Properties

Label 90.12.c.d.19.6
Level $90$
Weight $12$
Character 90.19
Analytic conductor $69.151$
Analytic rank $0$
Dimension $12$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [90,12,Mod(19,90)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(90, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1])) N = Newforms(chi, 12, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("90.19"); S:= CuspForms(chi, 12); N := Newforms(S);
 
Level: \( N \) \(=\) \( 90 = 2 \cdot 3^{2} \cdot 5 \)
Weight: \( k \) \(=\) \( 12 \)
Character orbit: \([\chi]\) \(=\) 90.c (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [12,0,0,-12288,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(69.1508862504\)
Analytic rank: \(0\)
Dimension: \(12\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} + 2686231540547x^{8} + 128219731460991388255453x^{4} + 14060999354420335522970873124 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{48}\cdot 3^{16}\cdot 5^{8} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 19.6
Root \(-901.131 - 901.131i\) of defining polynomial
Character \(\chi\) \(=\) 90.19
Dual form 90.12.c.d.19.12

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-32.0000i q^{2} -1024.00 q^{4} +(6895.58 + 1130.97i) q^{5} +14383.7i q^{7} +32768.0i q^{8} +(36191.1 - 220659. i) q^{10} -493678. q^{11} +984091. i q^{13} +460278. q^{14} +1.04858e6 q^{16} -9.98110e6i q^{17} -9.97709e6 q^{19} +(-7.06107e6 - 1.15812e6i) q^{20} +1.57977e7i q^{22} -4.66489e6i q^{23} +(4.62699e7 + 1.55974e7i) q^{25} +3.14909e7 q^{26} -1.47289e7i q^{28} +4.31977e7 q^{29} +1.06016e8 q^{31} -3.35544e7i q^{32} -3.19395e8 q^{34} +(-1.62675e7 + 9.91838e7i) q^{35} +1.33767e8i q^{37} +3.19267e8i q^{38} +(-3.70597e7 + 2.25954e8i) q^{40} +1.24554e9 q^{41} -1.57980e9i q^{43} +5.05526e8 q^{44} -1.49277e8 q^{46} +3.78538e8i q^{47} +1.77044e9 q^{49} +(4.99117e8 - 1.48064e9i) q^{50} -1.00771e9i q^{52} -3.54353e9i q^{53} +(-3.40419e9 - 5.58336e8i) q^{55} -4.71324e8 q^{56} -1.38233e9i q^{58} +6.43548e9 q^{59} +2.83608e8 q^{61} -3.39251e9i q^{62} -1.07374e9 q^{64} +(-1.11298e9 + 6.78588e9i) q^{65} -7.62962e9i q^{67} +1.02207e10i q^{68} +(3.17388e9 + 5.20561e8i) q^{70} -1.48476e9 q^{71} -1.24759e10i q^{73} +4.28053e9 q^{74} +1.02165e10 q^{76} -7.10090e9i q^{77} -3.51048e10 q^{79} +(7.23054e9 + 1.18591e9i) q^{80} -3.98573e10i q^{82} +9.64068e9i q^{83} +(1.12884e10 - 6.88255e10i) q^{85} -5.05536e10 q^{86} -1.61768e10i q^{88} -4.39019e10 q^{89} -1.41548e10 q^{91} +4.77685e9i q^{92} +1.21132e10 q^{94} +(-6.87978e10 - 1.12838e10i) q^{95} -1.45178e11i q^{97} -5.66540e10i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q - 12288 q^{4} + 56448 q^{10} + 12582912 q^{16} - 489648 q^{19} - 125575548 q^{25} + 47933952 q^{31} + 341743872 q^{34} - 57802752 q^{40} + 3346675200 q^{46} - 6178917036 q^{49} - 11944070688 q^{55}+ \cdots - 10041254400 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/90\mathbb{Z}\right)^\times\).

\(n\) \(11\) \(37\)
\(\chi(n)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 32.0000i 0.707107i
\(3\) 0 0
\(4\) −1024.00 −0.500000
\(5\) 6895.58 + 1130.97i 0.986815 + 0.161852i
\(6\) 0 0
\(7\) 14383.7i 0.323467i 0.986834 + 0.161734i \(0.0517086\pi\)
−0.986834 + 0.161734i \(0.948291\pi\)
\(8\) 32768.0i 0.353553i
\(9\) 0 0
\(10\) 36191.1 220659.i 0.114446 0.697784i
\(11\) −493678. −0.924238 −0.462119 0.886818i \(-0.652911\pi\)
−0.462119 + 0.886818i \(0.652911\pi\)
\(12\) 0 0
\(13\) 984091.i 0.735101i 0.930004 + 0.367550i \(0.119803\pi\)
−0.930004 + 0.367550i \(0.880197\pi\)
\(14\) 460278. 0.228726
\(15\) 0 0
\(16\) 1.04858e6 0.250000
\(17\) 9.98110e6i 1.70494i −0.522775 0.852471i \(-0.675103\pi\)
0.522775 0.852471i \(-0.324897\pi\)
\(18\) 0 0
\(19\) −9.97709e6 −0.924398 −0.462199 0.886776i \(-0.652940\pi\)
−0.462199 + 0.886776i \(0.652940\pi\)
\(20\) −7.06107e6 1.15812e6i −0.493408 0.0809258i
\(21\) 0 0
\(22\) 1.57977e7i 0.653535i
\(23\) 4.66489e6i 0.151126i −0.997141 0.0755629i \(-0.975925\pi\)
0.997141 0.0755629i \(-0.0240754\pi\)
\(24\) 0 0
\(25\) 4.62699e7 + 1.55974e7i 0.947608 + 0.319435i
\(26\) 3.14909e7 0.519795
\(27\) 0 0
\(28\) 1.47289e7i 0.161734i
\(29\) 4.31977e7 0.391085 0.195543 0.980695i \(-0.437353\pi\)
0.195543 + 0.980695i \(0.437353\pi\)
\(30\) 0 0
\(31\) 1.06016e8 0.665092 0.332546 0.943087i \(-0.392092\pi\)
0.332546 + 0.943087i \(0.392092\pi\)
\(32\) 3.35544e7i 0.176777i
\(33\) 0 0
\(34\) −3.19395e8 −1.20558
\(35\) −1.62675e7 + 9.91838e7i −0.0523537 + 0.319203i
\(36\) 0 0
\(37\) 1.33767e8i 0.317131i 0.987348 + 0.158565i \(0.0506868\pi\)
−0.987348 + 0.158565i \(0.949313\pi\)
\(38\) 3.19267e8i 0.653648i
\(39\) 0 0
\(40\) −3.70597e7 + 2.25954e8i −0.0572232 + 0.348892i
\(41\) 1.24554e9 1.67899 0.839493 0.543371i \(-0.182852\pi\)
0.839493 + 0.543371i \(0.182852\pi\)
\(42\) 0 0
\(43\) 1.57980e9i 1.63880i −0.573224 0.819399i \(-0.694307\pi\)
0.573224 0.819399i \(-0.305693\pi\)
\(44\) 5.05526e8 0.462119
\(45\) 0 0
\(46\) −1.49277e8 −0.106862
\(47\) 3.78538e8i 0.240753i 0.992728 + 0.120376i \(0.0384101\pi\)
−0.992728 + 0.120376i \(0.961590\pi\)
\(48\) 0 0
\(49\) 1.77044e9 0.895369
\(50\) 4.99117e8 1.48064e9i 0.225875 0.670060i
\(51\) 0 0
\(52\) 1.00771e9i 0.367550i
\(53\) 3.54353e9i 1.16391i −0.813222 0.581954i \(-0.802288\pi\)
0.813222 0.581954i \(-0.197712\pi\)
\(54\) 0 0
