Properties

Label 185.2.a.d.1.3
Level 185185
Weight 22
Character 185.1
Self dual yes
Analytic conductor 1.4771.477
Analytic rank 00
Dimension 55
CM no
Inner twists 11

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [185,2,Mod(1,185)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(185, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("185.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: N N == 185=537 185 = 5 \cdot 37
Weight: k k == 2 2
Character orbit: [χ][\chi] == 185.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [5,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 1.477232437391.47723243739
Analytic rank: 00
Dimension: 55
Coefficient field: 5.5.368464.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: x52x46x3+6x2+6x4 x^{5} - 2x^{4} - 6x^{3} + 6x^{2} + 6x - 4 Copy content Toggle raw display
Coefficient ring: Z[a1,a2,a3]\Z[a_1, a_2, a_3]
Coefficient ring index: 1 1
Twist minimal: yes
Fricke sign: 1-1
Sato-Tate group: SU(2)\mathrm{SU}(2)

Embedding invariants

Embedding label 1.3
Root 0.5525430.552543 of defining polynomial
Character χ\chi == 185.1

qq-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
f(q)f(q) == q+0.180152q23.06709q31.96755q4+1.00000q50.552543q6+4.41500q70.714762q8+6.40702q9+0.180152q10+4.27171q11+6.03463q122.79978q13+0.795373q143.06709q15+3.80632q164.43948q17+1.15424q18+2.43507q191.96755q2013.5412q21+0.769559q22+5.77387q23+2.19224q24+1.00000q250.504387q2610.4496q278.68672q28+0.409254q290.552543q30+7.79180q31+2.11524q3213.1017q330.799782q34+4.41500q3512.6061q361.00000q37+0.438683q38+8.58717q390.714762q40+0.757374q412.43948q42+2.19908q438.40479q44+6.40702q45+1.04018q464.26487q4711.6743q48+12.4922q49+0.180152q50+13.6163q51+5.50870q520.137540q531.88253q54+4.27171q553.15568q567.46857q57+0.0737281q583.07119q59+6.03463q603.02909q61+1.40371q62+28.2870q637.23158q642.79978q652.36030q6611.4482q67+8.73487q6817.7090q69+0.795373q7010.7144q714.57950q72+8.20680q730.180152q743.06709q754.79111q76+18.8596q77+1.54700q78+7.11193q79+3.80632q80+12.8289q81+0.136443q8211.3625q83+26.6429q844.43948q85+0.396170q861.25522q873.05326q8816.2305q89+1.15424q9012.3610q9111.3603q9223.8981q930.768326q94+2.43507q956.48763q96+18.3399q97+2.25051q98+27.3690q99+O(q100)q+0.180152 q^{2} -3.06709 q^{3} -1.96755 q^{4} +1.00000 q^{5} -0.552543 q^{6} +4.41500 q^{7} -0.714762 q^{8} +6.40702 q^{9} +0.180152 q^{10} +4.27171 q^{11} +6.03463 q^{12} -2.79978 q^{13} +0.795373 q^{14} -3.06709 q^{15} +3.80632 q^{16} -4.43948 q^{17} +1.15424 q^{18} +2.43507 q^{19} -1.96755 q^{20} -13.5412 q^{21} +0.769559 q^{22} +5.77387 q^{23} +2.19224 q^{24} +1.00000 q^{25} -0.504387 q^{26} -10.4496 q^{27} -8.68672 q^{28} +0.409254 q^{29} -0.552543 q^{30} +7.79180 q^{31} +2.11524 q^{32} -13.1017 q^{33} -0.799782 q^{34} +4.41500 q^{35} -12.6061 q^{36} -1.00000 q^{37} +0.438683 q^{38} +8.58717 q^{39} -0.714762 q^{40} +0.757374 q^{41} -2.43948 q^{42} +2.19908 q^{43} -8.40479 q^{44} +6.40702 q^{45} +1.04018 q^{46} -4.26487 q^{47} -11.6743 q^{48} +12.4922 q^{49} +0.180152 q^{50} +13.6163 q^{51} +5.50870 q^{52} -0.137540 q^{53} -1.88253 q^{54} +4.27171 q^{55} -3.15568 q^{56} -7.46857 q^{57} +0.0737281 q^{58} -3.07119 q^{59} +6.03463 q^{60} -3.02909 q^{61} +1.40371 q^{62} +28.2870 q^{63} -7.23158 q^{64} -2.79978 q^{65} -2.36030 q^{66} -11.4482 q^{67} +8.73487 q^{68} -17.7090 q^{69} +0.795373 q^{70} -10.7144 q^{71} -4.57950 q^{72} +8.20680 q^{73} -0.180152 q^{74} -3.06709 q^{75} -4.79111 q^{76} +18.8596 q^{77} +1.54700 q^{78} +7.11193 q^{79} +3.80632 q^{80} +12.8289 q^{81} +0.136443 q^{82} -11.3625 q^{83} +26.6429 q^{84} -4.43948 q^{85} +0.396170 q^{86} -1.25522 q^{87} -3.05326 q^{88} -16.2305 q^{89} +1.15424 q^{90} -12.3610 q^{91} -11.3603 q^{92} -23.8981 q^{93} -0.768326 q^{94} +2.43507 q^{95} -6.48763 q^{96} +18.3399 q^{97} +2.25051 q^{98} +27.3690 q^{99} +O(q^{100})
Tr(f)(q)\operatorname{Tr}(f)(q) == 5qq3+6q4+5q52q6+7q76q8+2q9+7q11+2q13+4q14q15+8q168q176q18+14q19+6q209q21+2q22+2q23++18q99+O(q100) 5 q - q^{3} + 6 q^{4} + 5 q^{5} - 2 q^{6} + 7 q^{7} - 6 q^{8} + 2 q^{9} + 7 q^{11} + 2 q^{13} + 4 q^{14} - q^{15} + 8 q^{16} - 8 q^{17} - 6 q^{18} + 14 q^{19} + 6 q^{20} - 9 q^{21} + 2 q^{22} + 2 q^{23}+ \cdots + 18 q^{99}+O(q^{100}) Copy content Toggle raw display

Coefficient data

For each nn we display the coefficients of the qq-expansion ana_n, the Satake parameters αp\alpha_p, and the Satake angles θp=Arg(αp)\theta_p = \textrm{Arg}(\alpha_p).



Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)
Significant digits:
nn ana_n an/n(k1)/2a_n / n^{(k-1)/2} αn \alpha_n θn \theta_n
pp apa_p ap/p(k1)/2a_p / p^{(k-1)/2} αp \alpha_p θp \theta_p
22 0.180152 0.127387 0.0636934 0.997970i 0.479712π-0.479712\pi
0.0636934 + 0.997970i 0.479712π0.479712\pi
33 −3.06709 −1.77078 −0.885392 0.464846i 0.846110π-0.846110\pi
−0.885392 + 0.464846i 0.846110π0.846110\pi
44 −1.96755 −0.983773
55 1.00000 0.447214
66 −0.552543 −0.225575
77 4.41500 1.66871 0.834357 0.551224i 0.185839π-0.185839\pi
0.834357 + 0.551224i 0.185839π0.185839\pi
88 −0.714762 −0.252707
99 6.40702 2.13567
1010 0.180152 0.0569692
1111 4.27171 1.28797 0.643985 0.765038i 0.277280π-0.277280\pi
0.643985 + 0.765038i 0.277280π0.277280\pi
1212 6.03463 1.74205
1313 −2.79978 −0.776520 −0.388260 0.921550i 0.626924π-0.626924\pi
−0.388260 + 0.921550i 0.626924π0.626924\pi
1414 0.795373 0.212572
1515 −3.06709 −0.791918
1616 3.80632 0.951581
1717 −4.43948 −1.07673 −0.538366 0.842711i 0.680958π-0.680958\pi
−0.538366 + 0.842711i 0.680958π0.680958\pi
1818 1.15424 0.272057
1919 2.43507 0.558643 0.279321 0.960198i 0.409890π-0.409890\pi
0.279321 + 0.960198i 0.409890π0.409890\pi
2020 −1.96755 −0.439956
2121 −13.5412 −2.95493
2222 0.769559 0.164071
2323 5.77387 1.20393 0.601967 0.798521i 0.294384π-0.294384\pi
0.601967 + 0.798521i 0.294384π0.294384\pi
2424 2.19224 0.447489
2525 1.00000 0.200000
2626 −0.504387 −0.0989184
2727 −10.4496 −2.01103
2828 −8.68672 −1.64164
2929 0.409254 0.0759967 0.0379983 0.999278i 0.487902π-0.487902\pi
0.0379983 + 0.999278i 0.487902π0.487902\pi
3030 −0.552543 −0.100880
3131 7.79180 1.39945 0.699724 0.714413i 0.253306π-0.253306\pi
0.699724 + 0.714413i 0.253306π0.253306\pi
3232 2.11524 0.373926
3333 −13.1017 −2.28072
3434 −0.799782 −0.137161
3535 4.41500 0.746272
3636 −12.6061 −2.10102
3737 −1.00000 −0.164399
3838 0.438683 0.0711638
3939 8.58717 1.37505
4040 −0.714762 −0.113014
4141 0.757374 0.118282 0.0591410 0.998250i 0.481164π-0.481164\pi
0.0591410 + 0.998250i 0.481164π0.481164\pi
4242 −2.43948 −0.376420
4343 2.19908 0.335357 0.167679 0.985842i 0.446373π-0.446373\pi
0.167679 + 0.985842i 0.446373π0.446373\pi
4444 −8.40479 −1.26707
4545 6.40702 0.955103
4646 1.04018 0.153366
4747 −4.26487 −0.622095 −0.311048 0.950394i 0.600680π-0.600680\pi
−0.311048 + 0.950394i 0.600680π0.600680\pi
4848 −11.6743 −1.68504
4949 12.4922 1.78461
5050 0.180152 0.0254774
5151 13.6163 1.90666
5252 5.50870 0.763919
5353 −0.137540 −0.0188926 −0.00944630 0.999955i 0.503007π-0.503007\pi
−0.00944630 + 0.999955i 0.503007π0.503007\pi
5454 −1.88253 −0.256179
5555 4.27171 0.575998
5656 −3.15568 −0.421695
5757 −7.46857 −0.989236
5858 0.0737281 0.00968098
5959 −3.07119 −0.399835 −0.199918 0.979813i 0.564067π-0.564067\pi
−0.199918 + 0.979813i 0.564067π0.564067\pi
6060 6.03463 0.779068
6161 −3.02909 −0.387835 −0.193918 0.981018i 0.562119π-0.562119\pi
−0.193918 + 0.981018i 0.562119π0.562119\pi
6262 1.40371 0.178271
6363 28.2870 3.56383
6464 −7.23158 −0.903948
6565 −2.79978 −0.347270
6666 −2.36030 −0.290533
6767 −11.4482 −1.39862 −0.699310 0.714819i 0.746509π-0.746509\pi
−0.699310 + 0.714819i 0.746509π0.746509\pi
6868 8.73487 1.05926
6969 −17.7090 −2.13191
7070 0.795373 0.0950652
7171 −10.7144 −1.27156 −0.635781 0.771870i 0.719322π-0.719322\pi
−0.635781 + 0.771870i 0.719322π0.719322\pi
7272 −4.57950 −0.539699
7373 8.20680 0.960534 0.480267 0.877122i 0.340540π-0.340540\pi
0.480267 + 0.877122i 0.340540π0.340540\pi
7474 −0.180152 −0.0209423
7575 −3.06709 −0.354157
7676 −4.79111 −0.549578
7777 18.8596 2.14925
7878 1.54700 0.175163
7979 7.11193 0.800155 0.400077 0.916481i 0.368983π-0.368983\pi
0.400077 + 0.916481i 0.368983π0.368983\pi
8080 3.80632 0.425560
8181 12.8289 1.42543
8282 0.136443 0.0150676
8383 −11.3625 −1.24719 −0.623597 0.781746i 0.714329π-0.714329\pi
−0.623597 + 0.781746i 0.714329π0.714329\pi
8484 26.6429 2.90698
8585 −4.43948 −0.481529
8686 0.396170 0.0427201
8787 −1.25522 −0.134574
8888 −3.05326 −0.325479
8989 −16.2305 −1.72043 −0.860214 0.509933i 0.829670π-0.829670\pi
−0.860214 + 0.509933i 0.829670π0.829670\pi
9090 1.15424 0.121668
9191 −12.3610 −1.29579
9292 −11.3603 −1.18440
9393 −23.8981 −2.47812
9494 −0.768326 −0.0792468
9595 2.43507 0.249833
9696 −6.48763 −0.662141
9797 18.3399 1.86213 0.931066 0.364850i 0.118880π-0.118880\pi
0.931066 + 0.364850i 0.118880π0.118880\pi
9898 2.25051 0.227336
9999 27.3690 2.75068
100100 −1.96755 −0.196755
101101 −11.1319 −1.10767 −0.553835 0.832627i 0.686836π-0.686836\pi
−0.553835 + 0.832627i 0.686836π0.686836\pi
102102 2.45300 0.242883
103103 6.78105 0.668157 0.334079 0.942545i 0.391575π-0.391575\pi
0.334079 + 0.942545i 0.391575π0.391575\pi
104104 2.00118 0.196232
105105 −13.5412 −1.32149
106106 −0.0247782 −0.00240667
107107 0.536583 0.0518734 0.0259367 0.999664i 0.491743π-0.491743\pi
0.0259367 + 0.999664i 0.491743π0.491743\pi
108108 20.5601 1.97840
109109 9.53465 0.913254 0.456627 0.889658i 0.349057π-0.349057\pi
0.456627 + 0.889658i 0.349057π0.349057\pi
110110 0.769559 0.0733746
111111 3.06709 0.291115
112112 16.8049 1.58792
113113 9.16830 0.862481 0.431240 0.902237i 0.358076π-0.358076\pi
0.431240 + 0.902237i 0.358076π0.358076\pi
114114 −1.34548 −0.126016
115115 5.77387 0.538416
116116 −0.805227 −0.0747634
117117 −17.9383 −1.65839
118118 −0.553282 −0.0509338
119119 −19.6003 −1.79676
120120 2.19224 0.200123
121121 7.24754 0.658867
122122 −0.545697 −0.0494051
123123 −2.32293 −0.209452
124124 −15.3307 −1.37674
125125 1.00000 0.0894427
126126 5.09597 0.453985
127127 9.32621 0.827567 0.413784 0.910375i 0.364207π-0.364207\pi
0.413784 + 0.910375i 0.364207π0.364207\pi
128128 −5.53327 −0.489077
129129 −6.74478 −0.593845
130130 −0.504387 −0.0442377
