Properties

Label 925.2.b.g.149.5
Level $925$
Weight $2$
Character 925.149
Analytic conductor $7.386$
Analytic rank $0$
Dimension $10$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [925,2,Mod(149,925)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(925, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("925.149"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 925 = 5^{2} \cdot 37 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 925.b (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [10,0,0,-12,0,-4,0,0,-4,0,14] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.38616218697\)
Analytic rank: \(0\)
Dimension: \(10\)
Coefficient field: 10.0.8689006034944.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{10} - 2x^{9} + 2x^{8} + 10x^{7} + 26x^{6} - 4x^{5} + 6x^{4} + 22x^{3} + 25x^{2} + 10x + 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 185)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 149.5
Root \(-1.21974 + 1.21974i\) of defining polynomial
Character \(\chi\) \(=\) 925.149
Dual form 925.2.b.g.149.6

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-0.180152i q^{2} -3.06709i q^{3} +1.96755 q^{4} -0.552543 q^{6} -4.41500i q^{7} -0.714762i q^{8} -6.40702 q^{9} +4.27171 q^{11} -6.03463i q^{12} -2.79978i q^{13} -0.795373 q^{14} +3.80632 q^{16} +4.43948i q^{17} +1.15424i q^{18} -2.43507 q^{19} -13.5412 q^{21} -0.769559i q^{22} +5.77387i q^{23} -2.19224 q^{24} -0.504387 q^{26} +10.4496i q^{27} -8.68672i q^{28} -0.409254 q^{29} +7.79180 q^{31} -2.11524i q^{32} -13.1017i q^{33} +0.799782 q^{34} -12.6061 q^{36} +1.00000i q^{37} +0.438683i q^{38} -8.58717 q^{39} +0.757374 q^{41} +2.43948i q^{42} +2.19908i q^{43} +8.40479 q^{44} +1.04018 q^{46} +4.26487i q^{47} -11.6743i q^{48} -12.4922 q^{49} +13.6163 q^{51} -5.50870i q^{52} -0.137540i q^{53} +1.88253 q^{54} -3.15568 q^{56} +7.46857i q^{57} +0.0737281i q^{58} +3.07119 q^{59} -3.02909 q^{61} -1.40371i q^{62} +28.2870i q^{63} +7.23158 q^{64} -2.36030 q^{66} +11.4482i q^{67} +8.73487i q^{68} +17.7090 q^{69} -10.7144 q^{71} +4.57950i q^{72} +8.20680i q^{73} +0.180152 q^{74} -4.79111 q^{76} -18.8596i q^{77} +1.54700i q^{78} -7.11193 q^{79} +12.8289 q^{81} -0.136443i q^{82} -11.3625i q^{83} -26.6429 q^{84} +0.396170 q^{86} +1.25522i q^{87} -3.05326i q^{88} +16.2305 q^{89} -12.3610 q^{91} +11.3603i q^{92} -23.8981i q^{93} +0.768326 q^{94} -6.48763 q^{96} -18.3399i q^{97} +2.25051i q^{98} -27.3690 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 10 q - 12 q^{4} - 4 q^{6} - 4 q^{9} + 14 q^{11} - 8 q^{14} + 16 q^{16} - 28 q^{19} - 18 q^{21} - 24 q^{24} - 40 q^{26} - 4 q^{29} + 16 q^{31} - 24 q^{34} - 72 q^{36} - 24 q^{39} - 18 q^{41} - 36 q^{44}+ \cdots - 36 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/925\mathbb{Z}\right)^\times\).

\(n\) \(76\) \(852\)
\(\chi(n)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) − 0.180152i − 0.127387i −0.997970 0.0636934i \(-0.979712\pi\)
0.997970 0.0636934i \(-0.0202880\pi\)
\(3\) − 3.06709i − 1.77078i −0.464846 0.885392i \(-0.653890\pi\)
0.464846 0.885392i \(-0.346110\pi\)
\(4\) 1.96755 0.983773
\(5\) 0 0
\(6\) −0.552543 −0.225575
\(7\) − 4.41500i − 1.66871i −0.551224 0.834357i \(-0.685839\pi\)
0.551224 0.834357i \(-0.314161\pi\)
\(8\) − 0.714762i − 0.252707i
\(9\) −6.40702 −2.13567
\(10\) 0 0
\(11\) 4.27171 1.28797 0.643985 0.765038i \(-0.277280\pi\)
0.643985 + 0.765038i \(0.277280\pi\)
\(12\) − 6.03463i − 1.74205i
\(13\) − 2.79978i − 0.776520i −0.921550 0.388260i \(-0.873076\pi\)
0.921550 0.388260i \(-0.126924\pi\)
\(14\) −0.795373 −0.212572
\(15\) 0 0
\(16\) 3.80632 0.951581
\(17\) 4.43948i 1.07673i 0.842711 + 0.538366i \(0.180958\pi\)
−0.842711 + 0.538366i \(0.819042\pi\)
\(18\) 1.15424i 0.272057i
\(19\) −2.43507 −0.558643 −0.279321 0.960198i \(-0.590110\pi\)
−0.279321 + 0.960198i \(0.590110\pi\)
\(20\) 0 0
\(21\) −13.5412 −2.95493
\(22\) − 0.769559i − 0.164071i
\(23\) 5.77387i 1.20393i 0.798521 + 0.601967i \(0.205616\pi\)
−0.798521 + 0.601967i \(0.794384\pi\)
\(24\) −2.19224 −0.447489
\(25\) 0 0
\(26\) −0.504387 −0.0989184
\(27\) 10.4496i 2.01103i
\(28\) − 8.68672i − 1.64164i
\(29\) −0.409254 −0.0759967 −0.0379983 0.999278i \(-0.512098\pi\)
−0.0379983 + 0.999278i \(0.512098\pi\)
\(30\) 0 0
\(31\) 7.79180 1.39945 0.699724 0.714413i \(-0.253306\pi\)
0.699724 + 0.714413i \(0.253306\pi\)
\(32\) − 2.11524i − 0.373926i
\(33\) − 13.1017i − 2.28072i
\(34\) 0.799782 0.137161
\(35\) 0 0
\(36\) −12.6061 −2.10102
\(37\) 1.00000i 0.164399i
\(38\) 0.438683i 0.0711638i
\(39\) −8.58717 −1.37505
\(40\) 0 0
\(41\) 0.757374 0.118282 0.0591410 0.998250i \(-0.481164\pi\)
0.0591410 + 0.998250i \(0.481164\pi\)
\(42\) 2.43948i 0.376420i
\(43\) 2.19908i 0.335357i 0.985842 + 0.167679i \(0.0536271\pi\)
−0.985842 + 0.167679i \(0.946373\pi\)
\(44\) 8.40479 1.26707
\(45\) 0 0
\(46\) 1.04018 0.153366
\(47\) 4.26487i 0.622095i 0.950394 + 0.311048i \(0.100680\pi\)
−0.950394 + 0.311048i \(0.899320\pi\)
\(48\) − 11.6743i − 1.68504i
\(49\) −12.4922 −1.78461
\(50\) 0 0
\(51\) 13.6163 1.90666
\(52\) − 5.50870i − 0.763919i
