Properties

Label 1665.2.a.q.1.3
Level $1665$
Weight $2$
Character 1665.1
Self dual yes
Analytic conductor $13.295$
Analytic rank $0$
Dimension $5$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1665,2,Mod(1,1665)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1665, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1665.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1665 = 3^{2} \cdot 5 \cdot 37 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1665.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [5,0,0,6,-5,0,7] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(13.2950919365\)
Analytic rank: \(0\)
Dimension: \(5\)
Coefficient field: 5.5.368464.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{5} - 2x^{4} - 6x^{3} + 6x^{2} + 6x - 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 185)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(0.552543\) of defining polynomial
Character \(\chi\) \(=\) 1665.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-0.180152 q^{2} -1.96755 q^{4} -1.00000 q^{5} +4.41500 q^{7} +0.714762 q^{8} +0.180152 q^{10} -4.27171 q^{11} -2.79978 q^{13} -0.795373 q^{14} +3.80632 q^{16} +4.43948 q^{17} +2.43507 q^{19} +1.96755 q^{20} +0.769559 q^{22} -5.77387 q^{23} +1.00000 q^{25} +0.504387 q^{26} -8.68672 q^{28} -0.409254 q^{29} +7.79180 q^{31} -2.11524 q^{32} -0.799782 q^{34} -4.41500 q^{35} -1.00000 q^{37} -0.438683 q^{38} -0.714762 q^{40} -0.757374 q^{41} +2.19908 q^{43} +8.40479 q^{44} +1.04018 q^{46} +4.26487 q^{47} +12.4922 q^{49} -0.180152 q^{50} +5.50870 q^{52} +0.137540 q^{53} +4.27171 q^{55} +3.15568 q^{56} +0.0737281 q^{58} +3.07119 q^{59} -3.02909 q^{61} -1.40371 q^{62} -7.23158 q^{64} +2.79978 q^{65} -11.4482 q^{67} -8.73487 q^{68} +0.795373 q^{70} +10.7144 q^{71} +8.20680 q^{73} +0.180152 q^{74} -4.79111 q^{76} -18.8596 q^{77} +7.11193 q^{79} -3.80632 q^{80} +0.136443 q^{82} +11.3625 q^{83} -4.43948 q^{85} -0.396170 q^{86} -3.05326 q^{88} +16.2305 q^{89} -12.3610 q^{91} +11.3603 q^{92} -0.768326 q^{94} -2.43507 q^{95} +18.3399 q^{97} -2.25051 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 5 q + 6 q^{4} - 5 q^{5} + 7 q^{7} + 6 q^{8} - 7 q^{11} + 2 q^{13} - 4 q^{14} + 8 q^{16} + 8 q^{17} + 14 q^{19} - 6 q^{20} + 2 q^{22} - 2 q^{23} + 5 q^{25} + 20 q^{26} - 14 q^{28} - 2 q^{29} + 8 q^{31} + 22 q^{32}+ \cdots - 30 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.180152 −0.127387 −0.0636934 0.997970i \(-0.520288\pi\)
−0.0636934 + 0.997970i \(0.520288\pi\)
\(3\) 0 0
\(4\) −1.96755 −0.983773
\(5\) −1.00000 −0.447214
\(6\) 0 0
\(7\) 4.41500 1.66871 0.834357 0.551224i \(-0.185839\pi\)
0.834357 + 0.551224i \(0.185839\pi\)
\(8\) 0.714762 0.252707
\(9\) 0 0
\(10\) 0.180152 0.0569692
\(11\) −4.27171 −1.28797 −0.643985 0.765038i \(-0.722720\pi\)
−0.643985 + 0.765038i \(0.722720\pi\)
\(12\) 0 0
\(13\) −2.79978 −0.776520 −0.388260 0.921550i \(-0.626924\pi\)
−0.388260 + 0.921550i \(0.626924\pi\)
\(14\) −0.795373 −0.212572
\(15\) 0 0
\(16\) 3.80632 0.951581
\(17\) 4.43948 1.07673 0.538366 0.842711i \(-0.319042\pi\)
0.538366 + 0.842711i \(0.319042\pi\)
\(18\) 0 0
\(19\) 2.43507 0.558643 0.279321 0.960198i \(-0.409890\pi\)
0.279321 + 0.960198i \(0.409890\pi\)
\(20\) 1.96755 0.439956
\(21\) 0 0
\(22\) 0.769559 0.164071
\(23\) −5.77387 −1.20393 −0.601967 0.798521i \(-0.705616\pi\)
−0.601967 + 0.798521i \(0.705616\pi\)
\(24\) 0 0
\(25\) 1.00000 0.200000
\(26\) 0.504387 0.0989184
\(27\) 0 0
\(28\) −8.68672 −1.64164
\(29\) −0.409254 −0.0759967 −0.0379983 0.999278i \(-0.512098\pi\)
−0.0379983 + 0.999278i \(0.512098\pi\)
\(30\) 0 0
\(31\) 7.79180 1.39945 0.699724 0.714413i \(-0.253306\pi\)
0.699724 + 0.714413i \(0.253306\pi\)
\(32\) −2.11524 −0.373926
\(33\) 0 0
\(34\) −0.799782 −0.137161
\(35\) −4.41500 −0.746272
\(36\) 0 0
\(37\) −1.00000 −0.164399
\(38\) −0.438683 −0.0711638
\(39\) 0 0
\(40\) −0.714762 −0.113014
\(41\) −0.757374 −0.118282 −0.0591410 0.998250i \(-0.518836\pi\)
−0.0591410 + 0.998250i \(0.518836\pi\)
\(42\) 0 0
\(43\) 2.19908 0.335357 0.167679 0.985842i \(-0.446373\pi\)
0.167679 + 0.985842i \(0.446373\pi\)
\(44\) 8.40479 1.26707
\(45\) 0 0
\(46\) 1.04018 0.153366
\(47\) 4.26487 0.622095 0.311048 0.950394i \(-0.399320\pi\)
0.311048 + 0.950394i \(0.399320\pi\)
\(48\) 0 0
\(49\) 12.4922 1.78461
\(50\) −0.180152 −0.0254774
\(51\) 0 0
\(52\) 5.50870 0.763919
\(53\) 0.137540 0.0188926 0.00944630 0.999955i \(-0.496993\pi\)
0.00944630 + 0.999955i \(0.496993\pi\)
\(54\) 0 0
\(55\) 4.27171 0.575998
\(56\) 3.15568 0.421695
\(57\) 0 0
\(58\) 0.0737281 0.00968098
\(59\) 3.07119 0.399835 0.199918 0.979813i \(-0.435933\pi\)
