Properties

Label 925.2.bb.e.151.13
Level $925$
Weight $2$
Character 925.151
Analytic conductor $7.386$
Analytic rank $0$
Dimension $96$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [925,2,Mod(151,925)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("925.151"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(925, base_ring=CyclotomicField(18)) chi = DirichletCharacter(H, H._module([0, 13])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 925 = 5^{2} \cdot 37 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 925.bb (of order \(18\), degree \(6\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [96,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.38616218697\)
Analytic rank: \(0\)
Dimension: \(96\)
Relative dimension: \(16\) over \(\Q(\zeta_{18})\)
Twist minimal: no (minimal twist has level 185)
Sato-Tate group: $\mathrm{SU}(2)[C_{18}]$

Embedding invariants

Embedding label 151.13
Character \(\chi\) \(=\) 925.151
Dual form 925.2.bb.e.876.13

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.07021 - 1.27542i) q^{2} +(1.97419 - 1.65654i) q^{3} +(-0.134064 - 0.760312i) q^{4} -4.29076i q^{6} +(0.133008 + 0.0484108i) q^{7} +(1.77057 + 1.02224i) q^{8} +(0.632347 - 3.58622i) q^{9} +(0.715450 - 1.23920i) q^{11} +(-1.52415 - 1.27892i) q^{12} +(1.85629 - 0.327315i) q^{13} +(0.204090 - 0.117831i) q^{14} +(4.64963 - 1.69233i) q^{16} +(-0.482371 - 0.0850551i) q^{17} +(-3.89720 - 4.64450i) q^{18} +(-1.87580 - 2.23549i) q^{19} +(0.342776 - 0.124760i) q^{21} +(-0.814818 - 2.23869i) q^{22} +(-7.07485 + 4.08466i) q^{23} +(5.18883 - 0.914931i) q^{24} +(1.56915 - 2.71785i) q^{26} +(-0.826667 - 1.43183i) q^{27} +(0.0189758 - 0.107617i) q^{28} +(3.23140 + 1.86565i) q^{29} +1.31432i q^{31} +(1.41912 - 3.89901i) q^{32} +(-0.640345 - 3.63158i) q^{33} +(-0.624718 + 0.524201i) q^{34} -2.81142 q^{36} +(-5.86718 - 1.60505i) q^{37} -4.85869 q^{38} +(3.12246 - 3.72121i) q^{39} +(-1.00565 - 5.70332i) q^{41} +(0.207719 - 0.570704i) q^{42} +11.0186i q^{43} +(-1.03809 - 0.377834i) q^{44} +(-2.36187 + 13.3948i) q^{46} +(-5.09207 - 8.81972i) q^{47} +(6.37584 - 11.0433i) q^{48} +(-5.34696 - 4.48664i) q^{49} +(-1.09319 + 0.631153i) q^{51} +(-0.497723 - 1.36748i) q^{52} +(1.41611 - 0.515423i) q^{53} +(-2.71089 - 0.478003i) q^{54} +(0.186012 + 0.221681i) q^{56} +(-7.40637 - 1.30594i) q^{57} +(5.83775 - 2.12477i) q^{58} +(4.60589 + 12.6546i) q^{59} +(-6.91487 + 1.21928i) q^{61} +(1.67631 + 1.40659i) q^{62} +(0.257719 - 0.446382i) q^{63} +(1.49391 + 2.58753i) q^{64} +(-5.31709 - 3.06982i) q^{66} +(14.5595 + 5.29924i) q^{67} +0.378156i q^{68} +(-7.20066 + 19.7837i) q^{69} +(-2.86044 + 2.40019i) q^{71} +(4.78560 - 5.70326i) q^{72} -2.49025 q^{73} +(-8.32621 + 5.76539i) q^{74} +(-1.44820 + 1.72589i) q^{76} +(0.155151 - 0.130187i) q^{77} +(-1.40443 - 7.96491i) q^{78} +(4.55510 - 12.5150i) q^{79} +(6.26191 + 2.27915i) q^{81} +(-8.35039 - 4.82110i) q^{82} +(-1.44890 + 8.21712i) q^{83} +(-0.140811 - 0.243891i) q^{84} +(14.0533 + 11.7922i) q^{86} +(9.46991 - 1.66980i) q^{87} +(2.53351 - 1.46273i) q^{88} +(1.86850 + 5.13365i) q^{89} +(0.262747 + 0.0463293i) q^{91} +(4.05410 + 4.83149i) q^{92} +(2.17722 + 2.59471i) q^{93} +(-16.6984 - 2.94438i) q^{94} +(-3.65725 - 10.0482i) q^{96} +(0.475449 - 0.274500i) q^{97} +(-11.4447 + 2.01801i) q^{98} +(-3.99161 - 3.34936i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 96 q + 12 q^{4} + 6 q^{9} - 30 q^{11} + 36 q^{14} + 18 q^{19} - 24 q^{21} - 96 q^{24} + 48 q^{26} + 18 q^{29} + 54 q^{34} + 24 q^{36} + 36 q^{39} + 72 q^{41} + 84 q^{44} - 18 q^{46} + 6 q^{49} - 18 q^{51}+ \cdots + 24 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/925\mathbb{Z}\right)^\times\).

\(n\) \(76\) \(852\)
\(\chi(n)\) \(e\left(\frac{13}{18}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.07021 1.27542i 0.756750 0.901859i −0.240888 0.970553i \(-0.577439\pi\)
0.997638 + 0.0686936i \(0.0218831\pi\)
\(3\) 1.97419 1.65654i 1.13980 0.956404i 0.140366 0.990100i \(-0.455172\pi\)
0.999432 + 0.0336957i \(0.0107277\pi\)
\(4\) −0.134064 0.760312i −0.0670318 0.380156i
\(5\) 0 0
\(6\) 4.29076i 1.75170i
\(7\) 0.133008 + 0.0484108i 0.0502721 + 0.0182976i 0.367034 0.930208i \(-0.380373\pi\)
−0.316762 + 0.948505i \(0.602596\pi\)
\(8\) 1.77057 + 1.02224i 0.625993 + 0.361417i
\(9\) 0.632347 3.58622i 0.210782 1.19541i
\(10\) 0 0
\(11\) 0.715450 1.23920i 0.215716 0.373631i −0.737778 0.675044i \(-0.764125\pi\)
0.953494 + 0.301412i \(0.0974581\pi\)
\(12\) −1.52415 1.27892i −0.439985 0.369192i
\(13\) 1.85629 0.327315i 0.514843 0.0907807i 0.0898107 0.995959i \(-0.471374\pi\)
0.425032 + 0.905178i \(0.360263\pi\)
\(14\) 0.204090 0.117831i 0.0545453 0.0314917i
\(15\) 0 0
\(16\) 4.64963 1.69233i 1.16241 0.423082i
\(17\) −0.482371 0.0850551i −0.116992 0.0206289i 0.114845 0.993383i \(-0.463363\pi\)
−0.231838 + 0.972754i \(0.574474\pi\)
\(18\) −3.89720 4.64450i −0.918579 1.09472i
\(19\) −1.87580 2.23549i −0.430338 0.512857i 0.506682 0.862133i \(-0.330872\pi\)
−0.937020 + 0.349276i \(0.886428\pi\)
\(20\) 0 0
\(21\) 0.342776 0.124760i 0.0747999 0.0272250i
\(22\) −0.814818 2.23869i −0.173720 0.477291i
\(23\) −7.07485 + 4.08466i −1.47521 + 0.851711i −0.999609 0.0279514i \(-0.991102\pi\)
−0.475598 + 0.879663i \(0.657768\pi\)
\(24\) 5.18883 0.914931i 1.05917 0.186760i
\(25\) 0 0
\(26\) 1.56915 2.71785i 0.307736 0.533014i
\(27\) −0.826667 1.43183i −0.159092 0.275556i
\(28\) 0.0189758 0.107617i 0.00358610 0.0203378i
\(29\) 3.23140 + 1.86565i 0.600056 + 0.346442i 0.769063 0.639172i \(-0.220723\pi\)
−0.169008 + 0.985615i \(0.554056\pi\)
\(30\) 0 0
\(31\) 1.31432i 0.236059i 0.993010 + 0.118029i \(0.0376577\pi\)
−0.993010 + 0.118029i \(0.962342\pi\)
\(32\) 1.41912 3.89901i 0.250868 0.689254i
\(33\) −0.640345 3.63158i −0.111470 0.632176i
\(34\) −0.624718 + 0.524201i −0.107138 + 0.0898996i
\(35\) 0 0
\(36\) −2.81142 −0.468570
\(37\) −5.86718 1.60505i −0.964558 0.263869i
\(38\) −4.85869 −0.788183
\(39\) 3.12246 3.72121i 0.499994 0.595870i
\(40\) 0 0
\(41\) −1.00565 5.70332i −0.157056 0.890709i −0.956882 0.290477i \(-0.906186\pi\)
0.799826 0.600232i \(-0.204925\pi\)
\(42\) 0.207719 0.570704i 0.0320518 0.0880615i
\(43\) 11.0186i 1.68032i 0.542340 + 0.840159i \(0.317539\pi\)
−0.542340 + 0.840159i \(0.682461\pi\)
\(44\) −1.03809 0.377834i −0.156498 0.0569606i
\(45\) 0 0
\(46\) −2.36187 + 13.3948i −0.348239 + 1.97496i
\(47\) −5.09207 8.81972i −0.742754 1.28649i −0.951237 0.308462i \(-0.900186\pi\)
0.208482 0.978026i \(-0.433148\pi\)
\(48\) 6.37584 11.0433i 0.920273 1.59396i
\(49\) −5.34696 4.48664i −0.763852 0.640948i
\(50\) 0 0
\(51\) −1.09319 + 0.631153i −0.153077 + 0.0883791i
\(52\) −0.497723 1.36748i −0.0690217 0.189636i
\(53\) 1.41611 0.515423i 0.194518 0.0707988i −0.242924 0.970045i \(-0.578107\pi\)
0.437442 + 0.899246i \(0.355884\pi\)
\(54\) −2.71089 0.478003i −0.368906 0.0650480i
\(55\) 0 0
\(56\) 0.186012 + 0.221681i 0.0248569 + 0.0296233i
\(57\) −7.40637 1.30594i −0.980997 0.172976i
\(58\) 5.83775 2.12477i 0.766534 0.278996i
