Properties

Label 925.2.bb.d.151.10
Level $925$
Weight $2$
Character 925.151
Analytic conductor $7.386$
Analytic rank $0$
Dimension $78$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [925,2,Mod(151,925)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("925.151"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(925, base_ring=CyclotomicField(18)) chi = DirichletCharacter(H, H._module([0, 13])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 925 = 5^{2} \cdot 37 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 925.bb (of order \(18\), degree \(6\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [78,3] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.38616218697\)
Analytic rank: \(0\)
Dimension: \(78\)
Relative dimension: \(13\) over \(\Q(\zeta_{18})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{18}]$

Embedding invariants

Embedding label 151.10
Character \(\chi\) \(=\) 925.151
Dual form 925.2.bb.d.876.10

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.12720 - 1.34335i) q^{2} +(-1.57550 + 1.32200i) q^{3} +(-0.186702 - 1.05884i) q^{4} +3.60661i q^{6} +(3.02288 + 1.10024i) q^{7} +(1.40451 + 0.810896i) q^{8} +(0.213569 - 1.21121i) q^{9} +(-2.19070 + 3.79440i) q^{11} +(1.69394 + 1.42138i) q^{12} +(-4.72516 + 0.833174i) q^{13} +(4.88541 - 2.82059i) q^{14} +(4.69315 - 1.70817i) q^{16} +(-6.77975 - 1.19545i) q^{17} +(-1.38634 - 1.65217i) q^{18} +(-0.999689 - 1.19138i) q^{19} +(-6.21707 + 2.26283i) q^{21} +(2.62784 + 7.21993i) q^{22} +(1.49959 - 0.865791i) q^{23} +(-3.28482 + 0.579202i) q^{24} +(-4.20698 + 7.28670i) q^{26} +(-1.82026 - 3.15279i) q^{27} +(0.600598 - 3.40616i) q^{28} +(7.16270 + 4.13539i) q^{29} +7.52042i q^{31} +(1.88610 - 5.18202i) q^{32} +(-1.56476 - 8.87419i) q^{33} +(-9.24806 + 7.76005i) q^{34} -1.32235 q^{36} +(-5.88477 - 1.53933i) q^{37} -2.72730 q^{38} +(6.34304 - 7.55934i) q^{39} +(1.04807 + 5.94389i) q^{41} +(-3.96814 + 10.9024i) q^{42} +7.74103i q^{43} +(4.42667 + 1.61118i) q^{44} +(0.527288 - 2.99040i) q^{46} +(1.89010 + 3.27374i) q^{47} +(-5.13586 + 8.89558i) q^{48} +(2.56498 + 2.15227i) q^{49} +(12.2619 - 7.07940i) q^{51} +(1.76439 + 4.84763i) q^{52} +(2.40878 - 0.876724i) q^{53} +(-6.28710 - 1.10859i) q^{54} +(3.35350 + 3.99654i) q^{56} +(3.15002 + 0.555434i) q^{57} +(13.6291 - 4.96058i) q^{58} +(0.456794 + 1.25503i) q^{59} +(4.15361 - 0.732394i) q^{61} +(10.1025 + 8.47705i) q^{62} +(1.97821 - 3.42636i) q^{63} +(0.159107 + 0.275582i) q^{64} +(-13.6849 - 7.90100i) q^{66} +(-0.577235 - 0.210097i) q^{67} +7.40185i q^{68} +(-1.21803 + 3.34652i) q^{69} +(11.0001 - 9.23018i) q^{71} +(1.28212 - 1.52797i) q^{72} -3.69283 q^{73} +(-8.70118 + 6.17015i) q^{74} +(-1.07484 + 1.28094i) q^{76} +(-10.7970 + 9.05974i) q^{77} +(-3.00494 - 17.0418i) q^{78} +(-0.649592 + 1.78474i) q^{79} +(10.5030 + 3.82277i) q^{81} +(9.16610 + 5.29205i) q^{82} +(1.01140 - 5.73596i) q^{83} +(3.55671 + 6.16040i) q^{84} +(10.3989 + 8.72572i) q^{86} +(-16.7518 + 2.95380i) q^{87} +(-6.15373 + 3.55286i) q^{88} +(1.16409 + 3.19832i) q^{89} +(-15.2003 - 2.68022i) q^{91} +(-1.19671 - 1.42618i) q^{92} +(-9.94201 - 11.8484i) q^{93} +(6.52830 + 1.15112i) q^{94} +(3.87909 + 10.6577i) q^{96} +(9.54884 - 5.51302i) q^{97} +(5.78251 - 1.01961i) q^{98} +(4.12794 + 3.46375i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 78 q + 3 q^{2} + 3 q^{4} - 6 q^{7} + 18 q^{8} + 15 q^{12} - 27 q^{13} - 18 q^{14} + 9 q^{16} - 15 q^{18} + 3 q^{21} - 30 q^{22} + 15 q^{24} + 36 q^{27} + 27 q^{28} - 9 q^{29} - 18 q^{32} - 6 q^{33} - 51 q^{34}+ \cdots - 183 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/925\mathbb{Z}\right)^\times\).

\(n\) \(76\) \(852\)
\(\chi(n)\) \(e\left(\frac{13}{18}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.12720 1.34335i 0.797053 0.949891i −0.202515 0.979279i \(-0.564911\pi\)
0.999568 + 0.0293882i \(0.00935590\pi\)
\(3\) −1.57550 + 1.32200i −0.909616 + 0.763258i −0.972046 0.234791i \(-0.924559\pi\)
0.0624301 + 0.998049i \(0.480115\pi\)
\(4\) −0.186702 1.05884i −0.0933509 0.529419i
\(5\) 0 0
\(6\) 3.60661i 1.47239i
\(7\) 3.02288 + 1.10024i 1.14254 + 0.415851i 0.842831 0.538179i \(-0.180887\pi\)
0.299711 + 0.954030i \(0.403110\pi\)
\(8\) 1.40451 + 0.810896i 0.496570 + 0.286695i
\(9\) 0.213569 1.21121i 0.0711895 0.403736i
\(10\) 0 0
\(11\) −2.19070 + 3.79440i −0.660521 + 1.14406i 0.319959 + 0.947432i \(0.396331\pi\)
−0.980479 + 0.196624i \(0.937002\pi\)
\(12\) 1.69394 + 1.42138i 0.488997 + 0.410317i
\(13\) −4.72516 + 0.833174i −1.31052 + 0.231081i −0.784893 0.619631i \(-0.787282\pi\)
−0.525632 + 0.850712i \(0.676171\pi\)
\(14\) 4.88541 2.82059i 1.30568 0.753835i
\(15\) 0 0
\(16\) 4.69315 1.70817i 1.17329 0.427042i
\(17\) −6.77975 1.19545i −1.64433 0.289940i −0.726575 0.687087i \(-0.758889\pi\)
−0.917755 + 0.397147i \(0.870000\pi\)
\(18\) −1.38634 1.65217i −0.326763 0.389421i
\(19\) −0.999689 1.19138i −0.229344 0.273322i 0.639084 0.769137i \(-0.279314\pi\)
−0.868428 + 0.495815i \(0.834869\pi\)
\(20\) 0 0
\(21\) −6.21707 + 2.26283i −1.35668 + 0.493790i
\(22\) 2.62784 + 7.21993i 0.560258 + 1.53930i
\(23\) 1.49959 0.865791i 0.312687 0.180530i −0.335441 0.942061i \(-0.608885\pi\)
0.648128 + 0.761531i \(0.275552\pi\)
\(24\) −3.28482 + 0.579202i −0.670511 + 0.118229i
\(25\) 0 0
\(26\) −4.20698 + 7.28670i −0.825056 + 1.42904i
\(27\) −1.82026 3.15279i −0.350310 0.606755i
\(28\) 0.600598 3.40616i 0.113502 0.643704i
\(29\) 7.16270 + 4.13539i 1.33008 + 0.767922i 0.985312 0.170766i \(-0.0546241\pi\)
0.344768 + 0.938688i \(0.387957\pi\)
\(30\) 0 0
\(31\) 7.52042i 1.35071i 0.737494 + 0.675354i \(0.236009\pi\)
−0.737494 + 0.675354i \(0.763991\pi\)
\(32\) 1.88610 5.18202i 0.333419 0.916061i
\(33\) −1.56476 8.87419i −0.272390 1.54480i
\(34\) −9.24806 + 7.76005i −1.58603 + 1.33084i
\(35\) 0 0
\(36\) −1.32235 −0.220391
\(37\) −5.88477 1.53933i −0.967449 0.253064i
\(38\) −2.72730 −0.442426
\(39\) 6.34304 7.55934i 1.01570 1.21046i
\(40\) 0 0
\(41\) 1.04807 + 5.94389i 0.163681 + 0.928280i 0.950414 + 0.310987i \(0.100659\pi\)
−0.786734 + 0.617293i \(0.788229\pi\)
\(42\) −3.96814 + 10.9024i −0.612297 + 1.68227i
\(43\) 7.74103i 1.18050i 0.807222 + 0.590248i \(0.200970\pi\)
−0.807222 + 0.590248i \(0.799030\pi\)
\(44\) 4.42667 + 1.61118i 0.667345 + 0.242894i
\(45\) 0 0
\(46\) 0.527288 2.99040i 0.0777444 0.440910i
\(47\) 1.89010 + 3.27374i 0.275699 + 0.477525i 0.970311 0.241860i \(-0.0777574\pi\)
−0.694612 + 0.719384i \(0.744424\pi\)
\(48\) −5.13586 + 8.89558i −0.741298 + 1.28397i
\(49\) 2.56498 + 2.15227i 0.366426 + 0.307468i
\(50\) 0 0
\(51\) 12.2619 7.07940i 1.71701 0.991315i
\(52\) 1.76439 + 4.84763i 0.244677 + 0.672246i
\(53\) 2.40878 0.876724i 0.330871 0.120427i −0.171242 0.985229i \(-0.554778\pi\)
0.502114 + 0.864802i \(0.332556\pi\)
\(54\) −6.28710 1.10859i −0.855566 0.150859i
\(55\) 0 0
\(56\) 3.35350 + 3.99654i 0.448130 + 0.534061i
\(57\) 3.15002 + 0.555434i 0.417231 + 0.0735690i