0.199918 + 0.979813i \(0.435933\pi\)
\(60\) 0 0
\(61\) −3.02909 −0.387835 −0.193918 0.981018i \(-0.562119\pi\)
−0.193918 + 0.981018i \(0.562119\pi\)
\(62\) −1.40371 −0.178271
\(63\) 0 0
\(64\) −7.23158 −0.903948
\(65\) 2.79978 0.347270
\(66\) 0 0
\(67\) −11.4482 −1.39862 −0.699310 0.714819i \(-0.746509\pi\)
−0.699310 + 0.714819i \(0.746509\pi\)
\(68\) −8.73487 −1.05926
\(69\) 0 0
\(70\) 0.795373 0.0950652
\(71\) 10.7144 1.27156 0.635781 0.771870i \(-0.280678\pi\)
0.635781 + 0.771870i \(0.280678\pi\)
\(72\) 0 0
\(73\) 8.20680 0.960534 0.480267 0.877122i \(-0.340540\pi\)
0.480267 + 0.877122i \(0.340540\pi\)
\(74\) 0.180152 0.0209423
\(75\) 0 0
\(76\) −4.79111 −0.549578
\(77\) −18.8596 −2.14925
\(78\) 0 0
\(79\) 7.11193 0.800155 0.400077 0.916481i \(-0.368983\pi\)
0.400077 + 0.916481i \(0.368983\pi\)
\(80\) −3.80632 −0.425560
\(81\) 0 0
\(82\) 0.136443 0.0150676
\(83\) 11.3625 1.24719 0.623597 0.781746i \(-0.285671\pi\)
0.623597 + 0.781746i \(0.285671\pi\)
\(84\) 0 0
\(85\) −4.43948 −0.481529
\(86\) −0.396170 −0.0427201
\(87\) 0 0
\(88\) −3.05326 −0.325479
\(89\) 16.2305 1.72043 0.860214 0.509933i \(-0.170330\pi\)
0.860214 + 0.509933i \(0.170330\pi\)
\(90\) 0 0
\(91\) −12.3610 −1.29579
\(92\) 11.3603 1.18440
\(93\) 0 0
\(94\) −0.768326 −0.0792468
\(95\) −2.43507 −0.249833
\(96\) 0 0
\(97\) 18.3399 1.86213 0.931066 0.364850i \(-0.118880\pi\)
0.931066 + 0.364850i \(0.118880\pi\)
\(98\) −2.25051 −0.227336
\(99\) 0 0
\(100\) −1.96755 −0.196755
\(101\) 11.1319 1.10767 0.553835 0.832627i \(-0.313164\pi\)
0.553835 + 0.832627i \(0.313164\pi\)
\(102\) 0 0
\(103\) 6.78105 0.668157 0.334079 0.942545i \(-0.391575\pi\)
0.334079 + 0.942545i \(0.391575\pi\)
\(104\) −2.00118 −0.196232
\(105\) 0 0
\(106\) −0.0247782 −0.00240667
\(107\) −0.536583 −0.0518734 −0.0259367 0.999664i \(-0.508257\pi\)
−0.0259367 + 0.999664i \(0.508257\pi\)
\(108\) 0 0
\(109\) 9.53465 0.913254 0.456627 0.889658i \(-0.349057\pi\)
0.456627 + 0.889658i \(0.349057\pi\)
\(110\) −0.769559 −0.0733746
\(111\) 0 0
\(112\) 16.8049 1.58792
\(113\) −9.16830 −0.862481 −0.431240 0.902237i \(-0.641924\pi\)
−0.431240 + 0.902237i \(0.641924\pi\)
\(114\) 0 0
\(115\) 5.77387 0.538416
\(116\) 0.805227 0.0747634
\(117\) 0 0
\(118\) −0.553282 −0.0509338
\(119\) 19.6003 1.79676
\(120\) 0 0
\(121\) 7.24754 0.658867
\(122\) 0.545697 0.0494051
\(123\) 0 0
\(124\) −15.3307 −1.37674
\(125\) −1.00000 −0.0894427
\(126\) 0 0
\(127\) 9.32621 0.827567 0.413784 0.910375i \(-0.364207\pi\)
0.413784 + 0.910375i \(0.364207\pi\)
\(128\) 5.53327 0.489077
\(129\) 0 0
\(130\) −0.504387 −0.0442377
\(131\) −15.6006 −1.36303 −0.681515 0.731804i \(-0.738679\pi\)
−0.681515 + 0.731804i \(0.738679\pi\)
\(132\) 0 0
\(133\) 10.7508 0.932215
\(134\) 2.06242 0.178166
\(135\) 0 0
\(136\) 3.17317 0.272097
\(137\) 1.01986 0.0871326 0.0435663 0.999051i \(-0.486128\pi\)
0.0435663 + 0.999051i \(0.486128\pi\)
\(138\) 0 0
\(139\) 7.08913 0.601292 0.300646 0.953736i \(-0.402798\pi\)
0.300646 + 0.953736i \(0.402798\pi\)
\(140\) 8.68672 0.734162
\(141\) 0 0
\(142\) −1.93022 −0.161980
\(143\) 11.9599 1.00013
\(144\) 0 0
\(145\) 0.409254 0.0339867
\(146\) −1.47847 −0.122359
\(147\) 0 0
\(148\) 1.96755 0.161731
\(149\) 15.5572 1.27449 0.637246 0.770660i \(-0.280074\pi\)
0.637246 + 0.770660i \(0.280074\pi\)
\(150\) 0 0
\(151\) −4.00882 −0.326233 −0.163117 0.986607i \(-0.552155\pi\)
−0.163117 + 0.986607i \(0.552155\pi\)
\(152\) 1.74049 0.141173
\(153\) 0 0
\(154\) 3.39761 0.273787
\(155\) −7.79180 −0.625853
\(156\) 0 0
\(157\) 3.06585 0.244682 0.122341 0.992488i \(-0.460960\pi\)
0.122341 + 0.992488i \(0.460960\pi\)
\(158\) −1.28123 −0.101929
\(159\) 0 0
\(160\) 2.11524 0.167225
\(161\) −25.4916 −2.00902
\(162\) 0 0
\(163\) 2.90600 0.227616 0.113808 0.993503i \(-0.463695\pi\)
0.113808 + 0.993503i \(0.463695\pi\)
\(164\) 1.49017 0.116363
\(165\) 0 0
\(166\) −2.04698 −0.158876
\(167\) 23.5324 1.82099 0.910495 0.413519i \(-0.135701\pi\)
0.910495 + 0.413519i \(0.135701\pi\)
\(168\) 0 0
\(169\) −5.16122 −0.397017
\(170\) 0.799782 0.0613405
\(171\) 0 0
\(172\) −4.32680 −0.329915
\(173\) 18.6902 1.42099 0.710495 0.703703i \(-0.248471\pi\)
0.710495 + 0.703703i \(0.248471\pi\)
\(174\) 0 0
\(175\) 4.41500 0.333743
\(176\) −16.2595 −1.22561
\(177\) 0 0
\(178\) −2.92396 −0.219160
\(179\) 1.22059 0.0912310 0.0456155 0.998959i \(-0.485475\pi\)
0.0456155 + 0.998959i \(0.485475\pi\)
\(180\) 0 0
\(181\) −23.8124 −1.76996 −0.884982 0.465626i \(-0.845829\pi\)
−0.884982 + 0.465626i \(0.845829\pi\)
\(182\) 2.22687 0.165067
\(183\) 0 0
\(184\) −4.12694 −0.304242
\(185\) 1.00000 0.0735215
\(186\) 0 0
\(187\) −18.9642 −1.38680
