\(636\) −0.0430346 0.244061i −0.00170643 0.00967766i
\(637\) −5.08290 2.93461i −0.201392 0.116274i
\(638\) −1.88640 1.58287i −0.0746831 0.0626666i
\(639\) −8.75787 15.1691i −0.346456 0.600079i
\(640\) 0 0
\(641\) 17.7377 6.45598i 0.700595 0.254996i 0.0329303 0.999458i \(-0.489516\pi\)
0.667665 + 0.744462i \(0.267294\pi\)
\(642\) 2.00882 + 2.39402i 0.0792817 + 0.0944843i
\(643\) −13.6913 + 7.90467i −0.539932 + 0.311730i −0.745051 0.667007i \(-0.767575\pi\)
0.205119 + 0.978737i \(0.434242\pi\)
\(644\) −0.000388267 0 6.84619e-5i −1.52999e−5 0 2.69778e-6i
\(645\) 0 0
\(646\) −5.94347 + 7.08315i −0.233843 + 0.278683i
\(647\) −7.57072 + 20.8004i −0.297636 + 0.817747i 0.697258 + 0.716820i \(0.254403\pi\)
−0.994894 + 0.100927i \(0.967819\pi\)
\(648\) 8.34796 22.9358i 0.327939 0.901004i
\(649\) −22.9466 + 27.3466i −0.900731 + 1.07345i
\(650\) 0 0
\(651\) 0.112746 + 0.0198802i 0.00441887 + 0.000779166i
\(652\) 21.4647 12.3926i 0.840621 0.485333i
\(653\) −7.95869 9.48480i −0.311448 0.371169i 0.587501 0.809224i \(-0.300112\pi\)
−0.898948 + 0.438055i \(0.855668\pi\)
\(654\) 2.75552 1.00293i 0.107749 0.0392175i
\(655\) 0 0
\(656\) −1.87663 3.25043i −0.0732703 0.126908i
\(657\) −20.9908 17.6134i −0.818931 0.687164i
\(658\) 0.522877 + 0.301883i 0.0203839 + 0.0117686i
\(659\) −8.18785 46.4356i −0.318953 1.80887i −0.549143 0.835728i \(-0.685046\pi\)
0.230190 0.973146i \(-0.426065\pi\)
\(660\) 0 0
\(661\) −16.8898 + 2.97813i −0.656937 + 0.115836i −0.492173 0.870497i \(-0.663797\pi\)
−0.164764 + 0.986333i \(0.552686\pi\)
\(662\) 7.96624 6.68447i 0.309617 0.259799i
\(663\) −1.06260 0.386754i −0.0412679 0.0150203i
\(664\) 14.1331 + 38.8303i 0.548470 + 1.50691i
\(665\) 0 0
\(666\) 14.9400 7.98387i 0.578914 0.309369i
\(667\) 0.00261969 0.000101435
\(668\) 5.52698 + 15.1853i 0.213845 + 0.587535i
\(669\) −3.87791 1.41144i −0.149929 0.0545696i
\(670\) 0 0
\(671\) −19.6384 + 3.46277i −0.758131 + 0.133679i
\(672\) 0.119600i 0.00461366i
\(673\) 3.51443 + 19.9313i 0.135471 + 0.768297i 0.974530 + 0.224256i \(0.0719952\pi\)
−0.839059 + 0.544041i \(0.816894\pi\)
\(674\) −24.5588 14.1790i −0.945970 0.546156i
\(675\) 0 0
\(676\) −6.70124 11.6069i −0.257740 0.446419i
\(677\) 12.4453 21.5559i 0.478312 0.828461i −0.521379 0.853326i \(-0.674582\pi\)
0.999691 + 0.0248643i \(0.00791537\pi\)
\(678\) 4.60765 1.67705i 0.176956 0.0644066i
\(679\) 0.362387 + 0.431876i 0.0139071 + 0.0165739i