\(59\) 4.60589 + 12.6546i 0.599636 + 1.64749i 0.752001 + 0.659162i \(0.229089\pi\)
−0.152365 + 0.988324i \(0.548689\pi\)
\(60\) 0 0
\(61\) −6.91487 + 1.21928i −0.885358 + 0.156113i −0.597795 0.801649i \(-0.703956\pi\)
−0.287563 + 0.957762i \(0.592845\pi\)
\(62\) 1.67631 + 1.40659i 0.212892 + 0.178637i
\(63\) 0.257719 0.446382i 0.0324695 0.0562389i
\(64\) 1.49391 + 2.58753i 0.186739 + 0.323441i
\(65\) 0 0
\(66\) −5.31709 3.06982i −0.654489 0.377869i
\(67\) 14.5595 + 5.29924i 1.77873 + 0.647405i 0.999794 + 0.0203035i \(0.00646323\pi\)
0.778937 + 0.627102i \(0.215759\pi\)
\(68\) 0.378156i 0.0458581i
\(69\) −7.20066 + 19.7837i −0.866858 + 2.38167i
\(70\) 0 0
\(71\) −2.86044 + 2.40019i −0.339472 + 0.284850i −0.796546 0.604578i \(-0.793342\pi\)
0.457074 + 0.889428i \(0.348897\pi\)
\(72\) 4.78560 5.70326i 0.563989 0.672136i
\(73\) −2.49025 −0.291462 −0.145731 0.989324i \(-0.546553\pi\)
−0.145731 + 0.989324i \(0.546553\pi\)
\(74\) −8.32621 + 5.76539i −0.967902 + 0.670213i
\(75\) 0 0
\(76\) −1.44820 + 1.72589i −0.166119 + 0.197973i
\(77\) 0.155151 0.130187i 0.0176811 0.0148362i
\(78\) −1.40443 7.96491i −0.159020 0.901849i
\(79\) 4.55510 12.5150i 0.512489 1.40805i −0.366146 0.930557i \(-0.619323\pi\)
0.878635 0.477494i \(-0.158455\pi\)
\(80\) 0 0
\(81\) 6.26191 + 2.27915i 0.695768 + 0.253239i
\(82\) −8.35039 4.82110i −0.922146 0.532401i
\(83\) −1.44890 + 8.21712i −0.159037 + 0.901946i 0.795964 + 0.605344i \(0.206964\pi\)
−0.955001 + 0.296602i \(0.904147\pi\)
\(84\) −0.140811 0.243891i −0.0153637 0.0266107i
\(85\) 0 0
\(86\) 14.0533 + 11.7922i 1.51541 + 1.27158i
\(87\) 9.46991 1.66980i 1.01528 0.179021i
\(88\) 2.53351 1.46273i 0.270074 0.155927i
\(89\) 1.86850 + 5.13365i 0.198060 + 0.544166i 0.998471 0.0552865i \(-0.0176072\pi\)
−0.800410 + 0.599453i \(0.795385\pi\)
\(90\) 0 0
\(91\) 0.262747 + 0.0463293i 0.0275433 + 0.00485663i
\(92\) 4.05410 + 4.83149i 0.422669 + 0.503717i
\(93\) 2.17722 + 2.59471i 0.225767 + 0.269059i
\(94\) −16.6984 2.94438i −1.72231 0.303690i
\(95\) 0 0
\(96\) −3.65725 10.0482i −0.373266 1.02554i
\(97\) 0.475449 0.274500i 0.0482745 0.0278713i −0.475669 0.879625i \(-0.657794\pi\)
0.523943 + 0.851753i \(0.324460\pi\)
\(98\) −11.4447 + 2.01801i −1.15609 + 0.203850i
\(99\) −3.99161 3.34936i −0.401172 0.336624i
\(100\) 0 0
\(101\) 4.75004 + 8.22731i 0.472647 + 0.818648i 0.999510 0.0313019i \(-0.00996534\pi\)
−0.526863 + 0.849950i \(0.676632\pi\)
\(102\) −0.364951 + 2.06974i −0.0361355 + 0.204935i
\(103\) −12.0110 6.93455i −1.18348 0.683282i −0.226662 0.973973i \(-0.572781\pi\)
−0.956817 + 0.290692i \(0.906115\pi\)
\(104\) 3.62130 + 1.31805i 0.355098 + 0.129245i
\(105\) 0 0
\(106\) 0.858150 2.35775i 0.0833509 0.229005i
\(107\) 1.04059 + 5.90147i 0.100597 + 0.570516i 0.992888 + 0.119054i \(0.0379863\pi\)
−0.892290 + 0.451462i \(0.850903\pi\)
\(108\) −0.977812 + 0.820482i −0.0940900 + 0.0789509i
\(109\) −3.59687 + 4.28658i −0.344517 + 0.410580i −0.910283 0.413986i \(-0.864136\pi\)
0.565766 + 0.824566i \(0.308581\pi\)
\(110\) 0 0
\(111\) −14.2418 + 6.55054i −1.35177 + 0.621750i
\(112\) 0.700363 0.0661781
\(113\) 6.59430 7.85878i 0.620339 0.739292i −0.360789 0.932647i \(-0.617493\pi\)
0.981129 + 0.193356i \(0.0619371\pi\)
\(114\) −9.59196 + 8.04861i −0.898370 + 0.753822i
\(115\) 0 0
\(116\) 0.985263 2.70699i 0.0914793 0.251337i
\(117\) 6.86405i 0.634582i
\(118\) 21.0692 + 7.66856i 1.93958 + 0.705948i
\(119\) −0.0600415 0.0346650i −0.00550399 0.00317773i
\(120\) 0 0
\(121\) 4.47626 + 7.75312i 0.406933 + 0.704829i
\(122\) −5.84524 + 10.1243i −0.529203 + 0.916607i
\(123\) −11.4331 9.59353i −1.03089 0.865019i
\(124\) 0.999293 0.176202i 0.0897391 0.0158234i
\(125\) 0 0
\(126\) −0.293513 0.806421i −0.0261482 0.0718417i
\(127\) −8.69159 + 3.16348i −0.771254 + 0.280713i −0.697521 0.716565i \(-0.745713\pi\)
−0.0737330 + 0.997278i \(0.523491\pi\)
\(128\) 13.0714 + 2.30484i 1.15536 + 0.203721i
\(129\) 18.2527 + 21.7528i 1.60706 + 1.91522i
\(130\) 0 0
\(131\) 3.01089 + 0.530901i 0.263063 + 0.0463850i 0.303624 0.952792i \(-0.401803\pi\)
−0.0405611 + 0.999177i \(0.512915\pi\)
\(132\) −2.67528 + 0.973724i −0.232854 + 0.0847518i
\(133\) −0.141274 0.388146i −0.0122500 0.0336566i
\(134\) 22.3405 12.8983i 1.92992 1.11424i
\(135\) 0 0
\(136\) −0.767128 0.643697i −0.0657807 0.0551965i
\(137\) −8.54190 + 14.7950i −0.729784 + 1.26402i 0.227191 + 0.973850i \(0.427046\pi\)
−0.956975 + 0.290172i \(0.906287\pi\)
\(138\) 17.5263 + 30.3565i 1.49194 + 2.58411i
\(139\) 3.99733 22.6700i 0.339049 1.92284i −0.0438178 0.999040i \(-0.513952\pi\)
0.382867 0.923804i \(-0.374937\pi\)
\(140\) 0 0
\(141\) −24.6629 8.97657i −2.07699 0.755963i
\(142\) 6.21697i 0.521716i
\(143\) 0.922478 2.53449i 0.0771415 0.211944i
\(144\) −3.12888 17.7447i −0.260740 1.47873i
\(145\) 0 0
\(146\) −2.66508 + 3.17612i −0.220564 + 0.262858i
\(147\) −17.9882 −1.48364
\(148\) −0.433767 + 4.67607i −0.0356554 + 0.384370i
\(149\) 8.41279 0.689203 0.344601 0.938749i \(-0.388014\pi\)
0.344601 + 0.938749i \(0.388014\pi\)
\(150\) 0 0
\(151\) 11.8521 9.94510i 0.964511 0.809321i −0.0171699 0.999853i \(-0.505466\pi\)
0.981681 + 0.190532i \(0.0610212\pi\)
\(152\) −1.03603 5.87563i −0.0840333 0.476576i
\(153\) −0.610053 + 1.67611i −0.0493198 + 0.135505i
\(154\) 0.337209i 0.0271731i
\(155\) 0 0
\(156\) −3.24789 1.87517i −0.260039 0.150134i
\(157\) 0.272586 1.54591i 0.0217548 0.123377i −0.971996 0.234996i \(-0.924492\pi\)
0.993751 + 0.111618i \(0.0356034\pi\)
\(158\) −11.0871 19.2033i −0.882038 1.52774i
\(159\) 1.94185 3.36339i 0.153999 0.266734i
\(160\) 0 0
\(161\) −1.13875 + 0.200792i −0.0897461 + 0.0158247i
\(162\) 9.60842 5.54742i 0.754908 0.435847i
\(163\) 3.81604 + 10.4845i 0.298896 + 0.821209i 0.994685 + 0.102963i \(0.0328324\pi\)
−0.695790 + 0.718246i \(0.744945\pi\)
\(164\) −4.20148 + 1.52921i −0.328081 + 0.119412i
\(165\) 0 0
\(166\) 8.92967 + 10.6420i 0.693077 + 0.825976i
\(167\) 2.11545 + 2.52109i 0.163698 + 0.195088i 0.841658 0.540011i \(-0.181580\pi\)
−0.677960 + 0.735099i \(0.737136\pi\)
\(168\) 0.734446 + 0.129503i 0.0566638 + 0.00999135i
\(169\) −8.87731 + 3.23108i −0.682870 + 0.248544i
\(170\) 0 0
\(171\) −9.20313 + 5.31343i −0.703781 + 0.406328i
\(172\) 8.37756 1.47719i 0.638783 0.112635i
\(173\) −13.9089 11.6710i −1.05747 0.887327i −0.0636151 0.997975i \(-0.520263\pi\)
−0.993860 + 0.110648i \(0.964707\pi\)
\(174\) 8.00505 13.8652i 0.606861 1.05111i
\(175\) 0 0
\(176\) 1.22945 6.97258i 0.0926735 0.525578i
\(177\) 30.0557 + 17.3527i 2.25913 + 1.30431i
\(178\) 8.54725 + 3.11094i 0.640643 + 0.233175i
\(179\) 19.3372i 1.44533i −0.691199 0.722665i \(-0.742917\pi\)
0.691199 0.722665i \(-0.257083\pi\)
\(180\) 0 0
\(181\) −1.66427 9.43854i −0.123704 0.701561i −0.982069 0.188522i \(-0.939630\pi\)
0.858365 0.513040i \(-0.171481\pi\)
\(182\) 0.340282 0.285531i 0.0252234 0.0211650i
\(183\) −11.6315 + 13.8618i −0.859823 + 1.02470i
\(184\) −16.7021 −1.23129
\(185\) 0 0
\(186\) 5.63943 0.413503
\(187\) −0.450512 + 0.536900i −0.0329447 + 0.0392620i