\(53\) − 0.137540i − 0.0188926i −0.999955 0.00944630i \(-0.996993\pi\)
0.999955 0.00944630i \(-0.00300690\pi\)
\(54\) 1.88253 0.256179
\(55\) 0 0
\(56\) −3.15568 −0.421695
\(57\) 7.46857i 0.989236i
\(58\) 0.0737281i 0.00968098i
\(59\) 3.07119 0.399835 0.199918 0.979813i \(-0.435933\pi\)
0.199918 + 0.979813i \(0.435933\pi\)
\(60\) 0 0
\(61\) −3.02909 −0.387835 −0.193918 0.981018i \(-0.562119\pi\)
−0.193918 + 0.981018i \(0.562119\pi\)
\(62\) − 1.40371i − 0.178271i
\(63\) 28.2870i 3.56383i
\(64\) 7.23158 0.903948
\(65\) 0 0
\(66\) −2.36030 −0.290533
\(67\) 11.4482i 1.39862i 0.714819 + 0.699310i \(0.246509\pi\)
−0.714819 + 0.699310i \(0.753491\pi\)
\(68\) 8.73487i 1.05926i
\(69\) 17.7090 2.13191
\(70\) 0 0
\(71\) −10.7144 −1.27156 −0.635781 0.771870i \(-0.719322\pi\)
−0.635781 + 0.771870i \(0.719322\pi\)
\(72\) 4.57950i 0.539699i
\(73\) 8.20680i 0.960534i 0.877122 + 0.480267i \(0.159460\pi\)
−0.877122 + 0.480267i \(0.840540\pi\)
\(74\) 0.180152 0.0209423
\(75\) 0 0
\(76\) −4.79111 −0.549578
\(77\) − 18.8596i − 2.14925i
\(78\) 1.54700i 0.175163i
\(79\) −7.11193 −0.800155 −0.400077 0.916481i \(-0.631017\pi\)
−0.400077 + 0.916481i \(0.631017\pi\)
\(80\) 0 0
\(81\) 12.8289 1.42543
\(82\) − 0.136443i − 0.0150676i
\(83\) − 11.3625i − 1.24719i −0.781746 0.623597i \(-0.785671\pi\)
0.781746 0.623597i \(-0.214329\pi\)
\(84\) −26.6429 −2.90698
\(85\) 0 0
\(86\) 0.396170 0.0427201
\(87\) 1.25522i 0.134574i
\(88\) − 3.05326i − 0.325479i
\(89\) 16.2305 1.72043 0.860214 0.509933i \(-0.170330\pi\)
0.860214 + 0.509933i \(0.170330\pi\)
\(90\) 0 0
\(91\) −12.3610 −1.29579
\(92\) 11.3603i 1.18440i
\(93\) − 23.8981i − 2.47812i
\(94\) 0.768326 0.0792468
\(95\) 0 0
\(96\) −6.48763 −0.662141
\(97\) − 18.3399i − 1.86213i −0.364850 0.931066i \(-0.618880\pi\)
0.364850 0.931066i \(-0.381120\pi\)
\(98\) 2.25051i 0.227336i
\(99\) −27.3690 −2.75068
\(100\) 0 0
\(101\) −11.1319 −1.10767 −0.553835 0.832627i \(-0.686836\pi\)
−0.553835 + 0.832627i \(0.686836\pi\)
\(102\) − 2.45300i − 0.242883i
\(103\) 6.78105i 0.668157i 0.942545 + 0.334079i \(0.108425\pi\)
−0.942545 + 0.334079i \(0.891575\pi\)
\(104\) −2.00118 −0.196232
\(105\) 0 0
\(106\) −0.0247782 −0.00240667
\(107\) − 0.536583i − 0.0518734i −0.999664 0.0259367i \(-0.991743\pi\)
0.999664 0.0259367i \(-0.00825684\pi\)
\(108\) 20.5601i 1.97840i
\(109\) −9.53465 −0.913254 −0.456627 0.889658i \(-0.650943\pi\)
−0.456627 + 0.889658i \(0.650943\pi\)
\(110\) 0 0
\(111\) 3.06709 0.291115
\(112\) − 16.8049i − 1.58792i
\(113\) 9.16830i 0.862481i 0.902237 + 0.431240i \(0.141924\pi\)
−0.902237 + 0.431240i \(0.858076\pi\)
\(114\) 1.34548 0.126016
\(115\) 0 0
\(116\) −0.805227 −0.0747634
\(117\) 17.9383i 1.65839i
\(118\) − 0.553282i − 0.0509338i
\(119\) 19.6003 1.79676
\(120\) 0 0
\(121\) 7.24754 0.658867
\(122\) 0.545697i 0.0494051i
\(123\) − 2.32293i − 0.209452i
\(124\) 15.3307 1.37674
\(125\) 0 0
\(126\) 5.09597 0.453985
\(127\) − 9.32621i − 0.827567i −0.910375 0.413784i \(-0.864207\pi\)
0.910375 0.413784i \(-0.135793\pi\)
\(128\) − 5.53327i − 0.489077i
\(129\) 6.74478 0.593845
\(130\) 0 0
\(131\) 15.6006 1.36303 0.681515 0.731804i \(-0.261321\pi\)
0.681515 + 0.731804i \(0.261321\pi\)
\(132\) − 25.7782i − 2.24371i
\(133\) 10.7508i 0.932215i
\(134\) 2.06242 0.178166
\(135\) 0 0
\(136\) 3.17317 0.272097
\(137\) 1.01986i 0.0871326i 0.999051 + 0.0435663i \(0.0138720\pi\)
−0.999051 + 0.0435663i \(0.986128\pi\)
\(138\) − 3.19031i − 0.271577i
\(139\) −7.08913 −0.601292 −0.300646 0.953736i \(-0.597202\pi\)
−0.300646 + 0.953736i \(0.597202\pi\)
\(140\) 0 0
\(141\) 13.0807 1.10160
\(142\) 1.93022i 0.161980i
\(143\) − 11.9599i − 1.00013i
\(144\) −24.3872 −2.03227
\(145\) 0 0
\(146\) 1.47847 0.122359
\(147\) 38.3148i 3.16015i
\(148\) 1.96755i 0.161731i
\(149\) 15.5572 1.27449 0.637246 0.770660i \(-0.280074\pi\)
0.637246 + 0.770660i \(0.280074\pi\)
\(150\) 0 0
\(151\) −4.00882 −0.326233 −0.163117 0.986607i \(-0.552155\pi\)
−0.163117 + 0.986607i \(0.552155\pi\)
\(152\) 1.74049i 0.141173i
\(153\) − 28.4438i − 2.29955i
\(154\) −3.39761 −0.273787
\(155\) 0 0
\(156\) −16.8957 −1.35273
\(157\) − 3.06585i − 0.244682i −0.992488 0.122341i \(-0.960960\pi\)
0.992488 0.122341i \(-0.0390401\pi\)
\(158\) 1.28123i 0.101929i
\(159\) −0.421848 −0.0334547
\(160\) 0 0
\(161\) 25.4916 2.00902
\(162\) − 2.31115i − 0.181581i
\(163\) 2.90600i 0.227616i 0.993503 + 0.113808i \(0.0363048\pi\)
−0.993503 + 0.113808i \(0.963695\pi\)
\(164\) 1.49017 0.116363
\(165\) 0 0
\(166\) −2.04698 −0.158876
\(167\) 23.5324i 1.82099i 0.413519 + 0.910495i \(0.364299\pi\)
−0.413519 + 0.910495i \(0.635701\pi\)
\(168\) 9.67874i 0.746731i
\(169\) 5.16122 0.397017
\(170\) 0 0
\(171\) 15.6015 1.19308
\(172\) 4.32680i 0.329915i
\(173\) − 18.6902i − 1.42099i −0.703703 0.710495i \(-0.748471\pi\)
0.703703 0.710495i \(-0.251529\pi\)
\(174\) 0.226131 0.0171429
\(175\) 0 0
\(176\) 16.2595 1.22561
\(177\) − 9.41962i − 0.708022i
\(178\) − 2.92396i − 0.219160i
\(179\) 1.22059 0.0912310 0.0456155 0.998959i \(-0.485475\pi\)
0.0456155 + 0.998959i \(0.485475\pi\)
\(180\) 0 0