131131 15.6006 1.36303 0.681515 0.731804i 0.261321π-0.261321\pi
0.681515 + 0.731804i 0.261321π0.261321\pi
132132 25.7782 2.24371
133133 10.7508 0.932215
134134 −2.06242 −0.178166
135135 −10.4496 −0.899361
136136 3.17317 0.272097
137137 −1.01986 −0.0871326 −0.0435663 0.999051i 0.513872π-0.513872\pi
−0.0435663 + 0.999051i 0.513872π0.513872\pi
138138 −3.19031 −0.271577
139139 7.08913 0.601292 0.300646 0.953736i 0.402798π-0.402798\pi
0.300646 + 0.953736i 0.402798π0.402798\pi
140140 −8.68672 −0.734162
141141 13.0807 1.10160
142142 −1.93022 −0.161980
143143 −11.9599 −1.00013
144144 24.3872 2.03227
145145 0.409254 0.0339867
146146 1.47847 0.122359
147147 −38.3148 −3.16015
148148 1.96755 0.161731
149149 −15.5572 −1.27449 −0.637246 0.770660i 0.719926π-0.719926\pi
−0.637246 + 0.770660i 0.719926π0.719926\pi
150150 −0.552543 −0.0451149
151151 −4.00882 −0.326233 −0.163117 0.986607i 0.552155π-0.552155\pi
−0.163117 + 0.986607i 0.552155π0.552155\pi
152152 −1.74049 −0.141173
153153 −28.4438 −2.29955
154154 3.39761 0.273787
155155 7.79180 0.625853
156156 −16.8957 −1.35273
157157 3.06585 0.244682 0.122341 0.992488i 0.460960π-0.460960\pi
0.122341 + 0.992488i 0.460960π0.460960\pi
158158 1.28123 0.101929
159159 0.421848 0.0334547
160160 2.11524 0.167225
161161 25.4916 2.00902
162162 2.31115 0.181581
163163 2.90600 0.227616 0.113808 0.993503i 0.463695π-0.463695\pi
0.113808 + 0.993503i 0.463695π0.463695\pi
164164 −1.49017 −0.116363
165165 −13.1017 −1.01997
166166 −2.04698 −0.158876
167167 −23.5324 −1.82099 −0.910495 0.413519i 0.864299π-0.864299\pi
−0.910495 + 0.413519i 0.864299π0.864299\pi
168168 9.67874 0.746731
169169 −5.16122 −0.397017
170170 −0.799782 −0.0613405
171171 15.6015 1.19308
172172 −4.32680 −0.329915
173173 −18.6902 −1.42099 −0.710495 0.703703i 0.751529π-0.751529\pi
−0.710495 + 0.703703i 0.751529π0.751529\pi
174174 −0.226131 −0.0171429
175175 4.41500 0.333743
176176 16.2595 1.22561
177177 9.41962 0.708022
178178 −2.92396 −0.219160
179179 −1.22059 −0.0912310 −0.0456155 0.998959i 0.514525π-0.514525\pi
−0.0456155 + 0.998959i 0.514525π0.514525\pi
180180 −12.6061 −0.939604
181181 −23.8124 −1.76996 −0.884982 0.465626i 0.845829π-0.845829\pi
−0.884982 + 0.465626i 0.845829π0.845829\pi
182182 −2.22687 −0.165067
183183 9.29048 0.686772
184184 −4.12694 −0.304242
185185 −1.00000 −0.0735215
186186 −4.30530 −0.315680
187187 −18.9642 −1.38680
188188 8.39132 0.612000
189189 −46.1352 −3.35584
190190 0.438683 0.0318254
191191 14.9462 1.08147 0.540736 0.841192i 0.318146π-0.318146\pi
0.540736 + 0.841192i 0.318146π0.318146\pi
192192 22.1799 1.60070
193193 −18.9075 −1.36099 −0.680495 0.732753i 0.738235π-0.738235\pi
−0.680495 + 0.732753i 0.738235π0.738235\pi
194194 3.30397 0.237211
195195 8.58717 0.614940
196196 −24.5791 −1.75565
197197 3.72602 0.265468 0.132734 0.991152i 0.457624π-0.457624\pi
0.132734 + 0.991152i 0.457624π0.457624\pi
198198 4.93058 0.350401
199199 −18.7237 −1.32729 −0.663645 0.748048i 0.730991π-0.730991\pi
−0.663645 + 0.748048i 0.730991π0.730991\pi
200200 −0.714762 −0.0505413
201201 35.1126 2.47665
202202 −2.00544 −0.141103
203203 1.80686 0.126817
204204 −26.7906 −1.87572
205205 0.757374 0.0528973
206206 1.22162 0.0851145
207207 36.9933 2.57121
208208 −10.6569 −0.738922
209209 10.4019 0.719516
210210 −2.43948 −0.168340
211211 −13.3971 −0.922295 −0.461148 0.887323i 0.652562π-0.652562\pi
−0.461148 + 0.887323i 0.652562π0.652562\pi
212212 0.270617 0.0185860
213213 32.8619 2.25166
214214 0.0966666 0.00660800
215215 2.19908 0.149976
216216 7.46900 0.508201
217217 34.4008 2.33528
218218 1.71769 0.116337
219219 −25.1710 −1.70090
220220 −8.40479 −0.566651
221221 12.4296 0.836103
222222 0.552543 0.0370842
223223 −17.4471 −1.16834 −0.584172 0.811630i 0.698581π-0.698581\pi
−0.584172 + 0.811630i 0.698581π0.698581\pi
224224 9.33880 0.623975
225225 6.40702 0.427135
226226 1.65169 0.109869
227227 20.4988 1.36056 0.680278 0.732954i 0.261859π-0.261859\pi
0.680278 + 0.732954i 0.261859π0.261859\pi
228228 14.6947 0.973183
229229 −14.0698 −0.929756 −0.464878 0.885375i 0.653902π-0.653902\pi
−0.464878 + 0.885375i 0.653902π0.653902\pi
230230 1.04018 0.0685872
231231 −57.8441 −3.80586
232232 −0.292520 −0.0192049
233233 15.1114 0.989983 0.494992 0.868898i 0.335171π-0.335171\pi
0.494992 + 0.868898i 0.335171π0.335171\pi
234234 −3.23162 −0.211258
235235 −4.26487 −0.278209
236236 6.04271 0.393347
237237 −21.8129 −1.41690
238238 −3.53104 −0.228883
239239 0.0747636 0.00483606 0.00241803 0.999997i 0.499230π-0.499230\pi
0.00241803 + 0.999997i 0.499230π0.499230\pi
240240 −11.6743 −0.753575
241241 20.4873 1.31971 0.659853 0.751395i 0.270619π-0.270619\pi
0.659853 + 0.751395i 0.270619π0.270619\pi
242242 1.30566 0.0839311
243243 −7.99836 −0.513095
244244 5.95987 0.381541
245245 12.4922 0.798100
246246 −0.418482 −0.0266814
247247 −6.81766 −0.433797
248248 −5.56929 −0.353650
249249 34.8497 2.20851
250250 0.180152 0.0113938
251251 −6.85355 −0.432592 −0.216296 0.976328i 0.569398π-0.569398\pi
−0.216296 + 0.976328i 0.569398π0.569398\pi
252252 −55.6560 −3.50600
253253 24.6643 1.55063
254254 1.68014 0.105421
255255 13.6163 0.852683
256256 13.4663 0.841646
257257 −10.4751 −0.653422 −0.326711 0.945124i 0.605940π-0.605940\pi
−0.326711 + 0.945124i 0.605940π0.605940\pi
258258 −1.21509 −0.0756481
259259 −4.41500 −0.274335
260260 5.50870 0.341635
261261 2.62210 0.162304
262262 2.81048 0.173632
263263 5.99787 0.369844 0.184922 0.982753i 0.440797π-0.440797\pi
0.184922 + 0.982753i 0.440797π0.440797\pi
264264 9.36461 0.576352
265265 −0.137540 −0.00844903
266266 1.93679 0.118752
267267 49.7803 3.04651
268268 22.5248 1.37592
269269 −2.32781 −0.141929 −0.0709646 0.997479i 0.522608π-0.522608\pi
−0.0709646 + 0.997479i 0.522608π0.522608\pi