\(188\) −8.39132 −0.612000
\(189\) 0 0
\(190\) 0.438683 0.0318254
\(191\) −14.9462 −1.08147 −0.540736 0.841192i \(-0.681854\pi\)
−0.540736 + 0.841192i \(0.681854\pi\)
\(192\) 0 0
\(193\) −18.9075 −1.36099 −0.680495 0.732753i \(-0.738235\pi\)
−0.680495 + 0.732753i \(0.738235\pi\)
\(194\) −3.30397 −0.237211
\(195\) 0 0
\(196\) −24.5791 −1.75565
\(197\) −3.72602 −0.265468 −0.132734 0.991152i \(-0.542376\pi\)
−0.132734 + 0.991152i \(0.542376\pi\)
\(198\) 0 0
\(199\) −18.7237 −1.32729 −0.663645 0.748048i \(-0.730991\pi\)
−0.663645 + 0.748048i \(0.730991\pi\)
\(200\) 0.714762 0.0505413
\(201\) 0 0
\(202\) −2.00544 −0.141103
\(203\) −1.80686 −0.126817
\(204\) 0 0
\(205\) 0.757374 0.0528973
\(206\) −1.22162 −0.0851145
\(207\) 0 0
\(208\) −10.6569 −0.738922
\(209\) −10.4019 −0.719516
\(210\) 0 0
\(211\) −13.3971 −0.922295 −0.461148 0.887323i \(-0.652562\pi\)
−0.461148 + 0.887323i \(0.652562\pi\)
\(212\) −0.270617 −0.0185860
\(213\) 0 0
\(214\) 0.0966666 0.00660800
\(215\) −2.19908 −0.149976
\(216\) 0 0
\(217\) 34.4008 2.33528
\(218\) −1.71769 −0.116337
\(219\) 0 0
\(220\) −8.40479 −0.566651
\(221\) −12.4296 −0.836103
\(222\) 0 0
\(223\) −17.4471 −1.16834 −0.584172 0.811630i \(-0.698581\pi\)
−0.584172 + 0.811630i \(0.698581\pi\)
\(224\) −9.33880 −0.623975
\(225\) 0 0
\(226\) 1.65169 0.109869
\(227\) −20.4988 −1.36056 −0.680278 0.732954i \(-0.738141\pi\)
−0.680278 + 0.732954i \(0.738141\pi\)
\(228\) 0 0
\(229\) −14.0698 −0.929756 −0.464878 0.885375i \(-0.653902\pi\)
−0.464878 + 0.885375i \(0.653902\pi\)
\(230\) −1.04018 −0.0685872
\(231\) 0 0
\(232\) −0.292520 −0.0192049
\(233\) −15.1114 −0.989983 −0.494992 0.868898i \(-0.664829\pi\)
−0.494992 + 0.868898i \(0.664829\pi\)
\(234\) 0 0
\(235\) −4.26487 −0.278209
\(236\) −6.04271 −0.393347
\(237\) 0 0
\(238\) −3.53104 −0.228883
\(239\) −0.0747636 −0.00483606 −0.00241803 0.999997i \(-0.500770\pi\)
−0.00241803 + 0.999997i \(0.500770\pi\)
\(240\) 0 0
\(241\) 20.4873 1.31971 0.659853 0.751395i \(-0.270619\pi\)
0.659853 + 0.751395i \(0.270619\pi\)
\(242\) −1.30566 −0.0839311
\(243\) 0 0
\(244\) 5.95987 0.381541
\(245\) −12.4922 −0.798100
\(246\) 0 0
\(247\) −6.81766 −0.433797
\(248\) 5.56929 0.353650
\(249\) 0 0
\(250\) 0.180152 0.0113938
\(251\) 6.85355 0.432592 0.216296 0.976328i \(-0.430602\pi\)
0.216296 + 0.976328i \(0.430602\pi\)
\(252\) 0 0
\(253\) 24.6643 1.55063
\(254\) −1.68014 −0.105421
\(255\) 0 0
\(256\) 13.4663 0.841646
\(257\) 10.4751 0.653422 0.326711 0.945124i \(-0.394060\pi\)
0.326711 + 0.945124i \(0.394060\pi\)
\(258\) 0 0
\(259\) −4.41500 −0.274335
\(260\) −5.50870 −0.341635
\(261\) 0 0
\(262\) 2.81048 0.173632
\(263\) −5.99787 −0.369844 −0.184922 0.982753i \(-0.559203\pi\)
−0.184922 + 0.982753i \(0.559203\pi\)
\(264\) 0 0
\(265\) −0.137540 −0.00844903
\(266\) −1.93679 −0.118752
\(267\) 0 0
\(268\) 22.5248 1.37592
\(269\) 2.32781 0.141929 0.0709646 0.997479i \(-0.477392\pi\)
0.0709646 + 0.997479i \(0.477392\pi\)
\(270\) 0 0
\(271\) −6.13081 −0.372420 −0.186210 0.982510i \(-0.559620\pi\)
−0.186210 + 0.982510i \(0.559620\pi\)
\(272\) 16.8981 1.02460
\(273\) 0 0
\(274\) −0.183730 −0.0110996
\(275\) −4.27171 −0.257594
\(276\) 0 0
\(277\) −8.30966 −0.499279 −0.249639 0.968339i \(-0.580312\pi\)
−0.249639 + 0.968339i \(0.580312\pi\)
\(278\) −1.27712 −0.0765967
\(279\) 0 0
\(280\) −3.15568 −0.188588
\(281\) 5.01313 0.299058 0.149529 0.988757i \(-0.452224\pi\)
0.149529 + 0.988757i \(0.452224\pi\)
\(282\) 0 0
\(283\) 12.5308 0.744876 0.372438 0.928057i \(-0.378522\pi\)
0.372438 + 0.928057i \(0.378522\pi\)
\(284\) −21.0810 −1.25093
\(285\) 0 0
\(286\) −2.15460 −0.127404
\(287\) −3.34381 −0.197379
\(288\) 0 0
\(289\) 2.70896 0.159351
\(290\) −0.0737281 −0.00432946
\(291\) 0 0
\(292\) −16.1473 −0.944947
\(293\) 6.13130 0.358194 0.179097 0.983831i \(-0.442682\pi\)
0.179097 + 0.983831i \(0.442682\pi\)
\(294\) 0 0
\(295\) −3.07119 −0.178812
\(296\) −0.714762 −0.0415447
\(297\) 0 0
\(298\) −2.80266 −0.162354
\(299\) 16.1656 0.934879
\(300\) 0 0
\(301\) 9.70896 0.559615
\(302\) 0.722198 0.0415578
\(303\) 0 0
\(304\) 9.26866 0.531594
\(305\) 3.02909 0.173445
\(306\) 0 0
\(307\) 12.6426 0.721552 0.360776 0.932652i \(-0.382512\pi\)
0.360776 + 0.932652i \(0.382512\pi\)
\(308\) 37.1072 2.11438
\(309\) 0 0
\(310\) 1.40371 0.0797254
\(311\) −8.05133 −0.456549 −0.228275 0.973597i \(-0.573308\pi\)
−0.228275 + 0.973597i \(0.573308\pi\)
\(312\) 0 0
\(313\) −2.99549 −0.169315 −0.0846576 0.996410i \(-0.526980\pi\)
−0.0846576 + 0.996410i \(0.526980\pi\)
\(314\) −0.552321 −0.0311693
\(315\) 0 0
\(316\) −13.9930 −0.787170
\(317\) −2.24377 −0.126023 −0.0630113 0.998013i \(-0.520070\pi\)