\(181\) −23.8124 −1.76996 −0.884982 0.465626i \(-0.845829\pi\)
−0.884982 + 0.465626i \(0.845829\pi\)
\(182\) 2.22687i 0.165067i
\(183\) 9.29048i 0.686772i
\(184\) 4.12694 0.304242
\(185\) 0 0
\(186\) −4.30530 −0.315680
\(187\) 18.9642i 1.38680i
\(188\) 8.39132i 0.612000i
\(189\) 46.1352 3.35584
\(190\) 0 0
\(191\) 14.9462 1.08147 0.540736 0.841192i \(-0.318146\pi\)
0.540736 + 0.841192i \(0.318146\pi\)
\(192\) − 22.1799i − 1.60070i
\(193\) − 18.9075i − 1.36099i −0.732753 0.680495i \(-0.761765\pi\)
0.732753 0.680495i \(-0.238235\pi\)
\(194\) −3.30397 −0.237211
\(195\) 0 0
\(196\) −24.5791 −1.75565
\(197\) − 3.72602i − 0.265468i −0.991152 0.132734i \(-0.957624\pi\)
0.991152 0.132734i \(-0.0423756\pi\)
\(198\) 4.93058i 0.350401i
\(199\) 18.7237 1.32729 0.663645 0.748048i \(-0.269009\pi\)
0.663645 + 0.748048i \(0.269009\pi\)
\(200\) 0 0
\(201\) 35.1126 2.47665
\(202\) 2.00544i 0.141103i
\(203\) 1.80686i 0.126817i
\(204\) 26.7906 1.87572
\(205\) 0 0
\(206\) 1.22162 0.0851145
\(207\) − 36.9933i − 2.57121i
\(208\) − 10.6569i − 0.738922i
\(209\) −10.4019 −0.719516
\(210\) 0 0
\(211\) −13.3971 −0.922295 −0.461148 0.887323i \(-0.652562\pi\)
−0.461148 + 0.887323i \(0.652562\pi\)
\(212\) − 0.270617i − 0.0185860i
\(213\) 32.8619i 2.25166i
\(214\) −0.0966666 −0.00660800
\(215\) 0 0
\(216\) 7.46900 0.508201
\(217\) − 34.4008i − 2.33528i
\(218\) 1.71769i 0.116337i
\(219\) 25.1710 1.70090
\(220\) 0 0
\(221\) 12.4296 0.836103
\(222\) − 0.552543i − 0.0370842i
\(223\) − 17.4471i − 1.16834i −0.811630 0.584172i \(-0.801419\pi\)
0.811630 0.584172i \(-0.198581\pi\)
\(224\) −9.33880 −0.623975
\(225\) 0 0
\(226\) 1.65169 0.109869
\(227\) − 20.4988i − 1.36056i −0.732954 0.680278i \(-0.761859\pi\)
0.732954 0.680278i \(-0.238141\pi\)
\(228\) 14.6947i 0.973183i
\(229\) 14.0698 0.929756 0.464878 0.885375i \(-0.346098\pi\)
0.464878 + 0.885375i \(0.346098\pi\)
\(230\) 0 0
\(231\) −57.8441 −3.80586
\(232\) 0.292520i 0.0192049i
\(233\) 15.1114i 0.989983i 0.868898 + 0.494992i \(0.164829\pi\)
−0.868898 + 0.494992i \(0.835171\pi\)
\(234\) 3.23162 0.211258
\(235\) 0 0
\(236\) 6.04271 0.393347
\(237\) 21.8129i 1.41690i
\(238\) − 3.53104i − 0.228883i
\(239\) −0.0747636 −0.00483606 −0.00241803 0.999997i \(-0.500770\pi\)
−0.00241803 + 0.999997i \(0.500770\pi\)
\(240\) 0 0
\(241\) 20.4873 1.31971 0.659853 0.751395i \(-0.270619\pi\)
0.659853 + 0.751395i \(0.270619\pi\)
\(242\) − 1.30566i − 0.0839311i
\(243\) − 7.99836i − 0.513095i
\(244\) −5.95987 −0.381541
\(245\) 0 0
\(246\) −0.418482 −0.0266814
\(247\) 6.81766i 0.433797i
\(248\) − 5.56929i − 0.353650i
\(249\) −34.8497 −2.20851
\(250\) 0 0
\(251\) −6.85355 −0.432592 −0.216296 0.976328i \(-0.569398\pi\)
−0.216296 + 0.976328i \(0.569398\pi\)
\(252\) 55.6560i 3.50600i
\(253\) 24.6643i 1.55063i
\(254\) −1.68014 −0.105421
\(255\) 0 0
\(256\) 13.4663 0.841646
\(257\) 10.4751i 0.653422i 0.945124 + 0.326711i \(0.105940\pi\)
−0.945124 + 0.326711i \(0.894060\pi\)
\(258\) − 1.21509i − 0.0756481i
\(259\) 4.41500 0.274335
\(260\) 0 0
\(261\) 2.62210 0.162304
\(262\) − 2.81048i − 0.173632i
\(263\) 5.99787i 0.369844i 0.982753 + 0.184922i \(0.0592033\pi\)
−0.982753 + 0.184922i \(0.940797\pi\)
\(264\) −9.36461 −0.576352
\(265\) 0 0
\(266\) 1.93679 0.118752
\(267\) − 49.7803i − 3.04651i
\(268\) 22.5248i 1.37592i
\(269\) 2.32781 0.141929 0.0709646 0.997479i \(-0.477392\pi\)
0.0709646 + 0.997479i \(0.477392\pi\)
\(270\) 0 0
\(271\) −6.13081 −0.372420 −0.186210 0.982510i \(-0.559620\pi\)
−0.186210 + 0.982510i \(0.559620\pi\)
\(272\) 16.8981i 1.02460i
\(273\) 37.9124i 2.29456i
\(274\) 0.183730 0.0110996
\(275\) 0 0
\(276\) 34.8432 2.09731
\(277\) 8.30966i 0.499279i 0.968339 + 0.249639i \(0.0803121\pi\)
−0.968339 + 0.249639i \(0.919688\pi\)
\(278\) 1.27712i 0.0765967i
\(279\) −49.9223 −2.98877
\(280\) 0 0
\(281\) −5.01313 −0.299058 −0.149529 0.988757i \(-0.547776\pi\)
−0.149529 + 0.988757i \(0.547776\pi\)
\(282\) − 2.35652i − 0.140329i
\(283\) 12.5308i 0.744876i 0.928057 + 0.372438i \(0.121478\pi\)
−0.928057 + 0.372438i \(0.878522\pi\)
\(284\) −21.0810 −1.25093
\(285\) 0 0
\(286\) −2.15460 −0.127404
\(287\) − 3.34381i − 0.197379i
\(288\) 13.5524i 0.798583i
\(289\) −2.70896 −0.159351
\(290\) 0 0
\(291\) −56.2500 −3.29743
\(292\) 16.1473i 0.944947i
\(293\) − 6.13130i − 0.358194i −0.983831 0.179097i \(-0.942682\pi\)
0.983831 0.179097i \(-0.0573176\pi\)
\(294\) 6.90250 0.402562
\(295\) 0 0
\(296\) 0.714762 0.0415447
\(297\) 44.6379i 2.59015i
\(298\) − 2.80266i − 0.162354i
\(299\) 16.1656 0.934879
\(300\) 0 0
\(301\) 9.70896 0.559615
\(302\) 0.722198i 0.0415578i
\(303\) 34.1426i 1.96144i
\(304\) −9.26866 −0.531594
\(305\) 0 0
\(306\) −5.12422 −0.292932
\(307\) − 12.6426i − 0.721552i −0.932652 0.360776i \(-0.882512\pi\)
0.932652 0.360776i \(-0.117488\pi\)
\(308\) − 37.1072i − 2.11438i
\(309\) 20.7981 1.18316
\(310\) 0 0
\(311\) 8.05133 0.456549 0.228275 0.973597i \(-0.426692\pi\)
0.228275 + 0.973597i \(0.426692\pi\)
\(312\) 6.13779i 0.347484i
\(313\) − 2.99549i − 0.169315i −0.996410 0.0846576i \(-0.973020\pi\)
0.996410 0.0846576i \(-0.0269796\pi\)