\(55\) −3.40419e9 5.58336e8i −0.912052 0.149589i
\(56\) −4.71324e8 −0.114363
\(57\) 0 0
\(58\) 1.38233e9i 0.276539i
\(59\) 6.43548e9 1.17191 0.585956 0.810343i \(-0.300719\pi\)
0.585956 + 0.810343i \(0.300719\pi\)
\(60\) 0 0
\(61\) 2.83608e8 0.0429937 0.0214969 0.999769i \(-0.493157\pi\)
0.0214969 + 0.999769i \(0.493157\pi\)
\(62\) 3.39251e9i 0.470291i
\(63\) 0 0
\(64\) −1.07374e9 −0.125000
\(65\) −1.11298e9 + 6.78588e9i −0.118977 + 0.725408i
\(66\) 0 0
\(67\) 7.62962e9i 0.690385i −0.938532 0.345192i \(-0.887814\pi\)
0.938532 0.345192i \(-0.112186\pi\)
\(68\) 1.02207e10i 0.852471i
\(69\) 0 0
\(70\) 3.17388e9 + 5.20561e8i 0.225710 + 0.0370197i
\(71\) −1.48476e9 −0.0976641 −0.0488320 0.998807i \(-0.515550\pi\)
−0.0488320 + 0.998807i \(0.515550\pi\)
\(72\) 0 0
\(73\) 1.24759e10i 0.704362i −0.935932 0.352181i \(-0.885440\pi\)
0.935932 0.352181i \(-0.114560\pi\)
\(74\) 4.28053e9 0.224245
\(75\) 0 0
\(76\) 1.02165e10 0.462199
\(77\) 7.10090e9i 0.298961i
\(78\) 0 0
\(79\) −3.51048e10 −1.28357 −0.641783 0.766887i \(-0.721805\pi\)
−0.641783 + 0.766887i \(0.721805\pi\)
\(80\) 7.23054e9 + 1.18591e9i 0.246704 + 0.0404629i
\(81\) 0 0
\(82\) 3.98573e10i 1.18722i
\(83\) 9.64068e9i 0.268645i 0.990938 + 0.134322i \(0.0428858\pi\)
−0.990938 + 0.134322i \(0.957114\pi\)
\(84\) 0 0
\(85\) 1.12884e10 6.88255e10i 0.275948 1.68246i
\(86\) −5.05536e10 −1.15881
\(87\) 0 0
\(88\) 1.61768e10i 0.326767i
\(89\) −4.39019e10 −0.833370 −0.416685 0.909051i \(-0.636808\pi\)
−0.416685 + 0.909051i \(0.636808\pi\)
\(90\) 0 0
\(91\) −1.41548e10 −0.237781
\(92\) 4.77685e9i 0.0755629i
\(93\) 0 0
\(94\) 1.21132e10 0.170238
\(95\) −6.87978e10 1.12838e10i −0.912210 0.149615i
\(96\) 0 0
\(97\) 1.45178e11i 1.71655i −0.513186 0.858277i \(-0.671535\pi\)
0.513186 0.858277i \(-0.328465\pi\)
\(98\) 5.66540e10i 0.633121i
\(99\) 0 0
\(100\) −4.73804e10 1.59718e10i −0.473804 0.159718i
\(101\) 6.96131e10 0.659058 0.329529 0.944146i \(-0.393110\pi\)
0.329529 + 0.944146i \(0.393110\pi\)
\(102\) 0 0
\(103\) 2.08189e11i 1.76951i −0.466060 0.884753i \(-0.654327\pi\)
0.466060 0.884753i \(-0.345673\pi\)
\(104\) −3.22467e10 −0.259897
\(105\) 0 0
\(106\) −1.13393e11 −0.823007
\(107\) 1.16130e11i 0.800449i −0.916417 0.400224i \(-0.868932\pi\)
0.916417 0.400224i \(-0.131068\pi\)
\(108\) 0 0
\(109\) 8.68795e10 0.540844 0.270422 0.962742i \(-0.412837\pi\)
0.270422 + 0.962742i \(0.412837\pi\)
\(110\) −1.78667e10 + 1.08934e11i −0.105776 + 0.644918i
\(111\) 0 0
\(112\) 1.50824e10i 0.0808669i
\(113\) 1.99548e11i 1.01887i 0.860511 + 0.509433i \(0.170145\pi\)
−0.860511 + 0.509433i \(0.829855\pi\)
\(114\) 0 0
\(115\) 5.27586e9 3.21671e10i 0.0244599 0.149133i
\(116\) −4.42344e10 −0.195543
\(117\) 0 0
\(118\) 2.05935e11i 0.828667i
\(119\) 1.43565e11 0.551493
\(120\) 0 0
\(121\) −4.15941e10 −0.145785
\(122\) 9.07547e9i 0.0304012i
\(123\) 0 0
\(124\) −1.08560e11 −0.332546
\(125\) 3.01418e11 + 1.59883e11i 0.883413 + 0.468595i
\(126\) 0 0
\(127\) 2.85605e11i 0.767089i −0.923522 0.383544i \(-0.874703\pi\)
0.923522 0.383544i \(-0.125297\pi\)
\(128\) 3.43597e10i 0.0883883i
\(129\) 0 0
\(130\) 2.17148e11 + 3.56153e10i 0.512941 + 0.0841296i
\(131\) 4.06182e11 0.919875 0.459937 0.887951i \(-0.347872\pi\)
0.459937 + 0.887951i \(0.347872\pi\)
\(132\) 0 0
\(133\) 1.43507e11i 0.299013i
\(134\) −2.44148e11 −0.488176
\(135\) 0 0
\(136\) 3.27061e11 0.602788
\(137\) 6.27707e11i 1.11120i −0.831448 0.555602i \(-0.812488\pi\)
0.831448 0.555602i \(-0.187512\pi\)
\(138\) 0 0
\(139\) −7.74832e11 −1.26656 −0.633281 0.773922i \(-0.718292\pi\)
−0.633281 + 0.773922i \(0.718292\pi\)
\(140\) 1.66580e10 1.01564e11i 0.0261769 0.159601i
\(141\) 0 0
\(142\) 4.75123e10i 0.0690589i
\(143\) 4.85824e11i 0.679408i
\(144\) 0 0
\(145\) 2.97873e11 + 4.88554e10i 0.385929 + 0.0632978i
\(146\) −3.99229e11 −0.498059
\(147\) 0 0
\(148\) 1.36977e11i 0.158565i
\(149\) 8.83059e11 0.985066 0.492533 0.870294i \(-0.336071\pi\)
0.492533 + 0.870294i \(0.336071\pi\)
\(150\) 0 0
\(151\) 2.46968e10 0.0256016 0.0128008 0.999918i \(-0.495925\pi\)
0.0128008 + 0.999918i \(0.495925\pi\)
\(152\) 3.26929e11i 0.326824i
\(153\) 0 0
\(154\) −2.27229e11 −0.211397
\(155\) 7.31041e11 + 1.19901e11i 0.656323 + 0.107646i
\(156\) 0 0
\(157\) 3.99502e11i 0.334250i 0.985936 + 0.167125i \(0.0534483\pi\)
−0.985936 + 0.167125i \(0.946552\pi\)
\(158\) 1.12335e12i 0.907618i
\(159\) 0 0
\(160\) 3.79491e10 2.31377e11i 0.0286116 0.174446i
\(161\) 6.70983e10 0.0488843
\(162\) 0 0
\(163\) 2.83368e12i 1.92894i 0.264187 + 0.964472i \(0.414896\pi\)
−0.264187 + 0.964472i \(0.585104\pi\)
\(164\) −1.27543e12 −0.839493
\(165\) 0 0
\(166\) 3.08502e11 0.189960
\(167\) 1.28445e12i 0.765205i 0.923913 + 0.382602i \(0.124972\pi\)
−0.923913 + 0.382602i \(0.875028\pi\)
\(168\) 0 0
\(169\) 8.23725e11 0.459627
\(170\) −2.20242e12 3.61227e11i −1.18968 0.195124i
\(171\) 0 0
\(172\) 1.61771e12i 0.819399i
\(173\) 2.21074e10i 0.0108464i 0.999985 + 0.00542319i \(0.00172626\pi\)
−0.999985 + 0.00542319i \(0.998274\pi\)
\(174\) 0 0
\(175\) −2.24348e11 + 6.65532e11i −0.103327 + 0.306520i
\(176\) −5.17659e11 −0.231059
\(177\) 0 0
\(178\) 1.40486e12i 0.589282i
\(179\) 1.10893e12 0.451039 0.225520 0.974239i \(-0.427592\pi\)
0.225520 + 0.974239i \(0.427592\pi\)
\(180\) 0 0
\(181\) 2.61788e12 1.00165 0.500827 0.865548i \(-0.333029\pi\)
0.500827 + 0.865548i \(0.333029\pi\)
