Properties

Label 925.2.bb.e.151.14
Level $925$
Weight $2$
Character 925.151
Analytic conductor $7.386$
Analytic rank $0$
Dimension $96$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [925,2,Mod(151,925)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("925.151"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(925, base_ring=CyclotomicField(18)) chi = DirichletCharacter(H, H._module([0, 13])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 925 = 5^{2} \cdot 37 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 925.bb (of order \(18\), degree \(6\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [96,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.38616218697\)
Analytic rank: \(0\)
Dimension: \(96\)
Relative dimension: \(16\) over \(\Q(\zeta_{18})\)
Twist minimal: no (minimal twist has level 185)
Sato-Tate group: $\mathrm{SU}(2)[C_{18}]$

Embedding invariants

Embedding label 151.14
Character \(\chi\) \(=\) 925.151
Dual form 925.2.bb.e.876.14

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.33394 - 1.58972i) q^{2} +(0.293922 - 0.246630i) q^{3} +(-0.400539 - 2.27157i) q^{4} -0.796243i q^{6} +(3.20026 + 1.16480i) q^{7} +(-0.551046 - 0.318147i) q^{8} +(-0.495381 + 2.80944i) q^{9} +(2.09499 - 3.62862i) q^{11} +(-0.677964 - 0.568879i) q^{12} +(-2.00538 + 0.353603i) q^{13} +(6.12066 - 3.53376i) q^{14} +(3.09419 - 1.12619i) q^{16} +(-0.729641 - 0.128655i) q^{17} +(3.80543 + 4.53514i) q^{18} +(0.966024 + 1.15126i) q^{19} +(1.22790 - 0.446919i) q^{21} +(-2.97393 - 8.17080i) q^{22} +(1.64066 - 0.947238i) q^{23} +(-0.240429 + 0.0423941i) q^{24} +(-2.11292 + 3.65969i) q^{26} +(1.12282 + 1.94478i) q^{27} +(1.36409 - 7.73616i) q^{28} +(0.664361 + 0.383569i) q^{29} -5.25639i q^{31} +(2.77237 - 7.61701i) q^{32} +(-0.279164 - 1.58322i) q^{33} +(-1.17782 + 0.988309i) q^{34} +6.58027 q^{36} +(-5.96539 + 1.18918i) q^{37} +3.11880 q^{38} +(-0.502216 + 0.598518i) q^{39} +(1.85206 + 10.5036i) q^{41} +(0.927464 - 2.54819i) q^{42} -9.93840i q^{43} +(-9.08179 - 3.30550i) q^{44} +(0.682696 - 3.87176i) q^{46} +(-1.02067 - 1.76785i) q^{47} +(0.631697 - 1.09413i) q^{48} +(3.52260 + 2.95581i) q^{49} +(-0.246188 + 0.142136i) q^{51} +(1.60647 + 4.41373i) q^{52} +(-12.4473 + 4.53045i) q^{53} +(4.58944 + 0.809242i) q^{54} +(-1.39291 - 1.66001i) q^{56} +(0.567871 + 0.100131i) q^{57} +(1.49599 - 0.544494i) q^{58} +(-0.487600 - 1.33967i) q^{59} +(2.54738 - 0.449171i) q^{61} +(-8.35621 - 7.01169i) q^{62} +(-4.85779 + 8.41393i) q^{63} +(-5.11803 - 8.86468i) q^{64} +(-2.88927 - 1.66812i) q^{66} +(-9.52005 - 3.46501i) q^{67} +1.70896i q^{68} +(0.248610 - 0.683051i) q^{69} +(-10.6121 + 8.90459i) q^{71} +(1.16679 - 1.39053i) q^{72} -3.43226 q^{73} +(-6.06698 + 11.0696i) q^{74} +(2.22824 - 2.65552i) q^{76} +(10.9311 - 9.17230i) q^{77} +(0.281554 + 1.59677i) q^{78} +(1.41012 - 3.87427i) q^{79} +(-7.23256 - 2.63244i) q^{81} +(19.1683 + 11.0668i) q^{82} +(2.48726 - 14.1059i) q^{83} +(-1.50703 - 2.61025i) q^{84} +(-15.7993 - 13.2572i) q^{86} +(0.289870 - 0.0511119i) q^{87} +(-2.30887 + 1.33303i) q^{88} +(4.49440 + 12.3483i) q^{89} +(-6.82962 - 1.20425i) q^{91} +(-2.80887 - 3.34748i) q^{92} +(-1.29638 - 1.54497i) q^{93} +(-4.17191 - 0.735620i) q^{94} +(-1.06372 - 2.92256i) q^{96} +(-2.26408 + 1.30717i) q^{97} +(9.39785 - 1.65710i) q^{98} +(9.15659 + 7.68329i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 96 q + 12 q^{4} + 6 q^{9} - 30 q^{11} + 36 q^{14} + 18 q^{19} - 24 q^{21} - 96 q^{24} + 48 q^{26} + 18 q^{29} + 54 q^{34} + 24 q^{36} + 36 q^{39} + 72 q^{41} + 84 q^{44} - 18 q^{46} + 6 q^{49} - 18 q^{51}+ \cdots + 24 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/925\mathbb{Z}\right)^\times\).

\(n\) \(76\) \(852\)
\(\chi(n)\) \(e\left(\frac{13}{18}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.33394 1.58972i 0.943236 1.12410i −0.0488828 0.998805i \(-0.515566\pi\)
0.992119 0.125300i \(-0.0399895\pi\)
\(3\) 0.293922 0.246630i 0.169696 0.142392i −0.553985 0.832527i \(-0.686893\pi\)
0.723681 + 0.690135i \(0.242449\pi\)
\(4\) −0.400539 2.27157i −0.200270 1.13578i
\(5\) 0 0
\(6\) 0.796243i 0.325065i
\(7\) 3.20026 + 1.16480i 1.20958 + 0.440253i 0.866560 0.499073i \(-0.166326\pi\)
0.343025 + 0.939326i \(0.388548\pi\)
\(8\) −0.551046 0.318147i −0.194824 0.112482i
\(9\) −0.495381 + 2.80944i −0.165127 + 0.936481i
\(10\) 0 0
\(11\) 2.09499 3.62862i 0.631662 1.09407i −0.355550 0.934657i \(-0.615706\pi\)
0.987212 0.159413i \(-0.0509603\pi\)
\(12\) −0.677964 0.568879i −0.195711 0.164221i
\(13\) −2.00538 + 0.353603i −0.556193 + 0.0980718i −0.444677 0.895691i \(-0.646682\pi\)
−0.111515 + 0.993763i \(0.535570\pi\)
\(14\) 6.12066 3.53376i 1.63581 0.944438i
\(15\) 0 0
\(16\) 3.09419 1.12619i 0.773547 0.281548i
\(17\) −0.729641 0.128655i −0.176964 0.0312035i 0.0844639 0.996427i \(-0.473082\pi\)
−0.261428 + 0.965223i \(0.584193\pi\)
\(18\) 3.80543 + 4.53514i 0.896949 + 1.06894i
\(19\) 0.966024 + 1.15126i 0.221621 + 0.264118i 0.865386 0.501105i \(-0.167073\pi\)
−0.643765 + 0.765223i \(0.722629\pi\)
\(20\) 0 0
\(21\) 1.22790 0.446919i 0.267950 0.0975258i
\(22\) −2.97393 8.17080i −0.634044 1.74202i
\(23\) 1.64066 0.947238i 0.342102 0.197513i −0.319099 0.947721i \(-0.603380\pi\)
0.661201 + 0.750209i \(0.270047\pi\)
\(24\) −0.240429 + 0.0423941i −0.0490774 + 0.00865366i
\(25\) 0 0
\(26\) −2.11292 + 3.65969i −0.414378 + 0.717724i
\(27\) 1.12282 + 1.94478i 0.216087 + 0.374274i
\(28\) 1.36409 7.73616i 0.257790 1.46200i
\(29\) 0.664361 + 0.383569i 0.123369 + 0.0712270i 0.560414 0.828212i \(-0.310642\pi\)
−0.437046 + 0.899439i \(0.643975\pi\)
\(30\) 0 0
\(31\) 5.25639i 0.944075i −0.881578 0.472038i \(-0.843519\pi\)
0.881578 0.472038i \(-0.156481\pi\)
\(32\) 2.77237 7.61701i 0.490090 1.34651i
\(33\) −0.279164 1.58322i −0.0485962 0.275603i
\(34\) −1.17782 + 0.988309i −0.201995 + 0.169494i
\(35\) 0 0
\(36\) 6.58027 1.09671
\(37\) −5.96539 + 1.18918i −0.980704 + 0.195500i
\(38\) 3.11880 0.505937
\(39\) −0.502216 + 0.598518i −0.0804190 + 0.0958396i
\(40\) 0 0
\(41\) 1.85206 + 10.5036i 0.289244 + 1.64038i 0.689720 + 0.724076i \(0.257733\pi\)
−0.400477 + 0.916307i \(0.631155\pi\)
\(42\) 0.927464 2.54819i 0.143111 0.393194i
\(43\) 9.93840i 1.51559i −0.652492 0.757796i \(-0.726276\pi\)
0.652492 0.757796i \(-0.273724\pi\)
\(44\) −9.08179 3.30550i −1.36913 0.498323i
\(45\) 0 0
\(46\) 0.682696 3.87176i 0.100658 0.570860i
\(47\) −1.02067 1.76785i −0.148880 0.257868i 0.781934 0.623362i \(-0.214234\pi\)
−0.930814 + 0.365494i \(0.880900\pi\)
\(48\) 0.631697 1.09413i 0.0911776 0.157924i
\(49\) 3.52260 + 2.95581i 0.503229 + 0.422259i
\(50\) 0 0
\(51\) −0.246188 + 0.142136i −0.0344732 + 0.0199031i
\(52\) 1.60647 + 4.41373i 0.222777 + 0.612074i
\(53\) −12.4473 + 4.53045i −1.70977 + 0.622305i −0.996877 0.0789675i \(-0.974838\pi\)
−0.712893 + 0.701273i \(0.752615\pi\)
\(54\) 4.58944 + 0.809242i 0.624544 + 0.110124i
\(55\) 0 0
\(56\) −1.39291 1.66001i −0.186136 0.221828i
\(57\) 0.567871 + 0.100131i 0.0752164 + 0.0132627i