\(314\) −0.552321 −0.0311693
\(315\) 0 0
\(316\) −13.9930 −0.787170
\(317\) − 2.24377i − 0.126023i −0.998013 0.0630113i \(-0.979930\pi\)
0.998013 0.0630113i \(-0.0200704\pi\)
\(318\) 0.0759969i 0.00426169i
\(319\) −1.74822 −0.0978814
\(320\) 0 0
\(321\) −1.64575 −0.0918566
\(322\) − 4.59238i − 0.255923i
\(323\) − 10.8104i − 0.601508i
\(324\) 25.2414 1.40230
\(325\) 0 0
\(326\) 0.523523 0.0289952
\(327\) 29.2436i 1.61718i
\(328\) − 0.541343i − 0.0298906i
\(329\) 18.8294 1.03810
\(330\) 0 0
\(331\) 1.73477 0.0953518 0.0476759 0.998863i \(-0.484819\pi\)
0.0476759 + 0.998863i \(0.484819\pi\)
\(332\) − 22.3562i − 1.22696i
\(333\) − 6.40702i − 0.351103i
\(334\) 4.23941 0.231970
\(335\) 0 0
\(336\) −51.5422 −2.81186
\(337\) 29.9565i 1.63183i 0.578169 + 0.815917i \(0.303768\pi\)
−0.578169 + 0.815917i \(0.696232\pi\)
\(338\) − 0.929806i − 0.0505748i
\(339\) 28.1200 1.52727
\(340\) 0 0
\(341\) 33.2844 1.80245
\(342\) − 2.81065i − 0.151983i
\(343\) 24.2483i 1.30928i
\(344\) 1.57182 0.0847470
\(345\) 0 0
\(346\) −3.36708 −0.181015
\(347\) 14.9978i 0.805123i 0.915393 + 0.402561i \(0.131880\pi\)
−0.915393 + 0.402561i \(0.868120\pi\)
\(348\) 2.46970i 0.132390i
\(349\) 7.29913 0.390714 0.195357 0.980732i \(-0.437414\pi\)
0.195357 + 0.980732i \(0.437414\pi\)
\(350\) 0 0
\(351\) 29.2567 1.56161
\(352\) − 9.03571i − 0.481605i
\(353\) − 12.6061i − 0.670957i −0.942048 0.335479i \(-0.891102\pi\)
0.942048 0.335479i \(-0.108898\pi\)
\(354\) −1.69697 −0.0901927
\(355\) 0 0
\(356\) 31.9342 1.69251
\(357\) − 60.1158i − 3.18167i
\(358\) − 0.219892i − 0.0116216i
\(359\) −21.5358 −1.13661 −0.568307 0.822817i \(-0.692401\pi\)
−0.568307 + 0.822817i \(0.692401\pi\)
\(360\) 0 0
\(361\) −13.0704 −0.687918
\(362\) 4.28986i 0.225470i
\(363\) − 22.2288i − 1.16671i
\(364\) −24.3209 −1.27476
\(365\) 0 0
\(366\) 1.67370 0.0874857
\(367\) − 20.1463i − 1.05163i −0.850600 0.525814i \(-0.823761\pi\)
0.850600 0.525814i \(-0.176239\pi\)
\(368\) 21.9772i 1.14564i
\(369\) −4.85251 −0.252612
\(370\) 0 0
\(371\) −0.607241 −0.0315264
\(372\) − 47.0207i − 2.43791i
\(373\) 9.88395i 0.511772i 0.966707 + 0.255886i \(0.0823671\pi\)
−0.966707 + 0.255886i \(0.917633\pi\)
\(374\) 3.41644 0.176660
\(375\) 0 0
\(376\) 3.04837 0.157208
\(377\) 1.14582i 0.0590129i
\(378\) − 8.31135i − 0.427490i
\(379\) −26.5438 −1.36346 −0.681732 0.731602i \(-0.738773\pi\)
−0.681732 + 0.731602i \(0.738773\pi\)
\(380\) 0 0
\(381\) −28.6043 −1.46544
\(382\) − 2.69260i − 0.137765i
\(383\) 1.43834i 0.0734959i 0.999325 + 0.0367479i \(0.0116999\pi\)
−0.999325 + 0.0367479i \(0.988300\pi\)
\(384\) −16.9710 −0.866049
\(385\) 0 0
\(386\) −3.40623 −0.173372
\(387\) − 14.0896i − 0.716214i
\(388\) − 36.0845i − 1.83192i
\(389\) −28.7600 −1.45819 −0.729094 0.684414i \(-0.760058\pi\)
−0.729094 + 0.684414i \(0.760058\pi\)
\(390\) 0 0
\(391\) −25.6330 −1.29631
\(392\) 8.92899i 0.450982i
\(393\) − 47.8484i − 2.41363i
\(394\) −0.671250 −0.0338171
\(395\) 0 0
\(396\) −53.8497 −2.70605
\(397\) − 33.8486i − 1.69881i −0.527740 0.849406i \(-0.676960\pi\)
0.527740 0.849406i \(-0.323040\pi\)
\(398\) − 3.37312i − 0.169079i
\(399\) 32.9737 1.65075
\(400\) 0 0
\(401\) −20.7788 −1.03764 −0.518822 0.854883i \(-0.673629\pi\)
−0.518822 + 0.854883i \(0.673629\pi\)
\(402\) − 6.32562i − 0.315493i
\(403\) − 21.8153i − 1.08670i
\(404\) −21.9026 −1.08970
\(405\) 0 0
\(406\) 0.325510 0.0161548
\(407\) 4.27171i 0.211741i
\(408\) − 9.73239i − 0.481825i
\(409\) 3.46191 0.171180 0.0855902 0.996330i \(-0.472722\pi\)
0.0855902 + 0.996330i \(0.472722\pi\)
\(410\) 0 0
\(411\) 3.12800 0.154293
\(412\) 13.3420i 0.657315i
\(413\) − 13.5593i − 0.667211i
\(414\) −6.66443 −0.327539
\(415\) 0 0
\(416\) −5.92222 −0.290361
\(417\) 21.7430i 1.06476i
\(418\) 1.87393i 0.0916569i
\(419\) 18.7259 0.914818 0.457409 0.889256i \(-0.348777\pi\)
0.457409 + 0.889256i \(0.348777\pi\)
\(420\) 0 0
\(421\) 1.91518 0.0933404 0.0466702 0.998910i \(-0.485139\pi\)
0.0466702 + 0.998910i \(0.485139\pi\)
\(422\) 2.41352i 0.117488i
\(423\) − 27.3251i − 1.32859i
\(424\) −0.0983086 −0.00477429
\(425\) 0 0
\(426\) 5.92015 0.286832
\(427\) 13.3734i 0.647186i
\(428\) − 1.05575i − 0.0510317i
\(429\) −36.6820 −1.77102
\(430\) 0 0
\(431\) 6.17915 0.297639 0.148820 0.988864i \(-0.452453\pi\)
0.148820 + 0.988864i \(0.452453\pi\)
\(432\) 39.7747i 1.91366i
\(433\) − 11.7275i − 0.563588i −0.959475 0.281794i \(-0.909071\pi\)
0.959475 0.281794i \(-0.0909294\pi\)
\(434\) −6.19739 −0.297484
\(435\) 0 0
\(436\) −18.7599 −0.898434
\(437\) − 14.0598i − 0.672570i
\(438\) − 4.53461i − 0.216672i
\(439\) 18.4724 0.881640 0.440820 0.897595i \(-0.354688\pi\)
0.440820 + 0.897595i \(0.354688\pi\)
\(440\) 0 0
\(441\) 80.0381 3.81134
\(442\) − 2.23922i − 0.106509i
\(443\) 3.81261i 0.181142i 0.995890 + 0.0905712i \(0.0288693\pi\)
−0.995890 + 0.0905712i \(0.971131\pi\)
\(444\) 6.03463 0.286391
\(445\) 0 0
\(446\) −3.14313 −0.148832
\(447\) − 47.7152i − 2.25685i
\(448\) − 31.9275i − 1.50843i
\(449\) 4.81563 0.227264 0.113632 0.993523i \(-0.463752\pi\)
0.113632 + 0.993523i \(0.463752\pi\)
\(450\) 0 0
\(451\) 3.23529 0.152344