270270 −1.88253 −0.114567
271271 −6.13081 −0.372420 −0.186210 0.982510i 0.559620π-0.559620\pi
−0.186210 + 0.982510i 0.559620π0.559620\pi
272272 −16.8981 −1.02460
273273 37.9124 2.29456
274274 −0.183730 −0.0110996
275275 4.27171 0.257594
276276 34.8432 2.09731
277277 −8.30966 −0.499279 −0.249639 0.968339i 0.580312π-0.580312\pi
−0.249639 + 0.968339i 0.580312π0.580312\pi
278278 1.27712 0.0765967
279279 49.9223 2.98877
280280 −3.15568 −0.188588
281281 −5.01313 −0.299058 −0.149529 0.988757i 0.547776π-0.547776\pi
−0.149529 + 0.988757i 0.547776π0.547776\pi
282282 2.35652 0.140329
283283 12.5308 0.744876 0.372438 0.928057i 0.378522π-0.378522\pi
0.372438 + 0.928057i 0.378522π0.378522\pi
284284 21.0810 1.25093
285285 −7.46857 −0.442400
286286 −2.15460 −0.127404
287287 3.34381 0.197379
288288 13.5524 0.798583
289289 2.70896 0.159351
290290 0.0737281 0.00432946
291291 −56.2500 −3.29743
292292 −16.1473 −0.944947
293293 −6.13130 −0.358194 −0.179097 0.983831i 0.557318π-0.557318\pi
−0.179097 + 0.983831i 0.557318π0.557318\pi
294294 −6.90250 −0.402562
295295 −3.07119 −0.178812
296296 0.714762 0.0415447
297297 −44.6379 −2.59015
298298 −2.80266 −0.162354
299299 −16.1656 −0.934879
300300 6.03463 0.348410
301301 9.70896 0.559615
302302 −0.722198 −0.0415578
303303 34.1426 1.96144
304304 9.26866 0.531594
305305 −3.02909 −0.173445
306306 −5.12422 −0.292932
307307 12.6426 0.721552 0.360776 0.932652i 0.382512π-0.382512\pi
0.360776 + 0.932652i 0.382512π0.382512\pi
308308 −37.1072 −2.11438
309309 −20.7981 −1.18316
310310 1.40371 0.0797254
311311 8.05133 0.456549 0.228275 0.973597i 0.426692π-0.426692\pi
0.228275 + 0.973597i 0.426692π0.426692\pi
312312 −6.13779 −0.347484
313313 −2.99549 −0.169315 −0.0846576 0.996410i 0.526980π-0.526980\pi
−0.0846576 + 0.996410i 0.526980π0.526980\pi
314314 0.552321 0.0311693
315315 28.2870 1.59379
316316 −13.9930 −0.787170
317317 2.24377 0.126023 0.0630113 0.998013i 0.479930π-0.479930\pi
0.0630113 + 0.998013i 0.479930π0.479930\pi
318318 0.0759969 0.00426169
319319 1.74822 0.0978814
320320 −7.23158 −0.404258
321321 −1.64575 −0.0918566
322322 4.59238 0.255923
323323 −10.8104 −0.601508
324324 −25.2414 −1.40230
325325 −2.79978 −0.155304
326326 0.523523 0.0289952
327327 −29.2436 −1.61718
328328 −0.541343 −0.0298906
329329 −18.8294 −1.03810
330330 −2.36030 −0.129930
331331 1.73477 0.0953518 0.0476759 0.998863i 0.484819π-0.484819\pi
0.0476759 + 0.998863i 0.484819π0.484819\pi
332332 22.3562 1.22696
333333 −6.40702 −0.351103
334334 −4.23941 −0.231970
335335 −11.4482 −0.625482
336336 −51.5422 −2.81186
337337 −29.9565 −1.63183 −0.815917 0.578169i 0.803768π-0.803768\pi
−0.815917 + 0.578169i 0.803768π0.803768\pi
338338 −0.929806 −0.0505748
339339 −28.1200 −1.52727
340340 8.73487 0.473715
341341 33.2844 1.80245
342342 2.81065 0.151983
343343 24.2483 1.30928
344344 −1.57182 −0.0847470
345345 −17.7090 −0.953418
346346 −3.36708 −0.181015
347347 −14.9978 −0.805123 −0.402561 0.915393i 0.631880π-0.631880\pi
−0.402561 + 0.915393i 0.631880π0.631880\pi
348348 2.46970 0.132390
349349 −7.29913 −0.390714 −0.195357 0.980732i 0.562586π-0.562586\pi
−0.195357 + 0.980732i 0.562586π0.562586\pi
350350 0.795373 0.0425145
351351 29.2567 1.56161
352352 9.03571 0.481605
353353 −12.6061 −0.670957 −0.335479 0.942048i 0.608898π-0.608898\pi
−0.335479 + 0.942048i 0.608898π0.608898\pi
354354 1.69697 0.0901927
355355 −10.7144 −0.568660
356356 31.9342 1.69251
357357 60.1158 3.18167
358358 −0.219892 −0.0116216
359359 21.5358 1.13661 0.568307 0.822817i 0.307599π-0.307599\pi
0.568307 + 0.822817i 0.307599π0.307599\pi
360360 −4.57950 −0.241361
361361 −13.0704 −0.687918
362362 −4.28986 −0.225470
363363 −22.2288 −1.16671
364364 24.3209 1.27476
365365 8.20680 0.429564
366366 1.67370 0.0874857
367367 20.1463 1.05163 0.525814 0.850600i 0.323761π-0.323761\pi
0.525814 + 0.850600i 0.323761π0.323761\pi
368368 21.9772 1.14564
369369 4.85251 0.252612
370370 −0.180152 −0.00936567
371371 −0.607241 −0.0315264
372372 47.0207 2.43791
373373 9.88395 0.511772 0.255886 0.966707i 0.417633π-0.417633\pi
0.255886 + 0.966707i 0.417633π0.417633\pi
374374 −3.41644 −0.176660
375375 −3.06709 −0.158384
376376 3.04837 0.157208
377377 −1.14582 −0.0590129
378378 −8.31135 −0.427490
379379 26.5438 1.36346 0.681732 0.731602i 0.261227π-0.261227\pi
0.681732 + 0.731602i 0.261227π0.261227\pi
380380 −4.79111 −0.245779
381381 −28.6043 −1.46544
382382 2.69260 0.137765
383383 1.43834 0.0734959 0.0367479 0.999325i 0.488300π-0.488300\pi
0.0367479 + 0.999325i 0.488300π0.488300\pi
384384 16.9710 0.866049
385385 18.8596 0.961176
386386 −3.40623 −0.173372
387387 14.0896 0.716214
388388 −36.0845 −1.83192
389389 28.7600 1.45819 0.729094 0.684414i 0.239942π-0.239942\pi
0.729094 + 0.684414i 0.239942π0.239942\pi
390390 1.54700 0.0783353
391391 −25.6330 −1.29631
392392 −8.92899 −0.450982
393393 −47.8484 −2.41363
394394 0.671250 0.0338171
395395 7.11193 0.357840
396396 −53.8497 −2.70605
397397 33.8486 1.69881 0.849406 0.527740i 0.176960π-0.176960\pi
0.849406 + 0.527740i 0.176960π0.176960\pi
398398 −3.37312 −0.169079
399399 −32.9737 −1.65075
400400 3.80632 0.190316
401401 −20.7788 −1.03764 −0.518822 0.854883i 0.673629π-0.673629\pi
−0.518822 + 0.854883i 0.673629π0.673629\pi
402402 6.32562 0.315493
403403 −21.8153 −1.08670
404404 21.9026 1.08970
405405 12.8289 0.637472
406406 0.325510 0.0161548
407407 −4.27171 −0.211741
408408 −9.73239 −0.481825
409409 −3.46191 −0.171180 −0.0855902 0.996330i 0.527278π-0.527278\pi
−0.0855902 + 0.996330i 0.527278π0.527278\pi
410410 0.136443 0.00673843
411411 3.12800 0.154293
412412 −13.3420 −0.657315
413413 −13.5593 −0.667211
414414 6.66443 0.327539
415415 −11.3625 −0.557762
416416 −5.92222 −0.290361