\(58\) 1.49599 0.544494i 0.196433 0.0714956i
\(59\) −0.487600 1.33967i −0.0634801 0.174410i 0.903897 0.427749i \(-0.140693\pi\)
−0.967378 + 0.253339i \(0.918471\pi\)
\(60\) 0 0
\(61\) 2.54738 0.449171i 0.326158 0.0575105i −0.00817166 0.999967i \(-0.502601\pi\)
0.334330 + 0.942456i \(0.391490\pi\)
\(62\) −8.35621 7.01169i −1.06124 0.890486i
\(63\) −4.85779 + 8.41393i −0.612024 + 1.06006i
\(64\) −5.11803 8.86468i −0.639753 1.10809i
\(65\) 0 0
\(66\) −2.88927 1.66812i −0.355644 0.205331i
\(67\) −9.52005 3.46501i −1.16306 0.423319i −0.312870 0.949796i \(-0.601290\pi\)
−0.850189 + 0.526477i \(0.823512\pi\)
\(68\) 1.70896i 0.207242i
\(69\) 0.248610 0.683051i 0.0299291 0.0822297i
\(70\) 0 0
\(71\) −10.6121 + 8.90459i −1.25942 + 1.05678i −0.263678 + 0.964611i \(0.584936\pi\)
−0.995743 + 0.0921696i \(0.970620\pi\)
\(72\) 1.16679 1.39053i 0.137508 0.163875i
\(73\) −3.43226 −0.401716 −0.200858 0.979620i \(-0.564373\pi\)
−0.200858 + 0.979620i \(0.564373\pi\)
\(74\) −6.06698 + 11.0696i −0.705272 + 1.28682i
\(75\) 0 0
\(76\) 2.22824 2.65552i 0.255597 0.304609i
\(77\) 10.9311 9.17230i 1.24572 1.04528i
\(78\) 0.281554 + 1.59677i 0.0318797 + 0.180799i
\(79\) 1.41012 3.87427i 0.158651 0.435889i −0.834744 0.550638i \(-0.814384\pi\)
0.993394 + 0.114749i \(0.0366065\pi\)
\(80\) 0 0
\(81\) −7.23256 2.63244i −0.803617 0.292493i
\(82\) 19.1683 + 11.0668i 2.11679 + 1.22213i
\(83\) 2.48726 14.1059i 0.273012 1.54833i −0.472194 0.881494i \(-0.656538\pi\)
0.745206 0.666834i \(-0.232351\pi\)
\(84\) −1.50703 2.61025i −0.164431 0.284802i
\(85\) 0 0
\(86\) −15.7993 13.2572i −1.70368 1.42956i
\(87\) 0.289870 0.0511119i 0.0310773 0.00547977i
\(88\) −2.30887 + 1.33303i −0.246126 + 0.142101i
\(89\) 4.49440 + 12.3483i 0.476406 + 1.30891i 0.912524 + 0.409024i \(0.134131\pi\)
−0.436118 + 0.899890i \(0.643647\pi\)
\(90\) 0 0
\(91\) −6.82962 1.20425i −0.715938 0.126239i
\(92\) −2.80887 3.34748i −0.292845 0.348999i
\(93\) −1.29638 1.54497i −0.134429 0.160206i
\(94\) −4.17191 0.735620i −0.430300 0.0758734i
\(95\) 0 0
\(96\) −1.06372 2.92256i −0.108566 0.298282i
\(97\) −2.26408 + 1.30717i −0.229883 + 0.132723i −0.610518 0.792002i \(-0.709039\pi\)
0.380635 + 0.924725i \(0.375705\pi\)
\(98\) 9.39785 1.65710i 0.949327 0.167392i
\(99\) 9.15659 + 7.68329i 0.920272 + 0.772200i
\(100\) 0 0
\(101\) 5.33462 + 9.23983i 0.530814 + 0.919397i 0.999353 + 0.0359545i \(0.0114471\pi\)
−0.468539 + 0.883443i \(0.655220\pi\)
\(102\) −0.102441 + 0.580972i −0.0101432 + 0.0575248i
\(103\) 14.2210 + 8.21051i 1.40124 + 0.809005i 0.994520 0.104548i \(-0.0333396\pi\)
0.406719 + 0.913554i \(0.366673\pi\)
\(104\) 1.21756 + 0.443154i 0.119391 + 0.0434548i
\(105\) 0 0
\(106\) −9.40177 + 25.8311i −0.913180 + 2.50894i
\(107\) 2.22016 + 12.5912i 0.214631 + 1.21723i 0.881546 + 0.472099i \(0.156503\pi\)
−0.666915 + 0.745134i \(0.732385\pi\)
\(108\) 3.96798 3.32953i 0.381819 0.320384i
\(109\) 2.89888 3.45475i 0.277662 0.330905i −0.609133 0.793068i \(-0.708482\pi\)
0.886795 + 0.462164i \(0.152927\pi\)
\(110\) 0 0
\(111\) −1.46007 + 1.82077i −0.138584 + 0.172820i
\(112\) 11.2140 1.05962
\(113\) −7.27299 + 8.66761i −0.684185 + 0.815380i −0.990639 0.136505i \(-0.956413\pi\)
0.306454 + 0.951885i \(0.400857\pi\)
\(114\) 0.916685 0.769190i 0.0858554 0.0720412i
\(115\) 0 0
\(116\) 0.605201 1.66278i 0.0561915 0.154385i
\(117\) 5.80917i 0.537058i
\(118\) −2.78013 1.01189i −0.255932 0.0931516i
\(119\) −2.18518 1.26162i −0.200315 0.115652i
\(120\) 0 0
\(121\) −3.27793 5.67754i −0.297994 0.516140i
\(122\) 2.68398 4.64879i 0.242996 0.420882i
\(123\) 3.13486 + 2.63046i 0.282661 + 0.237180i
\(124\) −11.9403 + 2.10539i −1.07227 + 0.189069i
\(125\) 0 0
\(126\) 6.89585 + 18.9462i 0.614331 + 1.68786i
\(127\) −8.49119 + 3.09054i −0.753471 + 0.274241i −0.690066 0.723747i \(-0.742418\pi\)
−0.0634054 + 0.997988i \(0.520196\pi\)
\(128\) −4.95410 0.873542i −0.437885 0.0772109i
\(129\) −2.45110 2.92111i −0.215808 0.257190i
\(130\) 0 0
\(131\) 17.4810 + 3.08238i 1.52732 + 0.269309i 0.873307 0.487171i \(-0.161971\pi\)
0.654018 + 0.756479i \(0.273082\pi\)
\(132\) −3.48457 + 1.26828i −0.303293 + 0.110390i
\(133\) 1.75054 + 4.80956i 0.151791 + 0.417042i
\(134\) −18.2076 + 10.5121i −1.57289 + 0.908110i
\(135\) 0 0
\(136\) 0.361134 + 0.303028i 0.0309670 + 0.0259844i
\(137\) 6.37617 11.0439i 0.544753 0.943540i −0.453869 0.891068i \(-0.649957\pi\)
0.998622 0.0524719i \(-0.0167100\pi\)
\(138\) −0.754232 1.30637i −0.0642045 0.111205i
\(139\) 2.30919 13.0961i 0.195863 1.11079i −0.715322 0.698795i \(-0.753720\pi\)
0.911185 0.411998i \(-0.135169\pi\)
\(140\) 0 0
\(141\) −0.736003 0.267883i −0.0619826 0.0225598i
\(142\) 28.7484i 2.41252i
\(143\) −2.91815 + 8.01756i −0.244028 + 0.670462i
\(144\) 1.63117 + 9.25084i 0.135931 + 0.770903i
\(145\) 0 0
\(146\) −4.57843 + 5.45636i −0.378913 + 0.451571i
\(147\) 1.76436 0.145522
\(148\) 5.09068 + 13.0745i 0.418451 + 1.07472i
\(149\) 5.00022 0.409634 0.204817 0.978800i \(-0.434340\pi\)
0.204817 + 0.978800i \(0.434340\pi\)
\(150\) 0 0
\(151\) 5.51949 4.63140i 0.449170 0.376898i −0.389958 0.920833i \(-0.627510\pi\)
0.839128 + 0.543934i \(0.183066\pi\)
\(152\) −0.166053 0.941736i −0.0134687 0.0763849i
\(153\) 0.722900 1.98615i 0.0584430 0.160571i
\(154\) 29.6127i 2.38626i
\(155\) 0 0
\(156\) 1.56073 + 0.901090i 0.124959 + 0.0721449i
\(157\) −2.95184 + 16.7407i −0.235582 + 1.33605i 0.605802 + 0.795615i \(0.292852\pi\)
−0.841384 + 0.540437i \(0.818259\pi\)
\(158\) −4.27801 7.40973i −0.340340 0.589486i
\(159\) −2.54119 + 4.40148i −0.201530 + 0.349060i
\(160\) 0 0
\(161\) 6.35390 1.12036i 0.500757 0.0882970i
\(162\) −13.8326 + 7.98627i −1.08679 + 0.627460i
\(163\) −0.362789 0.996756i −0.0284159 0.0780719i 0.924674 0.380761i \(-0.124338\pi\)
−0.953089 + 0.302689i \(0.902116\pi\)
\(164\) 23.1178 8.41418i 1.80520 0.657037i
\(165\) 0 0
\(166\) −19.1067 22.7705i −1.48297 1.76733i
\(167\) −6.18886 7.37559i −0.478908 0.570741i 0.471452 0.881892i \(-0.343730\pi\)
−0.950360 + 0.311151i \(0.899285\pi\)
\(168\) −0.818816 0.144379i −0.0631730 0.0111391i
\(169\) −8.31949 + 3.02805i −0.639961 + 0.232927i
\(170\) 0 0
\(171\) −3.71296 + 2.14368i −0.283937 + 0.163931i
\(172\) −22.5758 + 3.98072i −1.72139 + 0.303527i
\(173\) −17.6569 14.8159i −1.34243 1.12643i −0.980995 0.194035i \(-0.937843\pi\)
−0.361435 0.932397i \(-0.617713\pi\)
\(174\) 0.305414 0.528993i 0.0231534 0.0401029i
\(175\) 0 0
\(176\) 2.39575 13.5870i 0.180587 1.02416i
\(177\) −0.473719 0.273502i −0.0356069 0.0205576i
\(178\) 25.6256 + 9.32695i 1.92072 + 0.699085i
\(179\) 13.3230i 0.995810i 0.867232 + 0.497905i \(0.165897\pi\)
−0.867232 + 0.497905i \(0.834103\pi\)
\(180\) 0 0
\(181\) 2.22773 + 12.6341i 0.165586 + 0.939083i 0.948459 + 0.316901i \(0.102642\pi\)
−0.782873 + 0.622182i \(0.786247\pi\)
\(182\) −11.0247 + 9.25082i −0.817205 + 0.685717i
\(183\) 0.637951 0.760280i 0.0471587 0.0562015i
\(184\) −1.20544 −0.0888664
\(185\) 0 0
\(186\) −4.18536 −0.306886