\(680\) 0 0
\(681\) −6.35903 1.12127i −0.243678 0.0429671i
\(682\) −3.75973 + 21.3225i −0.143967 + 0.816480i
\(683\) −7.44681 + 8.87476i −0.284944 + 0.339583i −0.889463 0.457008i \(-0.848921\pi\)
0.604518 + 0.796591i \(0.293366\pi\)
\(684\) 2.22380 6.10984i 0.0850291 0.233616i
\(685\) 0 0
\(686\) −0.682645 + 0.813545i −0.0260635 + 0.0310613i
\(687\) −0.212583 + 1.20562i −0.00811053 + 0.0459971i
\(688\) 0.633340 + 0.111675i 0.0241459 + 0.00425757i
\(689\) 0.581752 0.335875i 0.0221630 0.0127958i
\(690\) 0 0
\(691\) 0.0158943 0.00578507i 0.000604649 0.000220074i −0.341718 0.939803i \(-0.611009\pi\)
0.342322 + 0.939583i \(0.388786\pi\)
\(692\) 12.2652 21.2440i 0.466254 0.807575i
\(693\) 0.520247 + 0.901094i 0.0197626 + 0.0342297i
\(694\) 15.6218 + 13.1083i 0.592997 + 0.497584i
\(695\) 0 0
\(696\) 0.0837747 + 0.475110i 0.00317547 + 0.0180090i
\(697\) 28.1787i 1.06735i
\(698\) 8.48915 1.49687i 0.321319 0.0566572i
\(699\) −1.21754 + 1.02164i −0.0460516 + 0.0386419i
\(700\) 0 0
\(701\) 1.50535 + 4.13593i 0.0568565 + 0.156212i 0.964869 0.262731i \(-0.0846231\pi\)
−0.908013 + 0.418943i \(0.862401\pi\)
\(702\) −1.34601 −0.0508020
\(703\) 10.9618 5.85795i 0.413433 0.220937i
\(704\) 28.2800 1.06584
\(705\) 0 0
\(706\) −18.7499 6.82441i −0.705663 0.256840i
\(707\) 0.450250 0.377804i 0.0169334 0.0142088i
\(708\) 2.42961 0.428406i 0.0913104 0.0161005i
\(709\) 32.9793i 1.23856i 0.785169 + 0.619281i \(0.212576\pi\)
−0.785169 + 0.619281i \(0.787424\pi\)
\(710\) 0 0
\(711\) −17.5898 10.1555i −0.659669 0.380860i
\(712\) 24.2825 + 20.3754i 0.910024 + 0.763601i
\(713\) −0.0115167 0.0199475i −0.000431303 0.000747040i
\(714\) −0.0511297 + 0.0885593i −0.00191348 + 0.00331425i
\(715\) 0 0
\(716\) −7.02606 8.37333i −0.262576 0.312926i
\(717\) 5.19426 2.99891i 0.193983 0.111996i
\(718\) −2.25819 0.398180i −0.0842749 0.0148599i
\(719\) 2.37186 13.4515i 0.0884554 0.501655i −0.908102 0.418749i \(-0.862469\pi\)
0.996557 0.0829063i \(-0.0264202\pi\)
\(720\) 0 0
\(721\) 0.289400 0.795120i 0.0107778 0.0296118i
\(722\) 4.83685 13.2891i 0.180009 0.494570i
\(723\) −1.24022 + 1.47804i −0.0461242 + 0.0549687i
\(724\) −1.55553 + 8.82186i −0.0578109 + 0.327862i
\(725\) 0 0
\(726\) 2.12847 1.22887i 0.0789949 0.0456077i
\(727\) 26.6882 + 31.8057i 0.989809 + 1.17961i 0.983735 + 0.179627i \(0.0574892\pi\)
0.00607473 + 0.999982i \(0.498066\pi\)
\(728\) 0.184934 0.0673106i 0.00685412 0.00249470i
