Properties

Label 925.2.b
Level $925$
Weight $2$
Character orbit 925.b
Rep. character $\chi_{925}(149,\cdot)$
Character field $\Q$
Dimension $54$
Newform subspaces $9$
Sturm bound $190$
Trace bound $11$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 925 = 5^{2} \cdot 37 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 925.b (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 5 \)
Character field: \(\Q\)
Newform subspaces: \( 9 \)
Sturm bound: \(190\)
Trace bound: \(11\)
Distinguishing \(T_p\): \(2\), \(3\), \(7\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(925, [\chi])\).

Total New Old
Modular forms 102 54 48
Cusp forms 90 54 36
Eisenstein series 12 0 12

Trace form

\( 54 q - 46 q^{4} - 12 q^{6} - 38 q^{9} - 4 q^{11} + 4 q^{14} + 30 q^{16} - 28 q^{21} + 36 q^{24} + 4 q^{26} + 12 q^{29} + 4 q^{31} + 40 q^{34} + 6 q^{36} - 12 q^{39} - 8 q^{41} + 32 q^{44} - 64 q^{46} - 74 q^{49}+ \cdots + 12 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(925, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
925.2.b.a 925.b 5.b $2$ $7.386$ \(\Q(\sqrt{-1}) \) None 185.2.a.a \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+2 i q^{2}+i q^{3}-2 q^{4}-2 q^{6}+5 i q^{7}+\cdots\)
925.2.b.b 925.b 5.b $2$ $7.386$ \(\Q(\sqrt{-1}) \) None 37.2.a.a \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+2 i q^{2}-3 i q^{3}-2 q^{4}+6 q^{6}+\cdots\)
925.2.b.c 925.b 5.b $2$ $7.386$ \(\Q(\sqrt{-1}) \) None 185.2.a.c \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+i q^{2}+2 i q^{3}+q^{4}-2 q^{6}-2 i q^{7}+\cdots\)
925.2.b.d 925.b 5.b $2$ $7.386$ \(\Q(\sqrt{-1}) \) None 185.2.a.b \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q-i q^{3}+2 q^{4}+3 i q^{7}+2 q^{9}-5 q^{11}+\cdots\)
925.2.b.e 925.b 5.b $2$ $7.386$ \(\Q(\sqrt{-1}) \) None 37.2.a.b \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q-i q^{3}+2 q^{4}-i q^{7}+2 q^{9}+3 q^{11}+\cdots\)
925.2.b.f 925.b 5.b $10$ $7.386$ 10.0.\(\cdots\).1 None 185.2.a.e \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q-\beta _{1}q^{2}+(\beta _{2}+\beta _{8})q^{3}+(-2+\beta _{3}+\cdots)q^{4}+\cdots\)
925.2.b.g 925.b 5.b $10$ $7.386$ 10.0.\(\cdots\).1 None 185.2.a.d \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q-\beta _{8}q^{2}-\beta _{7}q^{3}+(-2+\beta _{1}-\beta _{6}+\cdots)q^{4}+\cdots\)
925.2.b.h 925.b 5.b $10$ $7.386$ 10.0.\(\cdots\).1 None 925.2.a.g \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+\beta _{1}q^{2}+(\beta _{1}-\beta _{3})q^{3}+\beta _{2}q^{4}+(-1+\cdots)q^{6}+\cdots\)
925.2.b.i 925.b 5.b $14$ $7.386$ \(\mathbb{Q}[x]/(x^{14} + \cdots)\) None 925.2.a.j \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+\beta _{1}q^{2}+\beta _{9}q^{3}+(-1+\beta _{2})q^{4}+(1+\cdots)q^{6}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(925, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(925, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(185, [\chi])\)\(^{\oplus 2}\)