−0.0630113 + 0.998013i \(0.520070\pi\)
\(318\) 0 0
\(319\) 1.74822 0.0978814
\(320\) 7.23158 0.404258
\(321\) 0 0
\(322\) 4.59238 0.255923
\(323\) 10.8104 0.601508
\(324\) 0 0
\(325\) −2.79978 −0.155304
\(326\) −0.523523 −0.0289952
\(327\) 0 0
\(328\) −0.541343 −0.0298906
\(329\) 18.8294 1.03810
\(330\) 0 0
\(331\) 1.73477 0.0953518 0.0476759 0.998863i \(-0.484819\pi\)
0.0476759 + 0.998863i \(0.484819\pi\)
\(332\) −22.3562 −1.22696
\(333\) 0 0
\(334\) −4.23941 −0.231970
\(335\) 11.4482 0.625482
\(336\) 0 0
\(337\) −29.9565 −1.63183 −0.815917 0.578169i \(-0.803768\pi\)
−0.815917 + 0.578169i \(0.803768\pi\)
\(338\) 0.929806 0.0505748
\(339\) 0 0
\(340\) 8.73487 0.473715
\(341\) −33.2844 −1.80245
\(342\) 0 0
\(343\) 24.2483 1.30928
\(344\) 1.57182 0.0847470
\(345\) 0 0
\(346\) −3.36708 −0.181015
\(347\) 14.9978 0.805123 0.402561 0.915393i \(-0.368120\pi\)
0.402561 + 0.915393i \(0.368120\pi\)
\(348\) 0 0
\(349\) −7.29913 −0.390714 −0.195357 0.980732i \(-0.562586\pi\)
−0.195357 + 0.980732i \(0.562586\pi\)
\(350\) −0.795373 −0.0425145
\(351\) 0 0
\(352\) 9.03571 0.481605
\(353\) 12.6061 0.670957 0.335479 0.942048i \(-0.391102\pi\)
0.335479 + 0.942048i \(0.391102\pi\)
\(354\) 0 0
\(355\) −10.7144 −0.568660
\(356\) −31.9342 −1.69251
\(357\) 0 0
\(358\) −0.219892 −0.0116216
\(359\) −21.5358 −1.13661 −0.568307 0.822817i \(-0.692401\pi\)
−0.568307 + 0.822817i \(0.692401\pi\)
\(360\) 0 0
\(361\) −13.0704 −0.687918
\(362\) 4.28986 0.225470
\(363\) 0 0
\(364\) 24.3209 1.27476
\(365\) −8.20680 −0.429564
\(366\) 0 0
\(367\) 20.1463 1.05163 0.525814 0.850600i \(-0.323761\pi\)
0.525814 + 0.850600i \(0.323761\pi\)
\(368\) −21.9772 −1.14564
\(369\) 0 0
\(370\) −0.180152 −0.00936567
\(371\) 0.607241 0.0315264
\(372\) 0 0
\(373\) 9.88395 0.511772 0.255886 0.966707i \(-0.417633\pi\)
0.255886 + 0.966707i \(0.417633\pi\)
\(374\) 3.41644 0.176660
\(375\) 0 0
\(376\) 3.04837 0.157208
\(377\) 1.14582 0.0590129
\(378\) 0 0
\(379\) 26.5438 1.36346 0.681732 0.731602i \(-0.261227\pi\)
0.681732 + 0.731602i \(0.261227\pi\)
\(380\) 4.79111 0.245779
\(381\) 0 0
\(382\) 2.69260 0.137765
\(383\) −1.43834 −0.0734959 −0.0367479 0.999325i \(-0.511700\pi\)
−0.0367479 + 0.999325i \(0.511700\pi\)
\(384\) 0 0
\(385\) 18.8596 0.961176
\(386\) 3.40623 0.173372
\(387\) 0 0
\(388\) −36.0845 −1.83192
\(389\) −28.7600 −1.45819 −0.729094 0.684414i \(-0.760058\pi\)
−0.729094 + 0.684414i \(0.760058\pi\)
\(390\) 0 0
\(391\) −25.6330 −1.29631
\(392\) 8.92899 0.450982
\(393\) 0 0
\(394\) 0.671250 0.0338171
\(395\) −7.11193 −0.357840
\(396\) 0 0
\(397\) 33.8486 1.69881 0.849406 0.527740i \(-0.176960\pi\)
0.849406 + 0.527740i \(0.176960\pi\)
\(398\) 3.37312 0.169079
\(399\) 0 0
\(400\) 3.80632 0.190316
\(401\) 20.7788 1.03764 0.518822 0.854883i \(-0.326371\pi\)
0.518822 + 0.854883i \(0.326371\pi\)
\(402\) 0 0
\(403\) −21.8153 −1.08670
\(404\) −21.9026 −1.08970
\(405\) 0 0
\(406\) 0.325510 0.0161548
\(407\) 4.27171 0.211741
\(408\) 0 0
\(409\) −3.46191 −0.171180 −0.0855902 0.996330i \(-0.527278\pi\)
−0.0855902 + 0.996330i \(0.527278\pi\)
\(410\) −0.136443 −0.00673843
\(411\) 0 0
\(412\) −13.3420 −0.657315
\(413\) 13.5593 0.667211
\(414\) 0 0
\(415\) −11.3625 −0.557762
\(416\) 5.92222 0.290361
\(417\) 0 0
\(418\) 1.87393 0.0916569
\(419\) 18.7259 0.914818 0.457409 0.889256i \(-0.348777\pi\)
0.457409 + 0.889256i \(0.348777\pi\)
\(420\) 0 0
\(421\) 1.91518 0.0933404 0.0466702 0.998910i \(-0.485139\pi\)
0.0466702 + 0.998910i \(0.485139\pi\)
\(422\) 2.41352 0.117488
\(423\) 0 0
\(424\) 0.0983086 0.00477429
\(425\) 4.43948 0.215346
\(426\) 0 0
\(427\) −13.3734 −0.647186
\(428\) 1.05575 0.0510317
\(429\) 0 0
\(430\) 0.396170 0.0191050
\(431\) −6.17915 −0.297639 −0.148820 0.988864i \(-0.547547\pi\)
−0.148820 + 0.988864i \(0.547547\pi\)
\(432\) 0 0
\(433\) −11.7275 −0.563588 −0.281794 0.959475i \(-0.590929\pi\)
−0.281794 + 0.959475i \(0.590929\pi\)
\(434\) −6.19739 −0.297484
\(435\) 0 0
\(436\) −18.7599 −0.898434
\(437\) −14.0598 −0.672570
\(438\) 0 0
\(439\) −18.4724 −0.881640 −0.440820 0.897595i \(-0.645312\pi\)
−0.440820 + 0.897595i \(0.645312\pi\)
\(440\) 3.05326 0.145558
\(441\) 0 0
\(442\) 2.23922 0.106509
\(443\) −3.81261 −0.181142 −0.0905712 0.995890i \(-0.528869\pi\)
−0.0905712 + 0.995890i \(0.528869\pi\)
\(444\) 0 0
\(445\) −16.2305 −0.769399
\(446\) 3.14313 0.148832
\(447\) 0 0
\(448\) −31.9275 −1.50843
\(449\) 4.81563 0.227264 0.113632 0.993523i \(-0.463752\pi\)
0.113632 + 0.993523i \(0.463752\pi\)
\(450\) 0 0
\(451\) 3.23529 0.152344
\(452\) 18.0390 0.848485
\(453\) 0 0
\(454\) 3.69291 0.173317
\(455\) 12.3610 0.579495
\(456\) 0 0