\(182\) 4.52955e11i 0.168137i
\(183\) 0 0
\(184\) 1.52859e11 0.0534310
\(185\) −1.51286e11 + 9.22398e11i −0.0513281 + 0.312949i
\(186\) 0 0
\(187\) 4.92745e12i 1.57577i
\(188\) 3.87623e11i 0.120376i
\(189\) 0 0
\(190\) −3.61082e11 + 2.20153e12i −0.105794 + 0.645030i
\(191\) 1.12739e12 0.320915 0.160457 0.987043i \(-0.448703\pi\)
0.160457 + 0.987043i \(0.448703\pi\)
\(192\) 0 0
\(193\) 2.88477e12i 0.775436i 0.921778 + 0.387718i \(0.126737\pi\)
−0.921778 + 0.387718i \(0.873263\pi\)
\(194\) −4.64571e12 −1.21379
\(195\) 0 0
\(196\) −1.81293e12 −0.447684
\(197\) 4.39441e12i 1.05520i −0.849492 0.527601i \(-0.823092\pi\)
0.849492 0.527601i \(-0.176908\pi\)
\(198\) 0 0
\(199\) −7.04590e12 −1.60046 −0.800230 0.599694i \(-0.795289\pi\)
−0.800230 + 0.599694i \(0.795289\pi\)
\(200\) −5.11096e11 + 1.51617e12i −0.112937 + 0.335030i
\(201\) 0 0
\(202\) 2.22762e12i 0.466024i
\(203\) 6.21341e11i 0.126503i
\(204\) 0 0
\(205\) 8.58873e12 + 1.40867e12i 1.65685 + 0.271746i
\(206\) −6.66203e12 −1.25123
\(207\) 0 0
\(208\) 1.03189e12i 0.183775i
\(209\) 4.92547e12 0.854364
\(210\) 0 0
\(211\) 3.96943e12 0.653394 0.326697 0.945129i \(-0.394064\pi\)
0.326697 + 0.945129i \(0.394064\pi\)
\(212\) 3.62857e12i 0.581954i
\(213\) 0 0
\(214\) −3.71616e12 −0.566003
\(215\) 1.78671e12 1.08936e13i 0.265242 1.61719i
\(216\) 0 0
\(217\) 1.52490e12i 0.215136i
\(218\) 2.78014e12i 0.382434i
\(219\) 0 0
\(220\) 3.48589e12 + 5.71736e11i 0.456026 + 0.0747947i
\(221\) 9.82231e12 1.25330
\(222\) 0 0
\(223\) 9.83562e12i 1.19433i −0.802118 0.597166i \(-0.796293\pi\)
0.802118 0.597166i \(-0.203707\pi\)
\(224\) 4.82636e11 0.0571815
\(225\) 0 0
\(226\) 6.38555e12 0.720446
\(227\) 1.19389e13i 1.31468i 0.753592 + 0.657342i \(0.228319\pi\)
−0.753592 + 0.657342i \(0.771681\pi\)
\(228\) 0 0
\(229\) −9.06605e12 −0.951312 −0.475656 0.879631i \(-0.657789\pi\)
−0.475656 + 0.879631i \(0.657789\pi\)
\(230\) −1.02935e12 1.68828e11i −0.105453 0.0172958i
\(231\) 0 0
\(232\) 1.41550e12i 0.138270i
\(233\) 6.85789e12i 0.654234i 0.944984 + 0.327117i \(0.106077\pi\)
−0.944984 + 0.327117i \(0.893923\pi\)
\(234\) 0 0
\(235\) −4.28116e11 + 2.61024e12i −0.0389662 + 0.237578i
\(236\) −6.58993e12 −0.585956
\(237\) 0 0
\(238\) 4.59408e12i 0.389965i
\(239\) 1.60055e13 1.32764 0.663822 0.747891i \(-0.268933\pi\)
0.663822 + 0.747891i \(0.268933\pi\)
\(240\) 0 0
\(241\) −1.42320e13 −1.12765 −0.563823 0.825896i \(-0.690670\pi\)
−0.563823 + 0.825896i \(0.690670\pi\)
\(242\) 1.33101e12i 0.103085i
\(243\) 0 0
\(244\) −2.90415e11 −0.0214969
\(245\) 1.22082e13 + 2.00231e12i 0.883563 + 0.144917i
\(246\) 0 0
\(247\) 9.81837e12i 0.679526i
\(248\) 3.47393e12i 0.235146i
\(249\) 0 0
\(250\) 5.11626e12 9.64537e12i 0.331347 0.624667i
\(251\) 1.22090e13 0.773528 0.386764 0.922179i \(-0.373593\pi\)
0.386764 + 0.922179i \(0.373593\pi\)
\(252\) 0 0
\(253\) 2.30295e12i 0.139676i
\(254\) −9.13937e12 −0.542414
\(255\) 0 0
\(256\) 1.09951e12 0.0625000
\(257\) 1.72148e13i 0.957791i −0.877872 0.478896i \(-0.841037\pi\)
0.877872 0.478896i \(-0.158963\pi\)
\(258\) 0 0
\(259\) −1.92405e12 −0.102581
\(260\) 1.13969e12 6.94874e12i 0.0594886 0.362704i
\(261\) 0 0
\(262\) 1.29978e13i 0.650450i
\(263\) 1.28087e13i 0.627692i −0.949474 0.313846i \(-0.898382\pi\)
0.949474 0.313846i \(-0.101618\pi\)
\(264\) 0 0
\(265\) 4.00763e12 2.44347e13i 0.188380 1.14856i
\(266\) −4.59223e12 −0.211434
\(267\) 0 0
\(268\) 7.81273e12i 0.345192i
\(269\) −3.20929e13 −1.38922 −0.694610 0.719386i \(-0.744423\pi\)
−0.694610 + 0.719386i \(0.744423\pi\)
\(270\) 0 0
\(271\) 2.91487e13 1.21140 0.605700 0.795693i \(-0.292893\pi\)
0.605700 + 0.795693i \(0.292893\pi\)
\(272\) 1.04659e13i 0.426235i
\(273\) 0 0
\(274\) −2.00866e13 −0.785740
\(275\) −2.28424e13 7.70010e12i −0.875815 0.295234i
\(276\) 0 0
\(277\) 4.06501e13i 1.49769i −0.662744 0.748846i \(-0.730608\pi\)
0.662744 0.748846i \(-0.269392\pi\)
\(278\) 2.47946e13i 0.895594i
\(279\) 0 0
\(280\) −3.25005e12 5.33055e11i −0.112855 0.0185098i
\(281\) 1.20927e13 0.411756 0.205878 0.978578i \(-0.433995\pi\)
0.205878 + 0.978578i \(0.433995\pi\)
\(282\) 0 0
\(283\) 4.36486e13i 1.42937i −0.699447 0.714685i \(-0.746570\pi\)
0.699447 0.714685i \(-0.253430\pi\)
\(284\) 1.52039e12 0.0488320
\(285\) 0 0
\(286\) −1.55464e13 −0.480414
\(287\) 1.79155e13i 0.543097i
\(288\) 0 0
\(289\) −6.53505e13 −1.90683
\(290\) 1.56337e12 9.53194e12i 0.0447583 0.272893i
\(291\) 0 0
\(292\) 1.27753e13i 0.352181i
\(293\) 2.88496e13i 0.780490i 0.920711 + 0.390245i \(0.127610\pi\)
−0.920711 + 0.390245i \(0.872390\pi\)
\(294\) 0 0
\(295\) 4.43764e13 + 7.27835e12i 1.15646 + 0.189676i
\(296\) −4.38326e12 −0.112123
\(297\) 0 0
\(298\) 2.82579e13i 0.696547i
\(299\) 4.59068e12 0.111093
\(300\) 0 0
\(301\) 2.27233e13 0.530098
\(302\) 7.90296e11i 0.0181031i
\(303\) 0 0
\(304\) −1.04617e13 −0.231100
\(305\) 1.95564e12 + 3.20753e11i 0.0424269 + 0.00695860i
\(306\) 0 0
\(307\) 1.43204e13i 0.299705i −0.988708 0.149853i \(-0.952120\pi\)
0.988708 0.149853i \(-0.0478799\pi\)
\(308\) 7.27132e12i 0.149480i
\(309\) 0 0
\(310\) 3.83683e12 2.33933e13i 0.0761174 0.464090i
\(311\) −9.57675e13 −1.86653 −0.933267 0.359184i \(-0.883055\pi\)
−0.933267 + 0.359184i \(0.883055\pi\)
\(312\) 0 0
\(313\) 9.23470e12i 0.173752i 0.996219 + 0.0868758i \(0.0276883\pi\)
−0.996219 + 0.0868758i \(0.972312\pi\)
\(314\) 1.27841e13 0.236350
\(315\) 0 0