\(188\) −6.02308 + 5.05396i −0.439278 + 0.368598i
\(189\) −0.0406370 0.230464i −0.00295591 0.0167638i
\(190\) 0 0
\(191\) 1.26320i 0.0914017i 0.998955 + 0.0457008i \(0.0145521\pi\)
−0.998955 + 0.0457008i \(0.985448\pi\)
\(192\) 7.23560 + 2.63354i 0.522184 + 0.190060i
\(193\) −19.3761 11.1868i −1.39472 0.805243i −0.400888 0.916127i \(-0.631298\pi\)
−0.993833 + 0.110885i \(0.964632\pi\)
\(194\) 0.158724 0.900169i 0.0113957 0.0646284i
\(195\) 0 0
\(196\) −2.69441 + 4.66686i −0.192458 + 0.333347i
\(197\) −12.0523 10.1131i −0.858694 0.720530i 0.102993 0.994682i \(-0.467158\pi\)
−0.961686 + 0.274153i \(0.911603\pi\)
\(198\) −8.54370 + 1.50648i −0.607174 + 0.107061i
\(199\) 12.1930 7.03961i 0.864336 0.499024i −0.00112613 0.999999i \(-0.500358\pi\)
0.865462 + 0.500975i \(0.167025\pi\)
\(200\) 0 0
\(201\) 37.5217 13.6568i 2.64658 0.963275i
\(202\) 15.5768 + 2.74661i 1.09598 + 0.193251i
\(203\) 0.339483 + 0.404580i 0.0238270 + 0.0283959i
\(204\) 0.626430 + 0.746550i 0.0438589 + 0.0522690i
\(205\) 0 0
\(206\) −21.6987 + 7.89769i −1.51182 + 0.550258i
\(207\) 10.1747 + 27.9549i 0.707194 + 1.94300i
\(208\) 8.07716 4.66335i 0.560050 0.323345i
\(209\) −4.11225 + 0.725101i −0.284450 + 0.0501563i
\(210\) 0 0
\(211\) 7.11706 12.3271i 0.489958 0.848633i −0.509975 0.860189i \(-0.670345\pi\)
0.999933 + 0.0115566i \(0.00367866\pi\)
\(212\) −0.581731 1.00759i −0.0399535 0.0692014i
\(213\) −1.67103 + 9.47686i −0.114497 + 0.649344i
\(214\) 8.64050 + 4.98860i 0.590653 + 0.341013i
\(215\) 0 0
\(216\) 3.38022i 0.229995i
\(217\) −0.0636272 + 0.174814i −0.00431930 + 0.0118672i
\(218\) 1.61781 + 9.17504i 0.109572 + 0.621412i
\(219\) −4.91622 + 4.12520i −0.332208 + 0.278755i
\(220\) 0 0
\(221\) −0.923263 −0.0621054
\(222\) −6.88690 + 25.1747i −0.462219 + 1.68961i
\(223\) 4.00304 0.268064 0.134032 0.990977i \(-0.457208\pi\)
0.134032 + 0.990977i \(0.457208\pi\)
\(224\) 0.377508 0.449897i 0.0252233 0.0300600i
\(225\) 0 0
\(226\) −2.96600 16.8210i −0.197295 1.11892i
\(227\) −0.694757 + 1.90883i −0.0461126 + 0.126693i −0.960611 0.277895i \(-0.910363\pi\)
0.914499 + 0.404589i \(0.132585\pi\)
\(228\) 5.80623i 0.384527i
\(229\) −1.24369 0.452667i −0.0821854 0.0299131i 0.300600 0.953750i \(-0.402813\pi\)
−0.382786 + 0.923837i \(0.625035\pi\)
\(230\) 0 0
\(231\) 0.0906368 0.514027i 0.00596346 0.0338205i
\(232\) 3.81429 + 6.60654i 0.250420 + 0.433741i
\(233\) −3.08024 + 5.33513i −0.201793 + 0.349516i −0.949106 0.314956i \(-0.898010\pi\)
0.747313 + 0.664472i \(0.231344\pi\)
\(234\) −8.75456 7.34595i −0.572304 0.480220i
\(235\) 0 0
\(236\) 9.00395 5.19843i 0.586107 0.338389i
\(237\) −11.7390 32.2527i −0.762532 2.09504i
\(238\) −0.108469 + 0.0394795i −0.00703101 + 0.00255908i
\(239\) 10.0252 + 1.76771i 0.648477 + 0.114344i 0.488205 0.872729i \(-0.337652\pi\)
0.160272 + 0.987073i \(0.448763\pi\)
\(240\) 0 0
\(241\) 8.50467 + 10.1355i 0.547834 + 0.652883i 0.966925 0.255061i \(-0.0820955\pi\)
−0.419091 + 0.907944i \(0.637651\pi\)
\(242\) 14.6790 + 2.58831i 0.943603 + 0.166383i
\(243\) 20.7986 7.57006i 1.33423 0.485620i
\(244\) 1.85406 + 5.09400i 0.118694 + 0.326110i
\(245\) 0 0
\(246\) −24.4716 + 4.31500i −1.56025 + 0.275114i
\(247\) −4.21375 3.53575i −0.268114 0.224975i
\(248\) −1.34355 + 2.32710i −0.0853156 + 0.147771i
\(249\) 10.7516 + 18.6223i 0.681354 + 1.18014i
\(250\) 0 0
\(251\) 18.2560 + 10.5401i 1.15231 + 0.665286i 0.949449 0.313922i \(-0.101643\pi\)
0.202860 + 0.979208i \(0.434976\pi\)
\(252\) −0.373940 0.136103i −0.0235560 0.00857369i
\(253\) 11.6895i 0.734912i
\(254\) −5.26702 + 14.4710i −0.330482 + 0.907992i
\(255\) 0 0
\(256\) 12.3511 10.3638i 0.771944 0.647738i
\(257\) −3.82429 + 4.55761i −0.238553 + 0.284296i −0.872017 0.489476i \(-0.837188\pi\)
0.633464 + 0.773772i \(0.281632\pi\)
\(258\) 47.2781 2.94341
\(259\) −0.702677 0.497519i −0.0436622 0.0309143i
\(260\) 0 0
\(261\) 8.73399 10.4088i 0.540621 0.644287i
\(262\) 3.89939 3.27198i 0.240905 0.202144i
\(263\) 0.559408 + 3.17256i 0.0344945 + 0.195628i 0.997185 0.0749754i \(-0.0238878\pi\)
−0.962691 + 0.270604i \(0.912777\pi\)
\(264\) 2.57857 7.08456i 0.158700 0.436025i
\(265\) 0 0
\(266\) −0.646242 0.235213i −0.0396237 0.0144218i
\(267\) 12.1929 + 7.03955i 0.746191 + 0.430814i
\(268\) 2.07717 11.7802i 0.126884 0.719592i
\(269\) 3.59295 + 6.22317i 0.219066 + 0.379433i 0.954523 0.298138i \(-0.0963657\pi\)
−0.735457 + 0.677572i \(0.763032\pi\)
\(270\) 0 0
\(271\) −18.3340 15.3841i −1.11371 0.934516i −0.115443 0.993314i \(-0.536829\pi\)
−0.998270 + 0.0587978i \(0.981273\pi\)
\(272\) −2.38679 + 0.420856i −0.144720 + 0.0255181i
\(273\) 0.595458 0.343788i 0.0360387 0.0208070i
\(274\) 9.72828 + 26.7282i 0.587707 + 1.61471i
\(275\) 0 0
\(276\) 16.0071 + 2.82248i 0.963514 + 0.169894i
\(277\) 3.09419 + 3.68751i 0.185912 + 0.221561i 0.850948 0.525250i \(-0.176028\pi\)
−0.665036 + 0.746811i \(0.731584\pi\)
\(278\) −24.6358 29.3598i −1.47756 1.76089i
\(279\) 4.71344 + 0.831106i 0.282186 + 0.0497570i
\(280\) 0 0
\(281\) 6.02089 + 16.5422i 0.359176 + 0.986828i 0.979316 + 0.202337i \(0.0648535\pi\)
−0.620140 + 0.784491i \(0.712924\pi\)
\(282\) −37.8433 + 21.8488i −2.25354 + 1.30108i
\(283\) 1.53397 0.270480i 0.0911850 0.0160784i −0.127869 0.991791i \(-0.540814\pi\)
0.219055 + 0.975713i \(0.429703\pi\)
\(284\) 2.20838 + 1.85305i 0.131043 + 0.109958i
\(285\) 0 0
\(286\) −2.24530 3.88897i −0.132767 0.229960i
\(287\) 0.142343 0.807269i 0.00840226 0.0476516i
\(288\) −13.0853 7.55482i −0.771060 0.445172i
\(289\) −15.7493 5.73229i −0.926431 0.337193i
\(290\) 0 0
\(291\) 0.483904 1.32952i 0.0283670 0.0779376i
\(292\) 0.333852 + 1.89337i 0.0195372 + 0.110801i
\(293\) −19.1667 + 16.0828i −1.11973 + 0.939565i −0.998591 0.0530700i \(-0.983099\pi\)
−0.121140 + 0.992635i \(0.538655\pi\)
\(294\) −19.2511 + 22.9425i −1.12275 + 1.33804i
\(295\) 0 0
\(296\) −8.74753 8.83954i −0.508440 0.513788i
\(297\) −2.36576 −0.137275
\(298\) 9.00342 10.7299i 0.521554 0.621564i
\(299\) −11.7960 + 9.89804i −0.682181 + 0.572418i
\(300\) 0 0
\(301\) −0.533419 + 1.46556i −0.0307457 + 0.0844732i
\(302\) 25.7597i 1.48231i
\(303\) 23.0063 + 8.37363i 1.32168 + 0.481052i
\(304\) −12.5050 7.21975i −0.717209 0.414081i
\(305\) 0 0
\(306\) 1.48486 + 2.57185i 0.0848838 + 0.147023i
\(307\) 10.3146 17.8655i 0.588688 1.01964i −0.405717 0.913999i \(-0.632978\pi\)
0.994405 0.105638i \(-0.0336885\pi\)
\(308\) −0.119783 0.100510i −0.00682525 0.00572707i
\(309\) −35.1993 + 6.20659i −2.00242 + 0.353081i
\(310\) 0 0
\(311\) −3.49371 9.59890i −0.198110 0.544303i 0.800365 0.599514i \(-0.204639\pi\)
−0.998475 + 0.0552103i \(0.982417\pi\)
\(312\) 9.33252 3.39676i 0.528350 0.192304i
\(313\) 12.6318 + 2.22732i 0.713990 + 0.125896i 0.518832 0.854876i \(-0.326367\pi\)
0.195158 + 0.980772i \(0.437478\pi\)
\(314\) −1.67997 2.00211i −0.0948062 0.112986i
\(315\) 0 0
\(316\) −10.1260 1.78549i −0.569632 0.100442i
\(317\) −18.2324 + 6.63605i −1.02403 + 0.372717i −0.798806 0.601589i \(-0.794535\pi\)
−0.225227 + 0.974306i \(0.572312\pi\)
\(318\) −2.21156 6.07620i −0.124018 0.340736i