\(187\) −1.99543 + 2.37806i −0.145920 + 0.173901i
\(188\) −3.60698 + 3.02662i −0.263066 + 0.220739i
\(189\) 1.32804 + 7.53167i 0.0966005 + 0.547849i
\(190\) 0 0
\(191\) 15.3246i 1.10885i −0.832233 0.554426i \(-0.812938\pi\)
0.832233 0.554426i \(-0.187062\pi\)
\(192\) −3.69059 1.34327i −0.266346 0.0969419i
\(193\) −7.53955 4.35296i −0.542709 0.313333i 0.203467 0.979082i \(-0.434779\pi\)
−0.746176 + 0.665749i \(0.768112\pi\)
\(194\) −0.942106 + 5.34295i −0.0676393 + 0.383601i
\(195\) 0 0
\(196\) 5.30339 9.18575i 0.378814 0.656125i
\(197\) −13.7948 11.5752i −0.982839 0.824700i 0.00167663 0.999999i \(-0.499466\pi\)
−0.984515 + 0.175299i \(0.943911\pi\)
\(198\) 24.4286 4.30743i 1.73607 0.306116i
\(199\) 1.54995 0.894862i 0.109873 0.0634351i −0.444057 0.895999i \(-0.646461\pi\)
0.553929 + 0.832564i \(0.313128\pi\)
\(200\) 0 0
\(201\) −3.65273 + 1.32948i −0.257643 + 0.0937745i
\(202\) 21.8048 + 3.84478i 1.53418 + 0.270518i
\(203\) 1.67935 + 2.00137i 0.117867 + 0.140469i
\(204\) 0.421481 + 0.502301i 0.0295095 + 0.0351681i
\(205\) 0 0
\(206\) 32.0224 11.6552i 2.23111 0.812056i
\(207\) 1.84846 + 5.07860i 0.128477 + 0.352987i
\(208\) −5.80680 + 3.35256i −0.402629 + 0.232458i
\(209\) 6.20130 1.09346i 0.428953 0.0756360i
\(210\) 0 0
\(211\) 7.50683 13.0022i 0.516792 0.895110i −0.483018 0.875610i \(-0.660459\pi\)
0.999810 0.0194993i \(-0.00620720\pi\)
\(212\) 15.2769 + 26.4603i 1.04922 + 1.81730i
\(213\) −0.922985 + 5.23451i −0.0632419 + 0.358663i
\(214\) 22.9780 + 13.2664i 1.57075 + 0.906870i
\(215\) 0 0
\(216\) 1.42889i 0.0972234i
\(217\) 6.12264 16.8218i 0.415632 1.14194i
\(218\) −1.62518 9.21683i −0.110071 0.624243i
\(219\) −1.00882 + 0.846499i −0.0681696 + 0.0572011i
\(220\) 0 0
\(221\) 1.50870 0.101486
\(222\) 0.946878 + 4.74990i 0.0635503 + 0.318792i
\(223\) −8.60075 −0.575949 −0.287975 0.957638i \(-0.592982\pi\)
−0.287975 + 0.957638i \(0.592982\pi\)
\(224\) 17.7446 21.1472i 1.18561 1.41296i
\(225\) 0 0
\(226\) 4.07740 + 23.1241i 0.271225 + 1.53819i
\(227\) −6.17978 + 16.9788i −0.410166 + 1.12692i 0.546936 + 0.837174i \(0.315794\pi\)
−0.957103 + 0.289749i \(0.906428\pi\)
\(228\) 1.33006i 0.0880857i
\(229\) 5.74779 + 2.09202i 0.379825 + 0.138245i 0.524875 0.851179i \(-0.324112\pi\)
−0.145050 + 0.989424i \(0.546334\pi\)
\(230\) 0 0
\(231\) 0.950734 5.39188i 0.0625537 0.354760i
\(232\) −0.244063 0.422729i −0.0160235 0.0277535i
\(233\) −7.55544 + 13.0864i −0.494973 + 0.857319i −0.999983 0.00579462i \(-0.998156\pi\)
0.505010 + 0.863114i \(0.331489\pi\)
\(234\) −9.23498 7.74907i −0.603710 0.506573i
\(235\) 0 0
\(236\) −2.84785 + 1.64421i −0.185379 + 0.107029i
\(237\) −0.541045 1.48651i −0.0351446 0.0965591i
\(238\) −4.92052 + 1.79092i −0.318950 + 0.116088i
\(239\) −10.9787 1.93584i −0.710153 0.125219i −0.193108 0.981177i \(-0.561857\pi\)
−0.517045 + 0.855958i \(0.672968\pi\)
\(240\) 0 0
\(241\) −10.5519 12.5752i −0.679707 0.810043i 0.310363 0.950618i \(-0.399549\pi\)
−0.990070 + 0.140575i \(0.955105\pi\)
\(242\) −13.3983 2.36248i −0.861274 0.151866i
\(243\) −9.10568 + 3.31420i −0.584130 + 0.212606i
\(244\) −2.04065 5.60663i −0.130639 0.358928i
\(245\) 0 0
\(246\) 8.36340 1.47469i 0.533231 0.0940230i
\(247\) −2.34433 1.96713i −0.149166 0.125166i
\(248\) −1.67230 + 2.89651i −0.106191 + 0.183929i
\(249\) −2.74789 4.75948i −0.174140 0.301620i
\(250\) 0 0
\(251\) −2.89473 1.67128i −0.182714 0.105490i 0.405853 0.913938i \(-0.366974\pi\)
−0.588567 + 0.808448i \(0.700308\pi\)
\(252\) 21.0586 + 7.66469i 1.32657 + 0.482830i
\(253\) 7.93780i 0.499045i
\(254\) −6.41360 + 17.6212i −0.402425 + 1.10565i
\(255\) 0 0
\(256\) 7.68539 6.44880i 0.480337 0.403050i
\(257\) −3.23630 + 3.85687i −0.201875 + 0.240585i −0.857478 0.514521i \(-0.827970\pi\)
0.655603 + 0.755105i \(0.272414\pi\)
\(258\) −7.91339 −0.492666
\(259\) −20.4760 3.14279i −1.27231 0.195283i
\(260\) 0 0
\(261\) −1.40673 + 1.67647i −0.0870742 + 0.103771i
\(262\) 28.2187 23.6783i 1.74336 1.46285i
\(263\) 0.903888 + 5.12620i 0.0557361 + 0.316095i 0.999911 0.0133498i \(-0.00424949\pi\)
−0.944175 + 0.329445i \(0.893138\pi\)
\(264\) −0.349863 + 0.961241i −0.0215326 + 0.0591603i
\(265\) 0 0
\(266\) 9.98099 + 3.63278i 0.611974 + 0.222740i
\(267\) 4.36645 + 2.52097i 0.267223 + 0.154281i
\(268\) −4.05787 + 23.0133i −0.247874 + 1.40576i
\(269\) −11.3145 19.5973i −0.689859 1.19487i −0.971883 0.235463i \(-0.924339\pi\)
0.282025 0.959407i \(-0.408994\pi\)
\(270\) 0 0
\(271\) 10.4587 + 8.77589i 0.635321 + 0.533097i 0.902577 0.430528i \(-0.141673\pi\)
−0.267257 + 0.963625i \(0.586117\pi\)
\(272\) −2.40253 + 0.423632i −0.145675 + 0.0256864i
\(273\) −2.30438 + 1.33043i −0.139467 + 0.0805215i
\(274\) −9.05127 24.8682i −0.546807 1.50234i
\(275\) 0 0
\(276\) −1.65118 0.291147i −0.0993891 0.0175250i
\(277\) −7.67915 9.15166i −0.461396 0.549870i 0.484309 0.874897i \(-0.339071\pi\)
−0.945705 + 0.325027i \(0.894627\pi\)
\(278\) −17.7388 21.1403i −1.06390 1.26791i
\(279\) 14.7675 + 2.60391i 0.884109 + 0.155892i
\(280\) 0 0
\(281\) 7.10086 + 19.5095i 0.423602 + 1.16384i 0.949631 + 0.313370i \(0.101458\pi\)
−0.526029 + 0.850466i \(0.676320\pi\)
\(282\) −1.40764 + 0.812702i −0.0838238 + 0.0483957i
\(283\) −17.3625 + 3.06148i −1.03209 + 0.181986i −0.663945 0.747781i \(-0.731119\pi\)
−0.368148 + 0.929767i \(0.620008\pi\)
\(284\) 24.4779 + 20.5394i 1.45250 + 1.21879i
\(285\) 0 0
\(286\) 8.85308 + 15.3340i 0.523494 + 0.906717i
\(287\) −6.30747 + 35.7715i −0.372318 + 2.11152i
\(288\) 20.0262 + 11.5621i 1.18005 + 0.681305i
\(289\) −15.4590 5.62660i −0.909350 0.330976i
\(290\) 0 0
\(291\) −0.343077 + 0.942596i −0.0201115 + 0.0552559i
\(292\) 1.37476 + 7.79663i 0.0804515 + 0.456263i
\(293\) 0.391941 0.328877i 0.0228974 0.0192132i −0.631267 0.775565i \(-0.717465\pi\)
0.654165 + 0.756352i \(0.273020\pi\)
\(294\) 2.35355 2.80485i 0.137262 0.163582i
\(295\) 0 0
\(296\) 3.66554 + 1.24257i 0.213055 + 0.0722232i
\(297\) 9.40918 0.545976
\(298\) 6.66999 7.94898i 0.386382 0.460472i
\(299\) −2.95521 + 2.47972i −0.170904 + 0.143406i
\(300\) 0 0
\(301\) 11.5762 31.8055i 0.667244 1.83324i
\(302\) 14.9525i 0.860418i
\(303\) 3.84678 + 1.40011i 0.220992 + 0.0804344i
\(304\) 4.28560 + 2.47429i 0.245796 + 0.141910i
\(305\) 0 0
\(306\) −2.19313 3.79861i −0.125373 0.217152i
\(307\) −4.36972 + 7.56858i −0.249393 + 0.431962i −0.963358 0.268220i \(-0.913564\pi\)
0.713964 + 0.700182i \(0.246898\pi\)
\(308\) −25.2139 21.1569i −1.43669 1.20553i
\(309\) 6.20482 1.09408i 0.352980 0.0622399i
\(310\) 0 0
\(311\) 9.83690 + 27.0267i 0.557799 + 1.53254i 0.822822 + 0.568299i \(0.192398\pi\)
−0.265023 + 0.964242i \(0.585379\pi\)
\(312\) 0.467161 0.170033i 0.0264478 0.00962621i
\(313\) 29.0257 + 5.11802i 1.64063 + 0.289288i 0.916398 0.400268i \(-0.131083\pi\)
0.724233 + 0.689555i \(0.242194\pi\)
\(314\) 22.6755 + 27.0236i 1.27965 + 1.52503i
\(315\) 0 0
\(316\) −9.36547 1.65139i −0.526849 0.0928977i
\(317\) 22.7808 8.29154i 1.27950 0.465699i 0.389232 0.921140i \(-0.372740\pi\)
0.890266 + 0.455441i \(0.150518\pi\)