417417 −21.7430 −1.06476
418418 1.87393 0.0916569
419419 −18.7259 −0.914818 −0.457409 0.889256i 0.651223π-0.651223\pi
−0.457409 + 0.889256i 0.651223π0.651223\pi
420420 26.6429 1.30004
421421 1.91518 0.0933404 0.0466702 0.998910i 0.485139π-0.485139\pi
0.0466702 + 0.998910i 0.485139π0.485139\pi
422422 −2.41352 −0.117488
423423 −27.3251 −1.32859
424424 0.0983086 0.00477429
425425 −4.43948 −0.215346
426426 5.92015 0.286832
427427 −13.3734 −0.647186
428428 −1.05575 −0.0510317
429429 36.6820 1.77102
430430 0.396170 0.0191050
431431 6.17915 0.297639 0.148820 0.988864i 0.452453π-0.452453\pi
0.148820 + 0.988864i 0.452453π0.452453\pi
432432 −39.7747 −1.91366
433433 −11.7275 −0.563588 −0.281794 0.959475i 0.590929π-0.590929\pi
−0.281794 + 0.959475i 0.590929π0.590929\pi
434434 6.19739 0.297484
435435 −1.25522 −0.0601832
436436 −18.7599 −0.898434
437437 14.0598 0.672570
438438 −4.53461 −0.216672
439439 −18.4724 −0.881640 −0.440820 0.897595i 0.645312π-0.645312\pi
−0.440820 + 0.897595i 0.645312π0.645312\pi
440440 −3.05326 −0.145558
441441 80.0381 3.81134
442442 2.23922 0.106509
443443 3.81261 0.181142 0.0905712 0.995890i 0.471131π-0.471131\pi
0.0905712 + 0.995890i 0.471131π0.471131\pi
444444 −6.03463 −0.286391
445445 −16.2305 −0.769399
446446 −3.14313 −0.148832
447447 47.7152 2.25685
448448 −31.9275 −1.50843
449449 −4.81563 −0.227264 −0.113632 0.993523i 0.536248π-0.536248\pi
−0.113632 + 0.993523i 0.536248π0.536248\pi
450450 1.15424 0.0544114
451451 3.23529 0.152344
452452 −18.0390 −0.848485
453453 12.2954 0.577688
454454 3.69291 0.173317
455455 −12.3610 −0.579495
456456 5.33825 0.249986
457457 −27.2012 −1.27242 −0.636210 0.771516i 0.719499π-0.719499\pi
−0.636210 + 0.771516i 0.719499π0.719499\pi
458458 −2.53470 −0.118439
459459 46.3909 2.16534
460460 −11.3603 −0.529679
461461 −40.8432 −1.90226 −0.951128 0.308796i 0.900074π-0.900074\pi
−0.951128 + 0.308796i 0.900074π0.900074\pi
462462 −10.4208 −0.484817
463463 34.8233 1.61837 0.809187 0.587551i 0.199908π-0.199908\pi
0.809187 + 0.587551i 0.199908π0.199908\pi
464464 1.55776 0.0723170
465465 −23.8981 −1.10825
466466 2.72236 0.126111
467467 −9.38939 −0.434489 −0.217245 0.976117i 0.569707π-0.569707\pi
−0.217245 + 0.976117i 0.569707π0.569707\pi
468468 35.2943 1.63148
469469 −50.5438 −2.33390
470470 −0.768326 −0.0354402
471471 −9.40324 −0.433278
472472 2.19517 0.101041
473473 9.39386 0.431930
474474 −3.92965 −0.180495
475475 2.43507 0.111729
476476 38.5645 1.76760
477477 −0.881224 −0.0403485
478478 0.0134688 0.000616050 0
479479 21.0154 0.960217 0.480109 0.877209i 0.340597π-0.340597\pi
0.480109 + 0.877209i 0.340597π0.340597\pi
480480 −6.48763 −0.296119
481481 2.79978 0.127659
482482 3.69084 0.168113
483483 −78.1851 −3.55755
484484 −14.2599 −0.648176
485485 18.3399 0.832771
486486 −1.44092 −0.0653616
487487 −35.7633 −1.62059 −0.810294 0.586023i 0.800693π-0.800693\pi
−0.810294 + 0.586023i 0.800693π0.800693\pi
488488 2.16508 0.0980085
489489 −8.91296 −0.403058
490490 2.25051 0.101668
491491 15.0742 0.680288 0.340144 0.940373i 0.389524π-0.389524\pi
0.340144 + 0.940373i 0.389524π0.389524\pi
492492 4.57048 0.206053
493493 −1.81688 −0.0818280
494494 −1.22822 −0.0552601
495495 27.3690 1.23014
496496 29.6581 1.33169
497497 −47.3040 −2.12187
498498 6.27826 0.281335
499499 32.9424 1.47470 0.737352 0.675509i 0.236076π-0.236076\pi
0.737352 + 0.675509i 0.236076π0.236076\pi
500500 −1.96755 −0.0879913
501501 72.1759 3.22458
502502 −1.23468 −0.0551066
503503 −8.61983 −0.384339 −0.192170 0.981362i 0.561552π-0.561552\pi
−0.192170 + 0.981362i 0.561552π0.561552\pi
504504 −20.2185 −0.900603
505505 −11.1319 −0.495365
506506 4.44333 0.197530
507507 15.8299 0.703031
508508 −18.3497 −0.814138
509509 37.3100 1.65374 0.826869 0.562395i 0.190120π-0.190120\pi
0.826869 + 0.562395i 0.190120π0.190120\pi
510510 2.45300 0.108621
511511 36.2331 1.60286
512512 13.4925 0.596291
513513 −25.4456 −1.12345
514514 −1.88712 −0.0832374
515515 6.78105 0.298809
516516 13.2707 0.584208
517517 −18.2183 −0.801240
518518 −0.795373 −0.0349467
519519 57.3245 2.51626
520520 2.00118 0.0877575
521521 −18.6417 −0.816710 −0.408355 0.912823i 0.633897π-0.633897\pi
−0.408355 + 0.912823i 0.633897π0.633897\pi
522522 0.472378 0.0206754
523523 6.56533 0.287082 0.143541 0.989644i 0.454151π-0.454151\pi
0.143541 + 0.989644i 0.454151π0.454151\pi
524524 −30.6949 −1.34091
525525 −13.5412 −0.590986
526526 1.08053 0.0471133
527527 −34.5915 −1.50683
528528 −49.8694 −2.17029
529529 10.3376 0.449459
530530 −0.0247782 −0.00107630
531531 −19.6772 −0.853918
532532 −21.1527 −0.917088
533533 −2.12048 −0.0918483
534534 8.96804 0.388085
535535 0.536583 0.0231985
536536 8.18274 0.353441
537537 3.74365 0.161550
538538 −0.419361 −0.0180799
539539 53.3633 2.29852
540540 20.5601 0.884767
541541 5.25295 0.225842 0.112921 0.993604i 0.463979π-0.463979\pi
0.112921 + 0.993604i 0.463979π0.463979\pi
542542 −1.10448 −0.0474414
543543 73.0348 3.13422
544544 −9.39057 −0.402617
545545 9.53465 0.408420
546546 6.83000 0.292297
547547 37.4845 1.60272 0.801361 0.598181i 0.204110π-0.204110\pi
0.801361 + 0.598181i 0.204110π0.204110\pi
548548 2.00662 0.0857187
549549 −19.4074 −0.828289
550550 0.769559 0.0328141
551551 0.996563 0.0424550
552552 12.6577 0.538747
553553 31.3992 1.33523
554554 −1.49700 −0.0636016
555555 3.06709 0.130191
556556 −13.9482 −0.591534
557557 12.2789 0.520275 0.260138 0.965572i 0.416232π-0.416232\pi
0.260138 + 0.965572i 0.416232π0.416232\pi
558558 8.99361 0.380730
559559 −6.15695 −0.260411
560560 16.8049 0.710138
561561 58.1648 2.45572
562562 −0.903127 −0.0380961
563563 20.4994 0.863948 0.431974 0.901886i 0.357817π-0.357817\pi
0.431974 + 0.901886i 0.357817π0.357817\pi
564564 −25.7369 −1.08372
565565 9.16830 0.385713