\(319\) 4.62381 2.66956i 0.258883 0.149466i
\(320\) 0 0
\(321\) 11.8303 + 9.92683i 0.660305 + 0.554062i
\(322\) −0.962602 + 1.66728i −0.0536437 + 0.0929136i
\(323\) 0.714693 + 1.23788i 0.0397666 + 0.0688777i
\(324\) 0.893371 5.06656i 0.0496317 0.281476i
\(325\) 0 0
\(326\) 17.4561 + 6.35350i 0.966804 + 0.351888i
\(327\) 14.4209i 0.797475i
\(328\) 4.04959 11.1262i 0.223601 0.614340i
\(329\) −0.250314 1.41960i −0.0138002 0.0782651i
\(330\) 0 0
\(331\) −7.11270 + 8.47659i −0.390950 + 0.465916i −0.925238 0.379387i \(-0.876135\pi\)
0.534289 + 0.845302i \(0.320580\pi\)
\(332\) 6.44182 0.353541
\(333\) −9.46617 + 20.0261i −0.518743 + 1.09742i
\(334\) 5.47942 0.299820
\(335\) 0 0
\(336\) 1.38265 1.16018i 0.0754297 0.0632930i
\(337\) −1.52587 8.65362i −0.0831193 0.471393i −0.997747 0.0670948i \(-0.978627\pi\)
0.914627 0.404298i \(-0.132484\pi\)
\(338\) −5.37957 + 14.7802i −0.292610 + 0.803939i
\(339\) 26.4384i 1.43594i
\(340\) 0 0
\(341\) 1.62870 + 0.940329i 0.0881989 + 0.0509217i
\(342\) −3.07238 + 17.4243i −0.166135 + 0.942200i
\(343\) −0.989388 1.71367i −0.0534219 0.0925295i
\(344\) −11.2637 + 19.5092i −0.607296 + 1.05187i
\(345\) 0 0
\(346\) −29.7708 + 5.24939i −1.60049 + 0.282209i
\(347\) −11.7848 + 6.80394i −0.632639 + 0.365254i −0.781774 0.623562i \(-0.785685\pi\)
0.149134 + 0.988817i \(0.452351\pi\)
\(348\) −2.53914 6.97623i −0.136112 0.373965i
\(349\) 4.49791 1.63711i 0.240768 0.0876323i −0.218818 0.975766i \(-0.570220\pi\)
0.459586 + 0.888133i \(0.347998\pi\)
\(350\) 0 0
\(351\) −2.00320 2.38732i −0.106923 0.127426i
\(352\) −3.81632 4.54811i −0.203411 0.242415i
\(353\) −17.0344 3.00362i −0.906648 0.159867i −0.299167 0.954201i \(-0.596709\pi\)
−0.607481 + 0.794334i \(0.707820\pi\)
\(354\) 54.2978 19.7628i 2.88590 1.05038i
\(355\) 0 0
\(356\) 3.65268 2.10888i 0.193592 0.111770i
\(357\) −0.175957 + 0.0310260i −0.00931263 + 0.00164207i
\(358\) −24.6631 20.6948i −1.30348 1.09375i
\(359\) −3.84231 + 6.65508i −0.202789 + 0.351242i −0.949426 0.313990i \(-0.898334\pi\)
0.746637 + 0.665232i \(0.231667\pi\)
\(360\) 0 0
\(361\) 1.82052 10.3247i 0.0958167 0.543404i
\(362\) −13.8192 7.97854i −0.726323 0.419343i
\(363\) 21.6803 + 7.89100i 1.13792 + 0.414170i
\(364\) 0.205981i 0.0107963i
\(365\) 0 0
\(366\) 5.23163 + 29.6701i 0.273462 + 1.55088i
\(367\) −13.6648 + 11.4661i −0.713295 + 0.598525i −0.925522 0.378695i \(-0.876373\pi\)
0.212227 + 0.977220i \(0.431928\pi\)
\(368\) −25.9828 + 30.9651i −1.35445 + 1.61417i
\(369\) −21.0893 −1.09786
\(370\) 0 0
\(371\) 0.213306 0.0110743
\(372\) 1.68091 2.00323i 0.0871509 0.103862i
\(373\) 20.6590 17.3349i 1.06968 0.897568i 0.0746570 0.997209i \(-0.476214\pi\)
0.995023 + 0.0996408i \(0.0317694\pi\)
\(374\) 0.202633 + 1.14919i 0.0104779 + 0.0594230i
\(375\) 0 0
\(376\) 20.8213i 1.07378i
\(377\) 6.60908 + 2.40551i 0.340385 + 0.123890i
\(378\) −0.337429 0.194814i −0.0173555 0.0100202i
\(379\) −2.12764 + 12.0664i −0.109290 + 0.619812i 0.880130 + 0.474732i \(0.157455\pi\)
−0.989420 + 0.145080i \(0.953656\pi\)
\(380\) 0 0
\(381\) −11.9184 + 20.6433i −0.610598 + 1.05759i
\(382\) 1.61111 + 1.35188i 0.0824314 + 0.0691682i
\(383\) −4.00699 + 0.706540i −0.204747 + 0.0361025i −0.275081 0.961421i \(-0.588705\pi\)
0.0703337 + 0.997524i \(0.477594\pi\)
\(384\) 29.6234 17.1031i 1.51171 0.872788i
\(385\) 0 0
\(386\) −35.0043 + 12.7405i −1.78167 + 0.648475i
\(387\) 39.5151 + 6.96757i 2.00866 + 0.354182i
\(388\) −0.272446 0.324689i −0.0138314 0.0164836i
\(389\) −2.86804 3.41799i −0.145415 0.173299i 0.688420 0.725312i \(-0.258304\pi\)
−0.833836 + 0.552013i \(0.813860\pi\)
\(390\) 0 0
\(391\) 3.76012 1.36857i 0.190158 0.0692117i
\(392\) −4.88077 13.4098i −0.246516 0.677298i
\(393\) 6.82352 3.93956i 0.344201 0.198725i
\(394\) −25.7970 + 4.54870i −1.29963 + 0.229160i
\(395\) 0 0
\(396\) −2.01143 + 3.48390i −0.101078 + 0.175073i
\(397\) 1.54768 + 2.68067i 0.0776760 + 0.134539i 0.902247 0.431220i \(-0.141917\pi\)
−0.824571 + 0.565759i \(0.808583\pi\)
\(398\) 4.07051 23.0850i 0.204036 1.15715i
\(399\) −0.921881 0.532248i −0.0461518 0.0266457i
\(400\) 0 0
\(401\) 11.6167i 0.580111i −0.957010 0.290056i \(-0.906326\pi\)
0.957010 0.290056i \(-0.0936739\pi\)
\(402\) 22.7378 62.4715i 1.13406 3.11580i
\(403\) 0.430196 + 2.43976i 0.0214296 + 0.121533i
\(404\) 5.61852 4.71450i 0.279532 0.234555i
\(405\) 0 0
\(406\) 0.879327 0.0436402
\(407\) −6.18665 + 6.12225i −0.306661 + 0.303468i
\(408\) −2.58076 −0.127767
\(409\) 15.1640 18.0718i 0.749813 0.893592i −0.247346 0.968927i \(-0.579558\pi\)
0.997158 + 0.0753355i \(0.0240028\pi\)
\(410\) 0 0
\(411\) 7.64520 + 43.3581i 0.377110 + 2.13870i
\(412\) −3.66219 + 10.0618i −0.180423 + 0.495708i
\(413\) 1.90613i 0.0937945i
\(414\) 46.5433 + 16.9404i 2.28748 + 0.832575i
\(415\) 0 0
\(416\) 1.35811 7.70220i 0.0665866 0.377632i
\(417\) −29.6623 51.3765i −1.45257 2.51592i
\(418\) −3.47615 + 6.02086i −0.170024 + 0.294490i
\(419\) −24.7248 20.7466i −1.20789 1.01354i −0.999369 0.0355171i \(-0.988692\pi\)
−0.208516 0.978019i \(-0.566863\pi\)
\(420\) 0 0
\(421\) −21.2520 + 12.2699i −1.03576 + 0.597997i −0.918630 0.395119i \(-0.870703\pi\)
−0.117131 + 0.993116i \(0.537370\pi\)
\(422\) −8.10554 22.2698i −0.394571 1.08408i
\(423\) −34.8494 + 12.6841i −1.69444 + 0.616724i
\(424\) 3.03422 + 0.535015i 0.147355 + 0.0259826i
\(425\) 0 0
\(426\) 10.2987 + 12.2735i 0.498971 + 0.594651i
\(427\) −0.978756 0.172581i −0.0473653 0.00835179i
\(428\) 4.34745 1.58234i 0.210142 0.0764854i
\(429\) −2.37734 6.53168i −0.114779 0.315352i
\(430\) 0 0
\(431\) 28.1831 4.96943i 1.35753 0.239369i 0.552951 0.833214i \(-0.313502\pi\)
0.804580 + 0.593845i \(0.202391\pi\)
\(432\) −6.26682 5.25849i −0.301513 0.252999i
\(433\) −5.88773 + 10.1979i −0.282946 + 0.490077i −0.972109 0.234529i \(-0.924645\pi\)
0.689163 + 0.724607i \(0.257979\pi\)
\(434\) 0.154868 + 0.268239i 0.00743389 + 0.0128759i
\(435\) 0 0
\(436\) 3.74134 + 2.16007i 0.179178 + 0.103448i
\(437\) 22.4022 + 8.15375i 1.07164 + 0.390047i
\(438\) 10.6851i 0.510553i
\(439\) −4.76177 + 13.0829i −0.227267 + 0.624411i −0.999946 0.0103862i \(-0.996694\pi\)
0.772679 + 0.634797i \(0.218916\pi\)
\(440\) 0 0
\(441\) −19.4712 + 16.3383i −0.927200 + 0.778013i
\(442\) −0.988081 + 1.17755i −0.0469982 + 0.0560103i
\(443\) 30.0591 1.42815 0.714075 0.700069i \(-0.246847\pi\)
0.714075 + 0.700069i \(0.246847\pi\)
\(444\) 6.88976 + 9.94999i 0.326973 + 0.472206i
\(445\) 0 0
\(446\) 4.28408 5.10557i 0.202857 0.241756i
\(447\) 16.6084 13.9361i 0.785552 0.659156i
\(448\) 0.0734370 + 0.416482i 0.00346957 + 0.0196769i
\(449\) 5.99840 16.4805i 0.283082 0.777761i −0.713909 0.700239i \(-0.753077\pi\)
0.996991 0.0775221i \(-0.0247008\pi\)
\(450\) 0 0
\(451\) −7.78702 2.83424i −0.366676 0.133459i
\(452\) −6.85918 3.96015i −0.322629 0.186270i
\(453\) 6.92383 39.2670i 0.325310 1.84492i
\(454\) 1.69103 + 2.92895i 0.0793639 + 0.137462i
\(455\) 0 0
\(456\) −11.7785 9.88337i −0.551581 0.462831i
\(457\) −0.964804 + 0.170121i −0.0451316 + 0.00795793i −0.196168 0.980570i \(-0.562850\pi\)
