Properties

Label 90.12
Level 90
Weight 12
Dimension 573
Nonzero newspaces 6
Newform subspaces 26
Sturm bound 5184
Trace bound 1

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 90 = 2 \cdot 3^{2} \cdot 5 \)
Weight: \( k \) = \( 12 \)
Nonzero newspaces: \( 6 \)
Newform subspaces: \( 26 \)
Sturm bound: \(5184\)
Trace bound: \(1\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{12}(\Gamma_1(90))\).

Total New Old
Modular forms 2440 573 1867
Cusp forms 2312 573 1739
Eisenstein series 128 0 128

Trace form

\( 573 q - 96 q^{2} + 486 q^{3} + 11264 q^{4} - 6887 q^{5} + 6720 q^{6} + 74188 q^{7} + 98304 q^{8} - 166250 q^{9} + 398816 q^{10} - 122242 q^{11} + 40960 q^{12} + 1069830 q^{13} + 6789248 q^{14} + 737976 q^{15}+ \cdots + 44389066396 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{12}^{\mathrm{new}}(\Gamma_1(90))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
90.12.a \(\chi_{90}(1, \cdot)\) 90.12.a.a 1 1
90.12.a.b 1
90.12.a.c 1
90.12.a.d 1
90.12.a.e 1
90.12.a.f 1
90.12.a.g 1
90.12.a.h 1
90.12.a.i 1
90.12.a.j 1
90.12.a.k 1
90.12.a.l 2
90.12.a.m 2
90.12.a.n 2
90.12.c \(\chi_{90}(19, \cdot)\) 90.12.c.a 4 1
90.12.c.b 6
90.12.c.c 6
90.12.c.d 12
90.12.e \(\chi_{90}(31, \cdot)\) 90.12.e.a 20 2
90.12.e.b 22
90.12.e.c 22
90.12.e.d 24
90.12.f \(\chi_{90}(17, \cdot)\) 90.12.f.a 20 2
90.12.f.b 24
90.12.i \(\chi_{90}(49, \cdot)\) 90.12.i.a 132 2
90.12.l \(\chi_{90}(23, \cdot)\) 90.12.l.a 264 4

Decomposition of \(S_{12}^{\mathrm{old}}(\Gamma_1(90))\) into lower level spaces

\( S_{12}^{\mathrm{old}}(\Gamma_1(90)) \cong \) \(S_{12}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 12}\)\(\oplus\)\(S_{12}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 6}\)\(\oplus\)\(S_{12}^{\mathrm{new}}(\Gamma_1(3))\)\(^{\oplus 8}\)\(\oplus\)\(S_{12}^{\mathrm{new}}(\Gamma_1(5))\)\(^{\oplus 6}\)\(\oplus\)\(S_{12}^{\mathrm{new}}(\Gamma_1(6))\)\(^{\oplus 4}\)\(\oplus\)\(S_{12}^{\mathrm{new}}(\Gamma_1(9))\)\(^{\oplus 4}\)\(\oplus\)\(S_{12}^{\mathrm{new}}(\Gamma_1(10))\)\(^{\oplus 3}\)\(\oplus\)\(S_{12}^{\mathrm{new}}(\Gamma_1(15))\)\(^{\oplus 4}\)\(\oplus\)\(S_{12}^{\mathrm{new}}(\Gamma_1(18))\)\(^{\oplus 2}\)\(\oplus\)\(S_{12}^{\mathrm{new}}(\Gamma_1(30))\)\(^{\oplus 2}\)\(\oplus\)\(S_{12}^{\mathrm{new}}(\Gamma_1(45))\)\(^{\oplus 2}\)