\(316\) 3.59473e13 0.641783
\(317\) 3.85697e13i 0.676737i −0.941014 0.338369i \(-0.890125\pi\)
0.941014 0.338369i \(-0.109875\pi\)
\(318\) 0 0
\(319\) −2.13257e13 −0.361456
\(320\) −7.40407e12 1.21437e12i −0.123352 0.0202314i
\(321\) 0 0
\(322\) 2.14715e12i 0.0345664i
\(323\) 9.95824e13i 1.57605i
\(324\) 0 0
\(325\) −1.53493e13 + 4.55338e13i −0.234817 + 0.696587i
\(326\) 9.06779e13 1.36397
\(327\) 0 0
\(328\) 4.08139e13i 0.593611i
\(329\) −5.44477e12 −0.0778757
\(330\) 0 0
\(331\) −3.53241e13 −0.488671 −0.244336 0.969691i \(-0.578570\pi\)
−0.244336 + 0.969691i \(0.578570\pi\)
\(332\) 9.87206e12i 0.134322i
\(333\) 0 0
\(334\) 4.11025e13 0.541082
\(335\) 8.62888e12 5.26106e13i 0.111740 0.681282i
\(336\) 0 0
\(337\) 1.15113e14i 1.44265i 0.692598 + 0.721324i \(0.256466\pi\)
−0.692598 + 0.721324i \(0.743534\pi\)
\(338\) 2.63592e13i 0.325005i
\(339\) 0 0
\(340\) −1.15593e13 + 7.04773e13i −0.137974 + 0.841231i
\(341\) −5.23377e13 −0.614703
\(342\) 0 0
\(343\) 5.39066e13i 0.613090i
\(344\) 5.17669e13 0.579403
\(345\) 0 0
\(346\) 7.07438e11 0.00766955
\(347\) 1.55630e14i 1.66067i −0.557268 0.830333i \(-0.688150\pi\)
0.557268 0.830333i \(-0.311850\pi\)
\(348\) 0 0
\(349\) 9.23502e13 0.954768 0.477384 0.878695i \(-0.341585\pi\)
0.477384 + 0.878695i \(0.341585\pi\)
\(350\) 2.12970e13 + 7.17914e12i 0.216743 + 0.0730631i
\(351\) 0 0
\(352\) 1.65651e13i 0.163384i
\(353\) 1.37302e14i 1.33326i 0.745387 + 0.666632i \(0.232265\pi\)
−0.745387 + 0.666632i \(0.767735\pi\)
\(354\) 0 0
\(355\) −1.02383e13 1.67922e12i −0.0963764 0.0158071i
\(356\) 4.49555e13 0.416685
\(357\) 0 0
\(358\) 3.54859e13i 0.318933i
\(359\) −1.52572e13 −0.135038 −0.0675189 0.997718i \(-0.521508\pi\)
−0.0675189 + 0.997718i \(0.521508\pi\)
\(360\) 0 0
\(361\) −1.69479e13 −0.145488
\(362\) 8.37721e13i 0.708276i
\(363\) 0 0
\(364\) 1.44946e13 0.118891
\(365\) 1.41099e13 8.60286e13i 0.114002 0.695075i
\(366\) 0 0
\(367\) 1.82864e14i 1.43372i 0.697218 + 0.716859i \(0.254421\pi\)
−0.697218 + 0.716859i \(0.745579\pi\)
\(368\) 4.89149e12i 0.0377814i
\(369\) 0 0
\(370\) 2.95167e13 + 4.84116e12i 0.221289 + 0.0362944i
\(371\) 5.09689e13 0.376486
\(372\) 0 0
\(373\) 1.75097e14i 1.25568i 0.778340 + 0.627842i \(0.216062\pi\)
−0.778340 + 0.627842i \(0.783938\pi\)
\(374\) 1.57678e14 1.11424
\(375\) 0 0
\(376\) −1.24039e13 −0.0851190
\(377\) 4.25105e13i 0.287487i
\(378\) 0 0
\(379\) 2.92435e13 0.192094 0.0960469 0.995377i \(-0.469380\pi\)
0.0960469 + 0.995377i \(0.469380\pi\)
\(380\) 7.04490e13 + 1.15546e13i 0.456105 + 0.0748077i
\(381\) 0 0
\(382\) 3.60764e13i 0.226921i
\(383\) 2.39337e14i 1.48394i 0.670434 + 0.741969i \(0.266108\pi\)
−0.670434 + 0.741969i \(0.733892\pi\)
\(384\) 0 0
\(385\) 8.03092e12 4.89648e13i 0.0483873 0.295019i
\(386\) 9.23126e13 0.548316
\(387\) 0 0
\(388\) 1.48663e14i 0.858277i
\(389\) −1.12715e14 −0.641594 −0.320797 0.947148i \(-0.603951\pi\)
−0.320797 + 0.947148i \(0.603951\pi\)
\(390\) 0 0
\(391\) −4.65608e13 −0.257661
\(392\) 5.80137e13i 0.316561i
\(393\) 0 0
\(394\) −1.40621e14 −0.746141
\(395\) −2.42068e14 3.97026e13i −1.26664 0.207747i
\(396\) 0 0
\(397\) 1.86208e14i 0.947656i −0.880617 0.473828i \(-0.842872\pi\)
0.880617 0.473828i \(-0.157128\pi\)
\(398\) 2.25469e14i 1.13170i
\(399\) 0 0
\(400\) 4.85175e13 + 1.63551e13i 0.236902 + 0.0798588i
\(401\) −2.59493e13 −0.124977 −0.0624887 0.998046i \(-0.519904\pi\)
−0.0624887 + 0.998046i \(0.519904\pi\)
\(402\) 0 0
\(403\) 1.04329e14i 0.488910i
\(404\) −7.12838e13 −0.329529
\(405\) 0 0
\(406\) 1.98829e13 0.0894514
\(407\) 6.60376e13i 0.293104i
\(408\) 0 0
\(409\) 1.47199e14 0.635956 0.317978 0.948098i \(-0.396996\pi\)
0.317978 + 0.948098i \(0.396996\pi\)
\(410\) 4.50775e13 2.74839e14i 0.192154 1.17157i
\(411\) 0 0
\(412\) 2.13185e14i 0.884753i
\(413\) 9.25658e13i 0.379075i
\(414\) 0 0
\(415\) −1.09033e13 + 6.64781e13i −0.0434806 + 0.265103i
\(416\) 3.30206e13 0.129949
\(417\) 0 0
\(418\) 1.57615e14i 0.604127i
\(419\) −1.89584e14 −0.717172 −0.358586 0.933497i \(-0.616741\pi\)
−0.358586 + 0.933497i \(0.616741\pi\)
\(420\) 0 0
\(421\) 1.54796e14 0.570438 0.285219 0.958462i \(-0.407934\pi\)
0.285219 + 0.958462i \(0.407934\pi\)
\(422\) 1.27022e14i 0.462019i
\(423\) 0 0
\(424\) 1.16114e14 0.411503
\(425\) 1.55679e14 4.61825e14i 0.544618 1.61562i
\(426\) 0 0
\(427\) 4.07933e12i 0.0139071i
\(428\) 1.18917e14i 0.400224i
\(429\) 0 0
\(430\) −3.48596e14 5.71747e13i −1.14353 0.187554i
\(431\) −3.79771e14 −1.22998 −0.614988 0.788536i \(-0.710839\pi\)
−0.614988 + 0.788536i \(0.710839\pi\)
\(432\) 0 0
\(433\) 1.22608e14i 0.387111i −0.981089 0.193555i \(-0.937998\pi\)
0.981089 0.193555i \(-0.0620019\pi\)
\(434\) 4.87968e13 0.152124
\(435\) 0 0
\(436\) −8.89646e13 −0.270422
\(437\) 4.65421e13i 0.139700i
\(438\) 0 0
\(439\) 3.44574e14 1.00862 0.504311 0.863522i \(-0.331747\pi\)
0.504311 + 0.863522i \(0.331747\pi\)
\(440\) 1.82955e13 1.11549e14i 0.0528878 0.322459i
\(441\) 0 0
\(442\) 3.14314e14i 0.886220i
\(443\) 5.10771e14i 1.42235i 0.703016 + 0.711174i \(0.251836\pi\)
−0.703016 + 0.711174i \(0.748164\pi\)
\(444\) 0 0
\(445\) −3.02729e14 4.96518e13i −0.822383 0.134882i
\(446\) −3.14740e14 −0.844520
\(447\) 0 0
\(448\) 1.54444e13i 0.0404334i
\(449\) −3.62527e14 −0.937531 −0.468766 0.883323i \(-0.655301\pi\)
−0.468766 + 0.883323i \(0.655301\pi\)
\(450\) 0 0
\(451\) −6.14896e14 −1.55178
