Defining parameters
Level: | \( N \) | = | \( 90 = 2 \cdot 3^{2} \cdot 5 \) |
Weight: | \( k \) | = | \( 12 \) |
Nonzero newspaces: | \( 6 \) | ||
Newform subspaces: | \( 26 \) | ||
Sturm bound: | \(5184\) | ||
Trace bound: | \(1\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{12}(\Gamma_1(90))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 2440 | 573 | 1867 |
Cusp forms | 2312 | 573 | 1739 |
Eisenstein series | 128 | 0 | 128 |
Trace form
Decomposition of \(S_{12}^{\mathrm{new}}(\Gamma_1(90))\)
We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.
Label | \(\chi\) | Newforms | Dimension | \(\chi\) degree |
---|---|---|---|---|
90.12.a | \(\chi_{90}(1, \cdot)\) | 90.12.a.a | 1 | 1 |
90.12.a.b | 1 | |||
90.12.a.c | 1 | |||
90.12.a.d | 1 | |||
90.12.a.e | 1 | |||
90.12.a.f | 1 | |||
90.12.a.g | 1 | |||
90.12.a.h | 1 | |||
90.12.a.i | 1 | |||
90.12.a.j | 1 | |||
90.12.a.k | 1 | |||
90.12.a.l | 2 | |||
90.12.a.m | 2 | |||
90.12.a.n | 2 | |||
90.12.c | \(\chi_{90}(19, \cdot)\) | 90.12.c.a | 4 | 1 |
90.12.c.b | 6 | |||
90.12.c.c | 6 | |||
90.12.c.d | 12 | |||
90.12.e | \(\chi_{90}(31, \cdot)\) | 90.12.e.a | 20 | 2 |
90.12.e.b | 22 | |||
90.12.e.c | 22 | |||
90.12.e.d | 24 | |||
90.12.f | \(\chi_{90}(17, \cdot)\) | 90.12.f.a | 20 | 2 |
90.12.f.b | 24 | |||
90.12.i | \(\chi_{90}(49, \cdot)\) | 90.12.i.a | 132 | 2 |
90.12.l | \(\chi_{90}(23, \cdot)\) | 90.12.l.a | 264 | 4 |
Decomposition of \(S_{12}^{\mathrm{old}}(\Gamma_1(90))\) into lower level spaces
\( S_{12}^{\mathrm{old}}(\Gamma_1(90)) \cong \) \(S_{12}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 12}\)\(\oplus\)\(S_{12}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 6}\)\(\oplus\)\(S_{12}^{\mathrm{new}}(\Gamma_1(3))\)\(^{\oplus 8}\)\(\oplus\)\(S_{12}^{\mathrm{new}}(\Gamma_1(5))\)\(^{\oplus 6}\)\(\oplus\)\(S_{12}^{\mathrm{new}}(\Gamma_1(6))\)\(^{\oplus 4}\)\(\oplus\)\(S_{12}^{\mathrm{new}}(\Gamma_1(9))\)\(^{\oplus 4}\)\(\oplus\)\(S_{12}^{\mathrm{new}}(\Gamma_1(10))\)\(^{\oplus 3}\)\(\oplus\)\(S_{12}^{\mathrm{new}}(\Gamma_1(15))\)\(^{\oplus 4}\)\(\oplus\)\(S_{12}^{\mathrm{new}}(\Gamma_1(18))\)\(^{\oplus 2}\)\(\oplus\)\(S_{12}^{\mathrm{new}}(\Gamma_1(30))\)\(^{\oplus 2}\)\(\oplus\)\(S_{12}^{\mathrm{new}}(\Gamma_1(45))\)\(^{\oplus 2}\)