0.151037 + 0.988528i \(0.451739\pi\)
\(458\) −1.90835 + 1.10178i −0.0891712 + 0.0514830i
\(459\) 0.276976 + 0.760986i 0.0129281 + 0.0355198i
\(460\) 0 0
\(461\) −32.8802 5.79767i −1.53139 0.270025i −0.656489 0.754335i \(-0.727959\pi\)
−0.874896 + 0.484311i \(0.839070\pi\)
\(462\) −0.558601 0.665714i −0.0259885 0.0309718i
\(463\) −20.9329 24.9468i −0.972834 1.15938i −0.987201 0.159481i \(-0.949018\pi\)
0.0143674 0.999897i \(-0.495427\pi\)
\(464\) 18.1821 + 3.20599i 0.844083 + 0.148835i
\(465\) 0 0
\(466\) 3.50805 + 9.63829i 0.162507 + 0.446485i
\(467\) 9.79223 5.65355i 0.453130 0.261615i −0.256021 0.966671i \(-0.582412\pi\)
0.709151 + 0.705056i \(0.249078\pi\)
\(468\) −5.21882 + 0.920219i −0.241240 + 0.0425372i
\(469\) 1.67999 + 1.40968i 0.0775747 + 0.0650929i
\(470\) 0 0
\(471\) −2.02273 3.50348i −0.0932026 0.161432i
\(472\) −4.78097 + 27.1142i −0.220062 + 1.24803i
\(473\) 13.6542 + 7.88324i 0.627820 + 0.362472i
\(474\) −53.6990 19.5448i −2.46648 0.897725i
\(475\) 0 0
\(476\) −0.0183068 + 0.0502976i −0.000839092 + 0.00230538i
\(477\) −0.952945 5.40442i −0.0436323 0.247451i
\(478\) 12.9836 10.8945i 0.593857 0.498305i
\(479\) 9.79890 11.6779i 0.447723 0.533576i −0.494225 0.869334i \(-0.664548\pi\)
0.941948 + 0.335758i \(0.108993\pi\)
\(480\) 0 0
\(481\) −11.4166 1.05904i −0.520551 0.0482879i
\(482\) 22.0288 1.00338
\(483\) −1.91549 + 2.28279i −0.0871576 + 0.103870i
\(484\) 5.29468 4.44277i 0.240667 0.201944i
\(485\) 0 0
\(486\) 12.6037 34.6285i 0.571717 1.57078i
\(487\) 34.2072i 1.55008i −0.631914 0.775039i \(-0.717730\pi\)
0.631914 0.775039i \(-0.282270\pi\)
\(488\) −13.4897 4.90985i −0.610650 0.222258i
\(489\) 24.9016 + 14.3769i 1.12609 + 0.650147i
\(490\) 0 0
\(491\) −13.4367 23.2731i −0.606392 1.05030i −0.991830 0.127568i \(-0.959283\pi\)
0.385438 0.922734i \(-0.374050\pi\)
\(492\) −5.76131 + 9.97888i −0.259740 + 0.449883i
\(493\) −1.40005 1.17478i −0.0630551 0.0529095i
\(494\) −9.01915 + 1.59032i −0.405791 + 0.0715519i
\(495\) 0 0
\(496\) 2.22426 + 6.11110i 0.0998721 + 0.274396i
\(497\) −0.496655 + 0.180768i −0.0222780 + 0.00810854i
\(498\) 35.2577 + 6.21688i 1.57993 + 0.278585i
\(499\) 2.77216 + 3.30373i 0.124099 + 0.147895i 0.824516 0.565838i \(-0.191447\pi\)
−0.700418 + 0.713733i \(0.747003\pi\)
\(500\) 0 0
\(501\) 8.35258 + 1.47279i 0.373166 + 0.0657992i
\(502\) 32.9808 12.0040i 1.47200 0.535766i
\(503\) 9.31032 + 25.5799i 0.415127 + 1.14055i 0.954429 + 0.298439i \(0.0964659\pi\)
−0.539302 + 0.842112i \(0.681312\pi\)
\(504\) 0.912621 0.526902i 0.0406514 0.0234701i
\(505\) 0 0
\(506\) 14.9090 + 12.5102i 0.662787 + 0.556144i
\(507\) −12.1731 + 21.0844i −0.540625 + 0.936390i
\(508\) 3.57046 + 6.18421i 0.158413 + 0.274380i
\(509\) 3.15689 17.9036i 0.139927 0.793564i −0.831375 0.555712i \(-0.812446\pi\)
0.971301 0.237852i \(-0.0764433\pi\)
\(510\) 0 0
\(511\) −0.331222 0.120555i −0.0146524 0.00533304i
\(512\) 0.298219i 0.0131795i
\(513\) −1.65018 + 4.53384i −0.0728573 + 0.200174i
\(514\) 1.72010 + 9.75517i 0.0758703 + 0.430282i
\(515\) 0 0
\(516\) 14.0919 16.7940i 0.620360 0.739316i
\(517\) −14.5725 −0.640897
\(518\) −1.38656 + 0.363762i −0.0609218 + 0.0159828i
\(519\) −46.7922 −2.05395
\(520\) 0 0
\(521\) −23.5688 + 19.7766i −1.03257 + 0.866427i −0.991154 0.132715i \(-0.957630\pi\)
−0.0414132 + 0.999142i \(0.513186\pi\)
\(522\) −3.92840 22.2790i −0.171941 0.975127i
\(523\) 11.5829 31.8237i 0.506484 1.39155i −0.378358 0.925659i \(-0.623511\pi\)
0.884841 0.465893i \(-0.154267\pi\)
\(524\) 2.36039i 0.103114i
\(525\) 0 0
\(526\) 4.64503 + 2.68181i 0.202533 + 0.116932i
\(527\) 0.111790 0.633990i 0.00486963 0.0276170i
\(528\) −9.12318 15.8018i −0.397036 0.687686i
\(529\) 21.8690 37.8782i 0.950824 1.64688i
\(530\) 0 0
\(531\) 48.2947 8.51565i 2.09581 0.369548i
\(532\) −0.276173 + 0.159448i −0.0119736 + 0.00691297i
\(533\) −3.73356 10.2579i −0.161718 0.444318i
\(534\) 22.0273 8.01727i 0.953213 0.346941i
\(535\) 0 0
\(536\) 20.3617 + 24.2661i 0.879489 + 1.04813i
\(537\) −32.0328 38.1752i −1.38232 1.64738i
\(538\) 11.7824 + 2.07755i 0.507974 + 0.0895695i
\(539\) −9.38530 + 3.41597i −0.404254 + 0.147136i
\(540\) 0 0
\(541\) 5.47663 3.16193i 0.235459 0.135942i −0.377629 0.925957i \(-0.623261\pi\)
0.613088 + 0.790015i \(0.289927\pi\)
\(542\) −39.2424 + 6.91949i −1.68560 + 0.297218i
\(543\) −18.9209 15.8765i −0.811974 0.681327i
\(544\) −1.01617 + 1.76007i −0.0435681 + 0.0754622i
\(545\) 0 0
\(546\) 0.198788 1.12738i 0.00850734 0.0482475i
\(547\) 20.5463 + 11.8624i 0.878498 + 0.507201i 0.870163 0.492764i \(-0.164013\pi\)
0.00833519 + 0.999965i \(0.497347\pi\)
\(548\) 12.3940 + 4.51104i 0.529444 + 0.192702i
\(549\) 25.5693i 1.09127i
\(550\) 0 0
\(551\) −1.89082 10.7233i −0.0805515 0.456830i
\(552\) −32.9730 + 27.6676i −1.40342 + 1.17761i
\(553\) 1.21173 1.44408i 0.0515278 0.0614085i
\(554\) 8.01455 0.340505
\(555\) 0 0
\(556\) −17.7722 −0.753708
\(557\) −27.4465 + 32.7094i −1.16294 + 1.38594i −0.254953 + 0.966953i \(0.582060\pi\)
−0.907991 + 0.418989i \(0.862385\pi\)
\(558\) 6.10436 5.12217i 0.258418 0.216839i
\(559\) 3.60654 + 20.4537i 0.152541 + 0.865101i
\(560\) 0 0
\(561\) 1.80623i 0.0762592i
\(562\) 27.5419 + 10.0244i 1.16179 + 0.422856i
\(563\) −14.2880 8.24917i −0.602167 0.347661i 0.167727 0.985834i \(-0.446357\pi\)
−0.769894 + 0.638172i \(0.779691\pi\)
\(564\) −3.51859 + 19.9549i −0.148160 + 0.840255i
\(565\) 0 0
\(566\) 1.29669 2.24593i 0.0545038 0.0944034i
\(567\) 0.722547 + 0.606289i 0.0303441 + 0.0254617i
\(568\) −7.51820 + 1.32566i −0.315457 + 0.0556235i
\(569\) −30.4520 + 17.5815i −1.27662 + 0.737055i −0.976225 0.216762i \(-0.930451\pi\)
−0.300391 + 0.953816i \(0.597117\pi\)
\(570\) 0 0
\(571\) 10.1706 3.70179i 0.425626 0.154915i −0.120321 0.992735i \(-0.538392\pi\)
0.545947 + 0.837820i \(0.316170\pi\)
\(572\) −2.05067 0.361589i −0.0857429 0.0151188i
\(573\) 2.09254 + 2.49379i 0.0874169 + 0.104179i
\(574\) −0.877272 1.04549i −0.0366166 0.0436380i
\(575\) 0 0
\(576\) 10.2241 3.72127i 0.426005 0.155053i
\(577\) −12.0161 33.0140i −0.500237 1.37439i −0.891044 0.453917i \(-0.850026\pi\)
0.390807 0.920473i \(-0.372196\pi\)
\(578\) −24.1661 + 13.9523i −1.00518 + 0.580339i
\(579\) −56.7834 + 10.0124i −2.35984 + 0.416103i
\(580\) 0 0
\(581\) −0.590512 + 1.02280i −0.0244986 + 0.0424327i
\(582\) −1.17782 2.04004i −0.0488220 0.0845622i
\(583\) 0.374448 2.12360i 0.0155080 0.0879505i
\(584\) −4.40918 2.54564i −0.182453 0.105339i
\(585\) 0 0
\(586\) 41.6575i 1.72086i
\(587\) 4.57687 12.5748i 0.188907 0.519019i −0.808695 0.588229i \(-0.799826\pi\)
0.997602 + 0.0692097i \(0.0220477\pi\)
\(588\) 2.41156 + 13.6766i 0.0994512 + 0.564016i
\(589\) 2.93815 2.46540i 0.121064 0.101585i
\(590\) 0 0
\(591\) −40.5464 −1.66785
\(592\) −29.9965 + 2.46628i −1.23285 + 0.101364i
\(593\) −34.2551 −1.40669 −0.703344 0.710850i \(-0.748310\pi\)
−0.703344 + 0.710850i \(0.748310\pi\)
\(594\) −2.53185 + 3.01734i −0.103883 + 0.123803i
\(595\) 0 0
\(596\) −1.12785 6.39635i −0.0461985 0.262005i