\(729\) 11.3702 19.6937i 0.421118 0.729398i
\(730\) 0 0
\(731\) 3.69872 + 3.10359i 0.136802 + 0.114791i
\(732\) 1.19349 + 0.689064i 0.0441128 + 0.0254685i
\(733\) −2.61901 14.8531i −0.0967353 0.548613i −0.994202 0.107531i \(-0.965706\pi\)
0.897466 0.441083i \(-0.145405\pi\)
\(734\) 13.8399i 0.510842i
\(735\) 0 0
\(736\) −0.0184328 + 0.0154670i −0.000679442 + 0.000570119i
\(737\) 13.6500 + 4.96819i 0.502804 + 0.183006i
\(738\) −5.65781 15.5447i −0.208267 0.572208i
\(739\) 21.3018 0.783601 0.391801 0.920050i \(-0.371852\pi\)
0.391801 + 0.920050i \(0.371852\pi\)
\(740\) 0 0
\(741\) −0.487069 −0.0178929
\(742\) −0.0207768 0.0570839i −0.000762741 0.00209561i
\(743\) 8.77491 + 3.19381i 0.321920 + 0.117169i 0.497925 0.867220i \(-0.334095\pi\)
−0.176005 + 0.984389i \(0.556318\pi\)
\(744\) 3.24941 2.72658i 0.119129 0.0999612i
\(745\) 0 0
\(746\) 31.1550i 1.14067i
\(747\) 7.10655 + 40.3033i 0.260015 + 1.47462i
\(748\) 20.0616 + 11.5826i 0.733526 + 0.423501i
\(749\) −0.702916 0.589817i −0.0256840 0.0215514i
\(750\) 0 0
\(751\) −18.5706 + 32.1652i −0.677651 + 1.17373i 0.298036 + 0.954555i \(0.403669\pi\)
−0.975687 + 0.219171i \(0.929665\pi\)
\(752\) 4.72358 1.71924i 0.172251 0.0626943i
\(753\) −0.852614 1.01611i −0.0310710 0.0370290i
\(754\) −0.399489 + 0.230645i −0.0145485 + 0.00839960i
\(755\) 0 0
\(756\) 0.0253183 0.143587i 0.000920819 0.00522223i
\(757\) −21.4087 + 25.5138i −0.778111 + 0.927317i −0.998847 0.0480171i \(-0.984710\pi\)
0.220736 + 0.975334i \(0.429154\pi\)
\(758\) −2.28071 + 6.26619i −0.0828390 + 0.227598i
\(759\) −0.00197872 + 0.00543649i −7.18231e−5 + 0.000197332i
\(760\) 0 0
\(761\) 3.84248 21.7918i 0.139290 0.789951i −0.832486 0.554045i \(-0.813083\pi\)
0.971776 0.235905i \(-0.0758055\pi\)
\(762\) 2.37515 + 0.418803i 0.0860426 + 0.0151716i
\(763\) −0.745632 + 0.430491i −0.0269937 + 0.0155848i
\(764\) −15.4276 18.3859i −0.558150 0.665178i
\(765\) 0 0
\(766\) 10.5381 18.2525i 0.380757 0.659490i
\(767\) 3.34361 + 5.79130i 0.120731 + 0.209112i
\(768\) −3.69428 3.09987i −0.133306 0.111857i
\(769\) −0.919212 0.530707i −0.0331476 0.0191378i 0.483335 0.875436i \(-0.339425\pi\)
−0.516482 + 0.856298i \(0.672759\pi\)
\(770\) 0 0
\(771\) 4.77965i 0.172135i
\(772\) −6.32437 + 1.11516i −0.227619 + 0.0401354i
\(773\) 8.53732 7.16366i 0.307066 0.257659i −0.476212 0.879330i \(-0.657991\pi\)
0.783278 + 0.621672i \(0.213546\pi\)