\(58\) 13.6291 4.96058i 1.78959 0.651356i
\(59\) 0.456794 + 1.25503i 0.0594695 + 0.163391i 0.965869 0.259030i \(-0.0834027\pi\)
−0.906400 + 0.422421i \(0.861181\pi\)
\(60\) 0 0
\(61\) 4.15361 0.732394i 0.531815 0.0937734i 0.0987092 0.995116i \(-0.468529\pi\)
0.433106 + 0.901343i \(0.357418\pi\)
\(62\) 10.1025 + 8.47705i 1.28303 + 1.07659i
\(63\) 1.97821 3.42636i 0.249231 0.431681i
\(64\) 0.159107 + 0.275582i 0.0198884 + 0.0344477i
\(65\) 0 0
\(66\) −13.6849 7.90100i −1.68450 0.972546i
\(67\) −0.577235 0.210097i −0.0705205 0.0256674i 0.306519 0.951865i \(-0.400836\pi\)
−0.377040 + 0.926197i \(0.623058\pi\)
\(68\) 7.40185i 0.897607i
\(69\) −1.21803 + 3.34652i −0.146634 + 0.402874i
\(70\) 0 0
\(71\) 11.0001 9.23018i 1.30547 1.09542i 0.316299 0.948660i \(-0.397560\pi\)
0.989172 0.146761i \(-0.0468848\pi\)
\(72\) 1.28212 1.52797i 0.151100 0.180074i
\(73\) −3.69283 −0.432213 −0.216107 0.976370i \(-0.569336\pi\)
−0.216107 + 0.976370i \(0.569336\pi\)
\(74\) −8.70118 + 6.17015i −1.01149 + 0.717266i
\(75\) 0 0
\(76\) −1.07484 + 1.28094i −0.123293 + 0.146934i
\(77\) −10.7970 + 9.05974i −1.23043 + 1.03245i
\(78\) −3.00494 17.0418i −0.340242 1.92961i
\(79\) −0.649592 + 1.78474i −0.0730849 + 0.200799i −0.970856 0.239663i \(-0.922963\pi\)
0.897771 + 0.440462i \(0.145185\pi\)
\(80\) 0 0
\(81\) 10.5030 + 3.82277i 1.16700 + 0.424753i
\(82\) 9.16610 + 5.29205i 1.01223 + 0.584409i
\(83\) 1.01140 5.73596i 0.111016 0.629604i −0.877630 0.479339i \(-0.840876\pi\)
0.988646 0.150264i \(-0.0480125\pi\)
\(84\) 3.55671 + 6.16040i 0.388069 + 0.672155i
\(85\) 0 0
\(86\) 10.3989 + 8.72572i 1.12134 + 0.940918i
\(87\) −16.7518 + 2.95380i −1.79598 + 0.316681i
\(88\) −6.15373 + 3.55286i −0.655990 + 0.378736i
\(89\) 1.16409 + 3.19832i 0.123394 + 0.339021i 0.985974 0.166899i \(-0.0533754\pi\)
−0.862580 + 0.505920i \(0.831153\pi\)
\(90\) 0 0
\(91\) −15.2003 2.68022i −1.59343 0.280964i
\(92\) −1.19671 1.42618i −0.124766 0.148690i
\(93\) −9.94201 11.8484i −1.03094 1.22863i
\(94\) 6.52830 + 1.15112i 0.673343 + 0.118729i
\(95\) 0 0
\(96\) 3.87909 + 10.6577i 0.395908 + 1.08775i
\(97\) 9.54884 5.51302i 0.969538 0.559763i 0.0704424 0.997516i \(-0.477559\pi\)
0.899095 + 0.437753i \(0.144226\pi\)
\(98\) 5.78251 1.01961i 0.584122 0.102996i
\(99\) 4.12794 + 3.46375i 0.414874 + 0.348120i
\(100\) 0 0
\(101\) −3.31022 5.73346i −0.329379 0.570501i 0.653010 0.757349i \(-0.273506\pi\)
−0.982389 + 0.186849i \(0.940173\pi\)
\(102\) 4.31153 24.4519i 0.426905 2.42110i
\(103\) 17.4276 + 10.0618i 1.71719 + 0.991422i 0.923945 + 0.382525i \(0.124945\pi\)
0.793249 + 0.608897i \(0.208388\pi\)
\(104\) −7.31217 2.66141i −0.717018 0.260973i
\(105\) 0 0
\(106\) 1.53744 4.22408i 0.149329 0.410279i
\(107\) −2.48077 14.0691i −0.239825 1.36011i −0.832211 0.554460i \(-0.812925\pi\)
0.592386 0.805654i \(-0.298186\pi\)
\(108\) −2.99845 + 2.51600i −0.288526 + 0.242102i
\(109\) −9.83113 + 11.7163i −0.941652 + 1.12222i 0.0506926 + 0.998714i \(0.483857\pi\)
−0.992344 + 0.123502i \(0.960587\pi\)
\(110\) 0 0
\(111\) 11.3064 5.35446i 1.07316 0.508223i
\(112\) 16.0662 1.51812
\(113\) 1.73564 2.06846i 0.163276 0.194584i −0.678203 0.734875i \(-0.737241\pi\)
0.841479 + 0.540290i \(0.181685\pi\)
\(114\) 4.29686 3.60549i 0.402438 0.337685i
\(115\) 0 0
\(116\) 3.04142 8.35623i 0.282389 0.775857i
\(117\) 5.90109i 0.545556i
\(118\) 2.20084 + 0.801041i 0.202604 + 0.0737418i
\(119\) −19.1791 11.0731i −1.75814 1.01507i
\(120\) 0 0
\(121\) −4.09832 7.09850i −0.372575 0.645318i
\(122\) 3.69810 6.40531i 0.334811 0.579909i
\(123\) −9.50907 7.97905i −0.857404 0.719447i
\(124\) 7.96292 1.40408i 0.715091 0.126090i
\(125\) 0 0
\(126\) −2.37295 6.51963i −0.211399 0.580815i
\(127\) −5.41324 + 1.97026i −0.480347 + 0.174832i −0.570834 0.821066i \(-0.693380\pi\)
0.0904867 + 0.995898i \(0.471158\pi\)
\(128\) 11.4112 + 2.01210i 1.00861 + 0.177846i
\(129\) −10.2337 12.1960i −0.901023 1.07380i
\(130\) 0 0
\(131\) −6.49151 1.14463i −0.567166 0.100007i −0.117290 0.993098i \(-0.537421\pi\)
−0.449876 + 0.893091i \(0.648532\pi\)
\(132\) −9.10420 + 3.31366i −0.792419 + 0.288417i
\(133\) −1.71114 4.70131i −0.148374 0.407655i
\(134\) −0.932895 + 0.538607i −0.0805898 + 0.0465286i
\(135\) 0 0
\(136\) −8.55286 7.17670i −0.733401 0.615397i
\(137\) 0.00576235 0.00998069i 0.000492311 0.000852708i −0.865779 0.500426i \(-0.833177\pi\)
0.866271 + 0.499574i \(0.166510\pi\)
\(138\) 3.12257 + 5.40845i 0.265811 + 0.460398i
\(139\) 2.73652 15.5196i 0.232108 1.31635i −0.616510 0.787347i \(-0.711454\pi\)
0.848619 0.529005i \(-0.177435\pi\)
\(140\) 0 0
\(141\) −7.30575 2.65907i −0.615255 0.223934i
\(142\) 25.1812i 2.11316i
\(143\) 7.19002 19.7544i 0.601259 1.65195i
\(144\) −1.06664 6.04919i −0.0888863 0.504099i
\(145\) 0 0
\(146\) −4.16257 + 4.96076i −0.344497 + 0.410555i
\(147\) −6.88644 −0.567984
\(148\) −0.531206 + 6.51841i −0.0436649 + 0.535810i
\(149\) 13.7308 1.12487 0.562435 0.826842i \(-0.309865\pi\)
0.562435 + 0.826842i \(0.309865\pi\)
\(150\) 0 0
\(151\) −5.23411 + 4.39194i −0.425945 + 0.357411i −0.830419 0.557139i \(-0.811899\pi\)
0.404474 + 0.914550i \(0.367455\pi\)
\(152\) −0.437989 2.48396i −0.0355256 0.201476i
\(153\) −2.89588 + 7.95637i −0.234118 + 0.643234i
\(154\) 24.7163i 1.99169i
\(155\) 0 0
\(156\) −9.18839 5.30492i −0.735660 0.424733i
\(157\) −4.18302 + 23.7231i −0.333841 + 1.89331i 0.104545 + 0.994520i \(0.466661\pi\)
−0.438386 + 0.898787i \(0.644450\pi\)
\(158\) 1.66531 + 2.88440i 0.132485 + 0.229470i
\(159\) −2.63600 + 4.56569i −0.209049 + 0.362083i
\(160\) 0 0
\(161\) 5.48567 0.967272i 0.432332 0.0762317i
\(162\) 16.9743 9.80013i 1.33363 0.769971i
\(163\) 0.528659 + 1.45248i 0.0414078 + 0.113767i 0.958673 0.284509i \(-0.0918307\pi\)
−0.917265 + 0.398276i \(0.869608\pi\)
\(164\) 6.09795 2.21947i 0.476170 0.173312i
\(165\) 0 0
\(166\) −6.56534 7.82426i −0.509569 0.607281i
\(167\) −10.0623 11.9918i −0.778643 0.927950i 0.220229 0.975448i \(-0.429320\pi\)
−0.998871 + 0.0474981i \(0.984875\pi\)
\(168\) −10.5669 1.86323i −0.815252 0.143751i
\(169\) 9.41700 3.42751i 0.724384 0.263654i
\(170\) 0 0
\(171\) −1.65651 + 0.956389i −0.126677 + 0.0731369i
\(172\) 8.19650 1.44526i 0.624978 0.110200i
\(173\) −5.73151 4.80931i −0.435759 0.365645i 0.398361 0.917229i \(-0.369579\pi\)
−0.834119 + 0.551584i \(0.814024\pi\)
\(174\) −14.9147 + 25.8331i −1.13068 + 1.95840i
\(175\) 0 0
\(176\) −3.79981 + 21.5498i −0.286421 + 1.62438i
\(177\) −2.37883 1.37342i −0.178804 0.103233i
\(178\) 5.60862 + 2.04137i 0.420384 + 0.153007i
\(179\) 18.9882i 1.41925i −0.704581 0.709624i \(-0.748865\pi\)
0.704581 0.709624i \(-0.251135\pi\)
\(180\) 0 0
\(181\) −0.728700 4.13266i −0.0541638 0.307178i 0.945675 0.325112i \(-0.105402\pi\)
−0.999839 + 0.0179342i \(0.994291\pi\)
\(182\) −20.7343 + 17.3982i −1.53693 + 1.28964i
\(183\) −5.57579 + 6.64497i −0.412174 + 0.491210i
\(184\) 2.80827 0.207028
\(185\) 0 0
\(186\) −27.1232 −1.98877
\(187\) 19.3884 23.1062i 1.41782 1.68969i