\(597\) 12.4098 34.0956i 0.507899 1.39544i
\(598\) 25.6378i 1.04841i
\(599\) 26.5603 + 9.66717i 1.08523 + 0.394990i 0.821850 0.569704i \(-0.192942\pi\)
0.263375 + 0.964693i \(0.415164\pi\)
\(600\) 0 0
\(601\) 6.66964 37.8254i 0.272060 1.54293i −0.476088 0.879398i \(-0.657946\pi\)
0.748148 0.663532i \(-0.230943\pi\)
\(602\) 1.29833 + 2.24878i 0.0529161 + 0.0916534i
\(603\) 28.2109 48.8628i 1.14884 1.98985i
\(604\) −9.15032 7.67803i −0.372321 0.312415i
\(605\) 0 0
\(606\) 35.3014 20.3813i 1.43402 0.827933i
\(607\) 10.0230 + 27.5379i 0.406820 + 1.11773i 0.958852 + 0.283907i \(0.0916306\pi\)
−0.552031 + 0.833823i \(0.686147\pi\)
\(608\) −11.3782 + 4.14132i −0.461447 + 0.167953i
\(609\) 1.34041 + 0.236350i 0.0543160 + 0.00957737i
\(610\) 0 0
\(611\) −12.3392 14.7053i −0.499190 0.594912i
\(612\) 1.35615 + 0.239126i 0.0548191 + 0.00966609i
\(613\) 0.184458 0.0671373i 0.00745019 0.00271165i −0.338292 0.941041i \(-0.609849\pi\)
0.345743 + 0.938329i \(0.387627\pi\)
\(614\) −11.7472 32.2753i −0.474080 1.30252i
\(615\) 0 0
\(616\) 0.407788 0.0719041i 0.0164303 0.00289710i
\(617\) 10.7347 + 9.00749i 0.432163 + 0.362628i 0.832767 0.553623i \(-0.186755\pi\)
−0.400604 + 0.916251i \(0.631200\pi\)
\(618\) −29.7545 + 51.5363i −1.19690 + 2.07310i
\(619\) 0.294985 + 0.510928i 0.0118564 + 0.0205359i 0.871893 0.489697i \(-0.162893\pi\)
−0.860036 + 0.510233i \(0.829559\pi\)
\(620\) 0 0
\(621\) 11.6971 + 6.75332i 0.469388 + 0.271001i
\(622\) −15.9816 5.81684i −0.640805 0.233234i
\(623\) 0.773270i 0.0309804i
\(624\) 8.22080 22.5865i 0.329095 0.904182i
\(625\) 0 0
\(626\) 16.3594 13.7271i 0.653852 0.548647i
\(627\) −6.91720 + 8.24360i −0.276246 + 0.329218i
\(628\) −1.21192 −0.0483609
\(629\) 2.69364 + 1.27327i 0.107403 + 0.0507684i
\(630\) 0 0
\(631\) 3.32127 3.95813i 0.132218 0.157571i −0.695873 0.718164i \(-0.744983\pi\)
0.828091 + 0.560594i \(0.189427\pi\)
\(632\) 20.8585 17.5024i 0.829708 0.696208i
\(633\) −6.36994 36.1257i −0.253182 1.43587i
\(634\) −11.0487 + 30.3559i −0.438798 + 1.20559i
\(635\) 0 0
\(636\) −2.81756 1.02551i −0.111723 0.0406640i
\(637\) −11.3941 6.57837i −0.451450 0.260645i
\(638\) 1.54362 8.75428i 0.0611123 0.346585i
\(639\) 6.79883 + 11.7759i 0.268958 + 0.465848i
\(640\) 0 0
\(641\) −6.86879 5.76360i −0.271301 0.227648i 0.496979 0.867763i \(-0.334443\pi\)
−0.768280 + 0.640114i \(0.778887\pi\)
\(642\) 25.3218 4.46491i 0.999371 0.176216i
\(643\) −15.2005 + 8.77601i −0.599449 + 0.346092i −0.768825 0.639459i \(-0.779158\pi\)
0.169376 + 0.985552i \(0.445825\pi\)
\(644\) 0.305330 + 0.838886i 0.0120317 + 0.0330568i
\(645\) 0 0
\(646\) 2.34369 + 0.413256i 0.0922113 + 0.0162593i
\(647\) 14.0258 + 16.7153i 0.551411 + 0.657147i 0.967705 0.252083i \(-0.0811158\pi\)
−0.416294 + 0.909230i \(0.636671\pi\)
\(648\) 8.75734 + 10.4366i 0.344021 + 0.409988i
\(649\) 18.9768 + 3.34612i 0.744904 + 0.131347i
\(650\) 0 0
\(651\) 0.163975 + 0.450518i 0.00642669 + 0.0176572i
\(652\) 7.45990 4.30697i 0.292152 0.168674i
\(653\) 2.58253 0.455370i 0.101062 0.0178200i −0.122888 0.992421i \(-0.539216\pi\)
0.223951 + 0.974600i \(0.428105\pi\)
\(654\) 18.3927 + 15.4333i 0.719211 + 0.603489i
\(655\) 0 0
\(656\) −14.3278 24.8164i −0.559406 0.968919i
\(657\) −1.57470 + 8.93059i −0.0614351 + 0.348416i
\(658\) −2.07848 1.20001i −0.0810274 0.0467812i
\(659\) −11.2804 4.10573i −0.439422 0.159937i 0.112829 0.993614i \(-0.464009\pi\)
−0.552251 + 0.833678i \(0.686231\pi\)
\(660\) 0 0
\(661\) 2.99497 8.22862i 0.116491 0.320056i −0.867721 0.497052i \(-0.834416\pi\)
0.984212 + 0.176996i \(0.0566380\pi\)
\(662\) 3.19917 + 18.1434i 0.124339 + 0.705163i
\(663\) −1.82269 + 1.52942i −0.0707876 + 0.0593978i
\(664\) −10.9653 + 13.0679i −0.425535 + 0.507133i
\(665\) 0 0
\(666\) 15.4109 + 33.5054i 0.597160 + 1.29831i
\(667\) −30.4822 −1.18028
\(668\) 1.63321 1.94639i 0.0631909 0.0753080i
\(669\) 7.90276 6.63120i 0.305538 0.256377i
\(670\) 0 0
\(671\) −3.43632 + 9.44121i −0.132658 + 0.364474i
\(672\) 1.51354i 0.0583860i
\(673\) 41.2226 + 15.0038i 1.58902 + 0.578354i 0.977140 0.212599i \(-0.0681928\pi\)
0.611876 + 0.790953i \(0.290415\pi\)
\(674\) −12.6700 7.31503i −0.488030 0.281765i
\(675\) 0 0
\(676\) 3.64675 + 6.31636i 0.140260 + 0.242937i
\(677\) −6.19238 + 10.7255i −0.237993 + 0.412215i −0.960138 0.279526i \(-0.909823\pi\)
0.722146 + 0.691741i \(0.243156\pi\)
\(678\) −33.7201 28.2946i −1.29501 1.08665i
\(679\) 0.0765271 0.0134938i 0.00293684 0.000517844i
\(680\) 0 0
\(681\) 1.79047 + 4.91928i 0.0686110 + 0.188507i
\(682\) 2.94236 1.07093i 0.112669 0.0410081i
\(683\) 9.00116 + 1.58715i 0.344420 + 0.0607305i 0.343183 0.939269i \(-0.388495\pi\)
0.00123733 + 0.999999i \(0.499606\pi\)
\(684\) 5.27367 + 6.28491i 0.201644 + 0.240310i
\(685\) 0 0
\(686\) −3.24450 0.572093i −0.123876 0.0218426i
\(687\) −3.20514 + 1.16658i −0.122284 + 0.0445076i
\(688\) 18.6471 + 51.2324i 0.710912 + 1.95322i
\(689\) 2.46001 1.42029i 0.0937191 0.0541087i
\(690\) 0 0
\(691\) −8.52471 7.15308i −0.324295 0.272116i 0.466075 0.884745i \(-0.345668\pi\)
−0.790371 + 0.612629i \(0.790112\pi\)
\(692\) −7.00890 + 12.1398i −0.266438 + 0.461485i
\(693\) −0.368770 0.638728i −0.0140084 0.0242633i
\(694\) −3.93424 + 22.3122i −0.149342 + 0.846958i
\(695\) 0 0
\(696\) 18.4741 + 6.72403i 0.700260 + 0.254874i
\(697\) 2.83665i 0.107446i
\(698\) 2.72569 7.48877i 0.103169 0.283454i
\(699\) 2.75689 + 15.6351i 0.104275 + 0.591373i
\(700\) 0 0
\(701\) −24.3830 + 29.0585i −0.920934 + 1.09753i 0.0740265 + 0.997256i \(0.476415\pi\)
−0.994960 + 0.100270i \(0.968029\pi\)
\(702\) −5.18867 −0.195834
\(703\) 7.41757 + 16.1268i 0.279759 + 0.608234i
\(704\) 4.27527 0.161130
\(705\) 0 0
\(706\) −22.0612 + 18.5115i −0.830283 + 0.696690i
\(707\) 0.233501 + 1.32425i 0.00878170 + 0.0498035i
\(708\) 9.16408 25.1781i 0.344407 0.946251i
\(709\) 10.5625i 0.396682i −0.980133 0.198341i \(-0.936445\pi\)
0.980133 0.198341i \(-0.0635553\pi\)
\(710\) 0 0
\(711\) −42.0013 24.2494i −1.57517 0.909425i
\(712\) −1.93952 + 10.9996i −0.0726866 + 0.412226i
\(713\) −5.36855 9.29860i −0.201054 0.348235i
\(714\) −0.148739 + 0.257624i −0.00556642 + 0.00964132i
\(715\) 0 0
\(716\) −14.7023 + 2.59241i −0.549451 + 0.0968830i
\(717\) 22.7199 13.1174i 0.848491 0.489877i
\(718\) 4.37597 + 12.0229i 0.163310 + 0.448690i
\(719\) 33.2531 12.1032i 1.24013 0.451372i 0.363077 0.931759i \(-0.381726\pi\)
0.877056 + 0.480388i \(0.159504\pi\)
\(720\) 0 0
\(721\) −1.26185 1.50381i −0.0469936 0.0560048i
\(722\) −11.2200 13.3715i −0.417564 0.497634i
\(723\) 33.5796 + 5.92100i 1.24884 + 0.220204i
\(724\) −6.95312 + 2.53073i −0.258411 + 0.0940538i
\(725\) 0 0
\(726\) 33.2668 19.2066i 1.23465 0.712823i
\(727\) 24.7348 4.36141i 0.917362 0.161756i 0.305018 0.952347i \(-0.401338\pi\)
0.612345 + 0.790591i \(0.290227\pi\)
\(728\) 0.417853 + 0.350620i 0.0154867 + 0.0129948i
\(729\) 18.5245 32.0854i 0.686093 1.18835i
\(730\) 0 0
\(731\) 0.937187 5.31505i 0.0346631 0.196584i
\(732\) 12.0987 + 6.98518i 0.447180 + 0.258180i
\(733\) 30.0840 + 10.9497i 1.11118 + 0.404435i 0.831425 0.555637i \(-0.187526\pi\)