\(774\) 2.66354 + 0.969447i 0.0957388 + 0.0348461i
\(775\) 0 0
\(776\) 20.8884 0.749850
\(777\) 0.108139 0.0848526i 0.00387948 0.00304407i
\(778\) 33.1448 1.18830
\(779\) −4.15126 11.4055i −0.148734 0.408644i
\(780\) 0 0
\(781\) 20.5912 17.2780i 0.736809 0.618257i
\(782\) 0.0202611 0.00357257i 0.000724534 0.000127755i
\(783\) 0.968806i 0.0346223i
\(784\) 0.767340 + 4.35180i 0.0274050 + 0.155422i
\(785\) 0 0
\(786\) −4.44074 3.72623i −0.158396 0.132910i
\(787\) −18.4614 31.9760i −0.658077 1.13982i −0.981113 0.193436i \(-0.938037\pi\)
0.323036 0.946387i \(-0.395296\pi\)
\(788\) 3.64235 6.30873i 0.129753 0.224739i
\(789\) 6.73634 2.45183i 0.239820 0.0872873i
\(790\) 0 0
\(791\) −1.24681 + 0.719846i −0.0443315 + 0.0255948i
\(792\) 37.9657 + 6.69437i 1.34905 + 0.237874i
\(793\) −0.648664 + 3.67876i −0.0230347 + 0.130636i
\(794\) −20.2981 + 24.1904i −0.720353 + 0.858484i
\(795\) 0 0
\(796\) 3.93634 10.8150i 0.139520 0.383328i
\(797\) 32.7040 38.9751i 1.15843 1.38057i 0.247053 0.969002i \(-0.420538\pi\)
0.911380 0.411565i \(-0.135018\pi\)
\(798\) −0.00764858 + 0.0433773i −0.000270757 + 0.00153554i
\(799\) 37.1662 + 6.55341i 1.31485 + 0.231843i
\(800\) 0 0
\(801\) 20.1795 + 24.0490i 0.713007 + 0.849729i
\(802\) 8.54205 3.10905i 0.301630 0.109784i
\(803\) 21.0254 36.4171i 0.741970 1.28513i
\(804\) −0.501940 0.869386i −0.0177021 0.0306609i
\(805\) 0 0
\(806\) 3.51247 + 2.02792i 0.123721 + 0.0714306i
\(807\) 0.818788 + 4.64358i 0.0288227 + 0.163462i
\(808\) 21.7771i 0.766115i
\(809\) 12.0988 2.13335i 0.425373 0.0750047i 0.0431362 0.999069i \(-0.486265\pi\)
0.382237 + 0.924064i \(0.375154\pi\)
\(810\) 0 0
\(811\) −17.9533 6.53447i −0.630426 0.229456i 0.00699079 0.999976i \(-0.497775\pi\)
−0.637417 + 0.770519i \(0.719997\pi\)
\(812\) −0.0170900 0.0469544i −0.000599742 0.00164778i
\(813\) −0.937142 −0.0328670
\(814\) 16.0473 + 20.4512i 0.562456 + 0.716815i
\(815\) 0 0
\(816\) 0.291187 + 0.800030i 0.0101936 + 0.0280067i
\(817\) 1.95429 + 0.711305i 0.0683721 + 0.0248854i
\(818\) 11.7178 9.83242i 0.409704 0.343783i
\(819\) 0.191949 0.0338459i 0.00670725 0.00118267i
\(820\) 0 0
\(821\) −5.18433 29.4018i −0.180934 1.02613i −0.931069 0.364844i \(-0.881122\pi\)
0.750134 0.661286i \(-0.229989\pi\)
\(822\) 4.81381 + 2.77925i 0.167901 + 0.0969375i
\(823\) 27.7400 + 23.2766i 0.966955 + 0.811371i 0.982070 0.188514i \(-0.0603672\pi\)
−0.0151157 + 0.999886i \(0.504812\pi\)