\(318\) 3.60734 + 9.91109i 0.202290 + 0.555786i
\(319\) 2.78365 1.60714i 0.155855 0.0899828i
\(320\) 0 0
\(321\) 3.75791 + 3.15326i 0.209746 + 0.175998i
\(322\) 6.69463 11.5954i 0.373077 0.646189i
\(323\) −0.556734 0.964292i −0.0309775 0.0536546i
\(324\) −3.08284 + 17.4836i −0.171269 + 0.971314i
\(325\) 0 0
\(326\) −2.06851 0.752874i −0.114564 0.0416978i
\(327\) 1.73038i 0.0956900i
\(328\) 2.32111 6.37718i 0.128162 0.352121i
\(329\) −1.20722 6.84647i −0.0665560 0.377458i
\(330\) 0 0
\(331\) −9.50901 + 11.3324i −0.522663 + 0.622885i −0.961208 0.275824i \(-0.911049\pi\)
0.438546 + 0.898709i \(0.355494\pi\)
\(332\) −33.0389 −1.81324
\(333\) −0.385801 17.3485i −0.0211418 0.950693i
\(334\) −19.9807 −1.09330
\(335\) 0 0
\(336\) 3.29604 2.76570i 0.179814 0.150882i
\(337\) −2.64841 15.0199i −0.144268 0.818184i −0.967952 0.251135i \(-0.919196\pi\)
0.823684 0.567049i \(-0.191915\pi\)
\(338\) −6.28392 + 17.2649i −0.341800 + 0.939088i
\(339\) 4.34134i 0.235789i
\(340\) 0 0
\(341\) −19.0734 11.0121i −1.03288 0.596336i
\(342\) −1.54500 + 8.76210i −0.0835438 + 0.473800i
\(343\) −4.08945 7.08314i −0.220810 0.382454i
\(344\) −3.16187 + 5.47652i −0.170477 + 0.295274i
\(345\) 0 0
\(346\) −47.1064 + 8.30613i −2.53246 + 0.446540i
\(347\) 0.986862 0.569765i 0.0529775 0.0305866i −0.473277 0.880914i \(-0.656929\pi\)
0.526255 + 0.850327i \(0.323596\pi\)
\(348\) −0.232208 0.637987i −0.0124477 0.0341997i
\(349\) 29.6988 10.8095i 1.58974 0.578618i 0.612447 0.790512i \(-0.290185\pi\)
0.977293 + 0.211894i \(0.0679632\pi\)
\(350\) 0 0
\(351\) −2.93936 3.50300i −0.156892 0.186976i
\(352\) −21.8312 26.0174i −1.16361 1.38673i
\(353\) 28.6822 + 5.05745i 1.52660 + 0.269181i 0.873023 0.487678i \(-0.162156\pi\)
0.653578 + 0.756859i \(0.273267\pi\)
\(354\) −1.06670 + 0.388248i −0.0566946 + 0.0206352i
\(355\) 0 0
\(356\) 26.2498 15.1553i 1.39123 0.803230i
\(357\) −0.953425 + 0.168115i −0.0504606 + 0.00889757i
\(358\) 21.1800 + 17.7721i 1.11940 + 0.939284i
\(359\) −0.0422360 + 0.0731549i −0.00222913 + 0.00386097i −0.867138 0.498068i \(-0.834043\pi\)
0.864909 + 0.501929i \(0.167376\pi\)
\(360\) 0 0
\(361\) 2.90711 16.4871i 0.153006 0.867740i
\(362\) 23.0563 + 13.3116i 1.21181 + 0.699641i
\(363\) −2.36371 0.860319i −0.124062 0.0451550i
\(364\) 15.9963i 0.838434i
\(365\) 0 0
\(366\) −0.357650 2.02833i −0.0186947 0.106023i
\(367\) −9.80964 + 8.23127i −0.512059 + 0.429669i −0.861853 0.507158i \(-0.830696\pi\)
0.349794 + 0.936827i \(0.386252\pi\)
\(368\) 4.00975 4.77863i 0.209023 0.249104i
\(369\) −30.4267 −1.58395
\(370\) 0 0
\(371\) −45.1117 −2.34208
\(372\) −2.99025 + 3.56364i −0.155037 + 0.184766i
\(373\) 9.92150 8.32512i 0.513716 0.431059i −0.348719 0.937227i \(-0.613383\pi\)
0.862434 + 0.506169i \(0.168939\pi\)
\(374\) 1.11868 + 6.34436i 0.0578457 + 0.328059i
\(375\) 0 0
\(376\) 1.29889i 0.0669852i
\(377\) −1.46793 0.534282i −0.0756022 0.0275169i
\(378\) 13.7448 + 7.93557i 0.706956 + 0.408161i
\(379\) 4.68752 26.5842i 0.240782 1.36554i −0.589307 0.807909i \(-0.700599\pi\)
0.830089 0.557631i \(-0.188290\pi\)
\(380\) 0 0
\(381\) −1.73353 + 3.00256i −0.0888113 + 0.153826i
\(382\) −24.3620 20.4421i −1.24647 1.04591i
\(383\) −10.9977 + 1.93918i −0.561954 + 0.0990877i −0.447407 0.894330i \(-0.647653\pi\)
−0.114547 + 0.993418i \(0.536542\pi\)
\(384\) −1.67156 + 0.965076i −0.0853015 + 0.0492488i
\(385\) 0 0
\(386\) −16.9773 + 6.17923i −0.864122 + 0.314515i
\(387\) 27.9214 + 4.92329i 1.41932 + 0.250265i
\(388\) 3.87618 + 4.61945i 0.196783 + 0.234517i
\(389\) 2.79684 + 3.33314i 0.141805 + 0.168997i 0.832273 0.554367i \(-0.187039\pi\)
−0.690467 + 0.723364i \(0.742595\pi\)
\(390\) 0 0
\(391\) −1.31896 + 0.480063i −0.0667028 + 0.0242778i
\(392\) −1.00073 2.74949i −0.0505447 0.138870i
\(393\) 5.89826 3.40536i 0.297528 0.171778i
\(394\) −36.8028 + 6.48932i −1.85410 + 0.326927i
\(395\) 0 0
\(396\) 13.7856 23.8773i 0.692751 1.19988i
\(397\) −3.05525 5.29185i −0.153339 0.265591i 0.779114 0.626882i \(-0.215669\pi\)
−0.932453 + 0.361292i \(0.882336\pi\)
\(398\) 0.644948 3.65768i 0.0323283 0.183343i
\(399\) 1.70070 + 0.981901i 0.0851416 + 0.0491565i
\(400\) 0 0
\(401\) 9.95090i 0.496924i 0.968642 + 0.248462i \(0.0799251\pi\)
−0.968642 + 0.248462i \(0.920075\pi\)
\(402\) −2.75899 + 7.58027i −0.137606 + 0.378070i
\(403\) 1.85867 + 10.5411i 0.0925871 + 0.525088i
\(404\) 18.8522 15.8189i 0.937931 0.787018i
\(405\) 0 0
\(406\) 5.42177 0.269078
\(407\) −8.18231 + 24.1375i −0.405582 + 1.19645i
\(408\) 0.180881 0.00895494
\(409\) −12.9702 + 15.4573i −0.641336 + 0.764315i −0.984581 0.174931i \(-0.944030\pi\)
0.343244 + 0.939246i \(0.388474\pi\)
\(410\) 0 0
\(411\) −0.849647 4.81858i −0.0419100 0.237683i
\(412\) 12.9547 35.5927i 0.638231 1.75352i
\(413\) 4.85525i 0.238911i
\(414\) 10.5393 + 3.83599i 0.517978 + 0.188529i
\(415\) 0 0
\(416\) −2.86625 + 16.2553i −0.140530 + 0.796983i
\(417\) −2.55116 4.41873i −0.124931 0.216386i
\(418\) 6.53385 11.3170i 0.319581 0.553531i
\(419\) −9.44859 7.92831i −0.461594 0.387323i 0.382123 0.924111i \(-0.375193\pi\)
−0.843717 + 0.536788i \(0.819637\pi\)
\(420\) 0 0
\(421\) −2.81356 + 1.62441i −0.137124 + 0.0791688i −0.566993 0.823723i \(-0.691893\pi\)
0.429868 + 0.902892i \(0.358560\pi\)
\(422\) −10.6563 29.2779i −0.518741 1.42523i
\(423\) 5.47230 1.99176i 0.266073 0.0968425i
\(424\) 8.30039 + 1.46358i 0.403103 + 0.0710779i
\(425\) 0 0
\(426\) 7.09022 + 8.44980i 0.343522 + 0.409394i
\(427\) 8.67547 + 1.52972i 0.419835 + 0.0740283i
\(428\) 27.7124 10.0865i 1.33953 0.487549i
\(429\) 1.11966 + 3.07624i 0.0540577 + 0.148522i
\(430\) 0 0
\(431\) −7.23039 + 1.27491i −0.348276 + 0.0614104i −0.345050 0.938584i \(-0.612138\pi\)
−0.00322596 + 0.999995i \(0.501027\pi\)
\(432\) 5.66442 + 4.75301i 0.272529 + 0.228679i
\(433\) 6.26226 10.8466i 0.300945 0.521252i −0.675405 0.737447i \(-0.736031\pi\)
0.976350 + 0.216195i \(0.0693646\pi\)
\(434\) −18.5748 32.1726i −0.891620 1.54433i
\(435\) 0 0
\(436\) −9.00881 5.20124i −0.431444 0.249094i
\(437\) 2.67544 + 0.973781i 0.127984 + 0.0465822i
\(438\) 2.73292i 0.130584i
\(439\) 11.4814 31.5448i 0.547975 1.50555i −0.288465 0.957491i \(-0.593145\pi\)
0.836440 0.548059i \(-0.184633\pi\)
\(440\) 0 0
\(441\) −10.0492 + 8.43229i −0.478534 + 0.401538i
\(442\) 2.01251 2.39842i 0.0957254 0.114081i
\(443\) −31.5728 −1.50007 −0.750034 0.661400i \(-0.769963\pi\)
−0.750034 + 0.661400i \(0.769963\pi\)
\(444\) 4.72082 + 2.58736i 0.224040 + 0.122791i
\(445\) 0 0
\(446\) −11.4729 + 13.6728i −0.543256 + 0.647427i
\(447\) 1.46968 1.23320i 0.0695133 0.0583286i
\(448\) −6.05344 34.3308i −0.285998 1.62198i
\(449\) −6.68188 + 18.3583i −0.315338 + 0.866383i 0.676218 + 0.736701i \(0.263618\pi\)
−0.991556 + 0.129681i \(0.958605\pi\)
\(450\) 0 0
\(451\) 41.9936 + 15.2844i 1.97740 + 0.719714i
\(452\) 22.6022 + 13.0494i 1.06312 + 0.613792i
\(453\) 0.480058 2.72254i 0.0225551 0.127916i
\(454\) 18.7482 + 32.4728i 0.879896 + 1.52402i
\(455\) 0 0
\(456\) −0.281067 0.235843i −0.0131622 0.0110444i
