Properties

Label 90.12.c
Level $90$
Weight $12$
Character orbit 90.c
Rep. character $\chi_{90}(19,\cdot)$
Character field $\Q$
Dimension $28$
Newform subspaces $4$
Sturm bound $216$
Trace bound $5$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 90 = 2 \cdot 3^{2} \cdot 5 \)
Weight: \( k \) \(=\) \( 12 \)
Character orbit: \([\chi]\) \(=\) 90.c (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 5 \)
Character field: \(\Q\)
Newform subspaces: \( 4 \)
Sturm bound: \(216\)
Trace bound: \(5\)
Distinguishing \(T_p\): \(7\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{12}(90, [\chi])\).

Total New Old
Modular forms 206 28 178
Cusp forms 190 28 162
Eisenstein series 16 0 16

Trace form

\( 28 q - 28672 q^{4} + 4446 q^{5} - 28096 q^{10} - 658620 q^{11} + 4663296 q^{14} + 29360128 q^{16} + 7709928 q^{19} - 4552704 q^{20} - 81876072 q^{25} - 53324928 q^{26} - 72925164 q^{29} + 83419120 q^{31}+ \cdots - 80872970904 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{12}^{\mathrm{new}}(90, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
90.12.c.a 90.c 5.b $4$ $69.151$ \(\Q(i, \sqrt{1129})\) None 30.12.c.a \(0\) \(0\) \(-4950\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+8\beta _{1}q^{2}-2^{10}q^{4}+(-1205-430\beta _{1}+\cdots)q^{5}+\cdots\)
90.12.c.b 90.c 5.b $6$ $69.151$ \(\mathbb{Q}[x]/(x^{6} - \cdots)\) None 10.12.b.a \(0\) \(0\) \(-530\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+\beta _{2}q^{2}-2^{10}q^{4}+(-88+63\beta _{2}+\cdots)q^{5}+\cdots\)
90.12.c.c 90.c 5.b $6$ $69.151$ \(\mathbb{Q}[x]/(x^{6} + \cdots)\) None 30.12.c.b \(0\) \(0\) \(9926\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+8\beta _{1}q^{2}-2^{10}q^{4}+(1654-95\beta _{1}+\cdots)q^{5}+\cdots\)
90.12.c.d 90.c 5.b $12$ $69.151$ \(\mathbb{Q}[x]/(x^{12} + \cdots)\) None 90.12.c.d \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+\beta _{1}q^{2}-2^{10}q^{4}+(-5\beta _{1}+\beta _{2})q^{5}+\cdots\)

Decomposition of \(S_{12}^{\mathrm{old}}(90, [\chi])\) into lower level spaces

\( S_{12}^{\mathrm{old}}(90, [\chi]) \simeq \) \(S_{12}^{\mathrm{new}}(5, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{12}^{\mathrm{new}}(10, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{12}^{\mathrm{new}}(15, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{12}^{\mathrm{new}}(30, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{12}^{\mathrm{new}}(45, [\chi])\)\(^{\oplus 2}\)