0.279752 + 0.960072i \(0.409748\pi\)
\(734\) 29.6994i 1.09623i
\(735\) 0 0
\(736\) 5.88606 + 33.3815i 0.216963 + 1.23046i
\(737\) 16.9834 14.2508i 0.625592 0.524934i
\(738\) −22.5699 + 26.8977i −0.830808 + 0.990119i
\(739\) 38.8950 1.43078 0.715388 0.698727i \(-0.246250\pi\)
0.715388 + 0.698727i \(0.246250\pi\)
\(740\) 0 0
\(741\) −14.1758 −0.520763
\(742\) 0.228281 0.272055i 0.00838046 0.00998744i
\(743\) −9.06927 + 7.61002i −0.332719 + 0.279185i −0.793807 0.608170i \(-0.791904\pi\)
0.461088 + 0.887355i \(0.347459\pi\)
\(744\) 1.20251 + 6.81978i 0.0440862 + 0.250025i
\(745\) 0 0
\(746\) 44.9008i 1.64394i
\(747\) 28.5522 + 10.3921i 1.04467 + 0.380229i
\(748\) 0.468609 + 0.270551i 0.0171340 + 0.00989234i
\(749\) −0.147289 + 0.835315i −0.00538181 + 0.0305218i
\(750\) 0 0
\(751\) 4.64115 8.03870i 0.169358 0.293336i −0.768836 0.639446i \(-0.779164\pi\)
0.938194 + 0.346109i \(0.112497\pi\)
\(752\) −38.6021 32.3910i −1.40767 1.18118i
\(753\) 53.5009 9.43365i 1.94968 0.343781i
\(754\) 10.1411 5.85497i 0.369317 0.213226i
\(755\) 0 0
\(756\) −0.169777 + 0.0617936i −0.00617471 + 0.00224741i
\(757\) 34.5555 + 6.09307i 1.25594 + 0.221456i 0.761735 0.647888i \(-0.224348\pi\)
0.494206 + 0.869345i \(0.335459\pi\)
\(758\) 13.1128 + 15.6272i 0.476278 + 0.567606i
\(759\) 19.3641 + 23.0772i 0.702873 + 0.837651i
\(760\) 0 0
\(761\) 34.5513 12.5756i 1.25248 0.455866i 0.371243 0.928536i \(-0.378932\pi\)
0.881240 + 0.472670i \(0.156710\pi\)
\(762\) 13.5737 + 37.2935i 0.491724 + 1.35100i
\(763\) −0.685927 + 0.396020i −0.0248322 + 0.0143369i
\(764\) 0.960423 0.169349i 0.0347469 0.00612681i
\(765\) 0 0
\(766\) −3.38716 + 5.86674i −0.122383 + 0.211974i
\(767\) 12.6919 + 21.9830i 0.458279 + 0.793762i
\(768\) 7.21534 40.9202i 0.260361 1.47658i
\(769\) −18.5544 10.7124i −0.669088 0.386298i 0.126643 0.991948i \(-0.459580\pi\)
−0.795731 + 0.605650i \(0.792913\pi\)
\(770\) 0 0
\(771\) 15.3327i 0.552193i
\(772\) −5.90782 + 16.2316i −0.212627 + 0.584188i
\(773\) −4.32849 24.5481i −0.155685 0.882933i −0.958157 0.286243i \(-0.907593\pi\)
0.802472 0.596690i \(-0.203518\pi\)
\(774\) 51.1759 42.9417i 1.83948 1.54351i
\(775\) 0 0
\(776\) 1.12242 0.0402926
\(777\) −2.21138 + 0.181817i −0.0793327 + 0.00652265i
\(778\) −7.42878 −0.266335
\(779\) −10.8633 + 12.9464i −0.389219 + 0.463853i
\(780\) 0 0
\(781\) 0.927808 + 5.26186i 0.0331996 + 0.188284i
\(782\) 2.27860 6.26040i 0.0814826 0.223871i
\(783\) 6.16908i 0.220465i
\(784\) −32.4543 11.8124i −1.15908 0.421871i
\(785\) 0 0
\(786\) 2.27797 12.9190i 0.0812525 0.460806i
\(787\) 3.48911 + 6.04331i 0.124373 + 0.215421i 0.921488 0.388407i \(-0.126975\pi\)
−0.797115 + 0.603828i \(0.793641\pi\)
\(788\) −6.07334 + 10.5193i −0.216354 + 0.374736i
\(789\) 6.35985 + 5.33654i 0.226417 + 0.189986i
\(790\) 0 0
\(791\) 1.25754 0.726042i 0.0447130 0.0258151i
\(792\) −3.64359 10.0107i −0.129469 0.355714i
\(793\) −12.4369 + 4.52668i −0.441649 + 0.160747i
\(794\) 5.07532 + 0.894916i 0.180116 + 0.0317594i
\(795\) 0 0
\(796\) −6.98693 8.32670i −0.247645 0.295132i
\(797\) 15.2324 + 2.68588i 0.539558 + 0.0951386i 0.436784 0.899566i \(-0.356117\pi\)
0.102773 + 0.994705i \(0.467228\pi\)
\(798\) −1.66544 + 0.606172i −0.0589561 + 0.0214583i
\(799\) 1.70611 + 4.68749i 0.0603577 + 0.165831i
\(800\) 0 0
\(801\) 19.5919 3.45459i 0.692247 0.122062i
\(802\) −14.8162 12.4323i −0.523179 0.438999i
\(803\) −1.78165 + 3.08591i −0.0628731 + 0.108899i
\(804\) −15.4137 26.6973i −0.543599 0.941542i
\(805\) 0 0
\(806\) 3.57212 + 2.06237i 0.125823 + 0.0726438i
\(807\) 17.4021 + 6.33384i 0.612583 + 0.222962i
\(808\) 19.4228i 0.683290i
\(809\) −6.87030 + 18.8760i −0.241547 + 0.663644i 0.758383 + 0.651809i \(0.225990\pi\)
−0.999930 + 0.0118353i \(0.996233\pi\)
\(810\) 0 0
\(811\) 14.0793 11.8140i 0.494393 0.414845i −0.361205 0.932487i \(-0.617634\pi\)
0.855597 + 0.517642i \(0.173190\pi\)
\(812\) 0.262095 0.312352i 0.00919772 0.0109614i
\(813\) −61.6792 −2.16318
\(814\) 1.18746 + 14.4426i 0.0416204 + 0.506215i
\(815\) 0 0
\(816\) −4.01481 + 4.78466i −0.140546 + 0.167497i
\(817\) 24.6320 20.6687i 0.861763 0.723105i
\(818\) −6.82051 38.6810i −0.238474 1.35245i
\(819\) 0.332294 0.912971i 0.0116113 0.0319018i
\(820\) 0 0
\(821\) −26.5318 9.65679i −0.925967 0.337024i −0.165357 0.986234i \(-0.552878\pi\)
−0.760610 + 0.649209i \(0.775100\pi\)
\(822\) 63.4818 + 36.6512i 2.21418 + 1.27836i
\(823\) −5.33259 + 30.2426i −0.185882 + 1.05419i 0.738934 + 0.673778i \(0.235329\pi\)
−0.924817 + 0.380414i \(0.875782\pi\)
\(824\) −14.1776 24.5563i −0.493899 0.855459i
\(825\) 0 0
\(826\) 2.43112 + 2.03995i 0.0845895 + 0.0709790i
\(827\) −3.05719 + 0.539066i −0.106309 + 0.0187452i −0.226550 0.974000i \(-0.572745\pi\)
0.120241 + 0.992745i \(0.461633\pi\)
\(828\) 19.8904 11.4837i 0.691238 0.399087i
\(829\) −15.5915 42.8373i −0.541516 1.48780i −0.844895 0.534933i \(-0.820337\pi\)
0.303379 0.952870i \(-0.401885\pi\)
\(830\) 0 0
\(831\) 12.2170 + 2.15419i 0.423803 + 0.0747280i
\(832\) 3.62007 + 4.31423i 0.125503 + 0.149569i
\(833\) 2.19761 + 2.61901i 0.0761427 + 0.0907434i
\(834\) −97.2715 17.1516i −3.36824 0.593911i
\(835\) 0 0
\(836\) 1.10261 + 3.02939i 0.0381344 + 0.104774i
\(837\) 1.88188 1.08650i 0.0650473 0.0375551i
\(838\) −52.9212 + 9.33144i −1.82813 + 0.322349i
\(839\) −30.6988 25.7593i −1.05984 0.889311i −0.0657454 0.997836i \(-0.520943\pi\)
−0.994094 + 0.108526i \(0.965387\pi\)
\(840\) 0 0
\(841\) −7.53871 13.0574i −0.259956 0.450256i
\(842\) −7.09480 + 40.2366i −0.244503 + 1.38664i
\(843\) 39.2893 + 22.6837i 1.35319 + 0.781267i
\(844\) −10.3266 3.75857i −0.355456 0.129375i
\(845\) 0 0
\(846\) −21.1184 + 58.0223i −0.726066 + 1.99485i
\(847\) 0.220042 + 1.24792i 0.00756075 + 0.0428791i
\(848\) 5.71214 4.79305i 0.196156 0.164594i
\(849\) 2.58028 3.07506i 0.0885551 0.105536i
\(850\) 0 0
\(851\) 48.0655 12.6100i 1.64766 0.432264i
\(852\) 7.42940 0.254527
\(853\) 19.4716 23.2054i 0.666695 0.794536i −0.321635 0.946864i \(-0.604232\pi\)
0.988330 + 0.152327i \(0.0486768\pi\)
\(854\) −1.26758 + 1.06363i −0.0433758 + 0.0363967i
\(855\) 0 0
\(856\) −4.19029 + 11.5127i −0.143221 + 0.393497i
\(857\) 13.8821i 0.474202i 0.971485 + 0.237101i \(0.0761973\pi\)
−0.971485 + 0.237101i \(0.923803\pi\)
\(858\) −10.8749 3.95813i −0.371262 0.135128i
\(859\) 38.8870 + 22.4514i 1.32681 + 0.766033i 0.984805 0.173666i \(-0.0555614\pi\)
0.342003 + 0.939699i \(0.388895\pi\)
\(860\) 0 0
\(861\) −1.05626 1.82950i −0.0359973 0.0623491i
\(862\) 23.8236 41.2636i 0.811433 1.40544i
\(863\) −6.47395 5.43229i −0.220376 0.184917i 0.525915 0.850537i \(-0.323723\pi\)
−0.746291 + 0.665620i \(0.768167\pi\)
\(864\) −6.75586 + 1.19124i −0.229839 + 0.0405268i
\(865\) 0 0
\(866\) 6.70548 + 18.4231i 0.227861 + 0.626044i
\(867\) −40.5879 + 14.7728i −1.37844 + 0.501710i
\(868\) 0.141444 + 0.0249403i 0.00480091 + 0.000846530i
\(869\) −12.2496 14.5985i −0.415540 0.495221i
\(870\) 0 0
\(871\) 28.7613 + 5.07139i 0.974540 + 0.171838i
\(872\) −10.7504 + 3.91284i −0.364056 + 0.132505i