\(457\) 29.3811 5.18068i 1.37439 0.242342i 0.562812 0.826585i \(-0.309720\pi\)
0.811579 + 0.584243i \(0.198608\pi\)
\(458\) 10.9929 6.34677i 0.513666 0.296565i
\(459\) −0.569049 1.56345i −0.0265609 0.0729756i
\(460\) 0 0
\(461\) −30.4547 5.36999i −1.41842 0.250105i −0.588728 0.808331i \(-0.700371\pi\)
−0.829689 + 0.558226i \(0.811482\pi\)
\(462\) −7.30338 8.70383i −0.339784 0.404939i
\(463\) 11.1860 + 13.3309i 0.519857 + 0.619541i 0.960547 0.278118i \(-0.0897107\pi\)
−0.440690 + 0.897659i \(0.645266\pi\)
\(464\) 2.48763 + 0.438636i 0.115485 + 0.0203632i
\(465\) 0 0
\(466\) 10.7253 + 29.4675i 0.496840 + 1.36506i
\(467\) 12.3845 7.15022i 0.573089 0.330873i −0.185293 0.982683i \(-0.559324\pi\)
0.758382 + 0.651810i \(0.225990\pi\)
\(468\) −13.1959 + 2.32680i −0.609982 + 0.107556i
\(469\) −26.4306 22.1779i −1.22045 1.02408i
\(470\) 0 0
\(471\) 3.26114 + 5.64847i 0.150266 + 0.260268i
\(472\) −0.157521 + 0.893348i −0.00725051 + 0.0411197i
\(473\) −36.0627 20.8208i −1.65816 0.957342i
\(474\) −3.08486 1.12280i −0.141692 0.0515718i
\(475\) 0 0
\(476\) −1.99060 + 5.46912i −0.0912389 + 0.250677i
\(477\) −6.56189 37.2143i −0.300448 1.70393i
\(478\) −17.7224 + 14.8708i −0.810602 + 0.680176i
\(479\) −12.3159 + 14.6775i −0.562728 + 0.670633i −0.970121 0.242620i \(-0.921993\pi\)
0.407394 + 0.913253i \(0.366438\pi\)
\(480\) 0 0
\(481\) 11.5424 4.49414i 0.526287 0.204915i
\(482\) −34.0667 −1.55170
\(483\) 1.59123 1.89636i 0.0724037 0.0862874i
\(484\) −11.5840 + 9.72013i −0.526545 + 0.441824i
\(485\) 0 0
\(486\) −6.87775 + 18.8965i −0.311981 + 0.857161i
\(487\) 30.8326i 1.39716i −0.715533 0.698579i \(-0.753816\pi\)
0.715533 0.698579i \(-0.246184\pi\)
\(488\) −1.54662 0.562925i −0.0700124 0.0254824i
\(489\) −0.352461 0.203494i −0.0159389 0.00920230i
\(490\) 0 0
\(491\) −2.74684 4.75767i −0.123963 0.214711i 0.797364 0.603499i \(-0.206227\pi\)
−0.921327 + 0.388788i \(0.872894\pi\)
\(492\) 4.71963 8.17465i 0.212778 0.368541i
\(493\) −0.435397 0.365341i −0.0196093 0.0164541i
\(494\) −6.25439 + 1.10282i −0.281398 + 0.0496181i
\(495\) 0 0
\(496\) −5.91970 16.2642i −0.265802 0.730286i
\(497\) −44.3335 + 16.1361i −1.98863 + 0.723801i
\(498\) −11.2318 1.98046i −0.503307 0.0887467i
\(499\) 15.0046 + 17.8817i 0.671697 + 0.800497i 0.989014 0.147822i \(-0.0472264\pi\)
−0.317317 + 0.948319i \(0.602782\pi\)
\(500\) 0 0
\(501\) −3.63808 0.641492i −0.162538 0.0286597i
\(502\) −6.51826 + 2.37245i −0.290924 + 0.105888i
\(503\) −1.57928 4.33903i −0.0704164 0.193468i 0.899492 0.436937i \(-0.143937\pi\)
−0.969909 + 0.243469i \(0.921714\pi\)
\(504\) 5.35373 3.09098i 0.238474 0.137683i
\(505\) 0 0
\(506\) −12.6189 10.5885i −0.560979 0.470718i
\(507\) −1.69847 + 2.94184i −0.0754319 + 0.130652i
\(508\) 10.4214 + 18.0504i 0.462376 + 0.800859i
\(509\) 2.83264 16.0647i 0.125554 0.712055i −0.855423 0.517931i \(-0.826702\pi\)
0.980977 0.194124i \(-0.0621864\pi\)
\(510\) 0 0
\(511\) −10.9841 3.99790i −0.485910 0.176857i
\(512\) 30.8810i 1.36476i
\(513\) −1.15428 + 3.17137i −0.0509629 + 0.140019i
\(514\) 1.81434 + 10.2896i 0.0800271 + 0.453856i
\(515\) 0 0
\(516\) −5.65375 + 6.73788i −0.248892 + 0.296618i
\(517\) −8.55316 −0.376168
\(518\) −32.3098 + 28.3588i −1.41961 + 1.24602i
\(519\) −8.84379 −0.388199
\(520\) 0 0
\(521\) 2.75136 2.30866i 0.120539 0.101144i −0.580526 0.814242i \(-0.697153\pi\)
0.701065 + 0.713098i \(0.252708\pi\)
\(522\) 0.788643 + 4.47262i 0.0345180 + 0.195761i
\(523\) 7.77856 21.3714i 0.340132 0.934506i −0.645223 0.763994i \(-0.723236\pi\)
0.985356 0.170512i \(-0.0545422\pi\)
\(524\) 40.9440i 1.78865i
\(525\) 0 0
\(526\) 9.35498 + 5.40110i 0.407897 + 0.235499i
\(527\) −0.676262 + 3.83527i −0.0294585 + 0.167067i
\(528\) −2.64679 4.58438i −0.115187 0.199509i
\(529\) −9.70548 + 16.8104i −0.421977 + 0.730886i
\(530\) 0 0
\(531\) 4.00527 0.706238i 0.173814 0.0306481i
\(532\) 10.2241 5.90289i 0.443271 0.255923i
\(533\) −7.42819 20.4088i −0.321750 0.884002i
\(534\) 9.83223 3.57864i 0.425482 0.154863i
\(535\) 0 0
\(536\) 4.14360 + 4.93815i 0.178976 + 0.213296i
\(537\) 3.28586 + 3.91593i 0.141795 + 0.168985i
\(538\) −46.2472 8.15463i −1.99386 0.351571i
\(539\) 18.1053 6.58980i 0.779851 0.283843i
\(540\) 0 0
\(541\) −16.9754 + 9.80077i −0.729831 + 0.421368i −0.818360 0.574706i \(-0.805117\pi\)
0.0885296 + 0.996074i \(0.471783\pi\)
\(542\) 27.9025 4.91996i 1.19851 0.211330i
\(543\) 3.77071 + 3.16401i 0.161817 + 0.135780i
\(544\) −3.00280 + 5.20100i −0.128744 + 0.222991i
\(545\) 0 0
\(546\) −0.958873 + 5.43804i −0.0410360 + 0.232727i
\(547\) 19.2326 + 11.1039i 0.822326 + 0.474770i 0.851218 0.524812i \(-0.175864\pi\)
−0.0288917 + 0.999583i \(0.509198\pi\)
\(548\) −27.6408 10.0604i −1.18076 0.429760i
\(549\) 7.37922i 0.314938i
\(550\) 0 0
\(551\) 0.200200 + 1.13539i 0.00852881 + 0.0483693i
\(552\) −0.354306 + 0.297298i −0.0150803 + 0.0126538i
\(553\) 9.02549 10.7562i 0.383803 0.457398i
\(554\) −24.7921 −1.05332
\(555\) 0 0
\(556\) −30.6735 −1.30085
\(557\) −10.7814 + 12.8488i −0.456824 + 0.544422i −0.944461 0.328625i \(-0.893415\pi\)
0.487636 + 0.873047i \(0.337859\pi\)
\(558\) 23.8385 20.0028i 1.00916 0.846788i
\(559\) 3.51424 + 19.9303i 0.148637 + 0.842961i
\(560\) 0 0
\(561\) 1.19110i 0.0502881i
\(562\) 40.4868 + 14.7360i 1.70783 + 0.621600i
\(563\) 6.03170 + 3.48240i 0.254206 + 0.146766i 0.621688 0.783265i \(-0.286447\pi\)
−0.367483 + 0.930030i \(0.619780\pi\)
\(564\) −0.313717 + 1.77918i −0.0132099 + 0.0749169i
\(565\) 0 0
\(566\) −18.2936 + 31.6854i −0.768936 + 1.33184i
\(567\) −20.0798 16.8490i −0.843273 0.707590i
\(568\) 8.68071 1.53064i 0.364235 0.0642244i
\(569\) 17.2559 9.96269i 0.723404 0.417658i −0.0926002 0.995703i \(-0.529518\pi\)
0.816004 + 0.578046i \(0.196185\pi\)
\(570\) 0 0
\(571\) 24.6512 8.97230i 1.03162 0.375479i 0.229923 0.973209i \(-0.426153\pi\)
0.801698 + 0.597730i \(0.203930\pi\)
\(572\) 19.3813 + 3.41744i 0.810372 + 0.142890i
\(573\) −3.77951 4.50425i −0.157891 0.188168i
\(574\) 48.4530 + 57.7440i 2.02239 + 2.41019i
\(575\) 0 0
\(576\) 27.4402 9.98741i 1.14334 0.416142i
\(577\) 11.4106 + 31.3503i 0.475029 + 1.30513i 0.913666 + 0.406466i \(0.133239\pi\)
−0.438637 + 0.898664i \(0.644539\pi\)
\(578\) −29.5660 + 17.0699i −1.22978 + 0.710016i
\(579\) −3.28961 + 0.580047i −0.136711 + 0.0241059i
\(580\) 0 0
\(581\) 24.3905 42.2455i 1.01189 1.75264i
\(582\) 1.04082 + 1.80276i 0.0431436 + 0.0747269i
\(583\) −9.63765 + 54.6578i −0.399151 + 2.26370i
\(584\) 1.89134 + 1.09196i 0.0782641 + 0.0451858i
\(585\) 0 0
\(586\) 1.06178i 0.0438617i
\(587\) 10.5014 28.8524i 0.433439 1.19086i −0.510248 0.860027i \(-0.670447\pi\)
0.943688 0.330838i \(-0.107331\pi\)
\(588\) −0.706695 4.00787i −0.0291436 0.165282i
\(589\) 6.05148 5.07780i 0.249347 0.209227i
\(590\) 0 0
\(591\) −6.90938 −0.284214
\(592\) −17.1188 + 10.3977i −0.703577 + 0.427344i
\(593\) 8.45396 0.347163 0.173581 0.984820i \(-0.444466\pi\)
0.173581 + 0.984820i \(0.444466\pi\)
\(594\) 12.5512 14.9580i 0.514984 0.613734i
\(595\) 0 0