\(188\) 3.11348 2.61252i 0.227074 0.190538i
\(189\) −2.03362 11.5332i −0.147924 0.838920i
\(190\) 0 0
\(191\) 13.5388i 0.979636i 0.871825 + 0.489818i \(0.162937\pi\)
−0.871825 + 0.489818i \(0.837063\pi\)
\(192\) −0.614993 0.223839i −0.0443833 0.0161542i
\(193\) 18.1770 + 10.4945i 1.30841 + 0.755411i 0.981831 0.189758i \(-0.0607704\pi\)
0.326580 + 0.945170i \(0.394104\pi\)
\(194\) 3.35757 19.0417i 0.241059 1.36712i
\(195\) 0 0
\(196\) 1.80002 3.11773i 0.128573 0.222695i
\(197\) 6.77491 + 5.68483i 0.482693 + 0.405027i 0.851399 0.524519i \(-0.175755\pi\)
−0.368706 + 0.929546i \(0.620199\pi\)
\(198\) 9.30606 1.64091i 0.661353 0.116614i
\(199\) 14.8467 8.57173i 1.05245 0.607634i 0.129118 0.991629i \(-0.458786\pi\)
0.923335 + 0.383996i \(0.125452\pi\)
\(200\) 0 0
\(201\) 1.18718 0.432099i 0.0837374 0.0304779i
\(202\) −11.4333 2.01600i −0.804446 0.141846i
\(203\) 17.1021 + 20.3815i 1.20033 + 1.43050i
\(204\) −9.78527 11.6616i −0.685106 0.816477i
\(205\) 0 0
\(206\) 33.1610 12.0696i 2.31044 0.840931i
\(207\) −0.728386 2.00122i −0.0506263 0.139095i
\(208\) −20.7527 + 11.9816i −1.43894 + 0.830774i
\(209\) 6.71061 1.18326i 0.464182 0.0818479i
\(210\) 0 0
\(211\) −7.25915 + 12.5732i −0.499740 + 0.865576i −1.00000 0.000299773i \(-0.999905\pi\)
0.500260 + 0.865875i \(0.333238\pi\)
\(212\) −1.37803 2.38682i −0.0946437 0.163928i
\(213\) −5.12835 + 29.0843i −0.351389 + 1.99282i
\(214\) −21.6961 12.5262i −1.48311 0.856276i
\(215\) 0 0
\(216\) 5.90418i 0.401729i
\(217\) −8.27426 + 22.7334i −0.561694 + 1.54324i
\(218\) 4.65737 + 26.4133i 0.315437 + 1.78893i
\(219\) 5.81806 4.88193i 0.393148 0.329890i
\(220\) 0 0
\(221\) 33.0314 2.22194
\(222\) 5.55177 21.2241i 0.372610 1.42447i
\(223\) 11.6690 0.781416 0.390708 0.920515i \(-0.372230\pi\)
0.390708 + 0.920515i \(0.372230\pi\)
\(224\) 11.4029 13.5895i 0.761890 0.907985i
\(225\) 0 0
\(226\) −0.822240 4.66315i −0.0546946 0.310188i
\(227\) 9.76325 26.8243i 0.648009 1.78039i 0.0230496 0.999734i \(-0.492662\pi\)
0.624960 0.780657i \(-0.285115\pi\)
\(228\) 3.43907i 0.227758i
\(229\) −0.725757 0.264154i −0.0479594 0.0174558i 0.317929 0.948114i \(-0.397013\pi\)
−0.365888 + 0.930659i \(0.619235\pi\)
\(230\) 0 0
\(231\) 5.03365 28.5472i 0.331190 1.87827i
\(232\) 6.70674 + 11.6164i 0.440319 + 0.762655i
\(233\) 7.26745 12.5876i 0.476106 0.824641i −0.523519 0.852014i \(-0.675381\pi\)
0.999625 + 0.0273736i \(0.00871436\pi\)
\(234\) 7.92723 + 6.65173i 0.518219 + 0.434837i
\(235\) 0 0
\(236\) 1.24359 0.717988i 0.0809509 0.0467370i
\(237\) −1.33600 3.67062i −0.0867824 0.238433i
\(238\) −36.4937 + 13.2826i −2.36554 + 0.860985i
\(239\) 21.4898 + 3.78923i 1.39006 + 0.245105i 0.818052 0.575145i \(-0.195054\pi\)
0.572006 + 0.820249i \(0.306165\pi\)
\(240\) 0 0
\(241\) 7.08091 + 8.43870i 0.456121 + 0.543584i 0.944268 0.329177i \(-0.106771\pi\)
−0.488147 + 0.872762i \(0.662327\pi\)
\(242\) −14.1554 2.49598i −0.909944 0.160448i
\(243\) −11.3382 + 4.12678i −0.727348 + 0.264733i
\(244\) −1.55097 4.26127i −0.0992909 0.272800i
\(245\) 0 0
\(246\) −21.4373 + 3.77997i −1.36679 + 0.241002i
\(247\) 5.71633 + 4.79657i 0.363721 + 0.305198i
\(248\) −6.09828 + 10.5625i −0.387241 + 0.670721i
\(249\) 5.98948 + 10.3741i 0.379568 + 0.657431i
\(250\) 0 0
\(251\) −14.6931 8.48306i −0.927419 0.535446i −0.0414249 0.999142i \(-0.513190\pi\)
−0.885994 + 0.463696i \(0.846523\pi\)
\(252\) −3.99730 1.45490i −0.251806 0.0916500i
\(253\) 7.58675i 0.476975i
\(254\) −3.45508 + 9.49275i −0.216791 + 0.595628i
\(255\) 0 0
\(256\) 15.0781 12.6521i 0.942383 0.790753i
\(257\) −1.60229 + 1.90953i −0.0999478 + 0.119113i −0.813700 0.581285i \(-0.802550\pi\)
0.713752 + 0.700399i \(0.246994\pi\)
\(258\) −27.9189 −1.73815
\(259\) −16.0953 11.1279i −1.00011 0.691452i
\(260\) 0 0
\(261\) 6.53854 7.79233i 0.404725 0.482333i
\(262\) −8.85488 + 7.43013i −0.547057 + 0.459035i
\(263\) −2.57340 14.5945i −0.158683 0.899934i −0.955341 0.295505i \(-0.904512\pi\)
0.796659 0.604429i \(-0.206599\pi\)
\(264\) 4.99832 13.7328i 0.307625 0.845194i
\(265\) 0 0
\(266\) −8.24430 3.00068i −0.505490 0.183983i
\(267\) −6.06221 3.50002i −0.371001 0.214198i
\(268\) −0.114687 + 0.650425i −0.00700565 + 0.0397310i
\(269\) 6.86296 + 11.8870i 0.418442 + 0.724763i 0.995783 0.0917405i \(-0.0292430\pi\)
−0.577341 + 0.816503i \(0.695910\pi\)
\(270\) 0 0
\(271\) 4.05881 + 3.40575i 0.246555 + 0.206885i 0.757687 0.652618i \(-0.226329\pi\)
−0.511132 + 0.859502i \(0.670774\pi\)
\(272\) −33.8604 + 5.97051i −2.05309 + 0.362015i
\(273\) 27.4914 15.8721i 1.66385 0.960626i
\(274\) −0.00691220 0.0189911i −0.000417581 0.00114730i
\(275\) 0 0
\(276\) 3.77084 + 0.664900i 0.226978 + 0.0400223i
\(277\) 21.1153 + 25.1643i 1.26870 + 1.51197i 0.758074 + 0.652169i \(0.226141\pi\)
0.510622 + 0.859805i \(0.329415\pi\)
\(278\) −17.7636 21.1698i −1.06539 1.26968i
\(279\) 9.10879 + 1.60613i 0.545329 + 0.0961562i
\(280\) 0 0
\(281\) −5.27920 14.5045i −0.314930 0.865264i −0.991642 0.129017i \(-0.958818\pi\)
0.676712 0.736248i \(-0.263404\pi\)
\(282\) −11.8071 + 6.81685i −0.703104 + 0.405937i
\(283\) −14.6157 + 2.57714i −0.868814 + 0.153195i −0.590248 0.807222i \(-0.700970\pi\)
−0.278566 + 0.960417i \(0.589859\pi\)
\(284\) −11.8270 9.92404i −0.701804 0.588883i
\(285\) 0 0
\(286\) −18.4324 31.9259i −1.08993 1.88782i
\(287\) −3.37151 + 19.1208i −0.199014 + 1.12867i
\(288\) −5.87369 3.39118i −0.346111 0.199827i
\(289\) 28.5611 + 10.3954i 1.68006 + 0.611494i
\(290\) 0 0
\(291\) −7.75597 + 21.3094i −0.454663 + 1.24918i
\(292\) 0.689459 + 3.91011i 0.0403475 + 0.228822i
\(293\) −23.4131 + 19.6459i −1.36781 + 1.14773i −0.394324 + 0.918972i \(0.629021\pi\)
−0.973484 + 0.228755i \(0.926534\pi\)
\(294\) −7.76242 + 9.25089i −0.452713 + 0.539523i
\(295\) 0 0
\(296\) −7.01699 6.93394i −0.407854 0.403027i
\(297\) 15.9506 0.925548
\(298\) 15.4774 18.4452i 0.896581 1.06850i
\(299\) −6.36447 + 5.34043i −0.368067 + 0.308845i
\(300\) 0 0
\(301\) −8.51699 + 23.4002i −0.490911 + 1.34877i
\(302\) 11.9818i 0.689477i
\(303\) 12.7949 + 4.65696i 0.735048 + 0.267535i
\(304\) −6.72678 3.88371i −0.385807 0.222746i
\(305\) 0 0
\(306\) 7.42393 + 12.8586i 0.424398 + 0.735079i
\(307\) −8.59435 + 14.8859i −0.490506 + 0.849580i −0.999940 0.0109288i \(-0.996521\pi\)
0.509435 + 0.860509i \(0.329855\pi\)
\(308\) 11.6086 + 9.74079i 0.661462 + 0.555033i
\(309\) −40.7590 + 7.18691i −2.31870 + 0.408849i
\(310\) 0 0
\(311\) −6.65618 18.2877i −0.377437 1.03700i −0.972415 0.233258i \(-0.925061\pi\)
0.594978 0.803742i \(-0.297161\pi\)
\(312\) 15.0387 5.47365i 0.851400 0.309884i
\(313\) 18.0010 + 3.17405i 1.01747 + 0.179408i 0.657421 0.753524i \(-0.271647\pi\)
0.360053 + 0.932932i \(0.382758\pi\)
\(314\) 27.1532 + 32.3600i 1.53235 + 1.82618i
\(315\) 0 0
\(316\) 2.01103 + 0.354599i 0.113129 + 0.0199478i
\(317\) −9.74489 + 3.54685i −0.547328 + 0.199211i −0.600859 0.799355i \(-0.705175\pi\)
0.0535311 + 0.998566i \(0.482952\pi\)
\(318\) 3.16200 + 8.68753i 0.177316 + 0.487173i