\(452\) 2.04338e14i 0.509433i
\(453\) 0 0
\(454\) 3.82044e14 0.929623
\(455\) −9.76059e13 1.60087e13i −0.234646 0.0384853i
\(456\) 0 0
\(457\) 2.71960e14i 0.638213i −0.947719 0.319106i \(-0.896617\pi\)
0.947719 0.319106i \(-0.103383\pi\)
\(458\) 2.90114e14i 0.672680i
\(459\) 0 0
\(460\) −5.40248e12 + 3.29391e13i −0.0122300 + 0.0745666i
\(461\) 5.57568e14 1.24722 0.623610 0.781736i \(-0.285665\pi\)
0.623610 + 0.781736i \(0.285665\pi\)
\(462\) 0 0
\(463\) 8.32053e14i 1.81742i −0.417427 0.908710i \(-0.637068\pi\)
0.417427 0.908710i \(-0.362932\pi\)
\(464\) 4.52961e13 0.0977713
\(465\) 0 0
\(466\) 2.19453e14 0.462613
\(467\) 3.67952e14i 0.766564i −0.923631 0.383282i \(-0.874794\pi\)
0.923631 0.383282i \(-0.125206\pi\)
\(468\) 0 0
\(469\) 1.09742e14 0.223317
\(470\) 8.35277e13 + 1.36997e13i 0.167993 + 0.0275533i
\(471\) 0 0
\(472\) 2.10878e14i 0.414333i
\(473\) 7.79912e14i 1.51464i
\(474\) 0 0
\(475\) −4.61639e14 1.55617e14i −0.875967 0.295285i
\(476\) −1.47011e14 −0.275747
\(477\) 0 0
\(478\) 5.12177e14i 0.938786i
\(479\) 8.05880e14 1.46024 0.730122 0.683317i \(-0.239463\pi\)
0.730122 + 0.683317i \(0.239463\pi\)
\(480\) 0 0
\(481\) −1.31638e14 −0.233123
\(482\) 4.55425e14i 0.797366i
\(483\) 0 0
\(484\) 4.25923e13 0.0728923
\(485\) 1.64193e14 1.00109e15i 0.277827 1.69392i
\(486\) 0 0
\(487\) 6.67016e14i 1.10339i −0.834047 0.551693i \(-0.813982\pi\)
0.834047 0.551693i \(-0.186018\pi\)
\(488\) 9.29328e12i 0.0152006i
\(489\) 0 0
\(490\) 6.40741e13 3.90662e14i 0.102472 0.624774i
\(491\) 7.10616e13 0.112379 0.0561897 0.998420i \(-0.482105\pi\)
0.0561897 + 0.998420i \(0.482105\pi\)
\(492\) 0 0
\(493\) 4.31161e14i 0.666778i
\(494\) −3.14188e14 −0.480497
\(495\) 0 0
\(496\) 1.11166e14 0.166273
\(497\) 2.13563e13i 0.0315912i
\(498\) 0 0
\(499\) −1.65477e14 −0.239434 −0.119717 0.992808i \(-0.538199\pi\)
−0.119717 + 0.992808i \(0.538199\pi\)
\(500\) −3.08652e14 1.63720e14i −0.441706 0.234298i
\(501\) 0 0
\(502\) 3.90689e14i 0.546967i
\(503\) 1.03762e15i 1.43686i 0.695599 + 0.718431i \(0.255139\pi\)
−0.695599 + 0.718431i \(0.744861\pi\)
\(504\) 0 0
\(505\) 4.80023e14 + 7.87305e13i 0.650368 + 0.106670i
\(506\) 7.36945e13 0.0987659
\(507\) 0 0
\(508\) 2.92460e14i 0.383544i
\(509\) 1.20946e15 1.56908 0.784538 0.620081i \(-0.212900\pi\)
0.784538 + 0.620081i \(0.212900\pi\)
\(510\) 0 0
\(511\) 1.79449e14 0.227838
\(512\) 3.51844e13i 0.0441942i
\(513\) 0 0
\(514\) −5.50875e14 −0.677261
\(515\) 2.35455e14 1.43558e15i 0.286397 1.74618i
\(516\) 0 0
\(517\) 1.86876e14i 0.222513i
\(518\) 6.15697e13i 0.0725360i
\(519\) 0 0
\(520\) −2.22360e14 3.64701e13i −0.256471 0.0420648i
\(521\) 8.99117e14 1.02614 0.513072 0.858345i \(-0.328507\pi\)
0.513072 + 0.858345i \(0.328507\pi\)
\(522\) 0 0
\(523\) 1.10607e15i 1.23601i 0.786172 + 0.618007i \(0.212060\pi\)
−0.786172 + 0.618007i \(0.787940\pi\)
\(524\) −4.15931e14 −0.459937
\(525\) 0 0
\(526\) −4.09877e14 −0.443846
\(527\) 1.05816e15i 1.13394i
\(528\) 0 0
\(529\) 9.31049e14 0.977161
\(530\) −7.81909e14 1.28244e14i −0.812156 0.133205i
\(531\) 0 0
\(532\) 1.46951e14i 0.149506i
\(533\) 1.22573e15i 1.23422i
\(534\) 0 0
\(535\) 1.31340e14 8.00783e14i 0.129554 0.789895i
\(536\) 2.50007e14 0.244088
\(537\) 0 0
\(538\) 1.02697e15i 0.982327i
\(539\) −8.74025e14 −0.827534
\(540\) 0 0
\(541\) −1.16749e15 −1.08310 −0.541552 0.840668i \(-0.682163\pi\)
−0.541552 + 0.840668i \(0.682163\pi\)
\(542\) 9.32757e14i 0.856589i
\(543\) 0 0
\(544\) −3.34910e14 −0.301394
\(545\) 5.99085e14 + 9.82583e13i 0.533713 + 0.0875364i
\(546\) 0 0
\(547\) 1.47623e15i 1.28891i 0.764640 + 0.644457i \(0.222917\pi\)
−0.764640 + 0.644457i \(0.777083\pi\)
\(548\) 6.42772e14i 0.555602i
\(549\) 0 0
\(550\) −2.46403e14 + 7.30958e14i −0.208762 + 0.619295i
\(551\) −4.30987e14 −0.361519
\(552\) 0 0
\(553\) 5.04936e14i 0.415192i
\(554\) −1.30080e15 −1.05903
\(555\) 0 0
\(556\) 7.93428e14 0.633281
\(557\) 1.46210e15i 1.15551i −0.816212 0.577753i \(-0.803930\pi\)
0.816212 0.577753i \(-0.196070\pi\)
\(558\) 0 0
\(559\) 1.55467e15 1.20468
\(560\) −1.70577e13 + 1.04002e14i −0.0130884 + 0.0798006i
\(561\) 0 0
\(562\) 3.86968e14i 0.291155i
\(563\) 1.82633e15i 1.36076i 0.732858 + 0.680381i \(0.238186\pi\)
−0.732858 + 0.680381i \(0.761814\pi\)
\(564\) 0 0
\(565\) −2.25684e14 + 1.37600e15i −0.164905 + 1.00543i
\(566\) −1.39675e15 −1.01072
\(567\) 0 0
\(568\) 4.86526e13i 0.0345295i
\(569\) 2.46241e15 1.73078 0.865391 0.501098i \(-0.167070\pi\)
0.865391 + 0.501098i \(0.167070\pi\)
\(570\) 0 0
\(571\) 4.81918e14 0.332258 0.166129 0.986104i \(-0.446873\pi\)
0.166129 + 0.986104i \(0.446873\pi\)
\(572\) 4.97483e14i 0.339704i
\(573\) 0 0
\(574\) 5.73295e14 0.384028
\(575\) 7.27603e13 2.15844e14i 0.0482749 0.143208i
\(576\) 0 0
\(577\) 1.50690e15i 0.980887i 0.871473 + 0.490443i \(0.163165\pi\)
−0.871473 + 0.490443i \(0.836835\pi\)
\(578\) 2.09122e15i 1.34833i
\(579\) 0 0
\(580\) −3.05022e14 5.00279e13i −0.192964 0.0316489i
\(581\) −1.38668e14 −0.0868978
\(582\) 0 0
\(583\) 1.74936e15i 1.07573i
\(584\) 4.08810e14 0.249030
\(585\) 0 0
\(586\) 9.23186e14 0.551890
\(587\) 7.41461e14i 0.439115i 0.975600 + 0.219558i \(0.0704614\pi\)
−0.975600 + 0.219558i \(0.929539\pi\)
\(588\) 0 0
\(589\) −1.05773e15 −0.614810
\(590\) 2.32907e14 1.42004e15i 0.134121 0.817741i
\(591\) 0 0
\(592\) 1.40264e14i 0.0792826i