\(824\) −15.6753 27.1505i −0.546076 0.945832i
\(825\) 0 0
\(826\) 0.568266 0.206832i 0.0197725 0.00719660i
\(827\) 10.0600 + 11.9890i 0.349819 + 0.416898i 0.912048 0.410084i \(-0.134500\pi\)
−0.562229 + 0.826982i \(0.690056\pi\)
\(828\) −0.0125289 + 0.00723356i −0.000435409 + 0.000251384i
\(829\) −35.2290 6.21182i −1.22355 0.215745i −0.475699 0.879608i \(-0.657805\pi\)
−0.747854 + 0.663863i \(0.768916\pi\)
\(830\) 0 0
\(831\) −3.16588 + 3.77294i −0.109823 + 0.130882i
\(832\) 1.81187 4.97807i 0.0628152 0.172583i
\(833\) −11.3470 + 31.1756i −0.393150 + 1.08017i
\(834\) −3.67979 + 4.38540i −0.127421 + 0.151854i
\(835\) 0 0
\(836\) 9.82639 + 1.73266i 0.339853 + 0.0599252i
\(837\) 7.37692 4.25906i 0.254983 0.147215i
\(838\) −2.83910 3.38351i −0.0980752 0.116881i
\(839\) −11.7973 + 4.29388i −0.407289 + 0.148241i −0.537537 0.843240i \(-0.680645\pi\)
0.130248 + 0.991482i \(0.458423\pi\)
\(840\) 0 0
\(841\) −14.3340 24.8272i −0.494276 0.856110i
\(842\) −6.05660 5.08209i −0.208724 0.175140i
\(843\) −4.71357 2.72138i −0.162344 0.0937293i
\(844\) −2.02141 11.4640i −0.0695797 0.394606i
\(845\) 0 0
\(846\) 21.8184 3.84718i 0.750133 0.132269i
\(847\) −0.552799 + 0.463853i −0.0189944 + 0.0159382i
\(848\) −0.475259 0.172980i −0.0163205 0.00594016i
\(849\) 0.0587787 + 0.161493i 0.00201728 + 0.00554243i
\(850\) 0 0
\(851\) −0.0270624 0.00569316i −0.000927688 0.000195159i
\(852\) −1.85764 −0.0636418
\(853\) 7.27082 + 19.9764i 0.248948 + 0.683979i 0.999726 + 0.0234241i \(0.00745681\pi\)
−0.750778 + 0.660555i \(0.770321\pi\)
\(854\) 0.317435 + 0.115537i 0.0108624 + 0.00395360i
\(855\) 0 0
\(856\) −33.4812 + 5.90364i −1.14436 + 0.201782i
\(857\) 11.6284i 0.397217i −0.980079 0.198609i \(-0.936358\pi\)
0.980079 0.198609i \(-0.0636423\pi\)
\(858\) −0.176900 1.00325i −0.00603926 0.0342504i
\(859\) −5.34045 3.08331i −0.182214 0.105201i 0.406119 0.913820i \(-0.366882\pi\)
−0.588332 + 0.808619i \(0.700215\pi\)
\(860\) 0 0
\(861\) −0.0671165 0.116249i −0.00228732 0.00396176i
\(862\) −0.150417 + 0.260530i −0.00512322 + 0.00887367i
\(863\) −29.2167 + 10.6340i −0.994548 + 0.361986i −0.787480 0.616341i \(-0.788614\pi\)
−0.207068 + 0.978327i \(0.566392\pi\)
\(864\) −5.71994 6.81675i −0.194596 0.231911i
\(865\) 0 0
\(866\) −8.57119 1.51133i −0.291261 0.0513571i
\(867\) −0.271447 + 1.53945i −0.00921882 + 0.0522825i
\(868\) −0.282400 + 0.336552i −0.00958530 + 0.0114233i