\(452\) 18.0390i 0.848485i
\(453\) 12.2954i 0.577688i
\(454\) −3.69291 −0.173317
\(455\) 0 0
\(456\) 5.33825 0.249986
\(457\) 27.2012i 1.27242i 0.771516 + 0.636210i \(0.219499\pi\)
−0.771516 + 0.636210i \(0.780501\pi\)
\(458\) − 2.53470i − 0.118439i
\(459\) −46.3909 −2.16534
\(460\) 0 0
\(461\) −40.8432 −1.90226 −0.951128 0.308796i \(-0.900074\pi\)
−0.951128 + 0.308796i \(0.900074\pi\)
\(462\) 10.4208i 0.484817i
\(463\) 34.8233i 1.61837i 0.587551 + 0.809187i \(0.300092\pi\)
−0.587551 + 0.809187i \(0.699908\pi\)
\(464\) −1.55776 −0.0723170
\(465\) 0 0
\(466\) 2.72236 0.126111
\(467\) 9.38939i 0.434489i 0.976117 + 0.217245i \(0.0697069\pi\)
−0.976117 + 0.217245i \(0.930293\pi\)
\(468\) 35.2943i 1.63148i
\(469\) 50.5438 2.33390
\(470\) 0 0
\(471\) −9.40324 −0.433278
\(472\) − 2.19517i − 0.101041i
\(473\) 9.39386i 0.431930i
\(474\) 3.92965 0.180495
\(475\) 0 0
\(476\) 38.5645 1.76760
\(477\) 0.881224i 0.0403485i
\(478\) 0.0134688i 0 0.000616050i
\(479\) −21.0154 −0.960217 −0.480109 0.877209i \(-0.659403\pi\)
−0.480109 + 0.877209i \(0.659403\pi\)
\(480\) 0 0
\(481\) 2.79978 0.127659
\(482\) − 3.69084i − 0.168113i
\(483\) − 78.1851i − 3.55755i
\(484\) 14.2599 0.648176
\(485\) 0 0
\(486\) −1.44092 −0.0653616
\(487\) 35.7633i 1.62059i 0.586023 + 0.810294i \(0.300693\pi\)
−0.586023 + 0.810294i \(0.699307\pi\)
\(488\) 2.16508i 0.0980085i
\(489\) 8.91296 0.403058
\(490\) 0 0
\(491\) 15.0742 0.680288 0.340144 0.940373i \(-0.389524\pi\)
0.340144 + 0.940373i \(0.389524\pi\)
\(492\) − 4.57048i − 0.206053i
\(493\) − 1.81688i − 0.0818280i
\(494\) 1.22822 0.0552601
\(495\) 0 0
\(496\) 29.6581 1.33169
\(497\) 47.3040i 2.12187i
\(498\) 6.27826i 0.281335i
\(499\) −32.9424 −1.47470 −0.737352 0.675509i \(-0.763924\pi\)
−0.737352 + 0.675509i \(0.763924\pi\)
\(500\) 0 0
\(501\) 72.1759 3.22458
\(502\) 1.23468i 0.0551066i
\(503\) − 8.61983i − 0.384339i −0.981362 0.192170i \(-0.938448\pi\)
0.981362 0.192170i \(-0.0615524\pi\)
\(504\) 20.2185 0.900603
\(505\) 0 0
\(506\) 4.44333 0.197530
\(507\) − 15.8299i − 0.703031i
\(508\) − 18.3497i − 0.814138i
\(509\) −37.3100 −1.65374 −0.826869 0.562395i \(-0.809880\pi\)
−0.826869 + 0.562395i \(0.809880\pi\)
\(510\) 0 0
\(511\) 36.2331 1.60286
\(512\) − 13.4925i − 0.596291i
\(513\) − 25.4456i − 1.12345i
\(514\) 1.88712 0.0832374
\(515\) 0 0
\(516\) 13.2707 0.584208
\(517\) 18.2183i 0.801240i
\(518\) − 0.795373i − 0.0349467i
\(519\) −57.3245 −2.51626
\(520\) 0 0
\(521\) −18.6417 −0.816710 −0.408355 0.912823i \(-0.633897\pi\)
−0.408355 + 0.912823i \(0.633897\pi\)
\(522\) − 0.472378i − 0.0206754i
\(523\) 6.56533i 0.287082i 0.989644 + 0.143541i \(0.0458489\pi\)
−0.989644 + 0.143541i \(0.954151\pi\)
\(524\) 30.6949 1.34091
\(525\) 0 0
\(526\) 1.08053 0.0471133
\(527\) 34.5915i 1.50683i
\(528\) − 49.8694i − 2.17029i
\(529\) −10.3376 −0.449459
\(530\) 0 0
\(531\) −19.6772 −0.853918
\(532\) 21.1527i 0.917088i
\(533\) − 2.12048i − 0.0918483i
\(534\) −8.96804 −0.388085
\(535\) 0 0
\(536\) 8.18274 0.353441
\(537\) − 3.74365i − 0.161550i
\(538\) − 0.419361i − 0.0180799i
\(539\) −53.3633 −2.29852
\(540\) 0 0
\(541\) 5.25295 0.225842 0.112921 0.993604i \(-0.463979\pi\)
0.112921 + 0.993604i \(0.463979\pi\)
\(542\) 1.10448i 0.0474414i
\(543\) 73.0348i 3.13422i
\(544\) 9.39057 0.402617
\(545\) 0 0
\(546\) 6.83000 0.292297
\(547\) − 37.4845i − 1.60272i −0.598181 0.801361i \(-0.704110\pi\)
0.598181 0.801361i \(-0.295890\pi\)
\(548\) 2.00662i 0.0857187i
\(549\) 19.4074 0.828289
\(550\) 0 0
\(551\) 0.996563 0.0424550
\(552\) − 12.6577i − 0.538747i
\(553\) 31.3992i 1.33523i
\(554\) 1.49700 0.0636016
\(555\) 0 0
\(556\) −13.9482 −0.591534
\(557\) − 12.2789i − 0.520275i −0.965572 0.260138i \(-0.916232\pi\)
0.965572 0.260138i \(-0.0837679\pi\)
\(558\) 8.99361i 0.380730i
\(559\) 6.15695 0.260411
\(560\) 0 0
\(561\) 58.1648 2.45572
\(562\) 0.903127i 0.0380961i
\(563\) 20.4994i 0.863948i 0.901886 + 0.431974i \(0.142183\pi\)
−0.901886 + 0.431974i \(0.857817\pi\)
\(564\) 25.7369 1.08372
\(565\) 0 0
\(566\) 2.25744 0.0948874
\(567\) − 56.6395i − 2.37864i
\(568\) 7.65823i 0.321332i
\(569\) −1.60123 −0.0671269 −0.0335634 0.999437i \(-0.510686\pi\)
−0.0335634 + 0.999437i \(0.510686\pi\)
\(570\) 0 0
\(571\) −41.8238 −1.75027 −0.875136 0.483877i \(-0.839228\pi\)
−0.875136 + 0.483877i \(0.839228\pi\)
\(572\) − 23.5316i − 0.983905i
\(573\) − 45.8414i − 1.91505i
\(574\) −0.602395 −0.0251435
\(575\) 0 0
\(576\) −46.3329 −1.93054
\(577\) 14.9405i 0.621981i 0.950413 + 0.310991i \(0.100661\pi\)
−0.950413 + 0.310991i \(0.899339\pi\)
\(578\) 0.488025i 0.0202992i
\(579\) −57.9909 −2.41002
\(580\) 0 0
\(581\) −50.1654 −2.08121
\(582\) 10.1336i 0.420050i
\(583\) − 0.587533i − 0.0243331i
\(584\) 5.86591 0.242733
\(585\) 0 0
\(586\) −1.10457 −0.0456293
\(587\) 32.8499i 1.35586i 0.735126 + 0.677930i \(0.237123\pi\)
−0.735126 + 0.677930i \(0.762877\pi\)
\(588\) 75.3861i 3.10887i
\(589\) −18.9736 −0.781792
\(590\) 0 0
\(591\) −11.4280 −0.470086
\(592\) 3.80632i 0.156439i
\(593\) 39.7259i 1.63135i 0.578512 + 0.815674i \(0.303634\pi\)
−0.578512 + 0.815674i \(0.696366\pi\)