\(319\) −31.3826 + 18.1188i −1.75709 + 1.01446i
\(320\) 0 0
\(321\) 22.5079 + 18.8863i 1.25627 + 1.05413i
\(322\) 4.88409 8.45948i 0.272179 0.471429i
\(323\) 5.35340 + 9.27236i 0.297871 + 0.515928i
\(324\) 2.08677 11.8347i 0.115932 0.657483i
\(325\) 0 0
\(326\) 2.54709 + 0.927066i 0.141070 + 0.0513454i
\(327\) 31.4558i 1.73951i
\(328\) −3.34785 + 9.19814i −0.184854 + 0.507883i
\(329\) 2.11164 + 11.9757i 0.116418 + 0.660242i
\(330\) 0 0
\(331\) −9.57025 + 11.4054i −0.526028 + 0.626896i −0.961995 0.273067i \(-0.911962\pi\)
0.435967 + 0.899963i \(0.356407\pi\)
\(332\) −6.26229 −0.343688
\(333\) −3.12125 + 6.79892i −0.171043 + 0.372578i
\(334\) −27.4513 −1.50207
\(335\) 0 0
\(336\) −25.3124 + 21.2396i −1.38090 + 1.15872i
\(337\) −4.44396 25.2029i −0.242078 1.37289i −0.827182 0.561934i \(-0.810058\pi\)
0.585104 0.810958i \(-0.301054\pi\)
\(338\) 6.01053 16.5138i 0.326930 0.898233i
\(339\) 5.55339i 0.301619i
\(340\) 0 0
\(341\) −28.5355 16.4750i −1.54528 0.892170i
\(342\) −0.582465 + 3.30332i −0.0314961 + 0.178623i
\(343\) −5.87348 10.1732i −0.317138 0.549299i
\(344\) −6.27717 + 10.8724i −0.338442 + 0.586199i
\(345\) 0 0
\(346\) −12.9212 + 2.27835i −0.694646 + 0.122485i
\(347\) −27.6503 + 15.9639i −1.48435 + 0.856989i −0.999842 0.0177991i \(-0.994334\pi\)
−0.484506 + 0.874788i \(0.661001\pi\)
\(348\) 6.25520 + 17.1860i 0.335314 + 0.921267i
\(349\) 20.9061 7.60919i 1.11908 0.407310i 0.284761 0.958598i \(-0.408086\pi\)
0.834315 + 0.551288i \(0.185863\pi\)
\(350\) 0 0
\(351\) 11.2279 + 13.3809i 0.599299 + 0.714217i
\(352\) 15.5308 + 18.5089i 0.827794 + 0.986526i
\(353\) 20.1857 + 3.55928i 1.07438 + 0.189441i 0.682727 0.730673i \(-0.260794\pi\)
0.391649 + 0.920115i \(0.371905\pi\)
\(354\) −4.52641 + 1.64748i −0.240576 + 0.0875625i
\(355\) 0 0
\(356\) 3.16916 1.82972i 0.167965 0.0969748i
\(357\) 44.8553 7.90920i 2.37399 0.418599i
\(358\) −25.5078 21.4036i −1.34813 1.13122i
\(359\) 11.6733 20.2188i 0.616095 1.06711i −0.374096 0.927390i \(-0.622047\pi\)
0.990191 0.139718i \(-0.0446196\pi\)
\(360\) 0 0
\(361\) 2.87930 16.3293i 0.151542 0.859438i
\(362\) −6.37300 3.67945i −0.334957 0.193388i
\(363\) 15.8411 + 5.76571i 0.831444 + 0.302621i
\(364\) 16.5951i 0.869819i
\(365\) 0 0
\(366\) 2.64146 + 14.9805i 0.138071 + 0.783041i
\(367\) 2.00564 1.68293i 0.104693 0.0878481i −0.588938 0.808178i \(-0.700454\pi\)
0.693632 + 0.720330i \(0.256010\pi\)
\(368\) 5.55891 6.62485i 0.289778 0.345344i
\(369\) 7.42312 0.386432
\(370\) 0 0
\(371\) 8.24606 0.428114
\(372\) −10.6894 + 12.7391i −0.554219 + 0.660492i
\(373\) 11.5442 9.68673i 0.597736 0.501560i −0.292981 0.956118i \(-0.594647\pi\)
0.890717 + 0.454558i \(0.150203\pi\)
\(374\) −9.18501 52.0908i −0.474946 2.69355i
\(375\) 0 0
\(376\) 6.13069i 0.316166i
\(377\) −37.2904 13.5726i −1.92056 0.699025i
\(378\) −17.7855 10.2684i −0.914786 0.528152i
\(379\) −0.502227 + 2.84827i −0.0257977 + 0.146306i −0.994986 0.100016i \(-0.968111\pi\)
0.969188 + 0.246321i \(0.0792219\pi\)
\(380\) 0 0
\(381\) 5.92388 10.2605i 0.303489 0.525659i
\(382\) 18.1874 + 15.2610i 0.930547 + 0.780822i
\(383\) −6.76491 + 1.19284i −0.345671 + 0.0609511i −0.343788 0.939047i \(-0.611710\pi\)
−0.00188233 + 0.999998i \(0.500599\pi\)
\(384\) −20.6383 + 11.9155i −1.05319 + 0.608062i
\(385\) 0 0
\(386\) 34.5870 12.5886i 1.76043 0.640745i
\(387\) 9.37599 + 1.65324i 0.476608 + 0.0840389i
\(388\) −7.62019 9.08139i −0.386857 0.461038i
\(389\) −17.6601 21.0465i −0.895405 1.06710i −0.997382 0.0723154i \(-0.976961\pi\)
0.101977 0.994787i \(-0.467483\pi\)
\(390\) 0 0
\(391\) −11.2019 + 4.07715i −0.566503 + 0.206190i
\(392\) 1.85728 + 5.10283i 0.0938067 + 0.257732i
\(393\) 11.7406 6.77843i 0.592234 0.341926i
\(394\) 15.2734 2.69311i 0.769463 0.135677i
\(395\) 0 0
\(396\) 2.89686 5.01752i 0.145573 0.252140i
\(397\) 7.30017 + 12.6443i 0.366385 + 0.634598i 0.988997 0.147933i \(-0.0472619\pi\)
−0.622612 + 0.782530i \(0.713929\pi\)
\(398\) 5.22040 29.6063i 0.261675 1.48403i
\(399\) 8.91104 + 5.14479i 0.446110 + 0.257562i
\(400\) 0 0
\(401\) 0.325878i 0.0162736i 0.999967 + 0.00813678i \(0.00259005\pi\)
−0.999967 + 0.00813678i \(0.997410\pi\)
\(402\) 0.757737 2.08186i 0.0377925 0.103834i
\(403\) −6.26582 35.5352i −0.312123 1.77014i
\(404\) −5.45279 + 4.57543i −0.271286 + 0.227636i
\(405\) 0 0
\(406\) 46.6570 2.31555
\(407\) 18.7326 18.9570i 0.928540 0.939661i
\(408\) 22.9626 1.13682
\(409\) 2.40904 2.87098i 0.119119 0.141961i −0.703189 0.711003i \(-0.748241\pi\)
0.822309 + 0.569042i \(0.192686\pi\)
\(410\) 0 0
\(411\) 0.00411590 + 0.0233424i 0.000203022 + 0.00115140i
\(412\) 7.40010 20.3316i 0.364577 1.00167i
\(413\) 4.29639i 0.211412i
\(414\) −3.50938 1.27731i −0.172477 0.0627764i
\(415\) 0 0
\(416\) −4.59461 + 26.0574i −0.225270 + 1.27757i
\(417\) 16.2055 + 28.0688i 0.793587 + 1.37453i
\(418\) 5.97469 10.3485i 0.292231 0.506160i
\(419\) 4.28124 + 3.59239i 0.209152 + 0.175500i 0.741346 0.671123i \(-0.234188\pi\)
−0.532194 + 0.846623i \(0.678632\pi\)
\(420\) 0 0
\(421\) −12.8128 + 7.39749i −0.624459 + 0.360531i −0.778603 0.627517i \(-0.784071\pi\)
0.154144 + 0.988048i \(0.450738\pi\)
\(422\) 8.70767 + 23.9241i 0.423883 + 1.16461i
\(423\) 4.36885 1.59013i 0.212421 0.0773148i
\(424\) 4.09409 + 0.721899i 0.198827 + 0.0350585i
\(425\) 0 0
\(426\) 33.2897 + 39.6731i 1.61289 + 1.92217i
\(427\) 13.3617 + 2.35603i 0.646617 + 0.114016i
\(428\) −14.4338 + 5.25347i −0.697683 + 0.253936i
\(429\) 14.7875 + 40.6283i 0.713947 + 1.96155i
\(430\) 0 0
\(431\) 2.03515 0.358852i 0.0980297 0.0172853i −0.124418 0.992230i \(-0.539706\pi\)
0.222448 + 0.974945i \(0.428595\pi\)
\(432\) −13.9283 11.6872i −0.670124 0.562301i
\(433\) −11.0184 + 19.0844i −0.529510 + 0.917138i 0.469898 + 0.882721i \(0.344291\pi\)
−0.999408 + 0.0344171i \(0.989043\pi\)
\(434\) 21.2120 + 36.7403i 1.01821 + 1.76359i
\(435\) 0 0
\(436\) 14.2412 + 8.22213i 0.682027 + 0.393769i
\(437\) −2.53062 0.921069i −0.121056 0.0440607i
\(438\) 13.3186i 0.636388i
\(439\) −2.21596 + 6.08830i −0.105762 + 0.290579i −0.981274 0.192618i \(-0.938302\pi\)
0.875512 + 0.483197i \(0.160524\pi\)
\(440\) 0 0
\(441\) 3.15465 2.64706i 0.150221 0.126051i
\(442\) 37.2332 44.3727i 1.77100 2.11060i
\(443\) 30.0998 1.43008 0.715042 0.699082i \(-0.246408\pi\)
0.715042 + 0.699082i \(0.246408\pi\)
\(444\) −7.78044 10.9720i −0.369243 0.520709i
\(445\) 0 0
\(446\) 13.1534 15.6756i 0.622830 0.742260i
\(447\) −21.6329 + 18.1521i −1.02320 + 0.858566i
\(448\) 0.177757 + 1.00811i 0.00839821 + 0.0476286i
\(449\) 2.33595 6.41796i 0.110240 0.302882i −0.872289 0.488990i \(-0.837365\pi\)
0.982529 + 0.186108i \(0.0595875\pi\)
\(450\) 0 0
\(451\) −24.8495 9.04448i −1.17012 0.425888i
\(452\) −2.51422 1.45158i −0.118259 0.0682767i
\(453\) 2.44019 13.8390i 0.114650 0.650213i
\(454\) −25.0292 43.3519i −1.17468 2.03460i
\(455\) 0 0
\(456\) 3.97385 + 3.33446i 0.186093 + 0.156150i
\(457\) 10.1562 1.79082i 0.475089 0.0837709i 0.0690233 0.997615i \(-0.478012\pi\)