\(593\) 1.39684e15i 0.782249i 0.920338 + 0.391124i \(0.127914\pi\)
−0.920338 + 0.391124i \(0.872086\pi\)
\(594\) 0 0
\(595\) 9.89964e14 + 1.62368e14i 0.544222 + 0.0892600i
\(596\) −9.04253e14 −0.492533
\(597\) 0 0
\(598\) 1.46902e14i 0.0785544i
\(599\) −3.31738e15 −1.75771 −0.878856 0.477087i \(-0.841693\pi\)
−0.878856 + 0.477087i \(0.841693\pi\)
\(600\) 0 0
\(601\) −1.75846e15 −0.914792 −0.457396 0.889263i \(-0.651218\pi\)
−0.457396 + 0.889263i \(0.651218\pi\)
\(602\) 7.27146e14i 0.374836i
\(603\) 0 0
\(604\) −2.52895e13 −0.0128008
\(605\) −2.86815e14 4.70417e13i −0.143862 0.0235955i
\(606\) 0 0
\(607\) 1.71424e14i 0.0844371i −0.999108 0.0422186i \(-0.986557\pi\)
0.999108 0.0422186i \(-0.0134426\pi\)
\(608\) 3.34776e14i 0.163412i
\(609\) 0 0
\(610\) 1.02641e13 6.25806e13i 0.00492048 0.0300003i
\(611\) −3.72516e14 −0.176978
\(612\) 0 0
\(613\) 1.34314e15i 0.626744i 0.949630 + 0.313372i \(0.101459\pi\)
−0.949630 + 0.313372i \(0.898541\pi\)
\(614\) −4.58253e14 −0.211923
\(615\) 0 0
\(616\) 2.32682e14 0.105699
\(617\) 3.54108e15i 1.59429i −0.603787 0.797146i \(-0.706342\pi\)
0.603787 0.797146i \(-0.293658\pi\)
\(618\) 0 0
\(619\) −3.30674e15 −1.46252 −0.731259 0.682100i \(-0.761067\pi\)
−0.731259 + 0.682100i \(0.761067\pi\)
\(620\) −7.48586e14 1.22779e14i −0.328162 0.0538231i
\(621\) 0 0
\(622\) 3.06456e15i 1.31984i
\(623\) 6.31470e14i 0.269568i
\(624\) 0 0
\(625\) 1.89763e15 + 1.44338e15i 0.795922 + 0.605399i
\(626\) 2.95510e14 0.122861
\(627\) 0 0
\(628\) 4.09090e14i 0.167125i
\(629\) 1.33514e15 0.540689
\(630\) 0 0
\(631\) 3.53490e15 1.40675 0.703374 0.710820i \(-0.251676\pi\)
0.703374 + 0.710820i \(0.251676\pi\)
\(632\) 1.15032e15i 0.453809i
\(633\) 0 0
\(634\) −1.23423e15 −0.478525
\(635\) 3.23012e14 1.96941e15i 0.124155 0.756975i
\(636\) 0 0
\(637\) 1.74227e15i 0.658186i
\(638\) 6.82423e14i 0.255588i
\(639\) 0 0
\(640\) −3.88599e13 + 2.36930e14i −0.0143058 + 0.0872230i
\(641\) 2.17674e15 0.794486 0.397243 0.917713i \(-0.369967\pi\)
0.397243 + 0.917713i \(0.369967\pi\)
\(642\) 0 0
\(643\) 2.81878e15i 1.01135i −0.862725 0.505674i \(-0.831244\pi\)
0.862725 0.505674i \(-0.168756\pi\)
\(644\) −6.87086e13 −0.0244421
\(645\) 0 0
\(646\) 3.18664e15 1.11443
\(647\) 2.43407e15i 0.844032i 0.906588 + 0.422016i \(0.138677\pi\)
−0.906588 + 0.422016i \(0.861323\pi\)
\(648\) 0 0
\(649\) −3.17705e15 −1.08312
\(650\) 1.45708e15 + 4.91177e14i 0.492562 + 0.166041i
\(651\) 0 0
\(652\) 2.90169e15i 0.964472i
\(653\) 2.11894e15i 0.698388i 0.937050 + 0.349194i \(0.113545\pi\)
−0.937050 + 0.349194i \(0.886455\pi\)
\(654\) 0 0
\(655\) 2.80086e15 + 4.59381e14i 0.907746 + 0.148883i
\(656\) 1.30604e15 0.419746
\(657\) 0 0
\(658\) 1.74233e14i 0.0550664i
\(659\) −1.95713e15 −0.613408 −0.306704 0.951805i \(-0.599226\pi\)
−0.306704 + 0.951805i \(0.599226\pi\)
\(660\) 0 0
\(661\) −3.99976e14 −0.123289 −0.0616447 0.998098i \(-0.519635\pi\)
−0.0616447 + 0.998098i \(0.519635\pi\)
\(662\) 1.13037e15i 0.345543i
\(663\) 0 0
\(664\) −3.15906e14 −0.0949802
\(665\) 1.62303e14 9.89566e14i 0.0483957 0.295070i
\(666\) 0 0
\(667\) 2.01513e14i 0.0591031i
\(668\) 1.31528e15i 0.382602i
\(669\) 0 0
\(670\) −1.68354e15 2.76124e14i −0.481739 0.0790120i
\(671\) −1.40011e14 −0.0397364
\(672\) 0 0
\(673\) 3.45541e15i 0.964756i 0.875963 + 0.482378i \(0.160227\pi\)
−0.875963 + 0.482378i \(0.839773\pi\)
\(674\) 3.68362e15 1.02011
\(675\) 0 0
\(676\) −8.43495e14 −0.229814
\(677\) 2.00366e15i 0.541486i −0.962652 0.270743i \(-0.912731\pi\)
0.962652 0.270743i \(-0.0872694\pi\)
\(678\) 0 0
\(679\) 2.08820e15 0.555250
\(680\) 2.25527e15 + 3.69897e14i 0.594840 + 0.0975622i
\(681\) 0 0
\(682\) 1.67481e15i 0.434661i
\(683\) 5.60801e15i 1.44376i 0.692018 + 0.721880i \(0.256722\pi\)
−0.692018 + 0.721880i \(0.743278\pi\)
\(684\) 0 0
\(685\) 7.09919e14 4.32841e15i 0.179850 1.09655i
\(686\) 1.72501e15 0.433520
\(687\) 0 0
\(688\) 1.65654e15i 0.409700i
\(689\) 3.48715e15 0.855589
\(690\) 0 0
\(691\) −7.85512e15 −1.89681 −0.948404 0.317064i \(-0.897303\pi\)
−0.948404 + 0.317064i \(0.897303\pi\)
\(692\) 2.26380e13i 0.00542319i
\(693\) 0 0
\(694\) −4.98017e15 −1.17427
\(695\) −5.34292e15 8.76313e14i −1.24986 0.204995i
\(696\) 0 0
\(697\) 1.24319e16i 2.86257i
\(698\) 2.95521e15i 0.675123i
\(699\) 0 0
\(700\) 2.29733e14 6.81504e14i 0.0516634 0.153260i
\(701\) 4.81649e15 1.07469 0.537343 0.843364i \(-0.319428\pi\)
0.537343 + 0.843364i \(0.319428\pi\)
\(702\) 0 0
\(703\) 1.33460e15i 0.293155i
\(704\) 5.30082e14 0.115530
\(705\) 0 0
\(706\) 4.39367e15 0.942760
\(707\) 1.00129e15i 0.213184i
\(708\) 0 0
\(709\) 5.47981e15 1.14871 0.574356 0.818606i \(-0.305253\pi\)
0.574356 + 0.818606i \(0.305253\pi\)
\(710\) −5.37351e13 + 3.27625e14i −0.0111773 + 0.0681484i
\(711\) 0 0
\(712\) 1.43858e15i 0.294641i
\(713\) 4.94553e14i 0.100513i
\(714\) 0 0
\(715\) 5.49453e14 3.35004e15i 0.109963 0.670450i
\(716\) −1.13555e15 −0.225520
\(717\) 0 0
\(718\) 4.88230e14i 0.0954861i
\(719\) −6.68977e15 −1.29838 −0.649191 0.760626i \(-0.724892\pi\)
−0.649191 + 0.760626i \(0.724892\pi\)
\(720\) 0 0
\(721\) 2.99452e15 0.572378
\(722\) 5.42332e14i 0.102875i
\(723\) 0 0
\(724\) −2.68071e15 −0.500827
\(725\) 1.99875e15 + 6.73772e14i 0.370596 + 0.124926i
\(726\) 0 0
\(727\) 3.18682e14i 0.0581993i −0.999577 0.0290997i \(-0.990736\pi\)
0.999577 0.0290997i \(-0.00926401\pi\)
\(728\) 4.63826e14i 0.0840683i
\(729\) 0 0