\(869\) 10.6606 29.2897i 0.361635 0.993584i
\(870\) 0 0
\(871\) 1.74908 2.08447i 0.0592653 0.0706297i
\(872\) −5.53941 + 31.4156i −0.187588 + 1.06387i
\(873\) 20.3733 + 3.59235i 0.689530 + 0.121583i
\(874\) 0.00767447 0.00443086i 0.000259593 0.000149876i
\(875\) 0 0
\(876\) −2.73083 + 0.993942i −0.0922663 + 0.0335822i
\(877\) 7.23472 12.5309i 0.244299 0.423138i −0.717635 0.696419i \(-0.754776\pi\)
0.961934 + 0.273281i \(0.0881088\pi\)
\(878\) −9.55380 16.5477i −0.322425 0.558457i
\(879\) 3.34282 + 2.80496i 0.112751 + 0.0946089i
\(880\) 0 0
\(881\) 6.21884 + 35.2688i 0.209518 + 1.18824i 0.890170 + 0.455629i \(0.150585\pi\)
−0.680652 + 0.732607i \(0.738303\pi\)
\(882\) 19.4762i 0.655798i
\(883\) −17.4875 + 3.08352i −0.588502 + 0.103769i −0.459967 0.887936i \(-0.652139\pi\)
−0.128535 + 0.991705i \(0.541028\pi\)
\(884\) 3.32418 2.78932i 0.111804 0.0938150i
\(885\) 0 0
\(886\) 8.42293 + 23.1418i 0.282974 + 0.777464i
\(887\) 33.9486 1.13988 0.569942 0.821685i \(-0.306966\pi\)
0.569942 + 0.821685i \(0.306966\pi\)
\(888\) 0.167092 5.09013i 0.00560725 0.170814i
\(889\) −0.708135 −0.0237501
\(890\) 0 0
\(891\) 34.8591 + 12.6877i 1.16782 + 0.425053i
\(892\) 12.1315 10.1795i 0.406192 0.340836i
\(893\) 16.0087 2.82276i 0.535710 0.0944601i
\(894\) 4.08472i 0.136613i
\(895\) 0 0
\(896\) 0.314418 + 0.181529i 0.0105040 + 0.00606447i
\(897\) 0.000830200 0 0.000696621i 2.77196e−5 0 2.32595e-5i
\(898\) 12.1998 + 21.1306i 0.407112 + 0.705138i
\(899\) 1.45962 2.52813i 0.0486810 0.0843180i
\(900\) 0 0
\(901\) −2.44075 2.90877i −0.0813132 0.0969053i
\(902\) 21.9850 12.6930i 0.732019 0.422631i
\(903\) 0.0226510 + 0.00399397i 0.000753777 + 0.000132911i
\(904\) −9.26275 + 52.5317i −0.308075 + 1.74718i
\(905\) 0 0
\(906\) 0.985742 2.70830i 0.0327491 0.0899774i
\(907\) −8.80699 + 24.1970i −0.292431 + 0.803449i 0.703278 + 0.710915i \(0.251719\pi\)
−0.995710 + 0.0925339i \(0.970503\pi\)
\(908\) 15.9277 18.9819i 0.528581 0.629938i
\(909\) 3.74519 21.2400i 0.124220 0.704486i
\(910\) 0 0
\(911\) 20.1765 11.6489i 0.668477 0.385946i −0.127022 0.991900i \(-0.540542\pi\)
0.795499 + 0.605954i \(0.207209\pi\)
\(912\) 0.235719 + 0.280919i 0.00780544 + 0.00930216i
\(913\) −59.0164 + 21.4802i −1.95316 + 0.710891i
\(914\) −1.67988 + 2.90964i −0.0555656 + 0.0962424i
\(915\) 0 0
\(916\) −3.59881 3.01976i −0.118908 0.0997757i
\(917\) 1.47404 + 0.851037i 0.0486770 + 0.0281037i