0.406065 + 0.913844i \(0.366901\pi\)
\(458\) −1.17293 + 0.677189i −0.0548072 + 0.0316430i
\(459\) 8.57192 + 23.5512i 0.400103 + 1.09927i
\(460\) 0 0
\(461\) 21.0722 + 3.71560i 0.981430 + 0.173053i 0.641270 0.767315i \(-0.278408\pi\)
0.340160 + 0.940368i \(0.389519\pi\)
\(462\) −32.6750 38.9405i −1.52018 1.81168i
\(463\) −3.03186 3.61323i −0.140903 0.167921i 0.690978 0.722876i \(-0.257180\pi\)
−0.831881 + 0.554955i \(0.812736\pi\)
\(464\) 40.6796 + 7.17291i 1.88850 + 0.332994i
\(465\) 0 0
\(466\) −8.71763 23.9515i −0.403836 1.10953i
\(467\) 19.0762 11.0136i 0.882740 0.509650i 0.0111794 0.999938i \(-0.496441\pi\)
0.871561 + 0.490287i \(0.163108\pi\)
\(468\) 6.24831 1.10175i 0.288828 0.0509282i
\(469\) −1.51376 1.27019i −0.0698989 0.0586521i
\(470\) 0 0
\(471\) −24.7716 42.9057i −1.14142 1.97699i
\(472\) −0.376126 + 2.13312i −0.0173126 + 0.0981848i
\(473\) −29.3726 16.9583i −1.35055 0.779742i
\(474\) −6.43687 2.34283i −0.295655 0.107610i
\(475\) 0 0
\(476\) −8.14381 + 22.3749i −0.373271 + 1.02555i
\(477\) −0.547455 3.10477i −0.0250662 0.142158i
\(478\) 29.3136 24.5970i 1.34077 1.12504i
\(479\) −8.33131 + 9.92887i −0.380667 + 0.453661i −0.922025 0.387131i \(-0.873466\pi\)
0.541358 + 0.840792i \(0.317911\pi\)
\(480\) 0 0
\(481\) 29.0890 + 2.37055i 1.32634 + 0.108088i
\(482\) 19.3177 0.879899
\(483\) −7.36395 + 8.77601i −0.335071 + 0.399322i
\(484\) −6.75101 + 5.66477i −0.306864 + 0.257489i
\(485\) 0 0
\(486\) −7.23680 + 19.8829i −0.328268 + 0.901908i
\(487\) 18.4532i 0.836195i 0.908402 + 0.418097i \(0.137303\pi\)
−0.908402 + 0.418097i \(0.862697\pi\)
\(488\) 6.42770 + 2.33949i 0.290968 + 0.105904i
\(489\) −2.75308 1.58949i −0.124499 0.0718794i
\(490\) 0 0
\(491\) 11.2150 + 19.4250i 0.506126 + 0.876637i 0.999975 + 0.00708861i \(0.00225639\pi\)
−0.493849 + 0.869548i \(0.664410\pi\)
\(492\) −6.67317 + 11.5583i −0.300850 + 0.521087i
\(493\) −43.6176 36.5996i −1.96444 1.64836i
\(494\) 12.8869 2.27231i 0.579810 0.102236i
\(495\) 0 0
\(496\) 12.8461 + 35.2945i 0.576809 + 1.58477i
\(497\) 43.4074 15.7990i 1.94709 0.708682i
\(498\) 20.6874 + 3.64774i 0.927024 + 0.163459i
\(499\) 0.153311 + 0.182709i 0.00686316 + 0.00817919i 0.769465 0.638689i \(-0.220523\pi\)
−0.762602 + 0.646868i \(0.776078\pi\)
\(500\) 0 0
\(501\) 31.7063 + 5.59067i 1.41653 + 0.249773i
\(502\) −27.9578 + 10.1758i −1.24782 + 0.454168i
\(503\) −2.60284 7.15125i −0.116055 0.318859i 0.868042 0.496491i \(-0.165378\pi\)
−0.984097 + 0.177632i \(0.943156\pi\)
\(504\) 5.55684 3.20825i 0.247522 0.142907i
\(505\) 0 0
\(506\) 10.1916 + 8.55181i 0.453074 + 0.380174i
\(507\) −10.3053 + 17.8493i −0.457675 + 0.792717i
\(508\) 3.09685 + 5.36390i 0.137400 + 0.237984i
\(509\) 3.60422 20.4406i 0.159754 0.906011i −0.794555 0.607192i \(-0.792296\pi\)
0.954310 0.298820i \(-0.0965929\pi\)
\(510\) 0 0
\(511\) −11.1630 4.06300i −0.493822 0.179736i
\(512\) 11.3422i 0.501259i
\(513\) −1.93648 + 5.32044i −0.0854978 + 0.234903i
\(514\) 0.759063 + 4.30486i 0.0334808 + 0.189879i
\(515\) 0 0
\(516\) −11.0030 + 13.1128i −0.484378 + 0.577259i
\(517\) −16.5625 −0.728419
\(518\) −33.0913 + 9.07826i −1.45395 + 0.398876i
\(519\) 15.3879 0.675455
\(520\) 0 0
\(521\) −33.1731 + 27.8355i −1.45334 + 1.21950i −0.523243 + 0.852184i \(0.675278\pi\)
−0.930097 + 0.367313i \(0.880278\pi\)
\(522\) −3.09755 17.5671i −0.135576 0.768890i
\(523\) −3.83800 + 10.5448i −0.167824 + 0.461092i −0.994884 0.101021i \(-0.967789\pi\)
0.827060 + 0.562113i \(0.190011\pi\)
\(524\) 7.08717i 0.309604i
\(525\) 0 0
\(526\) −22.5062 12.9940i −0.981318 0.566564i
\(527\) 8.99031 50.9866i 0.391624 2.22101i
\(528\) −22.5023 38.9751i −0.979285 1.69617i
\(529\) −10.0008 + 17.3219i −0.434818 + 0.753127i
\(530\) 0 0
\(531\) 1.61766 0.285237i 0.0702004 0.0123782i
\(532\) −4.65846 + 2.68956i −0.201970 + 0.116607i
\(533\) −9.90459 27.2126i −0.429015 1.17871i
\(534\) −11.5351 + 4.19843i −0.499172 + 0.181684i
\(535\) 0 0
\(536\) −0.640368 0.763161i −0.0276597 0.0329635i
\(537\) 25.1025 + 29.9160i 1.08325 + 1.29097i
\(538\) 23.7043 + 4.17971i 1.02197 + 0.180200i
\(539\) −13.7857 + 5.01758i −0.593792 + 0.216123i
\(540\) 0 0
\(541\) −21.7090 + 12.5337i −0.933345 + 0.538867i −0.887868 0.460098i \(-0.847814\pi\)
−0.0454770 + 0.998965i \(0.514481\pi\)
\(542\) 9.15022 1.61343i 0.393035 0.0693028i
\(543\) 6.61145 + 5.54767i 0.283725 + 0.238073i
\(544\) −18.9822 + 32.8781i −0.813853 + 1.40963i
\(545\) 0 0
\(546\) 9.66653 54.8216i 0.413689 2.34615i
\(547\) −13.4913 7.78922i −0.576848 0.333043i 0.183032 0.983107i \(-0.441409\pi\)
−0.759880 + 0.650064i \(0.774742\pi\)
\(548\) −0.0116438 0.00423799i −0.000497398 0.000181038i
\(549\) 5.18730i 0.221389i
\(550\) 0 0
\(551\) −2.23364 12.6676i −0.0951564 0.539659i
\(552\) −4.42442 + 3.71253i −0.188316 + 0.158016i
\(553\) −3.92728 + 4.68035i −0.167005 + 0.199029i
\(554\) 57.6056 2.44743
\(555\) 0 0
\(556\) −16.9436 −0.718570
\(557\) −22.8889 + 27.2780i −0.969836 + 1.15581i 0.0179265 + 0.999839i \(0.494294\pi\)
−0.987762 + 0.155966i \(0.950151\pi\)
\(558\) 12.4250 10.4259i 0.525994 0.441361i
\(559\) −6.44963 36.5776i −0.272790 1.54707i
\(560\) 0 0
\(561\) 62.0354i 2.61914i
\(562\) −25.4353 9.25769i −1.07292 0.390512i
\(563\) 11.8413 + 6.83659i 0.499052 + 0.288128i 0.728322 0.685235i \(-0.240300\pi\)
−0.229270 + 0.973363i \(0.573634\pi\)
\(564\) −1.45153 + 8.23206i −0.0611206 + 0.346632i
\(565\) 0 0
\(566\) −13.0129 + 22.5390i −0.546972 + 0.947383i
\(567\) 27.5433 + 23.1116i 1.15671 + 0.970595i
\(568\) 22.9345 4.04397i 0.962310 0.169681i
\(569\) 0.229444 0.132470i 0.00961879 0.00555341i −0.495183 0.868789i \(-0.664899\pi\)
0.504802 + 0.863235i \(0.331566\pi\)
\(570\) 0 0
\(571\) 25.7734 9.38074i 1.07858 0.392572i 0.259203 0.965823i \(-0.416540\pi\)
0.819380 + 0.573251i \(0.194318\pi\)
\(572\) −22.2591 3.92488i −0.930701 0.164108i
\(573\) −17.8984 21.3304i −0.747715 0.891092i
\(574\) 21.8855 + 26.0822i 0.913484 + 1.08865i
\(575\) 0 0
\(576\) 0.367767 0.133856i 0.0153236 0.00557734i
\(577\) −1.12251 3.08407i −0.0467308 0.128392i 0.914132 0.405417i \(-0.132874\pi\)
−0.960863 + 0.277025i \(0.910651\pi\)
\(578\) 46.1588 26.6498i 1.91995 1.10849i
\(579\) −42.5117 + 7.49596i −1.76673 + 0.311521i
\(580\) 0 0
\(581\) 9.36829 16.2263i 0.388662 0.673182i
\(582\) 19.8833 + 34.4390i 0.824191 + 1.42754i
\(583\) −1.95027 + 11.0605i −0.0807718 + 0.458080i
\(584\) −5.18663 2.99450i −0.214624 0.123913i
\(585\) 0 0
\(586\) 53.5969i 2.21407i
\(587\) −4.42689 + 12.1628i −0.182717 + 0.502012i −0.996907 0.0785868i \(-0.974959\pi\)
0.814190 + 0.580599i \(0.197181\pi\)
\(588\) 1.28571 + 7.29163i 0.0530218 + 0.300702i
\(589\) 8.95971 7.51809i 0.369178 0.309777i
\(590\) 0 0
\(591\) −18.1892 −0.748205
\(592\) −30.2475 + 2.82786i −1.24317 + 0.116224i
\(593\) 44.1954 1.81489 0.907444 0.420174i \(-0.138031\pi\)
0.907444 + 0.420174i \(0.138031\pi\)
\(594\) 17.9796 21.4272i 0.737711 0.879169i
\(595\) 0 0
\(596\) −2.56356 14.5387i −0.105008 0.595528i