\(730\) −2.75291e15 4.51517e14i −0.491493 0.0806117i
\(731\) −1.57681e16 −2.79406
\(732\) 0 0
\(733\) 1.01321e16i 1.76860i −0.466922 0.884298i \(-0.654637\pi\)
0.466922 0.884298i \(-0.345363\pi\)
\(734\) 5.85164e15 1.01379
\(735\) 0 0
\(736\) −1.56528e14 −0.0267155
\(737\) 3.76657e15i 0.638080i
\(738\) 0 0
\(739\) −5.86926e15 −0.979578 −0.489789 0.871841i \(-0.662926\pi\)
−0.489789 + 0.871841i \(0.662926\pi\)
\(740\) 1.54917e14 9.44536e14i 0.0256640 0.156475i
\(741\) 0 0
\(742\) 1.63101e15i 0.266216i
\(743\) 1.01226e16i 1.64004i −0.572338 0.820018i \(-0.693964\pi\)
0.572338 0.820018i \(-0.306036\pi\)
\(744\) 0 0
\(745\) 6.08921e15 + 9.98715e14i 0.972078 + 0.159434i
\(746\) 5.60311e15 0.887903
\(747\) 0 0
\(748\) 5.04571e15i 0.787886i
\(749\) 1.67038e15 0.258919
\(750\) 0 0
\(751\) −9.02397e15 −1.37841 −0.689204 0.724567i \(-0.742040\pi\)
−0.689204 + 0.724567i \(0.742040\pi\)
\(752\) 3.96926e14i 0.0601882i
\(753\) 0 0
\(754\) 1.36033e15 0.203284
\(755\) 1.70299e14 + 2.79314e13i 0.0252640 + 0.00414366i
\(756\) 0 0
\(757\) 4.97374e15i 0.727203i 0.931555 + 0.363601i \(0.118453\pi\)
−0.931555 + 0.363601i \(0.881547\pi\)
\(758\) 9.35791e14i 0.135831i
\(759\) 0 0
\(760\) 3.69748e14 2.25437e15i 0.0528970 0.322515i
\(761\) −6.61472e15 −0.939498 −0.469749 0.882800i \(-0.655656\pi\)
−0.469749 + 0.882800i \(0.655656\pi\)
\(762\) 0 0
\(763\) 1.24965e15i 0.174945i
\(764\) −1.15444e15 −0.160457
\(765\) 0 0
\(766\) 7.65877e15 1.04930
\(767\) 6.33310e15i 0.861473i
\(768\) 0 0
\(769\) −9.58448e15 −1.28521 −0.642605 0.766198i \(-0.722146\pi\)
−0.642605 + 0.766198i \(0.722146\pi\)
\(770\) −1.56687e15 2.56989e14i −0.208610 0.0342150i
\(771\) 0 0
\(772\) 2.95400e15i 0.387718i
\(773\) 1.03509e16i 1.34893i −0.738305 0.674467i \(-0.764373\pi\)
0.738305 0.674467i \(-0.235627\pi\)
\(774\) 0 0
\(775\) 4.90535e15 + 1.65358e15i 0.630247 + 0.212454i
\(776\) 4.75721e15 0.606894
\(777\) 0 0
\(778\) 3.60689e15i 0.453676i
\(779\) −1.24269e16 −1.55205
\(780\) 0 0
\(781\) 7.32992e14 0.0902648
\(782\) 1.48994e15i 0.182194i
\(783\) 0 0
\(784\) 1.85644e15 0.223842
\(785\) −4.51826e14 + 2.75480e15i −0.0540989 + 0.329843i
\(786\) 0 0
\(787\) 1.15659e15i 0.136558i 0.997666 + 0.0682792i \(0.0217509\pi\)
−0.997666 + 0.0682792i \(0.978249\pi\)
\(788\) 4.49987e15i 0.527601i
\(789\) 0 0
\(790\) −1.27048e15 + 7.74618e15i −0.146899 + 0.895651i
\(791\) −2.87024e15 −0.329570
\(792\) 0 0
\(793\) 2.79097e14i 0.0316047i
\(794\) −5.95866e15 −0.670094
\(795\) 0 0
\(796\) 7.21500e15 0.800230
\(797\) 1.19285e16i 1.31391i 0.753931 + 0.656954i \(0.228155\pi\)
−0.753931 + 0.656954i \(0.771845\pi\)
\(798\) 0 0
\(799\) 3.77823e15 0.410469
\(800\) 5.23363e14 1.55256e15i 0.0564687 0.167515i
\(801\) 0 0
\(802\) 8.30378e14i 0.0883724i
\(803\) 6.15907e15i 0.650998i
\(804\) 0 0
\(805\) 4.62682e14 + 7.58863e13i 0.0482397 + 0.00791200i
\(806\) 3.33854e15 0.345711
\(807\) 0 0
\(808\) 2.28108e15i 0.233012i
\(809\) 1.07593e16 1.09161 0.545804 0.837913i \(-0.316224\pi\)
0.545804 + 0.837913i \(0.316224\pi\)
\(810\) 0 0
\(811\) −8.84760e15 −0.885546 −0.442773 0.896634i \(-0.646005\pi\)
−0.442773 + 0.896634i \(0.646005\pi\)
\(812\) 6.36254e14i 0.0632517i
\(813\) 0 0
\(814\) −2.11320e15 −0.207256
\(815\) −3.20482e15 + 1.95399e16i −0.312202 + 1.90351i
\(816\) 0 0
\(817\) 1.57618e16i 1.51490i
\(818\) 4.71037e15i 0.449689i
\(819\) 0 0
\(820\) −8.79486e15 1.44248e15i −0.828424 0.135873i
\(821\) 1.29958e16 1.21595 0.607973 0.793958i \(-0.291983\pi\)
0.607973 + 0.793958i \(0.291983\pi\)
\(822\) 0 0
\(823\) 4.06063e15i 0.374882i −0.982276 0.187441i \(-0.939981\pi\)
0.982276 0.187441i \(-0.0600193\pi\)
\(824\) 6.82192e15 0.625615
\(825\) 0 0
\(826\) 2.96211e15 0.268047
\(827\) 1.24492e16i 1.11908i −0.828802 0.559542i \(-0.810977\pi\)
0.828802 0.559542i \(-0.189023\pi\)
\(828\) 0 0
\(829\) 1.96783e16 1.74557 0.872787 0.488100i \(-0.162310\pi\)
0.872787 + 0.488100i \(0.162310\pi\)
\(830\) 2.12730e15 + 3.48907e14i 0.187456 + 0.0307454i
\(831\) 0 0
\(832\) 1.05666e15i 0.0918876i
\(833\) 1.76709e16i 1.52655i
\(834\) 0 0
\(835\) −1.45268e15 + 8.85705e15i −0.123850 + 0.755116i
\(836\) −5.04368e15 −0.427182
\(837\) 0 0
\(838\) 6.06667e15i 0.507117i
\(839\) −9.11633e15 −0.757058 −0.378529 0.925589i \(-0.623570\pi\)
−0.378529 + 0.925589i \(0.623570\pi\)
\(840\) 0 0
\(841\) −1.03345e16 −0.847052
\(842\) 4.95347e15i 0.403361i
\(843\) 0 0
\(844\) −4.06470e15 −0.326697
\(845\) 5.68006e15 + 9.31611e14i 0.453567 + 0.0743914i
\(846\) 0 0
\(847\) 5.98275e14i 0.0471566i
\(848\) 3.71566e15i 0.290977i
\(849\) 0 0
\(850\) −1.47784e16 4.98174e15i −1.14241 0.385103i
\(851\) 6.24007e14 0.0479266
\(852\) 0 0
\(853\) 2.63088e16i 1.99472i 0.0726323 + 0.997359i \(0.476860\pi\)
−0.0726323 + 0.997359i \(0.523140\pi\)
\(854\) 1.30539e14 0.00983379
\(855\) 0 0
\(856\) 3.80535e15 0.283001
\(857\) 1.82752e15i 0.135042i −0.997718 0.0675209i \(-0.978491\pi\)
0.997718 0.0675209i \(-0.0215089\pi\)
\(858\) 0 0
\(859\) 2.22714e16 1.62474 0.812372 0.583140i \(-0.198176\pi\)
0.812372 + 0.583140i \(0.198176\pi\)
\(860\) −1.82959e15 + 1.11551e16i −0.132621 + 0.808595i
\(861\) 0 0
\(862\) 1.21527e16i 0.869725i
\(863\) 2.44153e16i 1.73621i −0.496376 0.868107i \(-0.665336\pi\)
0.496376 0.868107i \(-0.334664\pi\)
\(864\) 0 0
\(865\) −2.50029e13 + 1.52444e14i −0.00175550 + 0.0107034i
\(866\) −3.92346e15 −0.273729