\(457\) −27.2012 −1.27242 −0.636210 0.771516i \(-0.719499\pi\)
−0.636210 + 0.771516i \(0.719499\pi\)
\(458\) 2.53470 0.118439
\(459\) 0 0
\(460\) −11.3603 −0.529679
\(461\) 40.8432 1.90226 0.951128 0.308796i \(-0.0999261\pi\)
0.951128 + 0.308796i \(0.0999261\pi\)
\(462\) 0 0
\(463\) 34.8233 1.61837 0.809187 0.587551i \(-0.199908\pi\)
0.809187 + 0.587551i \(0.199908\pi\)
\(464\) −1.55776 −0.0723170
\(465\) 0 0
\(466\) 2.72236 0.126111
\(467\) 9.38939 0.434489 0.217245 0.976117i \(-0.430293\pi\)
0.217245 + 0.976117i \(0.430293\pi\)
\(468\) 0 0
\(469\) −50.5438 −2.33390
\(470\) 0.768326 0.0354402
\(471\) 0 0
\(472\) 2.19517 0.101041
\(473\) −9.39386 −0.431930
\(474\) 0 0
\(475\) 2.43507 0.111729
\(476\) −38.5645 −1.76760
\(477\) 0 0
\(478\) 0.0134688 0.000616050 0
\(479\) −21.0154 −0.960217 −0.480109 0.877209i \(-0.659403\pi\)
−0.480109 + 0.877209i \(0.659403\pi\)
\(480\) 0 0
\(481\) 2.79978 0.127659
\(482\) −3.69084 −0.168113
\(483\) 0 0
\(484\) −14.2599 −0.648176
\(485\) −18.3399 −0.832771
\(486\) 0 0
\(487\) −35.7633 −1.62059 −0.810294 0.586023i \(-0.800693\pi\)
−0.810294 + 0.586023i \(0.800693\pi\)
\(488\) −2.16508 −0.0980085
\(489\) 0 0
\(490\) 2.25051 0.101668
\(491\) −15.0742 −0.680288 −0.340144 0.940373i \(-0.610476\pi\)
−0.340144 + 0.940373i \(0.610476\pi\)
\(492\) 0 0
\(493\) −1.81688 −0.0818280
\(494\) 1.22822 0.0552601
\(495\) 0 0
\(496\) 29.6581 1.33169
\(497\) 47.3040 2.12187
\(498\) 0 0
\(499\) 32.9424 1.47470 0.737352 0.675509i \(-0.236076\pi\)
0.737352 + 0.675509i \(0.236076\pi\)
\(500\) 1.96755 0.0879913
\(501\) 0 0
\(502\) −1.23468 −0.0551066
\(503\) 8.61983 0.384339 0.192170 0.981362i \(-0.438448\pi\)
0.192170 + 0.981362i \(0.438448\pi\)
\(504\) 0 0
\(505\) −11.1319 −0.495365
\(506\) −4.44333 −0.197530
\(507\) 0 0
\(508\) −18.3497 −0.814138
\(509\) −37.3100 −1.65374 −0.826869 0.562395i \(-0.809880\pi\)
−0.826869 + 0.562395i \(0.809880\pi\)
\(510\) 0 0
\(511\) 36.2331 1.60286
\(512\) −13.4925 −0.596291
\(513\) 0 0
\(514\) −1.88712 −0.0832374
\(515\) −6.78105 −0.298809
\(516\) 0 0
\(517\) −18.2183 −0.801240
\(518\) 0.795373 0.0349467
\(519\) 0 0
\(520\) 2.00118 0.0877575
\(521\) 18.6417 0.816710 0.408355 0.912823i \(-0.366103\pi\)
0.408355 + 0.912823i \(0.366103\pi\)
\(522\) 0 0
\(523\) 6.56533 0.287082 0.143541 0.989644i \(-0.454151\pi\)
0.143541 + 0.989644i \(0.454151\pi\)
\(524\) 30.6949 1.34091
\(525\) 0 0
\(526\) 1.08053 0.0471133
\(527\) 34.5915 1.50683
\(528\) 0 0
\(529\) 10.3376 0.449459
\(530\) 0.0247782 0.00107630
\(531\) 0 0
\(532\) −21.1527 −0.917088
\(533\) 2.12048 0.0918483
\(534\) 0 0
\(535\) 0.536583 0.0231985
\(536\) −8.18274 −0.353441
\(537\) 0 0
\(538\) −0.419361 −0.0180799
\(539\) −53.3633 −2.29852
\(540\) 0 0
\(541\) 5.25295 0.225842 0.112921 0.993604i \(-0.463979\pi\)
0.112921 + 0.993604i \(0.463979\pi\)
\(542\) 1.10448 0.0474414
\(543\) 0 0
\(544\) −9.39057 −0.402617
\(545\) −9.53465 −0.408420
\(546\) 0 0
\(547\) 37.4845 1.60272 0.801361 0.598181i \(-0.204110\pi\)
0.801361 + 0.598181i \(0.204110\pi\)
\(548\) −2.00662 −0.0857187
\(549\) 0 0
\(550\) 0.769559 0.0328141
\(551\) −0.996563 −0.0424550
\(552\) 0 0
\(553\) 31.3992 1.33523
\(554\) 1.49700 0.0636016
\(555\) 0 0
\(556\) −13.9482 −0.591534
\(557\) −12.2789 −0.520275 −0.260138 0.965572i \(-0.583768\pi\)
−0.260138 + 0.965572i \(0.583768\pi\)
\(558\) 0 0
\(559\) −6.15695 −0.260411
\(560\) −16.8049 −0.710138
\(561\) 0 0
\(562\) −0.903127 −0.0380961
\(563\) −20.4994 −0.863948 −0.431974 0.901886i \(-0.642183\pi\)
−0.431974 + 0.901886i \(0.642183\pi\)
\(564\) 0 0
\(565\) 9.16830 0.385713
\(566\) −2.25744 −0.0948874
\(567\) 0 0
\(568\) 7.65823 0.321332
\(569\) −1.60123 −0.0671269 −0.0335634 0.999437i \(-0.510686\pi\)
−0.0335634 + 0.999437i \(0.510686\pi\)
\(570\) 0 0
\(571\) −41.8238 −1.75027 −0.875136 0.483877i \(-0.839228\pi\)
−0.875136 + 0.483877i \(0.839228\pi\)
\(572\) −23.5316 −0.983905
\(573\) 0 0
\(574\) 0.602395 0.0251435
\(575\) −5.77387 −0.240787
\(576\) 0 0
\(577\) −14.9405 −0.621981 −0.310991 0.950413i \(-0.600661\pi\)
−0.310991 + 0.950413i \(0.600661\pi\)
\(578\) −0.488025 −0.0202992
\(579\) 0 0
\(580\) −0.805227 −0.0334352
\(581\) 50.1654 2.08121
\(582\) 0 0
\(583\) −0.587533 −0.0243331
\(584\) 5.86591 0.242733
\(585\) 0 0
\(586\) −1.10457 −0.0456293
\(587\) 32.8499 1.35586 0.677930 0.735126i \(-0.262877\pi\)
0.677930 + 0.735126i \(0.262877\pi\)
\(588\) 0 0
\(589\) 18.9736 0.781792
\(590\) 0.553282 0.0227783
\(591\) 0 0
\(592\) −3.80632 −0.156439
\(593\) −39.7259 −1.63135 −0.815674 0.578512i \(-0.803634\pi\)
−0.815674 + 0.578512i \(0.803634\pi\)
\(594\) 0 0
\(595\) −19.6003 −0.803534
\(596\) −30.6094 −1.25381