\(596\) −2.00279 11.3584i −0.0820373 0.465257i
\(597\) 0.234864 0.645283i 0.00961233 0.0264097i
\(598\) 8.00576i 0.327380i
\(599\) 2.98441 + 1.08624i 0.121940 + 0.0443824i 0.402269 0.915521i \(-0.368222\pi\)
−0.280330 + 0.959904i \(0.590444\pi\)
\(600\) 0 0
\(601\) 2.16502 12.2784i 0.0883129 0.500847i −0.908280 0.418364i \(-0.862604\pi\)
0.996592 0.0824834i \(-0.0262852\pi\)
\(602\) −35.1199 60.8295i −1.43138 2.47923i
\(603\) 14.4508 25.0295i 0.588482 1.01928i
\(604\) −12.7313 10.6829i −0.518030 0.434679i
\(605\) 0 0
\(606\) 7.35715 4.24765i 0.298864 0.172549i
\(607\) −5.59413 15.3698i −0.227059 0.623839i 0.772884 0.634548i \(-0.218814\pi\)
−0.999943 + 0.0107084i \(0.996591\pi\)
\(608\) 11.4474 4.16649i 0.464251 0.168974i
\(609\) 0.987194 + 0.174069i 0.0400031 + 0.00705363i
\(610\) 0 0
\(611\) 2.67195 + 3.18431i 0.108096 + 0.128823i
\(612\) −4.80123 0.846586i −0.194078 0.0342212i
\(613\) −11.6594 + 4.24366i −0.470917 + 0.171400i −0.566568 0.824015i \(-0.691729\pi\)
0.0956506 + 0.995415i \(0.469507\pi\)
\(614\) 6.20302 + 17.0427i 0.250334 + 0.687786i
\(615\) 0 0
\(616\) −8.94169 + 1.57666i −0.360271 + 0.0635255i
\(617\) −23.9113 20.0640i −0.962634 0.807745i 0.0187459 0.999824i \(-0.494033\pi\)
−0.981380 + 0.192079i \(0.938477\pi\)
\(618\) 6.53756 11.3234i 0.262979 0.455494i
\(619\) 13.9396 + 24.1441i 0.560280 + 0.970433i 0.997472 + 0.0710650i \(0.0226398\pi\)
−0.437192 + 0.899368i \(0.644027\pi\)
\(620\) 0 0
\(621\) 3.68434 + 2.12716i 0.147848 + 0.0853599i
\(622\) 56.0867 + 20.4139i 2.24887 + 0.818523i
\(623\) 44.7528i 1.79298i
\(624\) −0.879905 + 2.41752i −0.0352244 + 0.0967782i
\(625\) 0 0
\(626\) 46.8547 39.3158i 1.87269 1.57138i
\(627\) 1.55302 1.85082i 0.0620216 0.0739145i
\(628\) 39.2100 1.56465
\(629\) 4.50558 0.100196i 0.179649 0.00399509i
\(630\) 0 0
\(631\) 9.04455 10.7789i 0.360058 0.429100i −0.555357 0.831612i \(-0.687418\pi\)
0.915415 + 0.402512i \(0.131863\pi\)
\(632\) −2.00962 + 1.68628i −0.0799386 + 0.0670764i
\(633\) −1.00031 5.67305i −0.0397588 0.225483i
\(634\) 17.2069 47.2756i 0.683374 1.87755i
\(635\) 0 0
\(636\) 11.0161 + 4.00954i 0.436817 + 0.158988i
\(637\) −8.10934 4.68193i −0.321304 0.185505i
\(638\) 1.15830 6.56907i 0.0458577 0.260072i
\(639\) −19.7599 34.2252i −0.781690 1.35393i
\(640\) 0 0
\(641\) −10.6093 8.90229i −0.419044 0.351619i 0.408756 0.912644i \(-0.365963\pi\)
−0.827799 + 0.561025i \(0.810407\pi\)
\(642\) 10.0256 1.76779i 0.395680 0.0697690i
\(643\) 5.53814 3.19744i 0.218403 0.126095i −0.386808 0.922160i \(-0.626422\pi\)
0.605210 + 0.796065i \(0.293089\pi\)
\(644\) −5.08997 13.9846i −0.200573 0.551069i
\(645\) 0 0
\(646\) −2.27561 0.401251i −0.0895325 0.0157870i
\(647\) 30.3864 + 36.2131i 1.19461 + 1.42368i 0.880335 + 0.474352i \(0.157317\pi\)
0.314276 + 0.949332i \(0.398238\pi\)
\(648\) 3.14797 + 3.75161i 0.123664 + 0.147377i
\(649\) −5.88267 1.03727i −0.230915 0.0407165i
\(650\) 0 0
\(651\) −2.34918 6.45432i −0.0920717 0.252965i
\(652\) −2.11889 + 1.22334i −0.0829821 + 0.0479097i
\(653\) 38.5315 6.79414i 1.50785 0.265875i 0.642207 0.766531i \(-0.278019\pi\)
0.865646 + 0.500656i \(0.166908\pi\)
\(654\) −2.75082 2.30821i −0.107566 0.0902582i
\(655\) 0 0
\(656\) 17.5597 + 30.4142i 0.685590 + 1.18748i
\(657\) 1.70028 9.64275i 0.0663342 0.376200i
\(658\) −12.4943 7.21362i −0.487080 0.281216i
\(659\) −20.9382 7.62088i −0.815636 0.296867i −0.0996862 0.995019i \(-0.531784\pi\)
−0.715950 + 0.698152i \(0.754006\pi\)
\(660\) 0 0
\(661\) 1.44341 3.96574i 0.0561422 0.154249i −0.908451 0.417991i \(-0.862734\pi\)
0.964593 + 0.263742i \(0.0849566\pi\)
\(662\) 5.33097 + 30.2334i 0.207194 + 1.17506i
\(663\) 0.443440 0.372090i 0.0172218 0.0144508i
\(664\) −5.85835 + 6.98171i −0.227348 + 0.270943i
\(665\) 0 0
\(666\) −28.0940 22.5285i −1.08862 0.872962i
\(667\) 1.45333 0.0562730
\(668\) −14.2753 + 17.0126i −0.552328 + 0.658239i
\(669\) −2.52795 + 2.12120i −0.0977362 + 0.0820104i
\(670\) 0 0
\(671\) 3.70685 10.1845i 0.143101 0.393167i
\(672\) 10.5920i 0.408594i
\(673\) 39.3918 + 14.3375i 1.51844 + 0.552668i 0.960759 0.277385i \(-0.0894676\pi\)
0.557685 + 0.830053i \(0.311690\pi\)
\(674\) −27.4102 15.8253i −1.05580 0.609568i
\(675\) 0 0
\(676\) 10.2107 + 17.6854i 0.392719 + 0.680209i
\(677\) 15.5199 26.8813i 0.596479 1.03313i −0.396857 0.917880i \(-0.629899\pi\)
0.993336 0.115252i \(-0.0367676\pi\)
\(678\) 6.90153 + 5.79107i 0.265052 + 0.222405i
\(679\) −8.76825 + 1.54608i −0.336494 + 0.0593330i
\(680\) 0 0
\(681\) 2.37111 + 6.51456i 0.0908610 + 0.249638i
\(682\) −42.9489 + 15.6321i −1.64460 + 0.598585i
\(683\) 49.3165 + 8.69583i 1.88704 + 0.332737i 0.993274 0.115790i \(-0.0369398\pi\)
0.893770 + 0.448526i \(0.148051\pi\)
\(684\) 6.35669 + 7.57561i 0.243054 + 0.289661i
\(685\) 0 0
\(686\) −16.7153 2.94736i −0.638194 0.112531i
\(687\) 2.20536 0.802684i 0.0841396 0.0306243i
\(688\) −11.1925 30.7513i −0.426712 1.17238i
\(689\) 23.3596 13.4867i 0.889931 0.513802i
\(690\) 0 0
\(691\) −6.59295 5.53214i −0.250808 0.210453i 0.508712 0.860937i \(-0.330122\pi\)
−0.759520 + 0.650484i \(0.774566\pi\)
\(692\) −26.5831 + 46.0432i −1.01054 + 1.75030i
\(693\) 20.3540 + 35.2541i 0.773184 + 1.33919i
\(694\) 0.410643 2.32887i 0.0155878 0.0884027i
\(695\) 0 0
\(696\) −0.175993 0.0640561i −0.00667099 0.00242804i
\(697\) 7.90211i 0.299314i
\(698\) 22.4322 61.6320i 0.849072 2.33281i
\(699\) 1.00679 + 5.70978i 0.0380802 + 0.215964i
\(700\) 0 0
\(701\) 14.7334 17.5586i 0.556474 0.663180i −0.412322 0.911038i \(-0.635282\pi\)
0.968796 + 0.247858i \(0.0797267\pi\)
\(702\) −9.48973 −0.358167
\(703\) −7.13177 5.71895i −0.268980 0.215694i
\(704\) −42.8888 −1.61643
\(705\) 0 0
\(706\) 46.3002 38.8505i 1.74253 1.46216i
\(707\) 6.30962 + 35.7836i 0.237298 + 1.34578i
\(708\) −0.431535 + 1.18563i −0.0162181 + 0.0445588i
\(709\) 39.3083i 1.47625i −0.674661 0.738127i \(-0.735710\pi\)
0.674661 0.738127i \(-0.264290\pi\)
\(710\) 0 0
\(711\) 10.1860 + 5.88088i 0.382004 + 0.220550i
\(712\) 1.45194 8.23434i 0.0544136 0.308595i
\(713\) −4.97905 8.62397i −0.186467 0.322970i
\(714\) −1.00455 + 1.73994i −0.0375945 + 0.0651155i
\(715\) 0 0
\(716\) 30.2642 5.33639i 1.13103 0.199430i
\(717\) −3.70432 + 2.13869i −0.138340 + 0.0798708i
\(718\) 0.0599559 + 0.164728i 0.00223754 + 0.00614758i
\(719\) −23.3678 + 8.50517i −0.871470 + 0.317189i −0.738762 0.673966i \(-0.764589\pi\)
−0.132708 + 0.991155i \(0.542367\pi\)
\(720\) 0 0
\(721\) 35.9474 + 42.8404i 1.33875 + 1.59546i
\(722\) −22.3320 26.6142i −0.831110 0.990478i
\(723\) −6.20286 1.09373i −0.230687 0.0406763i
\(724\) 27.8069 10.1209i 1.03343 0.376139i
\(725\) 0 0
\(726\) −4.52071 + 2.61003i −0.167779 + 0.0968674i
\(727\) 40.6160 7.16170i 1.50637 0.265613i 0.641307 0.767284i \(-0.278393\pi\)
0.865058 + 0.501672i \(0.167281\pi\)
\(728\) 3.38031 + 2.83642i 0.125283 + 0.105125i
\(729\) 9.68611 16.7768i 0.358745 0.621364i
\(730\) 0 0
\(731\) −1.27863 + 7.25146i −0.0472918 + 0.268205i
\(732\) −1.98255 1.14463i −0.0732773 0.0423067i