\(594\) 8.04161 0.329951
\(595\) 0 0
\(596\) 30.6094 1.25381
\(597\) − 57.4273i − 2.35034i
\(598\) − 2.91227i − 0.119091i
\(599\) 10.4669 0.427668 0.213834 0.976870i \(-0.431405\pi\)
0.213834 + 0.976870i \(0.431405\pi\)
\(600\) 0 0
\(601\) −8.56503 −0.349375 −0.174687 0.984624i \(-0.555891\pi\)
−0.174687 + 0.984624i \(0.555891\pi\)
\(602\) − 1.74909i − 0.0712876i
\(603\) − 73.3489i − 2.98700i
\(604\) −7.88753 −0.320939
\(605\) 0 0
\(606\) 6.15087 0.249862
\(607\) − 8.90888i − 0.361600i −0.983520 0.180800i \(-0.942131\pi\)
0.983520 0.180800i \(-0.0578687\pi\)
\(608\) 5.15076i 0.208891i
\(609\) 5.54180 0.224565
\(610\) 0 0
\(611\) 11.9407 0.483069
\(612\) − 55.9645i − 2.26223i
\(613\) − 10.5868i − 0.427598i −0.976878 0.213799i \(-0.931416\pi\)
0.976878 0.213799i \(-0.0685837\pi\)
\(614\) −2.27760 −0.0919163
\(615\) 0 0
\(616\) −13.4802 −0.543131
\(617\) 6.83972i 0.275357i 0.990477 + 0.137678i \(0.0439641\pi\)
−0.990477 + 0.137678i \(0.956036\pi\)
\(618\) − 3.74682i − 0.150719i
\(619\) 15.5577 0.625318 0.312659 0.949865i \(-0.398780\pi\)
0.312659 + 0.949865i \(0.398780\pi\)
\(620\) 0 0
\(621\) −60.3348 −2.42115
\(622\) − 1.45047i − 0.0581584i
\(623\) − 71.6576i − 2.87090i
\(624\) −32.6856 −1.30847
\(625\) 0 0
\(626\) −0.539645 −0.0215685
\(627\) 31.9036i 1.27411i
\(628\) − 6.03221i − 0.240711i
\(629\) −4.43948 −0.177014
\(630\) 0 0
\(631\) 12.0975 0.481596 0.240798 0.970575i \(-0.422591\pi\)
0.240798 + 0.970575i \(0.422591\pi\)
\(632\) 5.08334i 0.202204i
\(633\) 41.0901i 1.63319i
\(634\) −0.404220 −0.0160536
\(635\) 0 0
\(636\) −0.830005 −0.0329118
\(637\) 34.9756i 1.38578i
\(638\) 0.314946i 0.0124688i
\(639\) 68.6472 2.71564
\(640\) 0 0
\(641\) −39.4179 −1.55691 −0.778457 0.627698i \(-0.783997\pi\)
−0.778457 + 0.627698i \(0.783997\pi\)
\(642\) 0.296485i 0.0117013i
\(643\) − 2.80810i − 0.110741i −0.998466 0.0553704i \(-0.982366\pi\)
0.998466 0.0553704i \(-0.0176340\pi\)
\(644\) 50.1560 1.97642
\(645\) 0 0
\(646\) −1.94752 −0.0766243
\(647\) 47.0232i 1.84867i 0.381577 + 0.924337i \(0.375381\pi\)
−0.381577 + 0.924337i \(0.624619\pi\)
\(648\) − 9.16959i − 0.360216i
\(649\) 13.1193 0.514976
\(650\) 0 0
\(651\) −105.510 −4.13528
\(652\) 5.71769i 0.223922i
\(653\) 21.7426i 0.850852i 0.904993 + 0.425426i \(0.139876\pi\)
−0.904993 + 0.425426i \(0.860124\pi\)
\(654\) 5.26830 0.206007
\(655\) 0 0
\(656\) 2.88281 0.112555
\(657\) − 52.5812i − 2.05139i
\(658\) − 3.39216i − 0.132240i
\(659\) 26.3436 1.02620 0.513100 0.858329i \(-0.328497\pi\)
0.513100 + 0.858329i \(0.328497\pi\)
\(660\) 0 0
\(661\) 20.5259 0.798364 0.399182 0.916872i \(-0.369294\pi\)
0.399182 + 0.916872i \(0.369294\pi\)
\(662\) − 0.312523i − 0.0121466i
\(663\) − 38.1226i − 1.48056i
\(664\) −8.12147 −0.315174
\(665\) 0 0
\(666\) −1.15424 −0.0447259
\(667\) − 2.36298i − 0.0914950i
\(668\) 46.3010i 1.79144i
\(669\) −53.5118 −2.06888
\(670\) 0 0
\(671\) −12.9394 −0.499520
\(672\) 28.6429i 1.10492i
\(673\) − 5.66357i − 0.218315i −0.994024 0.109157i \(-0.965185\pi\)
0.994024 0.109157i \(-0.0348152\pi\)
\(674\) 5.39673 0.207874
\(675\) 0 0
\(676\) 10.1549 0.390574
\(677\) − 6.93823i − 0.266658i −0.991072 0.133329i \(-0.957433\pi\)
0.991072 0.133329i \(-0.0425667\pi\)
\(678\) − 5.06588i − 0.194554i
\(679\) −80.9706 −3.10737
\(680\) 0 0
\(681\) −62.8717 −2.40925
\(682\) − 5.99625i − 0.229608i
\(683\) 19.4849i 0.745570i 0.927918 + 0.372785i \(0.121597\pi\)
−0.927918 + 0.372785i \(0.878403\pi\)
\(684\) 30.6967 1.17372
\(685\) 0 0
\(686\) 4.36838 0.166786
\(687\) − 43.1532i − 1.64640i
\(688\) 8.37043i 0.319119i
\(689\) −0.385083 −0.0146705
\(690\) 0 0
\(691\) −19.9927 −0.760557 −0.380278 0.924872i \(-0.624172\pi\)
−0.380278 + 0.924872i \(0.624172\pi\)
\(692\) − 36.7738i − 1.39793i
\(693\) 120.834i 4.59011i
\(694\) 2.70188 0.102562
\(695\) 0 0
\(696\) 0.897183 0.0340076
\(697\) 3.36235i 0.127358i
\(698\) − 1.31496i − 0.0497718i
\(699\) 46.3481 1.75305
\(700\) 0 0
\(701\) −25.5726 −0.965863 −0.482932 0.875658i \(-0.660428\pi\)
−0.482932 + 0.875658i \(0.660428\pi\)
\(702\) − 5.27066i − 0.198928i
\(703\) − 2.43507i − 0.0918403i
\(704\) 30.8913 1.16426
\(705\) 0 0
\(706\) −2.27103 −0.0854712
\(707\) 49.1476i 1.84838i
\(708\) − 18.5335i − 0.696532i
\(709\) 36.7156 1.37888 0.689441 0.724342i \(-0.257856\pi\)
0.689441 + 0.724342i \(0.257856\pi\)
\(710\) 0 0
\(711\) 45.5663 1.70887
\(712\) − 11.6009i − 0.434764i
\(713\) 44.9888i 1.68485i
\(714\) −10.8300 −0.405303
\(715\) 0 0
\(716\) 2.40156 0.0897505
\(717\) 0.229307i 0.00856361i
\(718\) 3.87971i 0.144790i
\(719\) −4.11485 −0.153458 −0.0767290 0.997052i \(-0.524448\pi\)
−0.0767290 + 0.997052i \(0.524448\pi\)
\(720\) 0 0
\(721\) 29.9384 1.11496
\(722\) 2.35467i 0.0876317i
\(723\) − 62.8364i − 2.33691i
\(724\) −46.8520 −1.74124
\(725\) 0 0
\(726\) −4.00458 −0.148624
\(727\) − 27.2507i − 1.01067i −0.862923 0.505336i \(-0.831369\pi\)
0.862923 0.505336i \(-0.168631\pi\)
\(728\) 8.83521i 0.327455i
\(729\) 13.9550 0.516850
\(730\) 0 0
\(731\) −9.76278 −0.361090
\(732\) 18.2794i 0.675627i
\(733\) 27.7634i 1.02546i 0.858549 + 0.512732i \(0.171366\pi\)