\(918\) 1.32120 + 7.49288i 0.0436060 + 0.247302i
\(919\) 5.85605i 0.193173i 0.995325 + 0.0965866i \(0.0307925\pi\)
−0.995325 + 0.0965866i \(0.969208\pi\)
\(920\) 0 0
\(921\) 6.40784 5.37682i 0.211146 0.177172i
\(922\) 9.40782 + 3.42417i 0.309830 + 0.112769i
\(923\) −1.72216 4.73160i −0.0566857 0.155743i
\(924\) 0.110350 0.00363026
\(925\) 0 0
\(926\) 11.3708 0.373668
\(927\) −10.6195 29.1767i −0.348789 0.958289i
\(928\) −2.86573 1.04304i −0.0940721 0.0342395i
\(929\) −7.91261 + 6.63947i −0.259604 + 0.217834i −0.763295 0.646050i \(-0.776420\pi\)
0.503690 + 0.863884i \(0.331975\pi\)
\(930\) 0 0
\(931\) 14.2901i 0.468340i
\(932\) −1.05912 6.00660i −0.0346928 0.196753i
\(933\) −0.574471 0.331671i −0.0188074 0.0108584i
\(934\) 0.970580 + 0.814413i 0.0317583 + 0.0266484i
\(935\) 0 0
\(936\) 3.61082 6.25412i 0.118023 0.204422i
\(937\) 45.5732 16.5873i 1.48881 0.541884i 0.535676 0.844424i \(-0.320057\pi\)
0.953137 + 0.302540i \(0.0978346\pi\)
\(938\) −0.158172 0.188502i −0.00516450 0.00615481i
\(939\) −0.841171 + 0.485650i −0.0274506 + 0.0158486i
\(940\) 0 0
\(941\) −3.34738 + 18.9839i −0.109122 + 0.618859i 0.880372 + 0.474283i \(0.157293\pi\)
−0.989494 + 0.144576i \(0.953818\pi\)
\(942\) −3.13174 + 3.73226i −0.102038 + 0.121604i
\(943\) −0.00923673 + 0.0253777i −0.000300789 + 0.000826412i
\(944\) 1.72200 4.73117i 0.0560465 0.153986i
\(945\) 0 0
\(946\) −0.755338 + 4.28373i −0.0245581 + 0.139276i
\(947\) 11.3425 + 1.99999i 0.368582 + 0.0649910i 0.354872 0.934915i \(-0.384525\pi\)
0.0137104 + 0.999906i \(0.495636\pi\)
\(948\) −1.86550 + 1.07704i −0.0605885 + 0.0349808i
\(949\) −5.06334 6.03426i −0.164363 0.195880i
\(950\) 0 0
\(951\) −1.37066 + 2.37405i −0.0444467 + 0.0769839i
\(952\) −0.556224 0.963409i −0.0180273 0.0312243i
\(953\) 15.9845 + 13.4126i 0.517790 + 0.434477i 0.863860 0.503731i \(-0.168040\pi\)
−0.346071 + 0.938208i \(0.612484\pi\)
\(954\) −1.93046 1.11455i −0.0625011 0.0360850i
\(955\) 0 0
\(956\) 23.0166i 0.744409i
\(957\) −0.722098 + 0.127325i −0.0233421 + 0.00411585i
\(958\) 29.2012 24.5027i 0.943448 0.791647i
\(959\) −1.53363 0.558195i −0.0495234 0.0180251i
\(960\) 0 0
\(961\) 5.33289 0.172029
\(962\) 4.62812 1.51448i 0.149216 0.0488287i
\(963\) −33.6708 −1.08503
\(964\) −2.53239 6.95768i −0.0815627 0.224092i
\(965\) 0 0
\(966\) 7.50763e−5 0 6.29965e-5i 2.41554e−6 0 2.02688e-6i
\(967\) 28.0911 4.95322i 0.903349 0.159285i 0.297367 0.954763i \(-0.403892\pi\)