566566 2.25744 0.0948874
567567 56.6395 2.37864
568568 7.65823 0.321332
569569 1.60123 0.0671269 0.0335634 0.999437i 0.489314π-0.489314\pi
0.0335634 + 0.999437i 0.489314π0.489314\pi
570570 −1.34548 −0.0563559
571571 −41.8238 −1.75027 −0.875136 0.483877i 0.839228π-0.839228\pi
−0.875136 + 0.483877i 0.839228π0.839228\pi
572572 23.5316 0.983905
573573 −45.8414 −1.91505
574574 0.602395 0.0251435
575575 5.77387 0.240787
576576 −46.3329 −1.93054
577577 −14.9405 −0.621981 −0.310991 0.950413i 0.600661π-0.600661\pi
−0.310991 + 0.950413i 0.600661π0.600661\pi
578578 0.488025 0.0202992
579579 57.9909 2.41002
580580 −0.805227 −0.0334352
581581 −50.1654 −2.08121
582582 −10.1336 −0.420050
583583 −0.587533 −0.0243331
584584 −5.86591 −0.242733
585585 −17.9383 −0.741656
586586 −1.10457 −0.0456293
587587 −32.8499 −1.35586 −0.677930 0.735126i 0.737123π-0.737123\pi
−0.677930 + 0.735126i 0.737123π0.737123\pi
588588 75.3861 3.10887
589589 18.9736 0.781792
590590 −0.553282 −0.0227783
591591 −11.4280 −0.470086
592592 −3.80632 −0.156439
593593 39.7259 1.63135 0.815674 0.578512i 0.196366π-0.196366\pi
0.815674 + 0.578512i 0.196366π0.196366\pi
594594 −8.04161 −0.329951
595595 −19.6003 −0.803534
596596 30.6094 1.25381
597597 57.4273 2.35034
598598 −2.91227 −0.119091
599599 −10.4669 −0.427668 −0.213834 0.976870i 0.568595π-0.568595\pi
−0.213834 + 0.976870i 0.568595π0.568595\pi
600600 2.19224 0.0894977
601601 −8.56503 −0.349375 −0.174687 0.984624i 0.555891π-0.555891\pi
−0.174687 + 0.984624i 0.555891π0.555891\pi
602602 1.74909 0.0712876
603603 −73.3489 −2.98700
604604 7.88753 0.320939
605605 7.24754 0.294655
606606 6.15087 0.249862
607607 8.90888 0.361600 0.180800 0.983520i 0.442131π-0.442131\pi
0.180800 + 0.983520i 0.442131π0.442131\pi
608608 5.15076 0.208891
609609 −5.54180 −0.224565
610610 −0.545697 −0.0220946
611611 11.9407 0.483069
612612 55.9645 2.26223
613613 −10.5868 −0.427598 −0.213799 0.976878i 0.568584π-0.568584\pi
−0.213799 + 0.976878i 0.568584π0.568584\pi
614614 2.27760 0.0919163
615615 −2.32293 −0.0936697
616616 −13.4802 −0.543131
617617 −6.83972 −0.275357 −0.137678 0.990477i 0.543964π-0.543964\pi
−0.137678 + 0.990477i 0.543964π0.543964\pi
618618 −3.74682 −0.150719
619619 −15.5577 −0.625318 −0.312659 0.949865i 0.601220π-0.601220\pi
−0.312659 + 0.949865i 0.601220π0.601220\pi
620620 −15.3307 −0.615697
621621 −60.3348 −2.42115
622622 1.45047 0.0581584
623623 −71.6576 −2.87090
624624 32.6856 1.30847
625625 1.00000 0.0400000
626626 −0.539645 −0.0215685
627627 −31.9036 −1.27411
628628 −6.03221 −0.240711
629629 4.43948 0.177014
630630 5.09597 0.203028
631631 12.0975 0.481596 0.240798 0.970575i 0.422591π-0.422591\pi
0.240798 + 0.970575i 0.422591π0.422591\pi
632632 −5.08334 −0.202204
633633 41.0901 1.63319
634634 0.404220 0.0160536
635635 9.32621 0.370099
636636 −0.830005 −0.0329118
637637 −34.9756 −1.38578
638638 0.314946 0.0124688
639639 −68.6472 −2.71564
640640 −5.53327 −0.218722
641641 −39.4179 −1.55691 −0.778457 0.627698i 0.783997π-0.783997\pi
−0.778457 + 0.627698i 0.783997π0.783997\pi
642642 −0.296485 −0.0117013
643643 −2.80810 −0.110741 −0.0553704 0.998466i 0.517634π-0.517634\pi
−0.0553704 + 0.998466i 0.517634π0.517634\pi
644644 −50.1560 −1.97642
645645 −6.74478 −0.265575
646646 −1.94752 −0.0766243
647647 −47.0232 −1.84867 −0.924337 0.381577i 0.875381π-0.875381\pi
−0.924337 + 0.381577i 0.875381π0.875381\pi
648648 −9.16959 −0.360216
649649 −13.1193 −0.514976
650650 −0.504387 −0.0197837
651651 −105.510 −4.13528
652652 −5.71769 −0.223922
653653 21.7426 0.850852 0.425426 0.904993i 0.360124π-0.360124\pi
0.425426 + 0.904993i 0.360124π0.360124\pi
654654 −5.26830 −0.206007
655655 15.6006 0.609566
656656 2.88281 0.112555
657657 52.5812 2.05139
658658 −3.39216 −0.132240
659659 −26.3436 −1.02620 −0.513100 0.858329i 0.671503π-0.671503\pi
−0.513100 + 0.858329i 0.671503π0.671503\pi
660660 25.7782 1.00342
661661 20.5259 0.798364 0.399182 0.916872i 0.369294π-0.369294\pi
0.399182 + 0.916872i 0.369294π0.369294\pi
662662 0.312523 0.0121466
663663 −38.1226 −1.48056
664664 8.12147 0.315174
665665 10.7508 0.416899
666666 −1.15424 −0.0447259
667667 2.36298 0.0914950
668668 46.3010 1.79144
669669 53.5118 2.06888
670670 −2.06242 −0.0796782
671671 −12.9394 −0.499520
672672 −28.6429 −1.10492
673673 −5.66357 −0.218315 −0.109157 0.994024i 0.534815π-0.534815\pi
−0.109157 + 0.994024i 0.534815π0.534815\pi
674674 −5.39673 −0.207874
675675 −10.4496 −0.402207
676676 10.1549 0.390574
677677 6.93823 0.266658 0.133329 0.991072i 0.457433π-0.457433\pi
0.133329 + 0.991072i 0.457433π0.457433\pi
678678 −5.06588 −0.194554
679679 80.9706 3.10737
680680 3.17317 0.121686
681681 −62.8717 −2.40925
682682 5.99625 0.229608
683683 19.4849 0.745570 0.372785 0.927918i 0.378403π-0.378403\pi
0.372785 + 0.927918i 0.378403π0.378403\pi
684684 −30.6967 −1.17372
685685 −1.01986 −0.0389669
686686 4.36838 0.166786
687687 43.1532 1.64640
688688 8.37043 0.319119
689689 0.385083 0.0146705
690690 −3.19031 −0.121453
691691 −19.9927 −0.760557 −0.380278 0.924872i 0.624172π-0.624172\pi
−0.380278 + 0.924872i 0.624172π0.624172\pi
692692 36.7738 1.39793
693693 120.834 4.59011
694694 −2.70188 −0.102562
695695 7.08913 0.268906
696696 0.897183 0.0340076
697697 −3.36235 −0.127358
698698 −1.31496 −0.0497718
699699 −46.3481 −1.75305
700700 −8.68672 −0.328327
701701 −25.5726 −0.965863 −0.482932 0.875658i 0.660428π-0.660428\pi
−0.482932 + 0.875658i 0.660428π0.660428\pi
702702 5.27066 0.198928
703703 −2.43507 −0.0918403
704704 −30.8913 −1.16426
705705 13.0807 0.492649
706706 −2.27103 −0.0854712
707707 −49.1476 −1.84838
708708 −18.5335 −0.696532
709709 −36.7156 −1.37888 −0.689441 0.724342i 0.742144π-0.742144\pi
−0.689441 + 0.724342i 0.742144π0.742144\pi