\(733\) −2.66602 0.970351i −0.0984716 0.0358407i 0.292315 0.956322i \(-0.405575\pi\)
−0.390786 + 0.920482i \(0.627797\pi\)
\(734\) 26.5746i 0.980887i
\(735\) 0 0
\(736\) −2.66660 15.1231i −0.0982923 0.557443i
\(737\) −32.5176 + 27.2855i −1.19780 + 1.00507i
\(738\) −40.5873 + 48.3700i −1.49404 + 1.78053i
\(739\) 32.4466 1.19357 0.596784 0.802402i \(-0.296445\pi\)
0.596784 + 0.802402i \(0.296445\pi\)
\(740\) 0 0
\(741\) −1.17420 −0.0431355
\(742\) −60.1762 + 71.7152i −2.20914 + 2.63275i
\(743\) 8.21025 6.88922i 0.301205 0.252741i −0.479641 0.877465i \(-0.659233\pi\)
0.780846 + 0.624724i \(0.214789\pi\)
\(744\) 0.222840 + 1.26379i 0.00816971 + 0.0463327i
\(745\) 0 0
\(746\) 26.8776i 0.984060i
\(747\) 38.3977 + 13.9756i 1.40490 + 0.511341i
\(748\) 6.20117 + 3.58025i 0.226737 + 0.130907i
\(749\) −7.56108 + 42.8810i −0.276276 + 1.56684i
\(750\) 0 0
\(751\) 2.83062 4.90277i 0.103291 0.178905i −0.809748 0.586778i \(-0.800396\pi\)
0.913039 + 0.407873i \(0.133729\pi\)
\(752\) −5.14909 4.32060i −0.187768 0.157556i
\(753\) −1.26301 + 0.222703i −0.0460267 + 0.00811575i
\(754\) −2.80749 + 1.62090i −0.102243 + 0.0590298i
\(755\) 0 0
\(756\) 16.5768 6.03346i 0.602892 0.219435i
\(757\) −19.6719 3.46869i −0.714987 0.126072i −0.195691 0.980666i \(-0.562695\pi\)
−0.519297 + 0.854594i \(0.673806\pi\)
\(758\) −36.0087 42.9135i −1.30790 1.55869i
\(759\) −1.95770 2.33309i −0.0710599 0.0846859i
\(760\) 0 0
\(761\) 11.9305 4.34234i 0.432480 0.157410i −0.116601 0.993179i \(-0.537200\pi\)
0.549081 + 0.835769i \(0.314978\pi\)
\(762\) 2.46082 + 6.76105i 0.0891462 + 0.244927i
\(763\) 13.3013 7.67948i 0.481538 0.278016i
\(764\) −34.8110 + 6.13812i −1.25942 + 0.222069i
\(765\) 0 0
\(766\) −11.5874 + 20.0700i −0.418670 + 0.725158i
\(767\) 1.45153 + 2.51413i 0.0524119 + 0.0907800i
\(768\) 0.668436 3.79089i 0.0241201 0.136792i
\(769\) 26.2274 + 15.1424i 0.945786 + 0.546050i 0.891769 0.452490i \(-0.149464\pi\)
0.0540164 + 0.998540i \(0.482798\pi\)
\(770\) 0 0
\(771\) 1.93178i 0.0695715i
\(772\) −6.86817 + 18.8701i −0.247191 + 0.679151i
\(773\) 6.71175 + 38.0642i 0.241405 + 1.36907i 0.828696 + 0.559699i \(0.189083\pi\)
−0.587291 + 0.809376i \(0.699806\pi\)
\(774\) 45.0720 37.8199i 1.62008 1.35941i
\(775\) 0 0
\(776\) 1.66349 0.0597157
\(777\) −6.79344 + 4.12625i −0.243713 + 0.148028i
\(778\) 9.02959 0.323726
\(779\) −10.3032 + 12.2789i −0.369152 + 0.439938i
\(780\) 0 0
\(781\) 10.0792 + 57.1622i 0.360663 + 2.04542i
\(782\) −0.996245 + 2.73716i −0.0356257 + 0.0978807i
\(783\) 1.72272i 0.0615649i
\(784\) 14.2284 + 5.17871i 0.508157 + 0.184954i
\(785\) 0 0
\(786\) 2.45432 13.9192i 0.0875428 0.496480i
\(787\) 2.41252 + 4.17861i 0.0859971 + 0.148951i 0.905816 0.423672i \(-0.139259\pi\)
−0.819819 + 0.572623i \(0.805926\pi\)
\(788\) −20.7685 + 35.9722i −0.739849 + 1.28146i
\(789\) 1.52995 + 1.28378i 0.0544675 + 0.0457037i
\(790\) 0 0
\(791\) −33.3715 + 19.2670i −1.18655 + 0.685057i
\(792\) −2.60129 7.14699i −0.0924329 0.253957i
\(793\) −4.94963 + 1.80152i −0.175767 + 0.0639738i
\(794\) −12.4881 2.20199i −0.443186 0.0781457i
\(795\) 0 0
\(796\) −2.65356 3.16239i −0.0940528 0.112088i
\(797\) −27.6718 4.87928i −0.980185 0.172833i −0.339474 0.940615i \(-0.610249\pi\)
−0.640711 + 0.767782i \(0.721360\pi\)
\(798\) 3.82958 1.39385i 0.135566 0.0493419i
\(799\) 0.517279 + 1.42121i 0.0183000 + 0.0502789i
\(800\) 0 0
\(801\) −36.9182 + 6.50967i −1.30444 + 0.230008i
\(802\) 15.8192 + 13.2739i 0.558595 + 0.468717i
\(803\) −7.19055 + 12.4544i −0.253749 + 0.439506i
\(804\) 4.48307 + 7.76491i 0.158106 + 0.273847i
\(805\) 0 0
\(806\) 19.2367 + 11.1063i 0.677585 + 0.391204i
\(807\) −8.15887 2.96959i −0.287206 0.104534i
\(808\) 6.78876i 0.238828i
\(809\) 2.11555 5.81242i 0.0743786 0.204354i −0.896932 0.442169i \(-0.854209\pi\)
0.971310 + 0.237815i \(0.0764313\pi\)
\(810\) 0 0
\(811\) −4.28857 + 3.59854i −0.150592 + 0.126362i −0.714971 0.699154i \(-0.753560\pi\)
0.564379 + 0.825516i \(0.309116\pi\)
\(812\) 3.87360 4.61638i 0.135937 0.162003i
\(813\) 5.23843 0.183720
\(814\) 27.4572 + 45.2055i 0.962375 + 1.58445i
\(815\) 0 0
\(816\) −0.601677 + 0.717051i −0.0210629 + 0.0251018i
\(817\) 11.4417 9.60073i 0.400294 0.335887i
\(818\) 7.27140 + 41.2382i 0.254239 + 1.44186i
\(819\) 6.76652 18.5909i 0.236441 0.649617i
\(820\) 0 0
\(821\) −16.4320 5.98077i −0.573482 0.208730i 0.0389669 0.999241i \(-0.487593\pi\)
−0.612449 + 0.790510i \(0.709816\pi\)
\(822\) −8.79360 5.07699i −0.306712 0.177080i
\(823\) −5.18271 + 29.3926i −0.180658 + 1.02456i 0.750751 + 0.660586i \(0.229692\pi\)
−0.931408 + 0.363976i \(0.881419\pi\)
\(824\) −5.22429 9.04874i −0.181997 0.315228i
\(825\) 0 0
\(826\) −7.71851 6.47660i −0.268561 0.225350i
\(827\) 38.1522 6.72726i 1.32668 0.233930i 0.534994 0.844856i \(-0.320314\pi\)
0.791688 + 0.610926i \(0.209203\pi\)
\(828\) 10.7960 6.23308i 0.375187 0.216614i
\(829\) 17.0126 + 46.7418i 0.590873 + 1.62341i 0.768889 + 0.639382i \(0.220810\pi\)
−0.178016 + 0.984028i \(0.556968\pi\)
\(830\) 0 0
\(831\) −4.51414 0.795965i −0.156594 0.0276117i
\(832\) 13.3982 + 15.9673i 0.464498 + 0.553567i
\(833\) −2.18995 2.60988i −0.0758773 0.0904271i
\(834\) −10.4276 1.83868i −0.361080 0.0636681i
\(835\) 0 0
\(836\) −4.96773 13.6487i −0.171812 0.472051i
\(837\) 10.2225 5.90198i 0.353342 0.204002i
\(838\) −25.2077 + 4.44479i −0.870784 + 0.153543i
\(839\) 36.1751 + 30.3545i 1.24890 + 1.04795i 0.996774 + 0.0802593i \(0.0255749\pi\)
0.252128 + 0.967694i \(0.418870\pi\)
\(840\) 0 0
\(841\) −14.2057 24.6051i −0.489853 0.848451i
\(842\) −1.17075 + 6.63964i −0.0403466 + 0.228817i
\(843\) 6.89871 + 3.98297i 0.237604 + 0.137181i
\(844\) −32.5422 11.8444i −1.12015 0.407701i
\(845\) 0 0
\(846\) 4.13337 11.3563i 0.142108 0.390439i
\(847\) −3.87703 21.9878i −0.133216 0.755508i
\(848\) −33.4122 + 28.0361i −1.14738 + 0.962764i
\(849\) −4.34817 + 5.18194i −0.149229 + 0.177844i
\(850\) 0 0
\(851\) −8.66076 + 7.60169i −0.296887 + 0.260583i
\(852\) 12.2602 0.420029
\(853\) 8.13453 9.69436i 0.278521 0.331928i −0.608590 0.793485i \(-0.708264\pi\)
0.887111 + 0.461557i \(0.152709\pi\)
\(854\) 14.0044 11.7511i 0.479219 0.402113i
\(855\) 0 0
\(856\) 2.78242 7.64464i 0.0951013 0.261289i
\(857\) 39.0532i 1.33403i −0.745043 0.667016i \(-0.767571\pi\)
0.745043 0.667016i \(-0.232429\pi\)
\(858\) 6.38393 + 2.32356i 0.217944 + 0.0793251i
\(859\) −25.4718 14.7062i −0.869088 0.501768i −0.00204271 0.999998i \(-0.500650\pi\)
−0.867045 + 0.498230i \(0.833984\pi\)
\(860\) 0 0
\(861\) 6.96840 + 12.0696i 0.237483 + 0.411332i
\(862\) −7.61813 + 13.1950i −0.259474 + 0.449423i
\(863\) −4.82785 4.05105i −0.164342 0.137899i 0.556908 0.830574i \(-0.311988\pi\)
−0.721250 + 0.692675i \(0.756432\pi\)
\(864\) 17.9263 3.16089i 0.609865 0.107536i
\(865\) 0 0
\(866\) −8.88957 24.4239i −0.302080 0.829957i
\(867\) −5.93141 + 2.15886i −0.201441 + 0.0733186i
\(868\) −40.6643 7.17021i −1.38024 0.243373i
\(869\) −11.1041 13.2333i −0.376680 0.448909i
\(870\) 0 0
\(871\) 20.3166 + 3.58236i 0.688400 + 0.121384i