\(597\) 0 0
\(598\) −2.91227 −0.119091
\(599\) 10.4669 0.427668 0.213834 0.976870i \(-0.431405\pi\)
0.213834 + 0.976870i \(0.431405\pi\)
\(600\) 0 0
\(601\) −8.56503 −0.349375 −0.174687 0.984624i \(-0.555891\pi\)
−0.174687 + 0.984624i \(0.555891\pi\)
\(602\) −1.74909 −0.0712876
\(603\) 0 0
\(604\) 7.88753 0.320939
\(605\) −7.24754 −0.294655
\(606\) 0 0
\(607\) 8.90888 0.361600 0.180800 0.983520i \(-0.442131\pi\)
0.180800 + 0.983520i \(0.442131\pi\)
\(608\) −5.15076 −0.208891
\(609\) 0 0
\(610\) −0.545697 −0.0220946
\(611\) −11.9407 −0.483069
\(612\) 0 0
\(613\) −10.5868 −0.427598 −0.213799 0.976878i \(-0.568584\pi\)
−0.213799 + 0.976878i \(0.568584\pi\)
\(614\) −2.27760 −0.0919163
\(615\) 0 0
\(616\) −13.4802 −0.543131
\(617\) 6.83972 0.275357 0.137678 0.990477i \(-0.456036\pi\)
0.137678 + 0.990477i \(0.456036\pi\)
\(618\) 0 0
\(619\) −15.5577 −0.625318 −0.312659 0.949865i \(-0.601220\pi\)
−0.312659 + 0.949865i \(0.601220\pi\)
\(620\) 15.3307 0.615697
\(621\) 0 0
\(622\) 1.45047 0.0581584
\(623\) 71.6576 2.87090
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) 0.539645 0.0215685
\(627\) 0 0
\(628\) −6.03221 −0.240711
\(629\) −4.43948 −0.177014
\(630\) 0 0
\(631\) 12.0975 0.481596 0.240798 0.970575i \(-0.422591\pi\)
0.240798 + 0.970575i \(0.422591\pi\)
\(632\) 5.08334 0.202204
\(633\) 0 0
\(634\) 0.404220 0.0160536
\(635\) −9.32621 −0.370099
\(636\) 0 0
\(637\) −34.9756 −1.38578
\(638\) −0.314946 −0.0124688
\(639\) 0 0
\(640\) −5.53327 −0.218722
\(641\) 39.4179 1.55691 0.778457 0.627698i \(-0.216003\pi\)
0.778457 + 0.627698i \(0.216003\pi\)
\(642\) 0 0
\(643\) −2.80810 −0.110741 −0.0553704 0.998466i \(-0.517634\pi\)
−0.0553704 + 0.998466i \(0.517634\pi\)
\(644\) 50.1560 1.97642
\(645\) 0 0
\(646\) −1.94752 −0.0766243
\(647\) 47.0232 1.84867 0.924337 0.381577i \(-0.124619\pi\)
0.924337 + 0.381577i \(0.124619\pi\)
\(648\) 0 0
\(649\) −13.1193 −0.514976
\(650\) 0.504387 0.0197837
\(651\) 0 0
\(652\) −5.71769 −0.223922
\(653\) −21.7426 −0.850852 −0.425426 0.904993i \(-0.639876\pi\)
−0.425426 + 0.904993i \(0.639876\pi\)
\(654\) 0 0
\(655\) 15.6006 0.609566
\(656\) −2.88281 −0.112555
\(657\) 0 0
\(658\) −3.39216 −0.132240
\(659\) 26.3436 1.02620 0.513100 0.858329i \(-0.328497\pi\)
0.513100 + 0.858329i \(0.328497\pi\)
\(660\) 0 0
\(661\) 20.5259 0.798364 0.399182 0.916872i \(-0.369294\pi\)
0.399182 + 0.916872i \(0.369294\pi\)
\(662\) −0.312523 −0.0121466
\(663\) 0 0
\(664\) 8.12147 0.315174
\(665\) −10.7508 −0.416899
\(666\) 0 0
\(667\) 2.36298 0.0914950
\(668\) −46.3010 −1.79144
\(669\) 0 0
\(670\) −2.06242 −0.0796782
\(671\) 12.9394 0.499520
\(672\) 0 0
\(673\) −5.66357 −0.218315 −0.109157 0.994024i \(-0.534815\pi\)
−0.109157 + 0.994024i \(0.534815\pi\)
\(674\) 5.39673 0.207874
\(675\) 0 0
\(676\) 10.1549 0.390574
\(677\) −6.93823 −0.266658 −0.133329 0.991072i \(-0.542567\pi\)
−0.133329 + 0.991072i \(0.542567\pi\)
\(678\) 0 0
\(679\) 80.9706 3.10737
\(680\) −3.17317 −0.121686
\(681\) 0 0
\(682\) 5.99625 0.229608
\(683\) −19.4849 −0.745570 −0.372785 0.927918i \(-0.621597\pi\)
−0.372785 + 0.927918i \(0.621597\pi\)
\(684\) 0 0
\(685\) −1.01986 −0.0389669
\(686\) −4.36838 −0.166786
\(687\) 0 0
\(688\) 8.37043 0.319119
\(689\) −0.385083 −0.0146705
\(690\) 0 0
\(691\) −19.9927 −0.760557 −0.380278 0.924872i \(-0.624172\pi\)
−0.380278 + 0.924872i \(0.624172\pi\)
\(692\) −36.7738 −1.39793
\(693\) 0 0
\(694\) −2.70188 −0.102562
\(695\) −7.08913 −0.268906
\(696\) 0 0
\(697\) −3.36235 −0.127358
\(698\) 1.31496 0.0497718
\(699\) 0 0
\(700\) −8.68672 −0.328327
\(701\) 25.5726 0.965863 0.482932 0.875658i \(-0.339572\pi\)
0.482932 + 0.875658i \(0.339572\pi\)
\(702\) 0 0
\(703\) −2.43507 −0.0918403
\(704\) 30.8913 1.16426
\(705\) 0 0
\(706\) −2.27103 −0.0854712
\(707\) 49.1476 1.84838
\(708\) 0 0
\(709\) −36.7156 −1.37888 −0.689441 0.724342i \(-0.742144\pi\)
−0.689441 + 0.724342i \(0.742144\pi\)
\(710\) 1.93022 0.0724398
\(711\) 0 0
\(712\) 11.6009 0.434764
\(713\) −44.9888 −1.68485
\(714\) 0 0
\(715\) −11.9599 −0.447274
\(716\) −2.40156 −0.0897505
\(717\) 0 0
\(718\) 3.87971 0.144790
\(719\) −4.11485 −0.153458 −0.0767290 0.997052i \(-0.524448\pi\)
−0.0767290 + 0.997052i \(0.524448\pi\)
\(720\) 0 0
\(721\) 29.9384 1.11496
\(722\) 2.35467 0.0876317
\(723\) 0 0
\(724\) 46.8520 1.74124
\(725\) −0.409254 −0.0151993
\(726\) 0 0
\(727\) 27.2507 1.01067 0.505336 0.862923i \(-0.331369\pi\)
0.505336 + 0.862923i \(0.331369\pi\)
\(728\) −8.83521 −0.327455
\(729\) 0 0
\(730\) 1.47847 0.0547208
\(731\) 9.76278 0.361090
\(732\) 0 0
\(733\) 27.7634 1.02546 0.512732 0.858549i \(-0.328634\pi\)
0.512732 + 0.858549i \(0.328634\pi\)