710710 −1.93022 −0.0724398
711711 45.5663 1.70887
712712 11.6009 0.434764
713713 44.9888 1.68485
714714 10.8300 0.405303
715715 −11.9599 −0.447274
716716 2.40156 0.0897505
717717 −0.229307 −0.00856361
718718 3.87971 0.144790
719719 4.11485 0.153458 0.0767290 0.997052i 0.475552π-0.475552\pi
0.0767290 + 0.997052i 0.475552π0.475552\pi
720720 24.3872 0.908857
721721 29.9384 1.11496
722722 −2.35467 −0.0876317
723723 −62.8364 −2.33691
724724 46.8520 1.74124
725725 0.409254 0.0151993
726726 −4.00458 −0.148624
727727 27.2507 1.01067 0.505336 0.862923i 0.331369π-0.331369\pi
0.505336 + 0.862923i 0.331369π0.331369\pi
728728 8.83521 0.327455
729729 −13.9550 −0.516850
730730 1.47847 0.0547208
731731 −9.76278 −0.361090
732732 −18.2794 −0.675627
733733 27.7634 1.02546 0.512732 0.858549i 0.328634π-0.328634\pi
0.512732 + 0.858549i 0.328634π0.328634\pi
734734 3.62940 0.133964
735735 −38.3148 −1.41326
736736 12.2131 0.450182
737737 −48.9034 −1.80138
738738 0.874192 0.0321794
739739 −41.6263 −1.53125 −0.765624 0.643288i 0.777570π-0.777570\pi
−0.765624 + 0.643288i 0.777570π0.777570\pi
740740 1.96755 0.0723284
741741 20.9104 0.768161
742742 −0.109396 −0.00401605
743743 −48.9645 −1.79633 −0.898166 0.439657i 0.855100π-0.855100\pi
−0.898166 + 0.439657i 0.855100π0.855100\pi
744744 17.0815 0.626238
745745 −15.5572 −0.569970
746746 1.78062 0.0651930
747747 −72.7997 −2.66360
748748 37.3129 1.36429
749749 2.36902 0.0865619
750750 −0.552543 −0.0201760
751751 7.34688 0.268091 0.134046 0.990975i 0.457203π-0.457203\pi
0.134046 + 0.990975i 0.457203π0.457203\pi
752752 −16.2335 −0.591974
753753 21.0204 0.766027
754754 −0.206423 −0.00751747
755755 −4.00882 −0.145896
756756 90.7730 3.30138
757757 −4.47852 −0.162775 −0.0813873 0.996683i 0.525935π-0.525935\pi
−0.0813873 + 0.996683i 0.525935π0.525935\pi
758758 4.78193 0.173687
759759 −75.6476 −2.74583
760760 −1.74049 −0.0631344
761761 33.7349 1.22289 0.611445 0.791287i 0.290589π-0.290589\pi
0.611445 + 0.791287i 0.290589π0.290589\pi
762762 −5.15313 −0.186678
763763 42.0955 1.52396
764764 −29.4074 −1.06392
765765 −28.4438 −1.02839
766766 0.259121 0.00936241
767767 8.59867 0.310480
768768 −41.3024 −1.49037
769769 25.1523 0.907014 0.453507 0.891253i 0.350173π-0.350173\pi
0.453507 + 0.891253i 0.350173π0.350173\pi
770770 3.39761 0.122441
771771 32.1282 1.15707
772772 37.2013 1.33890
773773 13.1660 0.473549 0.236774 0.971565i 0.423910π-0.423910\pi
0.236774 + 0.971565i 0.423910π0.423910\pi
774774 2.53827 0.0912362
775775 7.79180 0.279890
776776 −13.1087 −0.470573
777777 13.5412 0.485788
778778 5.18117 0.185754
779779 1.84426 0.0660774
780780 −16.8957 −0.604961
781781 −45.7687 −1.63773
782782 −4.61784 −0.165134
783783 −4.27656 −0.152832
784784 47.5495 1.69820
785785 3.06585 0.109425
786786 −8.62000 −0.307465
787787 19.5552 0.697066 0.348533 0.937296i 0.386680π-0.386680\pi
0.348533 + 0.937296i 0.386680π0.386680\pi
788788 −7.33111 −0.261160
789789 −18.3960 −0.654914
790790 1.28123 0.0455841
791791 40.4781 1.43923
792792 −19.5623 −0.695116
793793 8.48079 0.301162
794794 6.09790 0.216406
795795 0.421848 0.0149614
796796 36.8398 1.30575
797797 51.4656 1.82300 0.911502 0.411295i 0.134923π-0.134923\pi
0.911502 + 0.411295i 0.134923π0.134923\pi
798798 −5.94029 −0.210284
799799 18.9338 0.669829
800800 2.11524 0.0747851
801801 −103.989 −3.67427
802802 −3.74335 −0.132182
803803 35.0571 1.23714
804804 −69.0857 −2.43646
805805 25.4916 0.898463
806806 −3.93008 −0.138431
807807 7.13960 0.251326
808808 7.95669 0.279915
809809 42.6242 1.49859 0.749293 0.662238i 0.230393π-0.230393\pi
0.749293 + 0.662238i 0.230393π0.230393\pi
810810 2.31115 0.0812055
811811 −26.7451 −0.939147 −0.469574 0.882893i 0.655592π-0.655592\pi
−0.469574 + 0.882893i 0.655592π0.655592\pi
812812 −3.55508 −0.124759
813813 18.8037 0.659475
814814 −0.769559 −0.0269730
815815 2.90600 0.101793
816816 51.8279 1.81434
817817 5.35492 0.187345
818818 −0.623671 −0.0218061
819819 −79.1975 −2.76738
820820 −1.49017 −0.0520389
821821 43.8050 1.52880 0.764402 0.644740i 0.223034π-0.223034\pi
0.764402 + 0.644740i 0.223034π0.223034\pi
822822 0.563517 0.0196549
823823 −5.72621 −0.199603 −0.0998016 0.995007i 0.531821π-0.531821\pi
−0.0998016 + 0.995007i 0.531821π0.531821\pi
824824 −4.84684 −0.168848
825825 −13.1017 −0.456143
826826 −2.44274 −0.0849939
827827 −35.4306 −1.23204 −0.616021 0.787730i 0.711256π-0.711256\pi
−0.616021 + 0.787730i 0.711256π0.711256\pi
828828 −72.7860 −2.52949
829829 −20.7040 −0.719081 −0.359541 0.933129i 0.617067π-0.617067\pi
−0.359541 + 0.933129i 0.617067π0.617067\pi
830830 −2.04698 −0.0710516
831831 25.4864 0.884115
832832 20.2469 0.701933
833833 −55.4590 −1.92154
834834 −3.91704 −0.135636
835835 −23.5324 −0.814372
836836 −20.4662 −0.707840
837837 −81.4215 −2.81434
838838 −3.37351 −0.116536
839839 10.9086 0.376607 0.188303 0.982111i 0.439701π-0.439701\pi
0.188303 + 0.982111i 0.439701π0.439701\pi
840840 9.67874 0.333948
841841 −28.8325 −0.994225
842842 0.345025 0.0118903
843843 15.3757 0.529567
844844 26.3594 0.907329
845845 −5.16122 −0.177551
846846 −4.92268 −0.169245
847847 31.9979 1.09946
848848 −0.523523 −0.0179778
849849 −38.4329 −1.31901
850850 −0.799782 −0.0274323
851851 −5.77387 −0.197926
852852 −64.6573 −2.21512
853853 −38.8833 −1.33134 −0.665670 0.746247i 0.731854π-0.731854\pi
−0.665670 + 0.746247i 0.731854π0.731854\pi
854854 −2.40925 −0.0824430
855855 15.6015 0.533561
856856 −0.383529 −0.0131088
857857 40.6975 1.39020 0.695100 0.718913i 0.255360π-0.255360\pi
0.695100 + 0.718913i 0.255360π0.255360\pi
858858 6.60834 0.225605
859859 28.1532 0.960574 0.480287 0.877111i 0.340533π-0.340533\pi
0.480287 + 0.877111i 0.340533π0.340533\pi
860860 −4.32680 −0.147543
861861 −10.2558 −0.349515