\(872\) −2.69653 + 0.981457i −0.0913161 + 0.0332363i
\(873\) −2.55083 7.00836i −0.0863326 0.237197i
\(874\) 5.11691 2.95425i 0.173082 0.0999290i
\(875\) 0 0
\(876\) 2.32695 + 1.95254i 0.0786204 + 0.0659704i
\(877\) −25.7571 + 44.6125i −0.869754 + 1.50646i −0.00750624 + 0.999972i \(0.502389\pi\)
−0.862248 + 0.506487i \(0.830944\pi\)
\(878\) −34.8321 60.3309i −1.17553 2.03607i
\(879\) 0.0340890 0.193328i 0.00114979 0.00652081i
\(880\) 0 0
\(881\) −2.52115 0.917625i −0.0849398 0.0309156i 0.299201 0.954190i \(-0.403280\pi\)
−0.384141 + 0.923275i \(0.625502\pi\)
\(882\) 27.2236i 0.916667i
\(883\) 11.4063 31.3387i 0.383854 1.05463i −0.585865 0.810408i \(-0.699245\pi\)
0.969719 0.244222i \(-0.0785325\pi\)
\(884\) −0.604293 3.42712i −0.0203246 0.115266i
\(885\) 0 0
\(886\) −42.1161 + 50.1920i −1.41492 + 1.68623i
\(887\) −2.81693 −0.0945833 −0.0472916 0.998881i \(-0.515059\pi\)
−0.0472916 + 0.998881i \(0.515059\pi\)
\(888\) 1.38384 0.538811i 0.0464386 0.0180813i
\(889\) −30.7739 −1.03212
\(890\) 0 0
\(891\) −24.7042 + 20.7293i −0.827622 + 0.694458i
\(892\) 3.44494 + 19.5372i 0.115345 + 0.654154i
\(893\) 1.04927 2.88285i 0.0351125 0.0964708i
\(894\) 3.98140i 0.133158i
\(895\) 0 0
\(896\) −14.8369 8.56610i −0.495667 0.286173i
\(897\) −0.257029 + 1.45769i −0.00858196 + 0.0486707i
\(898\) 20.2715 + 35.1112i 0.676467 + 1.17168i
\(899\) 2.01619 3.49214i 0.0672436 0.116469i
\(900\) 0 0
\(901\) 9.66493 1.70419i 0.321986 0.0567747i
\(902\) 80.3148 46.3697i 2.67419 1.54394i
\(903\) −4.44166 12.2034i −0.147809 0.406103i
\(904\) 6.76533 2.46238i 0.225011 0.0818975i
\(905\) 0 0
\(906\) −3.68773 4.39486i −0.122516 0.146009i
\(907\) −10.2726 12.2424i −0.341096 0.406502i 0.568041 0.823000i \(-0.307702\pi\)
−0.909136 + 0.416498i \(0.863257\pi\)
\(908\) 41.0438 + 7.23713i 1.36209 + 0.240172i
\(909\) −28.6014 + 10.4101i −0.948650 + 0.345280i
\(910\) 0 0
\(911\) 7.26052 4.19186i 0.240552 0.138883i −0.374879 0.927074i \(-0.622316\pi\)
0.615430 + 0.788191i \(0.288982\pi\)
\(912\) 1.86987 0.329708i 0.0619174 0.0109177i
\(913\) −45.9744 38.5771i −1.52153 1.27671i
\(914\) 30.9567 53.6186i 1.02396 1.77355i
\(915\) 0 0
\(916\) 2.44997 13.8944i 0.0809491 0.459085i
\(917\) 52.3535 + 30.2263i 1.72887 + 0.998161i
\(918\) −3.24453 1.18091i −0.107085 0.0389759i
\(919\) 31.3634i 1.03458i 0.855809 + 0.517291i \(0.173060\pi\)
−0.855809 + 0.517291i \(0.826940\pi\)
\(920\) 0 0
\(921\) 0.582280 + 3.30227i 0.0191868 + 0.108814i
\(922\) −49.1615 + 41.2514i −1.61905 + 1.35854i
\(923\) 18.1326 21.6096i 0.596841 0.711287i
\(924\) −12.6288 −0.415458
\(925\) 0 0
\(926\) 36.1139 1.18678
\(927\) −30.1118 + 35.8858i −0.989000 + 1.17864i
\(928\) 4.76350 3.99705i 0.156370 0.131210i
\(929\) 5.33172 + 30.2377i 0.174928 + 0.992067i 0.938227 + 0.346021i \(0.112467\pi\)
−0.763299 + 0.646046i \(0.776421\pi\)
\(930\) 0 0
\(931\) 6.91082i 0.226493i
\(932\) 32.7529 + 11.9211i 1.07286 + 0.390488i
\(933\) 9.55686 + 5.51765i 0.312878 + 0.180640i
\(934\) 5.15333 29.2260i 0.168622 0.956303i
\(935\) 0 0
\(936\) −1.84817 + 3.20112i −0.0604093 + 0.104632i
\(937\) −20.2885 17.0241i −0.662796 0.556152i 0.248127 0.968727i \(-0.420185\pi\)
−0.910923 + 0.412575i \(0.864629\pi\)
\(938\) −70.5135 + 12.4334i −2.30235 + 0.405966i
\(939\) 9.79355 5.65431i 0.319601 0.184521i
\(940\) 0 0
\(941\) 33.7169 12.2720i 1.09914 0.400054i 0.272141 0.962257i \(-0.412268\pi\)
0.826999 + 0.562203i \(0.190046\pi\)
\(942\) 13.3297 + 2.35038i 0.434304 + 0.0765795i
\(943\) 12.9880 + 15.4785i 0.422948 + 0.504049i
\(944\) −3.01745 3.59606i −0.0982096 0.117042i
\(945\) 0 0
\(946\) −81.2047 + 29.5561i −2.64019 + 0.960952i
\(947\) 16.2849 + 44.7424i 0.529189 + 1.45393i 0.860028 + 0.510247i \(0.170446\pi\)
−0.330839 + 0.943687i \(0.607332\pi\)
\(948\) −3.16000 + 1.82443i −0.102632 + 0.0592546i
\(949\) 6.88300 1.21366i 0.223432 0.0393970i
\(950\) 0 0
\(951\) 4.65084 8.05549i 0.150814 0.261217i
\(952\) 0.802758 + 1.39042i 0.0260175 + 0.0450637i
\(953\) −0.244254 + 1.38523i −0.00791217 + 0.0448721i −0.988508 0.151167i \(-0.951697\pi\)
0.980596 + 0.196039i \(0.0628080\pi\)
\(954\) −67.9137 39.2100i −2.19879 1.26947i
\(955\) 0 0
\(956\) 25.7143i 0.831659i
\(957\) 0.421808 1.15891i 0.0136351 0.0374621i
\(958\) 6.90457 + 39.1578i 0.223077 + 1.26513i
\(959\) 33.2693 27.9163i 1.07432 0.901463i
\(960\) 0 0
\(961\) 3.37038 0.108722
\(962\) 8.25236 24.3441i 0.266067 0.784885i
\(963\) −36.4740 −1.17536
\(964\) −24.3391 + 29.0062i −0.783910 + 0.934227i
\(965\) 0 0
\(966\) −0.892082 5.05925i −0.0287023 0.162779i
\(967\) −1.69636 + 4.66071i −0.0545513 + 0.149878i −0.963975 0.265992i \(-0.914301\pi\)
0.909424 + 0.415870i \(0.136523\pi\)
\(968\) 4.17145i 0.134076i
\(969\) −0.401459 0.146119i −0.0128967 0.00469403i
\(970\) 0 0
\(971\) 0.351984 1.99620i 0.0112957 0.0640611i −0.978639 0.205587i \(-0.934090\pi\)
0.989935 + 0.141526i \(0.0452008\pi\)
\(972\) 11.1756 + 19.3567i 0.358458 + 0.620867i
\(973\) 22.6443 39.2210i 0.725942 1.25737i
\(974\) −49.0153 41.1288i −1.57055 1.31785i
\(975\) 0 0
\(976\) 7.37621 4.25865i 0.236107 0.136316i
\(977\) −7.82344 21.4947i −0.250294 0.687677i −0.999674 0.0255366i \(-0.991871\pi\)
0.749380 0.662140i \(-0.230352\pi\)
\(978\) −0.793660 + 0.288869i −0.0253785 + 0.00923700i
\(979\) 54.2229 + 9.56096i 1.73297 + 0.305570i
\(980\) 0 0
\(981\) 8.26987 + 9.85565i 0.264037 + 0.314667i
\(982\) −11.2275 1.97971i −0.358284 0.0631751i
\(983\) −21.8025 + 7.93548i −0.695393 + 0.253102i −0.665443 0.746449i \(-0.731757\pi\)
−0.0299504 + 0.999551i \(0.509535\pi\)
\(984\) −0.890580 2.44685i −0.0283906 0.0780027i
\(985\) 0 0
\(986\) −1.16158 + 0.204819i −0.0369924 + 0.00652275i
\(987\) −2.04337 1.71459i −0.0650412 0.0545760i
\(988\) −3.52948 + 6.11323i −0.112288 + 0.194488i
\(989\) −9.41403 16.3056i −0.299349 0.518487i
\(990\) 0 0
\(991\) −9.93175 5.73410i −0.315492 0.182150i 0.333889 0.942612i \(-0.391639\pi\)
−0.649382 + 0.760463i \(0.724972\pi\)
\(992\) −40.0380 14.5726i −1.27121 0.462682i
\(993\) 5.67605i 0.180124i
\(994\) −33.4862 + 92.0025i −1.06212 + 2.91814i
\(995\) 0 0
\(996\) −9.71085 + 8.14837i −0.307700 + 0.258191i
\(997\) 13.2157 15.7498i 0.418545 0.498802i −0.515036 0.857168i \(-0.672222\pi\)
0.933581 + 0.358366i \(0.116666\pi\)
\(998\) 48.4422 1.53341
\(999\) −9.01076 10.2661i −0.285088 0.324806i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 925.2.bb.e.151.14 96
5.2 odd 4 185.2.v.a.114.14 yes 96
5.3 odd 4 185.2.v.a.114.3 yes 96
5.4 even 2 inner 925.2.bb.e.151.3 96
37.25 even 18 inner 925.2.bb.e.876.14 96
185.62 odd 36 185.2.v.a.99.3 96
185.99 even 18 inner 925.2.bb.e.876.3 96
185.173 odd 36 185.2.v.a.99.14 yes 96
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
185.2.v.a.99.3 96 185.62 odd 36
185.2.v.a.99.14 yes 96 185.173 odd 36
185.2.v.a.114.3 yes 96 5.3 odd 4
185.2.v.a.114.14 yes 96 5.2 odd 4
925.2.bb.e.151.3 96 5.4 even 2 inner
925.2.bb.e.151.14 96 1.1 even 1 trivial
925.2.bb.e.876.3 96 185.99 even 18 inner
925.2.bb.e.876.14 96 37.25 even 18 inner