−0.858549 + 0.512732i \(0.828634\pi\)
\(734\) −3.62940 −0.133964
\(735\) 0 0
\(736\) 12.2131 0.450182
\(737\) 48.9034i 1.80138i
\(738\) 0.874192i 0.0321794i
\(739\) 41.6263 1.53125 0.765624 0.643288i \(-0.222430\pi\)
0.765624 + 0.643288i \(0.222430\pi\)
\(740\) 0 0
\(741\) 20.9104 0.768161
\(742\) 0.109396i 0.00401605i
\(743\) − 48.9645i − 1.79633i −0.439657 0.898166i \(-0.644900\pi\)
0.439657 0.898166i \(-0.355100\pi\)
\(744\) −17.0815 −0.626238
\(745\) 0 0
\(746\) 1.78062 0.0651930
\(747\) 72.7997i 2.66360i
\(748\) 37.3129i 1.36429i
\(749\) −2.36902 −0.0865619
\(750\) 0 0
\(751\) 7.34688 0.268091 0.134046 0.990975i \(-0.457203\pi\)
0.134046 + 0.990975i \(0.457203\pi\)
\(752\) 16.2335i 0.591974i
\(753\) 21.0204i 0.766027i
\(754\) 0.206423 0.00751747
\(755\) 0 0
\(756\) 90.7730 3.30138
\(757\) 4.47852i 0.162775i 0.996683 + 0.0813873i \(0.0259351\pi\)
−0.996683 + 0.0813873i \(0.974065\pi\)
\(758\) 4.78193i 0.173687i
\(759\) 75.6476 2.74583
\(760\) 0 0
\(761\) 33.7349 1.22289 0.611445 0.791287i \(-0.290589\pi\)
0.611445 + 0.791287i \(0.290589\pi\)
\(762\) 5.15313i 0.186678i
\(763\) 42.0955i 1.52396i
\(764\) 29.4074 1.06392
\(765\) 0 0
\(766\) 0.259121 0.00936241
\(767\) − 8.59867i − 0.310480i
\(768\) − 41.3024i − 1.49037i
\(769\) −25.1523 −0.907014 −0.453507 0.891253i \(-0.649827\pi\)
−0.453507 + 0.891253i \(0.649827\pi\)
\(770\) 0 0
\(771\) 32.1282 1.15707
\(772\) − 37.2013i − 1.33890i
\(773\) 13.1660i 0.473549i 0.971565 + 0.236774i \(0.0760902\pi\)
−0.971565 + 0.236774i \(0.923910\pi\)
\(774\) −2.53827 −0.0912362
\(775\) 0 0
\(776\) −13.1087 −0.470573
\(777\) − 13.5412i − 0.485788i
\(778\) 5.18117i 0.185754i
\(779\) −1.84426 −0.0660774
\(780\) 0 0
\(781\) −45.7687 −1.63773
\(782\) 4.61784i 0.165134i
\(783\) − 4.27656i − 0.152832i
\(784\) −47.5495 −1.69820
\(785\) 0 0
\(786\) −8.62000 −0.307465
\(787\) − 19.5552i − 0.697066i −0.937296 0.348533i \(-0.886680\pi\)
0.937296 0.348533i \(-0.113320\pi\)
\(788\) − 7.33111i − 0.261160i
\(789\) 18.3960 0.654914
\(790\) 0 0
\(791\) 40.4781 1.43923
\(792\) 19.5623i 0.695116i
\(793\) 8.48079i 0.301162i
\(794\) −6.09790 −0.216406
\(795\) 0 0
\(796\) 36.8398 1.30575
\(797\) − 51.4656i − 1.82300i −0.411295 0.911502i \(-0.634923\pi\)
0.411295 0.911502i \(-0.365077\pi\)
\(798\) − 5.94029i − 0.210284i
\(799\) −18.9338 −0.669829
\(800\) 0 0
\(801\) −103.989 −3.67427
\(802\) 3.74335i 0.132182i
\(803\) 35.0571i 1.23714i
\(804\) 69.0857 2.43646
\(805\) 0 0
\(806\) −3.93008 −0.138431
\(807\) − 7.13960i − 0.251326i
\(808\) 7.95669i 0.279915i
\(809\) −42.6242 −1.49859 −0.749293 0.662238i \(-0.769607\pi\)
−0.749293 + 0.662238i \(0.769607\pi\)
\(810\) 0 0
\(811\) −26.7451 −0.939147 −0.469574 0.882893i \(-0.655592\pi\)
−0.469574 + 0.882893i \(0.655592\pi\)
\(812\) 3.55508i 0.124759i
\(813\) 18.8037i 0.659475i
\(814\) 0.769559 0.0269730
\(815\) 0 0
\(816\) 51.8279 1.81434
\(817\) − 5.35492i − 0.187345i
\(818\) − 0.623671i − 0.0218061i
\(819\) 79.1975 2.76738
\(820\) 0 0
\(821\) 43.8050 1.52880 0.764402 0.644740i \(-0.223034\pi\)
0.764402 + 0.644740i \(0.223034\pi\)
\(822\) − 0.563517i − 0.0196549i
\(823\) − 5.72621i − 0.199603i −0.995007 0.0998016i \(-0.968179\pi\)
0.995007 0.0998016i \(-0.0318208\pi\)
\(824\) 4.84684 0.168848
\(825\) 0 0
\(826\) −2.44274 −0.0849939
\(827\) 35.4306i 1.23204i 0.787730 + 0.616021i \(0.211256\pi\)
−0.787730 + 0.616021i \(0.788744\pi\)
\(828\) − 72.7860i − 2.52949i
\(829\) 20.7040 0.719081 0.359541 0.933129i \(-0.382933\pi\)
0.359541 + 0.933129i \(0.382933\pi\)
\(830\) 0 0
\(831\) 25.4864 0.884115
\(832\) − 20.2469i − 0.701933i
\(833\) − 55.4590i − 1.92154i
\(834\) 3.91704 0.135636
\(835\) 0 0
\(836\) −20.4662 −0.707840
\(837\) 81.4215i 2.81434i
\(838\) − 3.37351i − 0.116536i
\(839\) −10.9086 −0.376607 −0.188303 0.982111i \(-0.560299\pi\)
−0.188303 + 0.982111i \(0.560299\pi\)
\(840\) 0 0
\(841\) −28.8325 −0.994225
\(842\) − 0.345025i − 0.0118903i
\(843\) 15.3757i 0.529567i
\(844\) −26.3594 −0.907329
\(845\) 0 0
\(846\) −4.92268 −0.169245
\(847\) − 31.9979i − 1.09946i
\(848\) − 0.523523i − 0.0179778i
\(849\) 38.4329 1.31901
\(850\) 0 0
\(851\) −5.77387 −0.197926
\(852\) 64.6573i 2.21512i
\(853\) − 38.8833i − 1.33134i −0.746247 0.665670i \(-0.768146\pi\)
0.746247 0.665670i \(-0.231854\pi\)
\(854\) 2.40925 0.0824430
\(855\) 0 0
\(856\) −0.383529 −0.0131088
\(857\) − 40.6975i − 1.39020i −0.718913 0.695100i \(-0.755360\pi\)
0.718913 0.695100i \(-0.244640\pi\)
\(858\) 6.60834i 0.225605i
\(859\) −28.1532 −0.960574 −0.480287 0.877111i \(-0.659467\pi\)
−0.480287 + 0.877111i \(0.659467\pi\)
\(860\) 0 0
\(861\) −10.2558 −0.349515
\(862\) − 1.11319i − 0.0379154i
\(863\) 18.5236i 0.630552i 0.949000 + 0.315276i \(0.102097\pi\)
−0.949000 + 0.315276i \(0.897903\pi\)
\(864\) 22.1035 0.751977
\(865\) 0 0
\(866\) −2.11274 −0.0717937
\(867\) 8.30862i 0.282175i
\(868\) − 67.6852i − 2.29738i
\(869\) −30.3801 −1.03058
\(870\) 0 0
\(871\) 32.0525 1.08606
\(872\) 6.81501i 0.230785i
\(873\) 117.504i 3.97691i
\(874\) −2.53290 −0.0856766
\(875\) 0 0
\(876\) 49.5250 1.67330