\(734\) −3.62940 −0.133964
\(735\) 0 0
\(736\) 12.2131 0.450182
\(737\) 48.9034 1.80138
\(738\) 0 0
\(739\) −41.6263 −1.53125 −0.765624 0.643288i \(-0.777570\pi\)
−0.765624 + 0.643288i \(0.777570\pi\)
\(740\) −1.96755 −0.0723284
\(741\) 0 0
\(742\) −0.109396 −0.00401605
\(743\) 48.9645 1.79633 0.898166 0.439657i \(-0.144900\pi\)
0.898166 + 0.439657i \(0.144900\pi\)
\(744\) 0 0
\(745\) −15.5572 −0.569970
\(746\) −1.78062 −0.0651930
\(747\) 0 0
\(748\) 37.3129 1.36429
\(749\) −2.36902 −0.0865619
\(750\) 0 0
\(751\) 7.34688 0.268091 0.134046 0.990975i \(-0.457203\pi\)
0.134046 + 0.990975i \(0.457203\pi\)
\(752\) 16.2335 0.591974
\(753\) 0 0
\(754\) −0.206423 −0.00751747
\(755\) 4.00882 0.145896
\(756\) 0 0
\(757\) −4.47852 −0.162775 −0.0813873 0.996683i \(-0.525935\pi\)
−0.0813873 + 0.996683i \(0.525935\pi\)
\(758\) −4.78193 −0.173687
\(759\) 0 0
\(760\) −1.74049 −0.0631344
\(761\) −33.7349 −1.22289 −0.611445 0.791287i \(-0.709411\pi\)
−0.611445 + 0.791287i \(0.709411\pi\)
\(762\) 0 0
\(763\) 42.0955 1.52396
\(764\) 29.4074 1.06392
\(765\) 0 0
\(766\) 0.259121 0.00936241
\(767\) −8.59867 −0.310480
\(768\) 0 0
\(769\) 25.1523 0.907014 0.453507 0.891253i \(-0.350173\pi\)
0.453507 + 0.891253i \(0.350173\pi\)
\(770\) −3.39761 −0.122441
\(771\) 0 0
\(772\) 37.2013 1.33890
\(773\) −13.1660 −0.473549 −0.236774 0.971565i \(-0.576090\pi\)
−0.236774 + 0.971565i \(0.576090\pi\)
\(774\) 0 0
\(775\) 7.79180 0.279890
\(776\) 13.1087 0.470573
\(777\) 0 0
\(778\) 5.18117 0.185754
\(779\) −1.84426 −0.0660774
\(780\) 0 0
\(781\) −45.7687 −1.63773
\(782\) 4.61784 0.165134
\(783\) 0 0
\(784\) 47.5495 1.69820
\(785\) −3.06585 −0.109425
\(786\) 0 0
\(787\) 19.5552 0.697066 0.348533 0.937296i \(-0.386680\pi\)
0.348533 + 0.937296i \(0.386680\pi\)
\(788\) 7.33111 0.261160
\(789\) 0 0
\(790\) 1.28123 0.0455841
\(791\) −40.4781 −1.43923
\(792\) 0 0
\(793\) 8.48079 0.301162
\(794\) −6.09790 −0.216406
\(795\) 0 0
\(796\) 36.8398 1.30575
\(797\) −51.4656 −1.82300 −0.911502 0.411295i \(-0.865077\pi\)
−0.911502 + 0.411295i \(0.865077\pi\)
\(798\) 0 0
\(799\) 18.9338 0.669829
\(800\) −2.11524 −0.0747851
\(801\) 0 0
\(802\) −3.74335 −0.132182
\(803\) −35.0571 −1.23714
\(804\) 0 0
\(805\) 25.4916 0.898463
\(806\) 3.93008 0.138431
\(807\) 0 0
\(808\) 7.95669 0.279915
\(809\) −42.6242 −1.49859 −0.749293 0.662238i \(-0.769607\pi\)
−0.749293 + 0.662238i \(0.769607\pi\)
\(810\) 0 0
\(811\) −26.7451 −0.939147 −0.469574 0.882893i \(-0.655592\pi\)
−0.469574 + 0.882893i \(0.655592\pi\)
\(812\) 3.55508 0.124759
\(813\) 0 0
\(814\) −0.769559 −0.0269730
\(815\) −2.90600 −0.101793
\(816\) 0 0
\(817\) 5.35492 0.187345
\(818\) 0.623671 0.0218061
\(819\) 0 0
\(820\) −1.49017 −0.0520389
\(821\) −43.8050 −1.52880 −0.764402 0.644740i \(-0.776966\pi\)
−0.764402 + 0.644740i \(0.776966\pi\)
\(822\) 0 0
\(823\) −5.72621 −0.199603 −0.0998016 0.995007i \(-0.531821\pi\)
−0.0998016 + 0.995007i \(0.531821\pi\)
\(824\) 4.84684 0.168848
\(825\) 0 0
\(826\) −2.44274 −0.0849939
\(827\) 35.4306 1.23204 0.616021 0.787730i \(-0.288744\pi\)
0.616021 + 0.787730i \(0.288744\pi\)
\(828\) 0 0
\(829\) −20.7040 −0.719081 −0.359541 0.933129i \(-0.617067\pi\)
−0.359541 + 0.933129i \(0.617067\pi\)
\(830\) 2.04698 0.0710516
\(831\) 0 0
\(832\) 20.2469 0.701933
\(833\) 55.4590 1.92154
\(834\) 0 0
\(835\) −23.5324 −0.814372
\(836\) 20.4662 0.707840
\(837\) 0 0
\(838\) −3.37351 −0.116536
\(839\) −10.9086 −0.376607 −0.188303 0.982111i \(-0.560299\pi\)
−0.188303 + 0.982111i \(0.560299\pi\)
\(840\) 0 0
\(841\) −28.8325 −0.994225
\(842\) −0.345025 −0.0118903
\(843\) 0 0
\(844\) 26.3594 0.907329
\(845\) 5.16122 0.177551
\(846\) 0 0
\(847\) 31.9979 1.09946
\(848\) 0.523523 0.0179778
\(849\) 0 0
\(850\) −0.799782 −0.0274323
\(851\) 5.77387 0.197926
\(852\) 0 0
\(853\) −38.8833 −1.33134 −0.665670 0.746247i \(-0.731854\pi\)
−0.665670 + 0.746247i \(0.731854\pi\)
\(854\) 2.40925 0.0824430
\(855\) 0 0
\(856\) −0.383529 −0.0131088
\(857\) −40.6975 −1.39020 −0.695100 0.718913i \(-0.744640\pi\)
−0.695100 + 0.718913i \(0.744640\pi\)
\(858\) 0 0
\(859\) 28.1532 0.960574 0.480287 0.877111i \(-0.340533\pi\)
0.480287 + 0.877111i \(0.340533\pi\)
\(860\) 4.32680 0.147543
\(861\) 0 0
\(862\) 1.11319 0.0379154
\(863\) −18.5236 −0.630552 −0.315276 0.949000i \(-0.602097\pi\)
−0.315276 + 0.949000i \(0.602097\pi\)
\(864\) 0 0
\(865\) −18.6902 −0.635486
\(866\) 2.11274 0.0717937
\(867\) 0 0
\(868\) −67.6852 −2.29738
\(869\) −30.3801 −1.03058
\(870\) 0 0
\(871\) 32.0525 1.08606
\(872\) 6.81501 0.230785
\(873\) 0 0
\(874\) 2.53290 0.0856766
\(875\) −4.41500 −0.149254
\(876\) 0 0