\(873\) −0.683770 1.87864i −0.0231421 0.0635824i
\(874\) 34.3745 19.8461i 1.16273 0.671305i
\(875\) 0 0
\(876\) 3.79553 + 3.18483i 0.128239 + 0.107605i
\(877\) −2.65387 + 4.59663i −0.0896147 + 0.155217i −0.907348 0.420380i \(-0.861897\pi\)
0.817734 + 0.575597i \(0.195230\pi\)
\(878\) 11.5901 + 20.0746i 0.391146 + 0.677485i
\(879\) −11.1969 + 63.5008i −0.377662 + 2.14183i
\(880\) 0 0
\(881\) 4.90636 + 1.78577i 0.165299 + 0.0601640i 0.423344 0.905969i \(-0.360856\pi\)
−0.258045 + 0.966133i \(0.583078\pi\)
\(882\) 42.3193i 1.42497i
\(883\) −7.98529 + 21.9394i −0.268726 + 0.738320i 0.729780 + 0.683682i \(0.239623\pi\)
−0.998506 + 0.0546374i \(0.982600\pi\)
\(884\) 0.123776 + 0.701968i 0.00416303 + 0.0236097i
\(885\) 0 0
\(886\) 32.1694 38.3380i 1.08075 1.28799i
\(887\) −2.77215 −0.0930797 −0.0465398 0.998916i \(-0.514819\pi\)
−0.0465398 + 0.998916i \(0.514819\pi\)
\(888\) −31.9123 2.96029i −1.07091 0.0993408i
\(889\) −1.30919 −0.0439089
\(890\) 0 0
\(891\) 7.30440 6.12912i 0.244707 0.205333i
\(892\) −0.536662 3.04356i −0.0179688 0.101906i
\(893\) −10.1647 + 27.9273i −0.340149 + 0.934552i
\(894\) 36.0973i 1.20727i
\(895\) 0 0
\(896\) 1.62701 + 0.939357i 0.0543547 + 0.0313817i
\(897\) −6.89106 + 39.0812i −0.230086 + 1.30488i
\(898\) −14.6000 25.2880i −0.487209 0.843870i
\(899\) −2.45206 + 4.24709i −0.0817807 + 0.141648i
\(900\) 0 0
\(901\) −0.726931 + 0.128178i −0.0242176 + 0.00427022i
\(902\) −11.9486 + 6.89851i −0.397844 + 0.229695i
\(903\) 1.37468 + 3.77691i 0.0457466 + 0.125688i
\(904\) 19.7093 7.17359i 0.655521 0.238590i
\(905\) 0 0
\(906\) −42.6721 50.8546i −1.41768 1.68953i
\(907\) −3.54938 4.22999i −0.117855 0.140455i 0.703891 0.710308i \(-0.251444\pi\)
−0.821746 + 0.569854i \(0.807000\pi\)
\(908\) 1.54445 + 0.272328i 0.0512543 + 0.00903751i
\(909\) 32.5086 11.8322i 1.07824 0.392448i
\(910\) 0 0
\(911\) −27.3320 + 15.7801i −0.905549 + 0.522819i −0.878996 0.476829i \(-0.841786\pi\)
−0.0265524 + 0.999647i \(0.508453\pi\)
\(912\) −36.6470 + 6.46185i −1.21350 + 0.213973i
\(913\) 9.14600 + 7.67440i 0.302688 + 0.253986i
\(914\) −0.815563 + 1.41260i −0.0269764 + 0.0467246i
\(915\) 0 0
\(916\) −0.177434 + 1.00628i −0.00586259 + 0.0332484i
\(917\) 0.374770 + 0.216373i 0.0123760 + 0.00714528i
\(918\) 1.26700 + 0.461150i 0.0418172 + 0.0152202i
\(919\) 49.9236i 1.64683i 0.567442 + 0.823413i \(0.307933\pi\)
−0.567442 + 0.823413i \(0.692067\pi\)
\(920\) 0 0
\(921\) −9.23185 52.3564i −0.304200 1.72520i
\(922\) −42.5831 + 35.7315i −1.40240 + 1.17675i
\(923\) −4.52419 + 5.39173i −0.148916 + 0.177471i
\(924\) −0.402972 −0.0132568
\(925\) 0 0
\(926\) −54.2202 −1.78179
\(927\) −32.4640 + 38.6890i −1.06626 + 1.27071i
\(928\) 11.8599 9.95166i 0.389321 0.326679i
\(929\) 8.44767 + 47.9091i 0.277159 + 1.57185i 0.732019 + 0.681284i \(0.238578\pi\)
−0.454860 + 0.890563i \(0.650311\pi\)
\(930\) 0 0
\(931\) 20.3691i 0.667571i
\(932\) 4.46931 + 1.62670i 0.146397 + 0.0532842i
\(933\) −22.7982 13.1625i −0.746380 0.430922i
\(934\) 3.26905 18.5397i 0.106966 0.606637i
\(935\) 0 0
\(936\) 7.01672 12.1533i 0.229349 0.397244i
\(937\) −33.1957 27.8545i −1.08446 0.909967i −0.0881730 0.996105i \(-0.528103\pi\)
−0.996283 + 0.0861384i \(0.972547\pi\)
\(938\) 3.59587 0.634049i 0.117409 0.0207024i
\(939\) 28.6272 16.5279i 0.934212 0.539367i
\(940\) 0 0
\(941\) −4.62180 + 1.68220i −0.150666 + 0.0548381i −0.416253 0.909249i \(-0.636657\pi\)
0.265586 + 0.964087i \(0.414435\pi\)
\(942\) −6.63315 1.16960i −0.216120 0.0381077i
\(943\) 30.4110 + 36.2424i 0.990317 + 1.18021i
\(944\) 42.8314 + 51.0445i 1.39404 + 1.66136i
\(945\) 0 0
\(946\) 24.6672 8.97814i 0.802001 0.291905i
\(947\) 12.1253 + 33.3140i 0.394019 + 1.08256i 0.965150 + 0.261699i \(0.0842827\pi\)
−0.571131 + 0.820859i \(0.693495\pi\)
\(948\) −22.9484 + 13.2492i −0.745328 + 0.430316i
\(949\) −4.62264 + 0.815096i −0.150057 + 0.0264591i
\(950\) 0 0
\(951\) −25.0013 + 43.3035i −0.810722 + 1.40421i
\(952\) −0.0708719 0.122754i −0.00229697 0.00397847i
\(953\) −6.55823 + 37.1936i −0.212442 + 1.20482i 0.672849 + 0.739780i \(0.265070\pi\)
−0.885291 + 0.465038i \(0.846041\pi\)
\(954\) −7.91276 4.56843i −0.256185 0.147908i
\(955\) 0 0
\(956\) 7.85927i 0.254187i
\(957\) 4.70603 12.9297i 0.152124 0.417959i
\(958\) −4.40737 24.9955i −0.142396 0.807567i
\(959\) −1.85237 + 1.55433i −0.0598163 + 0.0501918i
\(960\) 0 0
\(961\) 29.2726 0.944276
\(962\) −13.5688 + 13.4275i −0.437476 + 0.432922i
\(963\) 21.8220 0.703203
\(964\) 6.56596 7.82500i 0.211475 0.252026i
\(965\) 0 0
\(966\) 0.861552 + 4.88610i 0.0277200 + 0.157208i
\(967\) −12.4664 + 34.2510i −0.400891 + 1.10144i 0.560955 + 0.827846i \(0.310434\pi\)
−0.961846 + 0.273592i \(0.911788\pi\)
\(968\) 18.3033i 0.588290i
\(969\) 3.46154 + 1.25990i 0.111201 + 0.0404738i
\(970\) 0 0
\(971\) −7.63372 + 43.2930i −0.244978 + 1.38934i 0.575567 + 0.817755i \(0.304782\pi\)
−0.820544 + 0.571583i \(0.806330\pi\)
\(972\) −8.54394 14.7985i −0.274047 0.474664i
\(973\) 1.62915 2.82177i 0.0522281 0.0904617i
\(974\) −43.6286 36.6088i −1.39795 1.17302i
\(975\) 0 0
\(976\) −30.0882 + 17.3714i −0.963099 + 0.556046i
\(977\) −7.20878 19.8060i −0.230629 0.633649i 0.769357 0.638819i \(-0.220577\pi\)
−0.999987 + 0.00517002i \(0.998354\pi\)
\(978\) 44.9865 16.3737i 1.43851 0.523574i
\(979\) 7.69841 + 1.35744i 0.246042 + 0.0433839i
\(980\) 0 0
\(981\) 13.0981 + 15.6098i 0.418191 + 0.498381i
\(982\) −44.0631 7.76952i −1.40611 0.247935i
\(983\) 39.0806 14.2242i 1.24648 0.453680i 0.367267 0.930116i \(-0.380294\pi\)
0.879210 + 0.476435i \(0.158071\pi\)
\(984\) −10.4363 28.6735i −0.332697 0.914077i
\(985\) 0 0
\(986\) −2.99669 + 0.528397i −0.0954339 + 0.0168276i
\(987\) −2.84579 2.38790i −0.0905825 0.0760078i
\(988\) −2.12337 + 3.67778i −0.0675533 + 0.117006i
\(989\) −45.0072 77.9548i −1.43115 2.47882i
\(990\) 0 0
\(991\) −16.0941 9.29195i −0.511247 0.295168i 0.222099 0.975024i \(-0.428709\pi\)
−0.733346 + 0.679856i \(0.762042\pi\)
\(992\) 5.12454 + 1.86518i 0.162704 + 0.0592195i
\(993\) 28.5169i 0.904955i
\(994\) −0.300968 + 0.826904i −0.00954613 + 0.0262278i
\(995\) 0 0
\(996\) 12.7174 10.6711i 0.402965 0.338128i
\(997\) 9.51853 11.3437i 0.301455 0.359260i −0.593959 0.804496i \(-0.702436\pi\)
0.895413 + 0.445236i \(0.146880\pi\)
\(998\) 7.18043 0.227293
\(999\) 2.55204 + 9.72765i 0.0807430 + 0.307769i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 925.2.bb.e.151.13 96
5.2 odd 4 185.2.v.a.114.13 yes 96
5.3 odd 4 185.2.v.a.114.4 yes 96
5.4 even 2 inner 925.2.bb.e.151.4 96
37.25 even 18 inner 925.2.bb.e.876.13 96
185.62 odd 36 185.2.v.a.99.4 96
185.99 even 18 inner 925.2.bb.e.876.4 96
185.173 odd 36 185.2.v.a.99.13 yes 96
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
185.2.v.a.99.4 96 185.62 odd 36
185.2.v.a.99.13 yes 96 185.173 odd 36
185.2.v.a.114.4 yes 96 5.3 odd 4
185.2.v.a.114.13 yes 96 5.2 odd 4
925.2.bb.e.151.4 96 5.4 even 2 inner
925.2.bb.e.151.13 96 1.1 even 1 trivial
925.2.bb.e.876.4 96 185.99 even 18 inner
925.2.bb.e.876.13 96 37.25 even 18 inner