0.605982 + 0.795479i \(0.292780\pi\)
\(968\) 26.7370i 0.859361i
\(969\) 0.478089 + 2.71138i 0.0153584 + 0.0871021i
\(970\) 0 0
\(971\) 32.7310 + 27.4646i 1.05039 + 0.881380i 0.993134 0.116980i \(-0.0373213\pi\)
0.0572532 + 0.998360i \(0.481766\pi\)
\(972\) −4.03087 6.98167i −0.129290 0.223937i
\(973\) 0.840430 1.45567i 0.0269430 0.0466666i
\(974\) 20.9527 7.62617i 0.671369 0.244358i
\(975\) 0 0
\(976\) 2.43566 1.40623i 0.0779637 0.0450123i
\(977\) 39.0748 + 6.88994i 1.25011 + 0.220429i 0.759245 0.650805i \(-0.225568\pi\)
0.490869 + 0.871234i \(0.336679\pi\)
\(978\) −1.06988 + 6.06757i −0.0342109 + 0.194019i
\(979\) −30.9677 + 36.9058i −0.989731 + 1.17952i
\(980\) 0 0
\(981\) −10.8056 + 29.6881i −0.344996 + 0.947870i
\(982\) 2.38263 2.83951i 0.0760327 0.0906123i
\(983\) −4.65015 + 26.3723i −0.148317 + 0.841146i 0.816327 + 0.577590i \(0.196007\pi\)
−0.964644 + 0.263556i \(0.915104\pi\)
\(984\) −4.89791 0.863633i −0.156140 0.0275316i
\(985\) 0 0
\(986\) 1.67606 + 1.99745i 0.0533767 + 0.0636119i
\(987\) 0.168935 0.0614874i 0.00537727 0.00195717i
\(988\) 0.934562 1.61871i 0.0297324 0.0514980i
\(989\) −0.00231373 0.00400750i −7.35723e−5 0.000127431i
\(990\) 0 0
\(991\) −21.3558 12.3298i −0.678390 0.391669i 0.120858 0.992670i \(-0.461435\pi\)
−0.799248 + 0.601001i \(0.794769\pi\)
\(992\) 4.65615 + 26.4063i 0.147833 + 0.838402i
\(993\) 3.09646i 0.0982633i
\(994\) −0.448429 + 0.0790702i −0.0142233 + 0.00250795i
\(995\) 0 0
\(996\) 4.07857 + 1.48448i 0.129234 + 0.0470375i
\(997\) −12.7608 35.0601i −0.404140 1.11036i −0.960222 0.279237i \(-0.909918\pi\)
0.556083 0.831127i \(-0.312304\pi\)
\(998\) −26.7933 −0.848127
\(999\) 2.10542 10.0081i 0.0666127 0.316643i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 925.2.bb.e.326.6 96
5.2 odd 4 185.2.v.a.104.11 yes 96
5.3 odd 4 185.2.v.a.104.6 96
5.4 even 2 inner 925.2.bb.e.326.11 96
37.21 even 18 inner 925.2.bb.e.576.6 96
185.58 odd 36 185.2.v.a.169.11 yes 96
185.132 odd 36 185.2.v.a.169.6 yes 96
185.169 even 18 inner 925.2.bb.e.576.11 96
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
185.2.v.a.104.6 96 5.3 odd 4
185.2.v.a.104.11 yes 96 5.2 odd 4
185.2.v.a.169.6 yes 96 185.132 odd 36
185.2.v.a.169.11 yes 96 185.58 odd 36
925.2.bb.e.326.6 96 1.1 even 1 trivial
925.2.bb.e.326.11 96 5.4 even 2 inner
925.2.bb.e.576.6 96 37.21 even 18 inner
925.2.bb.e.576.11 96 185.169 even 18 inner