\(877\) 14.0422 0.474172 0.237086 0.971489i \(-0.423808\pi\)
0.237086 + 0.971489i \(0.423808\pi\)
\(878\) 3.32785 0.112309
\(879\) 0 0
\(880\) 16.2595 0.548109
\(881\) −7.68268 −0.258836 −0.129418 0.991590i \(-0.541311\pi\)
−0.129418 + 0.991590i \(0.541311\pi\)
\(882\) 0 0
\(883\) 35.0479 1.17945 0.589727 0.807602i \(-0.299235\pi\)
0.589727 + 0.807602i \(0.299235\pi\)
\(884\) 24.4557 0.822535
\(885\) 0 0
\(886\) 0.686850 0.0230752
\(887\) 9.30606 0.312467 0.156233 0.987720i \(-0.450065\pi\)
0.156233 + 0.987720i \(0.450065\pi\)
\(888\) 0 0
\(889\) 41.1752 1.38097
\(890\) 2.92396 0.0980113
\(891\) 0 0
\(892\) 34.3280 1.14938
\(893\) 10.3852 0.347529
\(894\) 0 0
\(895\) −1.22059 −0.0407997
\(896\) 24.4294 0.816129
\(897\) 0 0
\(898\) −0.867547 −0.0289504
\(899\) −3.18883 −0.106353
\(900\) 0 0
\(901\) 0.610607 0.0203423
\(902\) −0.582844 −0.0194066
\(903\) 0 0
\(904\) −6.55315 −0.217955
\(905\) 23.8124 0.791552
\(906\) 0 0
\(907\) −4.56415 −0.151550 −0.0757751 0.997125i \(-0.524143\pi\)
−0.0757751 + 0.997125i \(0.524143\pi\)
\(908\) 40.3324 1.33848
\(909\) 0 0
\(910\) −2.22687 −0.0738200
\(911\) 0.294602 0.00976060 0.00488030 0.999988i \(-0.498447\pi\)
0.00488030 + 0.999988i \(0.498447\pi\)
\(912\) 0 0
\(913\) −48.5373 −1.60635
\(914\) 4.90036 0.162090
\(915\) 0 0
\(916\) 27.6829 0.914668
\(917\) −68.8767 −2.27451
\(918\) 0 0
\(919\) 33.9110 1.11862 0.559311 0.828958i \(-0.311066\pi\)
0.559311 + 0.828958i \(0.311066\pi\)
\(920\) 4.12694 0.136061
\(921\) 0 0
\(922\) −7.35799 −0.242323
\(923\) −29.9979 −0.987393
\(924\) 0 0
\(925\) −1.00000 −0.0328798
\(926\) −6.27349 −0.206160
\(927\) 0 0
\(928\) 0.865673 0.0284171
\(929\) −22.4955 −0.738055 −0.369028 0.929418i \(-0.620309\pi\)
−0.369028 + 0.929418i \(0.620309\pi\)
\(930\) 0 0
\(931\) 30.4195 0.996958
\(932\) 29.7324 0.973918
\(933\) 0 0
\(934\) −1.69152 −0.0553482
\(935\) 18.9642 0.620195
\(936\) 0 0
\(937\) 25.4994 0.833028 0.416514 0.909129i \(-0.363252\pi\)
0.416514 + 0.909129i \(0.363252\pi\)
\(938\) 9.10558 0.297308
\(939\) 0 0
\(940\) 8.39132 0.273695
\(941\) −52.3734 −1.70732 −0.853662 0.520827i \(-0.825624\pi\)
−0.853662 + 0.520827i \(0.825624\pi\)
\(942\) 0 0
\(943\) 4.37298 0.142404
\(944\) 11.6900 0.380476
\(945\) 0 0
\(946\) 1.69232 0.0550222
\(947\) 50.7001 1.64753 0.823766 0.566931i \(-0.191869\pi\)
0.823766 + 0.566931i \(0.191869\pi\)
\(948\) 0 0
\(949\) −22.9773 −0.745874
\(950\) −0.438683 −0.0142328
\(951\) 0 0
\(952\) 14.0096 0.454052
\(953\) −18.5912 −0.602228 −0.301114 0.953588i \(-0.597359\pi\)
−0.301114 + 0.953588i \(0.597359\pi\)
\(954\) 0 0
\(955\) 14.9462 0.483649
\(956\) 0.147101 0.00475758
\(957\) 0 0
\(958\) 3.78597 0.122319
\(959\) 4.50269 0.145399
\(960\) 0 0
\(961\) 29.7122 0.958457
\(962\) −0.504387 −0.0162621
\(963\) 0 0
\(964\) −40.3098 −1.29829
\(965\) 18.9075 0.608653
\(966\) 0 0
\(967\) −20.5566 −0.661056 −0.330528 0.943796i \(-0.607227\pi\)
−0.330528 + 0.943796i \(0.607227\pi\)
\(968\) 5.18027 0.166500
\(969\) 0 0
\(970\) 3.30397 0.106084
\(971\) −40.7627 −1.30814 −0.654069 0.756435i \(-0.726939\pi\)
−0.654069 + 0.756435i \(0.726939\pi\)
\(972\) 0 0
\(973\) 31.2985 1.00338
\(974\) 6.44284 0.206442
\(975\) 0 0
\(976\) −11.5297 −0.369056
\(977\) −5.60203 −0.179225 −0.0896124 0.995977i \(-0.528563\pi\)
−0.0896124 + 0.995977i \(0.528563\pi\)
\(978\) 0 0
\(979\) −69.3320 −2.21586
\(980\) 24.5791 0.785149
\(981\) 0 0
\(982\) 2.71565 0.0866598
\(983\) −16.0493 −0.511894 −0.255947 0.966691i \(-0.582387\pi\)
−0.255947 + 0.966691i \(0.582387\pi\)
\(984\) 0 0
\(985\) 3.72602 0.118721
\(986\) 0.327314 0.0104238
\(987\) 0 0
\(988\) 13.4141 0.426758
\(989\) −12.6972 −0.403748
\(990\) 0 0
\(991\) −36.8868 −1.17175 −0.585874 0.810402i \(-0.699249\pi\)
−0.585874 + 0.810402i \(0.699249\pi\)
\(992\) −16.4816 −0.523290
\(993\) 0 0
\(994\) −8.52192 −0.270299
\(995\) 18.7237 0.593582
\(996\) 0 0
\(997\) −0.491984 −0.0155813 −0.00779064 0.999970i \(-0.502480\pi\)
−0.00779064 + 0.999970i \(0.502480\pi\)
\(998\) −5.93465 −0.187858
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1665.2.a.q.1.3 5
3.2 odd 2 185.2.a.d.1.3 5
5.4 even 2 8325.2.a.cc.1.3 5
12.11 even 2 2960.2.a.ba.1.5 5
15.2 even 4 925.2.b.g.149.6 10
15.8 even 4 925.2.b.g.149.5 10
15.14 odd 2 925.2.a.h.1.3 5
21.20 even 2 9065.2.a.j.1.3 5
111.110 odd 2 6845.2.a.g.1.3 5
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
185.2.a.d.1.3 5 3.2 odd 2
925.2.a.h.1.3 5 15.14 odd 2
925.2.b.g.149.5 10 15.8 even 4
925.2.b.g.149.6 10 15.2 even 4
1665.2.a.q.1.3 5 1.1 even 1 trivial
2960.2.a.ba.1.5 5 12.11 even 2
6845.2.a.g.1.3 5 111.110 odd 2
8325.2.a.cc.1.3 5 5.4 even 2
9065.2.a.j.1.3 5 21.20 even 2