\(877\) − 14.0422i − 0.474172i −0.971489 0.237086i \(-0.923808\pi\)
0.971489 0.237086i \(-0.0761923\pi\)
\(878\) − 3.32785i − 0.112309i
\(879\) −18.8052 −0.634285
\(880\) 0 0
\(881\) 7.68268 0.258836 0.129418 0.991590i \(-0.458689\pi\)
0.129418 + 0.991590i \(0.458689\pi\)
\(882\) − 14.4190i − 0.485515i
\(883\) 35.0479i 1.17945i 0.807602 + 0.589727i \(0.200765\pi\)
−0.807602 + 0.589727i \(0.799235\pi\)
\(884\) 24.4557 0.822535
\(885\) 0 0
\(886\) 0.686850 0.0230752
\(887\) 9.30606i 0.312467i 0.987720 + 0.156233i \(0.0499352\pi\)
−0.987720 + 0.156233i \(0.950065\pi\)
\(888\) − 2.19224i − 0.0735667i
\(889\) −41.1752 −1.38097
\(890\) 0 0
\(891\) 54.8013 1.83591
\(892\) − 34.3280i − 1.14938i
\(893\) − 10.3852i − 0.347529i
\(894\) −8.59599 −0.287493
\(895\) 0 0
\(896\) −24.4294 −0.816129
\(897\) − 49.5812i − 1.65547i
\(898\) − 0.867547i − 0.0289504i
\(899\) −3.18883 −0.106353
\(900\) 0 0
\(901\) 0.610607 0.0203423
\(902\) − 0.582844i − 0.0194066i
\(903\) − 29.7782i − 0.990957i
\(904\) 6.55315 0.217955
\(905\) 0 0
\(906\) 2.21504 0.0735899
\(907\) 4.56415i 0.151550i 0.997125 + 0.0757751i \(0.0241431\pi\)
−0.997125 + 0.0757751i \(0.975857\pi\)
\(908\) − 40.3324i − 1.33848i
\(909\) 71.3226 2.36562
\(910\) 0 0
\(911\) −0.294602 −0.00976060 −0.00488030 0.999988i \(-0.501553\pi\)
−0.00488030 + 0.999988i \(0.501553\pi\)
\(912\) 28.4278i 0.941338i
\(913\) − 48.5373i − 1.60635i
\(914\) 4.90036 0.162090
\(915\) 0 0
\(916\) 27.6829 0.914668
\(917\) − 68.8767i − 2.27451i
\(918\) 8.35743i 0.275836i
\(919\) −33.9110 −1.11862 −0.559311 0.828958i \(-0.688934\pi\)
−0.559311 + 0.828958i \(0.688934\pi\)
\(920\) 0 0
\(921\) −38.7760 −1.27771
\(922\) 7.35799i 0.242323i
\(923\) 29.9979i 0.987393i
\(924\) −113.811 −3.74410
\(925\) 0 0
\(926\) 6.27349 0.206160
\(927\) − 43.4464i − 1.42697i
\(928\) 0.865673i 0.0284171i
\(929\) −22.4955 −0.738055 −0.369028 0.929418i \(-0.620309\pi\)
−0.369028 + 0.929418i \(0.620309\pi\)
\(930\) 0 0
\(931\) 30.4195 0.996958
\(932\) 29.7324i 0.973918i
\(933\) − 24.6941i − 0.808450i
\(934\) 1.69152 0.0553482
\(935\) 0 0
\(936\) 12.8216 0.419087
\(937\) − 25.4994i − 0.833028i −0.909129 0.416514i \(-0.863252\pi\)
0.909129 0.416514i \(-0.136748\pi\)
\(938\) − 9.10558i − 0.297308i
\(939\) −9.18743 −0.299821
\(940\) 0 0
\(941\) 52.3734 1.70732 0.853662 0.520827i \(-0.174376\pi\)
0.853662 + 0.520827i \(0.174376\pi\)
\(942\) 1.69402i 0.0551940i
\(943\) 4.37298i 0.142404i
\(944\) 11.6900 0.380476
\(945\) 0 0
\(946\) 1.69232 0.0550222
\(947\) 50.7001i 1.64753i 0.566931 + 0.823766i \(0.308131\pi\)
−0.566931 + 0.823766i \(0.691869\pi\)
\(948\) 42.9179i 1.39391i
\(949\) 22.9773 0.745874
\(950\) 0 0
\(951\) −6.88183 −0.223159
\(952\) − 14.0096i − 0.454052i
\(953\) 18.5912i 0.602228i 0.953588 + 0.301114i \(0.0973585\pi\)
−0.953588 + 0.301114i \(0.902641\pi\)
\(954\) 0.158754 0.00513986
\(955\) 0 0
\(956\) −0.147101 −0.00475758
\(957\) 5.36194i 0.173327i
\(958\) 3.78597i 0.122319i
\(959\) 4.50269 0.145399
\(960\) 0 0
\(961\) 29.7122 0.958457
\(962\) − 0.504387i − 0.0162621i
\(963\) 3.43790i 0.110785i
\(964\) 40.3098 1.29829
\(965\) 0 0
\(966\) −14.0852 −0.453185
\(967\) 20.5566i 0.661056i 0.943796 + 0.330528i \(0.107227\pi\)
−0.943796 + 0.330528i \(0.892773\pi\)
\(968\) − 5.18027i − 0.166500i
\(969\) −33.1565 −1.06514
\(970\) 0 0
\(971\) 40.7627 1.30814 0.654069 0.756435i \(-0.273061\pi\)
0.654069 + 0.756435i \(0.273061\pi\)
\(972\) − 15.7371i − 0.504769i
\(973\) 31.2985i 1.00338i
\(974\) 6.44284 0.206442
\(975\) 0 0
\(976\) −11.5297 −0.369056
\(977\) − 5.60203i − 0.179225i −0.995977 0.0896124i \(-0.971437\pi\)
0.995977 0.0896124i \(-0.0285628\pi\)
\(978\) − 1.60569i − 0.0513443i
\(979\) 69.3320 2.21586
\(980\) 0 0
\(981\) 61.0887 1.95041
\(982\) − 2.71565i − 0.0866598i
\(983\) 16.0493i 0.511894i 0.966691 + 0.255947i \(0.0823872\pi\)
−0.966691 + 0.255947i \(0.917613\pi\)
\(984\) −1.66034 −0.0529299
\(985\) 0 0
\(986\) −0.327314 −0.0104238
\(987\) − 57.7514i − 1.83825i
\(988\) 13.4141i 0.426758i
\(989\) −12.6972 −0.403748
\(990\) 0 0
\(991\) −36.8868 −1.17175 −0.585874 0.810402i \(-0.699249\pi\)
−0.585874 + 0.810402i \(0.699249\pi\)
\(992\) − 16.4816i − 0.523290i
\(993\) − 5.32070i − 0.168847i
\(994\) 8.52192 0.270299
\(995\) 0 0
\(996\) −68.5684 −2.17267
\(997\) 0.491984i 0.0155813i 0.999970 + 0.00779064i \(0.00247986\pi\)
−0.999970 + 0.00779064i \(0.997520\pi\)
\(998\) 5.93465i 0.187858i
\(999\) −10.4496 −0.330612
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 925.2.b.g.149.5 10
5.2 odd 4 185.2.a.d.1.3 5
5.3 odd 4 925.2.a.h.1.3 5
5.4 even 2 inner 925.2.b.g.149.6 10
15.2 even 4 1665.2.a.q.1.3 5
15.8 even 4 8325.2.a.cc.1.3 5
20.7 even 4 2960.2.a.ba.1.5 5
35.27 even 4 9065.2.a.j.1.3 5
185.147 odd 4 6845.2.a.g.1.3 5
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
185.2.a.d.1.3 5 5.2 odd 4
925.2.a.h.1.3 5 5.3 odd 4
925.2.b.g.149.5 10 1.1 even 1 trivial
925.2.b.g.149.6 10 5.4 even 2 inner
1665.2.a.q.1.3 5 15.2 even 4
2960.2.a.ba.1.5 5 20.7 even 4
6845.2.a.g.1.3 5 185.147 odd 4
8325.2.a.cc.1.3 5 15.8 even 4
9065.2.a.j.1.3 5 35.27 even 4