862862 1.11319 0.0379154
863863 18.5236 0.630552 0.315276 0.949000i 0.397903π-0.397903\pi
0.315276 + 0.949000i 0.397903π0.397903\pi
864864 −22.1035 −0.751977
865865 −18.6902 −0.635486
866866 −2.11274 −0.0717937
867867 −8.30862 −0.282175
868868 −67.6852 −2.29738
869869 30.3801 1.03058
870870 −0.226131 −0.00766654
871871 32.0525 1.08606
872872 −6.81501 −0.230785
873873 117.504 3.97691
874874 2.53290 0.0856766
875875 4.41500 0.149254
876876 49.5250 1.67330
877877 14.0422 0.474172 0.237086 0.971489i 0.423808π-0.423808\pi
0.237086 + 0.971489i 0.423808π0.423808\pi
878878 −3.32785 −0.112309
879879 18.8052 0.634285
880880 16.2595 0.548109
881881 7.68268 0.258836 0.129418 0.991590i 0.458689π-0.458689\pi
0.129418 + 0.991590i 0.458689π0.458689\pi
882882 14.4190 0.485515
883883 35.0479 1.17945 0.589727 0.807602i 0.299235π-0.299235\pi
0.589727 + 0.807602i 0.299235π0.299235\pi
884884 −24.4557 −0.822535
885885 9.41962 0.316637
886886 0.686850 0.0230752
887887 −9.30606 −0.312467 −0.156233 0.987720i 0.549935π-0.549935\pi
−0.156233 + 0.987720i 0.549935π0.549935\pi
888888 −2.19224 −0.0735667
889889 41.1752 1.38097
890890 −2.92396 −0.0980113
891891 54.8013 1.83591
892892 34.3280 1.14938
893893 −10.3852 −0.347529
894894 8.59599 0.287493
895895 −1.22059 −0.0407997
896896 −24.4294 −0.816129
897897 49.5812 1.65547
898898 −0.867547 −0.0289504
899899 3.18883 0.106353
900900 −12.6061 −0.420204
901901 0.610607 0.0203423
902902 0.582844 0.0194066
903903 −29.7782 −0.990957
904904 −6.55315 −0.217955
905905 −23.8124 −0.791552
906906 2.21504 0.0735899
907907 −4.56415 −0.151550 −0.0757751 0.997125i 0.524143π-0.524143\pi
−0.0757751 + 0.997125i 0.524143π0.524143\pi
908908 −40.3324 −1.33848
909909 −71.3226 −2.36562
910910 −2.22687 −0.0738200
911911 −0.294602 −0.00976060 −0.00488030 0.999988i 0.501553π-0.501553\pi
−0.00488030 + 0.999988i 0.501553π0.501553\pi
912912 −28.4278 −0.941338
913913 −48.5373 −1.60635
914914 −4.90036 −0.162090
915915 9.29048 0.307134
916916 27.6829 0.914668
917917 68.8767 2.27451
918918 8.35743 0.275836
919919 33.9110 1.11862 0.559311 0.828958i 0.311066π-0.311066\pi
0.559311 + 0.828958i 0.311066π0.311066\pi
920920 −4.12694 −0.136061
921921 −38.7760 −1.27771
922922 −7.35799 −0.242323
923923 29.9979 0.987393
924924 113.811 3.74410
925925 −1.00000 −0.0328798
926926 6.27349 0.206160
927927 43.4464 1.42697
928928 0.865673 0.0284171
929929 22.4955 0.738055 0.369028 0.929418i 0.379691π-0.379691\pi
0.369028 + 0.929418i 0.379691π0.379691\pi
930930 −4.30530 −0.141176
931931 30.4195 0.996958
932932 −29.7324 −0.973918
933933 −24.6941 −0.808450
934934 −1.69152 −0.0553482
935935 −18.9642 −0.620195
936936 12.8216 0.419087
937937 25.4994 0.833028 0.416514 0.909129i 0.363252π-0.363252\pi
0.416514 + 0.909129i 0.363252π0.363252\pi
938938 −9.10558 −0.297308
939939 9.18743 0.299821
940940 8.39132 0.273695
941941 52.3734 1.70732 0.853662 0.520827i 0.174376π-0.174376\pi
0.853662 + 0.520827i 0.174376π0.174376\pi
942942 −1.69402 −0.0551940
943943 4.37298 0.142404
944944 −11.6900 −0.380476
945945 −46.1352 −1.50078
946946 1.69232 0.0550222
947947 −50.7001 −1.64753 −0.823766 0.566931i 0.808131π-0.808131\pi
−0.823766 + 0.566931i 0.808131π0.808131\pi
948948 42.9179 1.39391
949949 −22.9773 −0.745874
950950 0.438683 0.0142328
951951 −6.88183 −0.223159
952952 14.0096 0.454052
953953 18.5912 0.602228 0.301114 0.953588i 0.402641π-0.402641\pi
0.301114 + 0.953588i 0.402641π0.402641\pi
954954 −0.158754 −0.00513986
955955 14.9462 0.483649
956956 −0.147101 −0.00475758
957957 −5.36194 −0.173327
958958 3.78597 0.122319
959959 −4.50269 −0.145399
960960 22.1799 0.715853
961961 29.7122 0.958457
962962 0.504387 0.0162621
963963 3.43790 0.110785
964964 −40.3098 −1.29829
965965 −18.9075 −0.608653
966966 −14.0852 −0.453185
967967 −20.5566 −0.661056 −0.330528 0.943796i 0.607227π-0.607227\pi
−0.330528 + 0.943796i 0.607227π0.607227\pi
968968 −5.18027 −0.166500
969969 33.1565 1.06514
970970 3.30397 0.106084
971971 40.7627 1.30814 0.654069 0.756435i 0.273061π-0.273061\pi
0.654069 + 0.756435i 0.273061π0.273061\pi
972972 15.7371 0.504769
973973 31.2985 1.00338
974974 −6.44284 −0.206442
975975 8.58717 0.275010
976976 −11.5297 −0.369056
977977 5.60203 0.179225 0.0896124 0.995977i 0.471437π-0.471437\pi
0.0896124 + 0.995977i 0.471437π0.471437\pi
978978 −1.60569 −0.0513443
979979 −69.3320 −2.21586
980980 −24.5791 −0.785149
981981 61.0887 1.95041
982982 2.71565 0.0866598
983983 16.0493 0.511894 0.255947 0.966691i 0.417613π-0.417613\pi
0.255947 + 0.966691i 0.417613π0.417613\pi
984984 1.66034 0.0529299
985985 3.72602 0.118721
986986 −0.327314 −0.0104238
987987 57.7514 1.83825
988988 13.4141 0.426758
989989 12.6972 0.403748
990990 4.93058 0.156704
991991 −36.8868 −1.17175 −0.585874 0.810402i 0.699249π-0.699249\pi
−0.585874 + 0.810402i 0.699249π0.699249\pi
992992 16.4816 0.523290
993993 −5.32070 −0.168847
994994 −8.52192 −0.270299
995995 −18.7237 −0.593582
996996 −68.5684 −2.17267
997997 −0.491984 −0.0155813 −0.00779064 0.999970i 0.502480π-0.502480\pi
−0.00779064 + 0.999970i 0.502480π0.502480\pi
998998 5.93465 0.187858
999999 10.4496 0.330612
Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 185.2.a.d.1.3 5
3.2 odd 2 1665.2.a.q.1.3 5
4.3 odd 2 2960.2.a.ba.1.5 5
5.2 odd 4 925.2.b.g.149.6 10
5.3 odd 4 925.2.b.g.149.5 10
5.4 even 2 925.2.a.h.1.3 5
7.6 odd 2 9065.2.a.j.1.3 5
15.14 odd 2 8325.2.a.cc.1.3 5
37.36 even 2 6845.2.a.g.1.3 5
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
185.2.a.d.1.3 5 1.1 even 1 trivial
925.2.a.h.1.3 5 5.4 even 2
925.2.b.g.149.5 10 5.3 odd 4
925.2.b.g.149.6 10 5.2 odd 4
1665.2.a.q.1.3 5 3.2 odd 2
2960.2.a.ba.1.5 5 4.3 odd 2
6845.2.a.g.1.3 5 37.36 even 2
8325.2.a.cc.1.3 5 15.14 odd 2
9065.2.a.j.1.3 5 7.6 odd 2