\(867\) 0 0
\(868\) 1.56150e15i 0.107568i
\(869\) 1.73305e16 1.18632
\(870\) 0 0
\(871\) 7.50824e15 0.507502
\(872\) 2.84687e15i 0.191217i
\(873\) 0 0
\(874\) 1.48935e15 0.0987831
\(875\) −2.29971e15 + 4.33549e15i −0.151575 + 0.285755i
\(876\) 0 0
\(877\) 1.80392e16i 1.17414i −0.809537 0.587069i \(-0.800282\pi\)
0.809537 0.587069i \(-0.199718\pi\)
\(878\) 1.10264e16i 0.713203i
\(879\) 0 0
\(880\) −3.56956e15 5.85457e14i −0.228013 0.0373973i
\(881\) 2.62222e16 1.66457 0.832283 0.554351i \(-0.187033\pi\)
0.832283 + 0.554351i \(0.187033\pi\)
\(882\) 0 0
\(883\) 1.03481e16i 0.648747i 0.945929 + 0.324373i \(0.105153\pi\)
−0.945929 + 0.324373i \(0.894847\pi\)
\(884\) −1.00581e16 −0.626652
\(885\) 0 0
\(886\) 1.63447e16 1.00575
\(887\) 1.09642e16i 0.670498i 0.942130 + 0.335249i \(0.108820\pi\)
−0.942130 + 0.335249i \(0.891180\pi\)
\(888\) 0 0
\(889\) 4.10805e15 0.248128
\(890\) −1.58886e15 + 9.68733e15i −0.0953762 + 0.581512i
\(891\) 0 0
\(892\) 1.00717e16i 0.597166i
\(893\) 3.77671e15i 0.222552i
\(894\) 0 0
\(895\) 7.64675e15 + 1.25417e15i 0.445092 + 0.0730014i
\(896\) −4.94219e14 −0.0285908
\(897\) 0 0
\(898\) 1.16009e16i 0.662935i
\(899\) 4.57964e15 0.260108
\(900\) 0 0
\(901\) −3.53683e16 −1.98439
\(902\) 1.96767e16i 1.09728i
\(903\) 0 0
\(904\) −6.53880e15 −0.360223
\(905\) 1.80518e16 + 2.96075e15i 0.988446 + 0.162119i
\(906\) 0 0
\(907\) 3.00845e16i 1.62743i 0.581263 + 0.813716i \(0.302559\pi\)
−0.581263 + 0.813716i \(0.697441\pi\)
\(908\) 1.22254e16i 0.657342i
\(909\) 0 0
\(910\) −5.12280e14 + 3.12339e15i −0.0272132 + 0.165920i
\(911\) −2.27506e16 −1.20127 −0.600636 0.799523i \(-0.705086\pi\)
−0.600636 + 0.799523i \(0.705086\pi\)
\(912\) 0 0
\(913\) 4.75939e15i 0.248292i
\(914\) −8.70271e15 −0.451285
\(915\) 0 0
\(916\) 9.28364e15 0.475656
\(917\) 5.84239e15i 0.297550i
\(918\) 0 0
\(919\) 7.47065e15 0.375944 0.187972 0.982174i \(-0.439809\pi\)
0.187972 + 0.982174i \(0.439809\pi\)
\(920\) 1.05405e15 + 1.72879e14i 0.0527265 + 0.00864790i
\(921\) 0 0
\(922\) 1.78422e16i 0.881917i
\(923\) 1.46114e15i 0.0717929i
\(924\) 0 0
\(925\) −2.08641e15 + 6.18937e15i −0.101303 + 0.300515i
\(926\) −2.66257e16 −1.28511
\(927\) 0 0
\(928\) 1.44947e15i 0.0691348i
\(929\) 3.25912e15 0.154531 0.0772653 0.997011i \(-0.475381\pi\)
0.0772653 + 0.997011i \(0.475381\pi\)
\(930\) 0 0
\(931\) −1.76638e16 −0.827678
\(932\) 7.02248e15i 0.327117i
\(933\) 0 0
\(934\) −1.17745e16 −0.542042
\(935\) −5.57281e15 + 3.39776e16i −0.255041 + 1.55500i
\(936\) 0 0
\(937\) 9.63223e15i 0.435671i 0.975985 + 0.217836i \(0.0698997\pi\)
−0.975985 + 0.217836i \(0.930100\pi\)
\(938\) 3.51174e15i 0.157909i
\(939\) 0 0
\(940\) 4.38391e14 2.67289e15i 0.0194831 0.118789i
\(941\) 2.39897e16 1.05994 0.529970 0.848016i \(-0.322203\pi\)
0.529970 + 0.848016i \(0.322203\pi\)
\(942\) 0 0
\(943\) 5.81032e15i 0.253738i
\(944\) 6.74809e15 0.292978
\(945\) 0 0
\(946\) 2.49572e16 1.07101
\(947\) 1.92352e16i 0.820674i −0.911934 0.410337i \(-0.865411\pi\)
0.911934 0.410337i \(-0.134589\pi\)
\(948\) 0 0
\(949\) 1.22774e16 0.517777
\(950\) −4.97974e15 + 1.47725e16i −0.208798 + 0.619403i
\(951\) 0 0
\(952\) 4.70434e15i 0.194982i
\(953\) 2.60513e16i 1.07354i −0.843728 0.536771i \(-0.819644\pi\)
0.843728 0.536771i \(-0.180356\pi\)
\(954\) 0 0
\(955\) 7.77399e15 + 1.27504e15i 0.316683 + 0.0519405i
\(956\) −1.63897e16 −0.663822
\(957\) 0 0
\(958\) 2.57882e16i 1.03255i
\(959\) 9.02874e15 0.359439
\(960\) 0 0
\(961\) −1.41691e16 −0.557652
\(962\) 4.21243e15i 0.164843i
\(963\) 0 0
\(964\) 1.45736e16 0.563823
\(965\) −3.26259e15 + 1.98922e16i −0.125505 + 0.765212i
\(966\) 0 0
\(967\) 4.88181e16i 1.85667i −0.371742 0.928336i \(-0.621240\pi\)
0.371742 0.928336i \(-0.378760\pi\)
\(968\) 1.36295e15i 0.0515427i
\(969\) 0 0
\(970\) −3.20349e16 5.25417e15i −1.19778 0.196453i
\(971\) 2.90334e15 0.107942 0.0539712 0.998542i \(-0.482812\pi\)
0.0539712 + 0.998542i \(0.482812\pi\)
\(972\) 0 0
\(973\) 1.11449e16i 0.409691i
\(974\) −2.13445e16 −0.780211
\(975\) 0 0
\(976\) 2.97385e14 0.0107484
\(977\) 1.52533e16i 0.548207i 0.961700 + 0.274104i \(0.0883811\pi\)
−0.961700 + 0.274104i \(0.911619\pi\)
\(978\) 0 0
\(979\) 2.16734e16 0.770232
\(980\) −1.25012e16 2.05037e15i −0.441782 0.0724584i
\(981\) 0 0
\(982\) 2.27397e15i 0.0794642i
\(983\) 3.43490e16i 1.19363i −0.802379 0.596814i \(-0.796433\pi\)
0.802379 0.596814i \(-0.203567\pi\)
\(984\) 0 0
\(985\) 4.96995e15 3.03020e16i 0.170786 1.04129i
\(986\) −1.37971e16 −0.471483
\(987\) 0 0
\(988\) 1.00540e16i 0.339763i
\(989\) −7.36959e15 −0.247665
\(990\) 0 0
\(991\) −4.77614e16 −1.58735 −0.793674 0.608343i \(-0.791835\pi\)
−0.793674 + 0.608343i \(0.791835\pi\)
\(992\) 3.55730e15i 0.117573i
\(993\) 0 0
\(994\) −6.83401e14 −0.0223383
\(995\) −4.85856e16 7.96872e15i −1.57936 0.259037i
\(996\) 0 0
\(997\) 2.46899e15i 0.0793774i −0.999212 0.0396887i \(-0.987363\pi\)
0.999212 0.0396887i \(-0.0126366\pi\)
\(998\) 5.29527e15i 0.169305i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 90.12.c.d.19.6 yes 12
3.2 odd 2 inner 90.12.c.d.19.7 yes 12
5.4 even 2 inner 90.12.c.d.19.12 yes 12
15.14 odd 2 inner 90.12.c.d.19.1 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
90.12.c.d.19.1 12 15.14 odd 2 inner
90.12.c.d.19.6 yes 12 1.1 even 1 trivial
90.12.c.d.19.7 yes 12 3.2 odd 2 inner
90.12.c.d.19.12 yes 12 5.4 even 2 inner