\(597\) −12.0591 + 33.1321i −0.493546 + 1.35601i
\(598\) 14.5695i 0.595789i
\(599\) 7.69706 + 2.80150i 0.314493 + 0.114466i 0.494444 0.869209i \(-0.335372\pi\)
−0.179951 + 0.983676i \(0.557594\pi\)
\(600\) 0 0
\(601\) 6.99477 39.6693i 0.285323 1.61815i −0.418808 0.908075i \(-0.637552\pi\)
0.704130 0.710071i \(-0.251337\pi\)
\(602\) 21.8343 + 37.8181i 0.889899 + 1.54135i
\(603\) −0.377750 + 0.654282i −0.0153832 + 0.0266444i
\(604\) 5.62757 + 4.72209i 0.228983 + 0.192139i
\(605\) 0 0
\(606\) 20.6784 11.9387i 0.840002 0.484975i
\(607\) 1.89386 + 5.20335i 0.0768696 + 0.211197i 0.972175 0.234255i \(-0.0752651\pi\)
−0.895306 + 0.445452i \(0.853043\pi\)
\(608\) −8.05929 + 2.93334i −0.326847 + 0.118963i
\(609\) −53.8887 9.50203i −2.18368 0.385042i
\(610\) 0 0
\(611\) −11.6586 13.8942i −0.471657 0.562099i
\(612\) 8.96518 + 1.58080i 0.362396 + 0.0639002i
\(613\) −17.6777 + 6.43414i −0.713994 + 0.259873i −0.673374 0.739302i \(-0.735156\pi\)
−0.0406202 + 0.999175i \(0.512933\pi\)
\(614\) 10.3093 + 28.3246i 0.416050 + 1.14309i
\(615\) 0 0
\(616\) −22.5110 + 3.96930i −0.906994 + 0.159927i
\(617\) 10.6984 + 8.97703i 0.430702 + 0.361402i 0.832216 0.554451i \(-0.187072\pi\)
−0.401515 + 0.915853i \(0.631516\pi\)
\(618\) −36.2892 + 62.8547i −1.45976 + 2.52838i
\(619\) −8.84392 15.3181i −0.355467 0.615687i 0.631731 0.775188i \(-0.282345\pi\)
−0.987198 + 0.159501i \(0.949012\pi\)
\(620\) 0 0
\(621\) −5.45931 3.15194i −0.219075 0.126483i
\(622\) −32.0696 11.6724i −1.28587 0.468020i
\(623\) 10.9489i 0.438659i
\(624\) 16.8562 46.3121i 0.674790 1.85397i
\(625\) 0 0
\(626\) 24.5546 20.6038i 0.981399 0.823492i
\(627\) −9.00829 + 10.7357i −0.359756 + 0.428741i
\(628\) 25.8999 1.03352
\(629\) 38.0570 + 17.4712i 1.51743 + 0.696623i
\(630\) 0 0
\(631\) −8.73458 + 10.4095i −0.347718 + 0.414394i −0.911350 0.411631i \(-0.864959\pi\)
0.563632 + 0.826026i \(0.309404\pi\)
\(632\) −2.35960 + 1.97994i −0.0938599 + 0.0787578i
\(633\) −5.18502 29.4057i −0.206086 1.16877i
\(634\) −6.21982 + 17.0888i −0.247021 + 0.678683i
\(635\) 0 0
\(636\) 5.32648 + 1.93868i 0.211209 + 0.0768736i
\(637\) −13.9132 8.03277i −0.551260 0.318270i
\(638\) −11.0348 + 62.5814i −0.436871 + 2.47762i
\(639\) −8.83038 15.2947i −0.349325 0.605048i
\(640\) 0 0
\(641\) −7.68670 6.44991i −0.303607 0.254756i 0.478237 0.878231i \(-0.341276\pi\)
−0.781844 + 0.623475i \(0.785720\pi\)
\(642\) 50.7419 8.94716i 2.00262 0.353116i
\(643\) −41.8732 + 24.1755i −1.65132 + 0.953388i −0.674784 + 0.738015i \(0.735763\pi\)
−0.976532 + 0.215373i \(0.930903\pi\)
\(644\) −2.04837 5.62785i −0.0807171 0.221768i
\(645\) 0 0
\(646\) 18.4904 + 3.26035i 0.727494 + 0.128277i
\(647\) −13.9394 16.6124i −0.548015 0.653099i 0.418950 0.908009i \(-0.362398\pi\)
−0.966965 + 0.254911i \(0.917954\pi\)
\(648\) 11.6517 + 13.8860i 0.457722 + 0.545492i
\(649\) −5.76279 1.01613i −0.226209 0.0398868i
\(650\) 0 0
\(651\) −17.0174 46.7550i −0.666966 1.83247i
\(652\) 1.43924 0.830946i 0.0563650 0.0325424i
\(653\) −29.7905 + 5.25287i −1.16579 + 0.205561i −0.722860 0.690994i \(-0.757173\pi\)
−0.442932 + 0.896555i \(0.646062\pi\)
\(654\) −42.2561 35.4571i −1.65234 1.38648i
\(655\) 0 0
\(656\) 15.0719 + 26.1053i 0.588459 + 1.01924i
\(657\) −0.788673 + 4.47278i −0.0307690 + 0.174500i
\(658\) 18.4678 + 10.6624i 0.719950 + 0.415663i
\(659\) 22.7270 + 8.27195i 0.885318 + 0.322229i 0.744354 0.667785i \(-0.232758\pi\)
0.140964 + 0.990015i \(0.454980\pi\)
\(660\) 0 0
\(661\) −8.25434 + 22.6786i −0.321057 + 0.882096i 0.669230 + 0.743055i \(0.266624\pi\)
−0.990287 + 0.139040i \(0.955598\pi\)
\(662\) 4.53378 + 25.7124i 0.176210 + 0.999339i
\(663\) −52.0411 + 43.6676i −2.02111 + 1.69591i
\(664\) 6.07180 7.23609i 0.235632 0.280815i
\(665\) 0 0
\(666\) 5.61504 + 11.8567i 0.217578 + 0.459437i
\(667\) 14.3215 0.554532
\(668\) −10.8187 + 12.8932i −0.418588 + 0.498854i
\(669\) −18.3846 + 15.4265i −0.710789 + 0.596422i
\(670\) 0 0
\(671\) −6.32032 + 17.3649i −0.243993 + 0.670365i
\(672\) 36.4849i 1.40744i
\(673\) −44.8878 16.3378i −1.73030 0.629777i −0.731645 0.681686i \(-0.761247\pi\)
−0.998652 + 0.0519090i \(0.983469\pi\)
\(674\) −38.8656 22.4391i −1.49705 0.864320i
\(675\) 0 0
\(676\) −5.38735 9.33116i −0.207206 0.358891i
\(677\) 10.2443 17.7436i 0.393719 0.681941i −0.599218 0.800586i \(-0.704522\pi\)
0.992937 + 0.118645i \(0.0378551\pi\)
\(678\) 7.46014 + 6.25980i 0.286505 + 0.240406i
\(679\) 34.9307 6.15922i 1.34052 0.236369i
\(680\) 0 0
\(681\) 20.0798 + 55.1687i 0.769459 + 2.11407i
\(682\) −54.2970 + 19.7625i −2.07914 + 0.756744i
\(683\) 39.5691 + 6.97710i 1.51407 + 0.266971i 0.868099 0.496391i \(-0.165342\pi\)
0.645970 + 0.763363i \(0.276453\pi\)
\(684\) 1.32194 + 1.57542i 0.0505455 + 0.0602378i
\(685\) 0 0
\(686\) −20.2867 3.57709i −0.774550 0.136574i
\(687\) 1.49264 0.543277i 0.0569479 0.0207273i
\(688\) 13.2230 + 36.3298i 0.504121 + 1.38506i
\(689\) −10.6514 + 6.14960i −0.405787 + 0.234281i
\(690\) 0 0
\(691\) −29.5876 24.8270i −1.12557 0.944463i −0.126694 0.991942i \(-0.540437\pi\)
−0.998872 + 0.0474792i \(0.984881\pi\)
\(692\) −4.02220 + 6.96666i −0.152901 + 0.264833i
\(693\) 8.66733 + 15.0122i 0.329244 + 0.570268i
\(694\) −9.72243 + 55.1386i −0.369058 + 2.09303i
\(695\) 0 0
\(696\) −25.9234 9.43534i −0.982624 0.357646i
\(697\) 41.5510i 1.57386i
\(698\) 13.3436 36.6612i 0.505063 1.38765i
\(699\) 5.19095 + 29.4393i 0.196340 + 1.11350i
\(700\) 0 0
\(701\) −15.0201 + 17.9003i −0.567302 + 0.676085i −0.971075 0.238775i \(-0.923254\pi\)
0.403773 + 0.914859i \(0.367699\pi\)
\(702\) 30.6312 1.15610
\(703\) 4.04900 + 8.54986i 0.152711 + 0.322464i
\(704\) −1.39422 −0.0525468
\(705\) 0 0
\(706\) 27.5347 23.1044i 1.03628 0.869545i
\(707\) −3.69821 20.9736i −0.139086 0.788794i
\(708\) −1.01010 + 2.77522i −0.0379618 + 0.104299i
\(709\) 23.3205i 0.875820i 0.899019 + 0.437910i \(0.144281\pi\)
−0.899019 + 0.437910i \(0.855719\pi\)
\(710\) 0 0
\(711\) 2.02296 + 1.16796i 0.0758669 + 0.0438018i
\(712\) −0.958520 + 5.43603i −0.0359220 + 0.203724i
\(713\) 6.51111 + 11.2776i 0.243843 + 0.422349i
\(714\) 39.9362 69.1716i 1.49458 2.58868i
\(715\) 0 0
\(716\) −20.1055 + 3.54514i −0.751377 + 0.132488i
\(717\) −38.8665 + 22.4396i −1.45150 + 0.838022i
\(718\) −14.0027 38.4721i −0.522576 1.43576i
\(719\) −24.1407 + 8.78650i −0.900296 + 0.327681i −0.750371 0.661016i \(-0.770125\pi\)
−0.149925 + 0.988697i \(0.547903\pi\)
\(720\) 0 0
\(721\) 41.6112 + 49.5903i 1.54968 + 1.84684i
\(722\) −18.6904 22.2744i −0.695585 0.828966i
\(723\) −22.3120 3.93420i −0.829791 0.146314i
\(724\) −4.23977 + 1.54315i −0.157570 + 0.0573508i
\(725\) 0 0
\(726\) 25.6015 14.7811i 0.950162 0.548577i
\(727\) 6.35393 1.12037i 0.235654 0.0415522i −0.0545738 0.998510i \(-0.517380\pi\)
0.290228 + 0.956958i \(0.406269\pi\)
\(728\) −19.1756 16.0903i −0.710697 0.596345i
\(729\) −4.35777 + 7.54788i −0.161399 + 0.279551i
\(730\) 0 0
\(731\) 9.25403 52.4822i 0.342273 1.94113i
\(732\) 8.07696 + 4.66324i 0.298533 + 0.172358i
\(733\) 34.7153 + 12.6353i 1.28224 + 0.466696i 0.891171 0.453667i \(-0.149884\pi\)
0.391066 + 0.920363i \(0.372107\pi\)
\(734\) 4.59127i 0.169467i
\(735\) 0 0
\(736\) −1.65816 9.40390i −0.0611206 0.346632i
\(737\) 2.06174 1.73000i 0.0759451 0.0637255i
\(738\) 8.36736 9.97183i 0.308007 0.367068i
\(739\) 37.1558 1.36680 0.683399 0.730045i \(-0.260501\pi\)
0.683399 + 0.730045i \(0.260501\pi\)
\(740\) 0 0
\(741\) −15.3471 −0.563792
\(742\) 9.29499 11.0773i 0.341230 0.406662i
\(743\) −12.3663 + 10.3766i −0.453676 + 0.380680i −0.840798 0.541349i \(-0.817914\pi\)
0.387122 + 0.922029i \(0.373469\pi\)
\(744\) −4.35584 24.7032i −0.159693 0.905664i
\(745\) 0 0
\(746\) 26.4268i 0.967554i
\(747\) −6.73143 2.45004i −0.246290 0.0896423i
\(748\) −28.0856 16.2152i −1.02691 0.592888i
\(749\) 7.98034 45.2588i 0.291595 1.65372i
\(750\) 0 0
\(751\) 17.3180 29.9957i 0.631944 1.09456i −0.355210 0.934786i \(-0.615591\pi\)
0.987154 0.159772i \(-0.0510760\pi\)
\(752\) 14.4626 + 12.1356i 0.527398 + 0.442539i
\(753\) 34.3636 6.05923i 1.25228 0.220811i
\(754\) −60.2667 + 34.7950i −2.19478 + 1.26716i
\(755\) 0 0
\(756\) −11.8322 + 4.30655i −0.430332 + 0.156628i
\(757\) −46.3966 8.18097i −1.68631 0.297343i −0.753432 0.657526i \(-0.771603\pi\)
−0.932882 + 0.360183i \(0.882714\pi\)
\(758\) 3.26011 + 3.88525i 0.118412 + 0.141118i
\(759\) −10.0297 11.9529i −0.364055 0.433864i
\(760\) 0 0
\(761\) −24.3058 + 8.84660i −0.881086 + 0.320689i −0.742648 0.669682i \(-0.766430\pi\)
−0.138438 + 0.990371i \(0.544208\pi\)
\(762\) −7.10595 19.5235i −0.257422 0.707260i
\(763\) −42.6091 + 24.6004i −1.54255 + 0.890593i
\(764\) 14.3354 2.52773i 0.518638 0.0914499i
\(765\) 0 0
\(766\) −6.02303 + 10.4322i −0.217621 + 0.376931i
\(767\) −3.20408 5.54964i −0.115693 0.200386i
\(768\) −7.02956 + 39.8666i −0.253658 + 1.43856i
\(769\) −37.4568 21.6257i −1.35073 0.779843i −0.362376 0.932032i \(-0.618035\pi\)
−0.988351 + 0.152189i \(0.951368\pi\)
\(770\) 0 0
\(771\) 5.12669i 0.184633i
\(772\) 7.71831 21.2059i 0.277788 0.763217i
\(773\) 5.03198 + 28.5378i 0.180988 + 1.02643i 0.931003 + 0.365012i \(0.118935\pi\)
−0.750015 + 0.661421i \(0.769954\pi\)
\(774\) 12.7895 10.7317i 0.459710 0.385743i
\(775\) 0 0
\(776\) 17.8820 0.641925
\(777\) 40.0692 3.74609i 1.43748 0.134390i
\(778\) −48.1794 −1.72732
\(779\) 6.03371 7.19069i 0.216180 0.257633i
\(780\) 0 0
\(781\) 10.9251 + 61.9593i 0.390931 + 2.21708i
\(782\) −7.14976 + 19.6438i −0.255675 + 0.702461i
\(783\) 30.1100i 1.07604i
\(784\) 15.7143 + 5.71953i 0.561225 + 0.204269i
\(785\) 0 0
\(786\) 4.12823 23.4124i 0.147249 0.835091i
\(787\) −9.74581 16.8802i −0.347401 0.601715i 0.638386 0.769716i \(-0.279602\pi\)
−0.985787 + 0.168001i \(0.946269\pi\)
\(788\) 4.75443 8.23491i 0.169370 0.293357i
\(789\) 23.3483 + 19.5916i 0.831222 + 0.697478i
\(790\) 0 0
\(791\) 7.52245 4.34309i 0.267468 0.154423i
\(792\) 2.98900 + 8.21222i 0.106210 + 0.291809i
\(793\) −19.0163 + 6.92136i −0.675288 + 0.245785i
\(794\) 25.2144 + 4.44599i 0.894827 + 0.157782i
\(795\) 0 0
\(796\) −11.8480 14.1199i −0.419941 0.500466i
\(797\) 15.4434 + 2.72309i 0.547034 + 0.0964568i 0.440333 0.897834i \(-0.354860\pi\)
0.106700 + 0.994291i \(0.465971\pi\)
\(798\) 16.9558 6.17141i 0.600229 0.218465i
\(799\) −8.90078 24.4547i −0.314887 0.865145i
\(800\) 0 0
\(801\) 4.12244 0.726897i 0.145659 0.0256836i
\(802\) 0.437768 + 0.367331i 0.0154581 + 0.0129709i
\(803\) 8.08988 14.0121i 0.285486 0.494476i
\(804\) −0.679173 1.17636i −0.0239526 0.0414871i
\(805\) 0 0
\(806\) −54.7991 31.6383i −1.93021 1.11441i
\(807\) −26.5272 9.65512i −0.933802 0.339876i
\(808\) 10.7370i 0.377725i
\(809\) −2.79448 + 7.67776i −0.0982486 + 0.269936i −0.979074 0.203506i \(-0.934766\pi\)
0.880825 + 0.473442i \(0.156989\pi\)
\(810\) 0 0
\(811\) 31.2095 26.1879i 1.09591 0.919580i 0.0987695 0.995110i \(-0.468509\pi\)
0.997144 + 0.0755301i \(0.0240649\pi\)
\(812\) 18.3877 21.9136i 0.645282 0.769017i
\(813\) −10.8971 −0.382177
\(814\) −4.35037 46.5327i −0.152480 1.63097i
\(815\) 0 0
\(816\) 45.4541 54.1701i 1.59121 1.89633i
\(817\) 9.22254 7.73863i 0.322656 0.270740i
\(818\) −1.14125 6.47235i −0.0399029 0.226301i
\(819\) −6.49261 + 17.8383i −0.226870 + 0.623321i
\(820\) 0 0
\(821\) −26.2164 9.54200i −0.914959 0.333018i −0.158728 0.987322i \(-0.550739\pi\)
−0.756231 + 0.654304i \(0.772962\pi\)
\(822\) 0.0359965 + 0.0207826i 0.00125552 + 0.000724875i
\(823\) −2.04791 + 11.6143i −0.0713857 + 0.404849i 0.928087 + 0.372365i \(0.121453\pi\)
−0.999472 + 0.0324840i \(0.989658\pi\)
\(824\) 16.3182 + 28.2640i 0.568472 + 0.984622i
\(825\) 0 0
\(826\) 5.77155 + 4.84291i 0.200818 + 0.168506i
\(827\) 43.4424 7.66006i 1.51064 0.266366i 0.643893 0.765116i \(-0.277318\pi\)
0.866746 + 0.498749i \(0.166207\pi\)
\(828\) −1.98298 + 1.14488i −0.0689134 + 0.0397872i
\(829\) 7.55135 + 20.7472i 0.262269 + 0.720579i 0.999014 + 0.0444072i \(0.0141399\pi\)
−0.736744 + 0.676171i \(0.763638\pi\)
\(830\) 0 0
\(831\) −66.5344 11.7318i −2.30805 0.406972i
\(832\) −0.981415 1.16961i −0.0340245 0.0405488i
\(833\) −14.8170 17.6582i −0.513378 0.611820i
\(834\) 55.9730 + 9.86955i 1.93819 + 0.341755i
\(835\) 0 0
\(836\) −2.50577 6.88453i −0.0866637 0.238107i
\(837\) 23.7103 13.6892i 0.819548 0.473166i
\(838\) 9.65166 1.70185i 0.333411 0.0587894i
\(839\) −2.07653 1.74242i −0.0716899 0.0601549i 0.606239 0.795283i \(-0.292678\pi\)
−0.677928 + 0.735128i \(0.737122\pi\)
\(840\) 0 0
\(841\) 19.7029 + 34.1263i 0.679409 + 1.17677i
\(842\) −4.50525 + 25.5506i −0.155261 + 0.880531i
\(843\) 27.4923 + 15.8727i 0.946886 + 0.546685i
\(844\) 14.6683 + 5.33883i 0.504904 + 0.183770i
\(845\) 0 0
\(846\) 2.78848 7.66129i 0.0958699 0.263401i
\(847\) −4.57870 25.9671i −0.157326 0.892239i
\(848\) 9.80718 8.22920i 0.336780 0.282592i
\(849\) 19.6201 23.3823i 0.673359 0.802478i
\(850\) 0 0
\(851\) −10.1575 + 2.78661i −0.348194 + 0.0955236i
\(852\) 31.7531 1.08784
\(853\) −27.8851 + 33.2322i −0.954769 + 1.13785i 0.0355963 + 0.999366i \(0.488667\pi\)
−0.990365 + 0.138483i \(0.955777\pi\)
\(854\) 18.2263 15.2937i 0.623691 0.523339i
\(855\) 0 0
\(856\) 7.92433 21.7719i 0.270848 0.744149i
\(857\) 16.3581i 0.558780i 0.960178 + 0.279390i \(0.0901323\pi\)
−0.960178 + 0.279390i \(0.909868\pi\)
\(858\) 71.2465 + 25.9316i 2.43231 + 0.885290i
\(859\) −16.4757 9.51227i −0.562145 0.324555i 0.191861 0.981422i \(-0.438548\pi\)
−0.754006 + 0.656868i \(0.771881\pi\)
\(860\) 0 0
\(861\) −19.9659 34.5820i −0.680437 1.17855i
\(862\) 1.81196 3.13841i 0.0617158 0.106895i
\(863\) 20.8635 + 17.5065i 0.710200 + 0.595929i 0.924655 0.380805i \(-0.124353\pi\)
−0.214455 + 0.976734i \(0.568798\pi\)
\(864\) −19.7710 + 3.48617i −0.672624 + 0.118602i
\(865\) 0 0
\(866\) 13.2170 + 36.3135i 0.449134 + 1.23398i
\(867\) −58.7408 + 21.3799i −1.99494 + 0.726099i
\(868\) 25.6158 + 4.51675i 0.869456 + 0.153309i
\(869\) −5.34896 6.37464i −0.181451 0.216245i
\(870\) 0 0
\(871\) 2.90258 + 0.511803i 0.0983501 + 0.0173418i
\(872\) −23.3086 + 8.48365i −0.789330 + 0.287293i
\(873\) −4.63808 12.7430i −0.156975 0.431286i
\(874\) −4.08984 + 2.36127i −0.138341 + 0.0798711i
\(875\) 0 0
\(876\) −6.25542 5.24892i −0.211351 0.177345i
\(877\) 23.7911 41.2075i 0.803370 1.39148i −0.114016 0.993479i \(-0.536372\pi\)
0.917386 0.397998i \(-0.130295\pi\)
\(878\) 5.68087 + 9.83955i 0.191720 + 0.332069i
\(879\) 10.9154 61.9043i 0.368167 2.08798i
\(880\) 0 0
\(881\) 7.27907 + 2.64937i 0.245238 + 0.0892594i 0.461715 0.887028i \(-0.347234\pi\)
−0.216477 + 0.976288i \(0.569457\pi\)
\(882\) 7.22157i 0.243163i
\(883\) 16.2458 44.6349i 0.546714 1.50209i −0.291406 0.956599i \(-0.594123\pi\)
0.838120 0.545486i \(-0.183655\pi\)
\(884\) −6.16703 34.9750i −0.207420 1.17634i
\(885\) 0 0
\(886\) 33.9286 40.4345i 1.13985 1.35842i
\(887\) −0.179153 −0.00601537 −0.00300769 0.999995i \(-0.500957\pi\)
−0.00300769 + 0.999995i \(0.500957\pi\)
\(888\) 20.2220 + 1.64795i 0.678605 + 0.0553016i
\(889\) −18.5313 −0.621521
\(890\) 0 0
\(891\) −37.5140 + 31.4780i −1.25677 + 1.05455i
\(892\) −2.17863 12.3556i −0.0729460 0.413697i
\(893\) 2.01077 5.52456i 0.0672880 0.184872i
\(894\) 49.5216i 1.65625i
\(895\) 0 0
\(896\) 32.2808 + 18.6374i 1.07843 + 0.622630i
\(897\) 2.96718 16.8277i 0.0990711 0.561860i
\(898\) −5.98847 10.3723i −0.199838 0.346129i
\(899\) −31.0999 + 53.8665i −1.03724 + 1.79655i
\(900\) 0 0
\(901\) −17.3790 + 3.06439i −0.578978 + 0.102090i
\(902\) −40.1603 + 23.1866i −1.33719 + 0.772029i
\(903\) −17.5166 48.1265i −0.582917 1.60155i
\(904\) 4.11504 1.49775i 0.136864 0.0498145i
\(905\) 0 0
\(906\) −15.8400 18.8774i −0.526249 0.627159i
\(907\) −1.50821 1.79742i −0.0500793 0.0596822i 0.740423 0.672141i \(-0.234625\pi\)
−0.790503 + 0.612459i \(0.790181\pi\)
\(908\) −30.2254 5.32956i −1.00307 0.176868i
\(909\) −7.65137 + 2.78487i −0.253780 + 0.0923683i
\(910\) 0 0
\(911\) 3.92335 2.26514i 0.129986 0.0750476i −0.433597 0.901107i \(-0.642756\pi\)
0.563583 + 0.826059i \(0.309422\pi\)
\(912\) 15.7323 2.77403i 0.520949 0.0918573i
\(913\) 19.5489 + 16.4034i 0.646973 + 0.542875i
\(914\) 9.04245 15.6620i 0.299098 0.518052i
\(915\) 0 0
\(916\) −0.144196 + 0.817778i −0.00476438 + 0.0270201i
\(917\) −18.3637 10.6023i −0.606423 0.350118i
\(918\) 41.2997 + 15.0319i 1.36309 + 0.496126i
\(919\) 3.16709i 0.104473i −0.998635 0.0522363i \(-0.983365\pi\)
0.998635 0.0522363i \(-0.0166349\pi\)
\(920\) 0 0
\(921\) −6.13872 34.8144i −0.202278 1.14717i
\(922\) 28.7440 24.1191i 0.946633 0.794320i
\(923\) −44.2869 + 52.7791i −1.45772 + 1.73725i
\(924\) −31.1667 −1.02531
\(925\) 0 0
\(926\) −8.27135 −0.271814
\(927\) 15.9090 18.9596i 0.522519 0.622714i
\(928\) 34.9392 29.3175i 1.14694 0.962394i
\(929\) 7.41257 + 42.0387i 0.243198 + 1.37925i 0.824640 + 0.565658i \(0.191378\pi\)
−0.581441 + 0.813588i \(0.697511\pi\)
\(930\) 0 0
\(931\) 5.20748i 0.170668i
\(932\) −14.6851 5.34493i −0.481026 0.175079i
\(933\) 34.6632 + 20.0128i 1.13482 + 0.655190i
\(934\) 6.70758 38.0406i 0.219479 1.24473i
\(935\) 0 0
\(936\) −4.78517 + 8.28816i −0.156408 + 0.270907i
\(937\) −5.73390 4.81131i −0.187318 0.157179i 0.544306 0.838887i \(-0.316793\pi\)
−0.731624 + 0.681708i \(0.761237\pi\)
\(938\) −3.41263 + 0.601738i −0.111426 + 0.0196474i
\(939\) −32.5566 + 18.7966i −1.06245 + 0.613403i
\(940\) 0 0
\(941\) 21.0744 7.67044i 0.687005 0.250049i 0.0251526 0.999684i \(-0.491993\pi\)
0.661852 + 0.749634i \(0.269771\pi\)
\(942\) −85.5599 15.0865i −2.78769 0.491545i
\(943\) 6.71784 + 8.00601i 0.218763 + 0.260712i
\(944\) 4.28761 + 5.10977i 0.139550 + 0.166309i
\(945\) 0 0
\(946\) −55.8897 + 20.3422i −1.81713 + 0.661382i
\(947\) −3.38645 9.30421i −0.110045 0.302346i 0.872430 0.488738i \(-0.162543\pi\)
−0.982475 + 0.186392i \(0.940320\pi\)
\(948\) −3.63717 + 2.09992i −0.118130 + 0.0682022i
\(949\) 17.4492 3.07677i 0.566426 0.0998762i
\(950\) 0 0
\(951\) 10.6641 18.4708i 0.345808 0.598958i
\(952\) −17.9582 31.1045i −0.582028 1.00810i
\(953\) 1.49945 8.50379i 0.0485719 0.275465i −0.950843 0.309674i \(-0.899780\pi\)
0.999415 + 0.0342091i \(0.0108912\pi\)
\(954\) −4.78788 2.76429i −0.155013 0.0894971i
\(955\) 0 0
\(956\) 23.4617i 0.758804i
\(957\) 25.4903 70.0341i 0.823985 2.26388i
\(958\) 3.94685 + 22.3837i 0.127517 + 0.723185i
\(959\) 0.0284001 0.0238305i 0.000917086 0.000769526i
\(960\) 0 0
\(961\) −25.5568 −0.824411
\(962\) 35.9737 36.4046i 1.15984 1.17373i
\(963\) −17.5704 −0.566200
\(964\) 7.61320 9.07306i 0.245205 0.292224i
\(965\) 0 0
\(966\) 3.48858 + 19.7847i 0.112243 + 0.636562i
\(967\) −15.6983 + 43.1306i −0.504822 + 1.38699i 0.381693 + 0.924289i \(0.375341\pi\)
−0.886515 + 0.462699i \(0.846881\pi\)
\(968\) 13.2933i 0.427261i
\(969\) −20.6924 7.53140i −0.664735 0.241944i
\(970\) 0 0
\(971\) 4.23357 24.0098i 0.135862 0.770510i −0.838394 0.545064i \(-0.816505\pi\)
0.974256 0.225445i \(-0.0723837\pi\)
\(972\) 6.48647 + 11.2349i 0.208054 + 0.360359i
\(973\) 25.3474 43.9030i 0.812600 1.40746i
\(974\) 24.7891 + 20.8005i 0.794294 + 0.666492i
\(975\) 0 0
\(976\) 18.2425 10.5323i 0.583928 0.337131i
\(977\) −6.50697 17.8778i −0.208176 0.571960i 0.791031 0.611777i \(-0.209545\pi\)
−0.999207 + 0.0398165i \(0.987323\pi\)
\(978\) −5.23853 + 1.90667i −0.167510 + 0.0609686i
\(979\) −14.6859 2.58952i −0.469362 0.0827613i
\(980\) 0 0
\(981\) 12.0912 + 14.4098i 0.386043 + 0.460068i
\(982\) 38.7361 + 6.83022i 1.23612 + 0.217961i
\(983\) 37.8892 13.7905i 1.20848 0.439850i 0.342302 0.939590i \(-0.388794\pi\)
0.866175 + 0.499741i \(0.166571\pi\)
\(984\) −6.88542 18.9175i −0.219499 0.603069i
\(985\) 0 0
\(986\) −98.3319 + 17.3386i −3.13153 + 0.552173i
\(987\) −19.1588 16.0761i −0.609831 0.511709i
\(988\) 4.01154 6.94820i 0.127624 0.221052i
\(989\) 6.70211 + 11.6084i 0.213115 + 0.369126i
\(990\) 0 0
\(991\) 48.0133 + 27.7205i 1.52519 + 0.880570i 0.999554 + 0.0298609i \(0.00950644\pi\)
0.525637 + 0.850709i \(0.323827\pi\)
\(992\) 38.9710 + 14.1843i 1.23733 + 0.450351i
\(993\) 30.6211i 0.971730i
\(994\) 27.7054 76.1200i 0.878762 2.41438i
\(995\) 0 0
\(996\) 9.86624 8.27876i 0.312624 0.262323i
\(997\) 18.1206 21.5953i 0.573886 0.683930i −0.398538 0.917152i \(-0.630482\pi\)
0.972424 + 0.233222i \(0.0749268\pi\)
\(998\) 0.418255 0.0132396
\(999\) 5.85864 + 21.3554i 0.185359 + 0.675655i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 925.2.bb.d.151.10 yes 78
5.2 odd 4 925.2.ba.d.299.20 156
5.3 odd 4 925.2.ba.d.299.7 156
5.4 even 2 925.2.bb.c.151.4 78
37.25 even 18 inner 925.2.bb.d.876.10 yes 78
185.62 odd 36 925.2.ba.d.99.7 156
185.99 even 18 925.2.bb.c.876.4 yes 78
185.173 odd 36 925.2.ba.d.99.20 156
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
925.2.ba.d.99.7 156 185.62 odd 36
925.2.ba.d.99.20 156 185.173 odd 36
925.2.ba.d.299.7 156 5.3 odd 4
925.2.ba.d.299.20 156 5.2 odd 4
925.2.bb.c.151.4 78 5.4 even 2
925.2.bb.c.876.4 yes 78 185.99 even 18
925.2.bb.d.151.10 yes 78 1.1 even 1 trivial
925.2.bb.d.876.10 yes 78 37.25 even 18 inner