Label |
Level |
Weight |
Char |
Prim |
Char order |
Dim |
Rel. Dim |
$A$ |
Field |
CM |
Self-dual |
Twist minimal |
Largest |
Maximal |
Minimal twist |
Inner twists |
Rank* |
Traces |
Fricke sign |
Coefficient ring index |
Sato-Tate |
$q$-expansion |
$a_{2}$ |
$a_{3}$ |
$a_{5}$ |
$a_{7}$ |
90.2.a.a |
$90$ |
$2$ |
90.a |
1.a |
$1$ |
$1$ |
$1$ |
$0.719$ |
\(\Q\) |
None |
✓ |
✓ |
✓ |
✓ |
90.2.a.a |
$1$ |
$0$ |
\(-1\) |
\(0\) |
\(1\) |
\(2\) |
$-$ |
$1$ |
$\mathrm{SU}(2)$ |
\(q-q^{2}+q^{4}+q^{5}+2q^{7}-q^{8}-q^{10}+\cdots\) |
90.2.a.b |
$90$ |
$2$ |
90.a |
1.a |
$1$ |
$1$ |
$1$ |
$0.719$ |
\(\Q\) |
None |
✓ |
✓ |
✓ |
✓ |
90.2.a.a |
$1$ |
$0$ |
\(1\) |
\(0\) |
\(-1\) |
\(2\) |
$-$ |
$1$ |
$\mathrm{SU}(2)$ |
\(q+q^{2}+q^{4}-q^{5}+2q^{7}+q^{8}-q^{10}+\cdots\) |
90.2.a.c |
$90$ |
$2$ |
90.a |
1.a |
$1$ |
$1$ |
$1$ |
$0.719$ |
\(\Q\) |
None |
✓ |
|
✓ |
✓ |
30.2.a.a |
$1$ |
$0$ |
\(1\) |
\(0\) |
\(1\) |
\(-4\) |
$-$ |
$1$ |
$\mathrm{SU}(2)$ |
\(q+q^{2}+q^{4}+q^{5}-4q^{7}+q^{8}+q^{10}+\cdots\) |
90.2.c.a |
$90$ |
$2$ |
90.c |
5.b |
$2$ |
$2$ |
$2$ |
$0.719$ |
\(\Q(\sqrt{-1}) \) |
None |
|
|
✓ |
✓ |
30.2.c.a |
$2$ |
$0$ |
\(0\) |
\(0\) |
\(4\) |
\(0\) |
|
$1$ |
$\mathrm{SU}(2)[C_{2}]$ |
\(q+i q^{2}-q^{4}+(i+2)q^{5}+2 i q^{7}+\cdots\) |
90.2.e.a |
$90$ |
$2$ |
90.e |
9.c |
$3$ |
$2$ |
$1$ |
$0.719$ |
\(\Q(\sqrt{-3}) \) |
None |
|
✓ |
|
|
90.2.e.a |
$2$ |
$0$ |
\(-1\) |
\(3\) |
\(1\) |
\(1\) |
|
$1$ |
$\mathrm{SU}(2)[C_{3}]$ |
\(q+(-1+\zeta_{6})q^{2}+(2-\zeta_{6})q^{3}-\zeta_{6}q^{4}+\cdots\) |
90.2.e.b |
$90$ |
$2$ |
90.e |
9.c |
$3$ |
$2$ |
$1$ |
$0.719$ |
\(\Q(\sqrt{-3}) \) |
None |
|
✓ |
|
|
90.2.e.b |
$2$ |
$0$ |
\(1\) |
\(-3\) |
\(-1\) |
\(4\) |
|
$1$ |
$\mathrm{SU}(2)[C_{3}]$ |
\(q+(1-\zeta_{6})q^{2}+(-1-\zeta_{6})q^{3}-\zeta_{6}q^{4}+\cdots\) |
90.2.e.c |
$90$ |
$2$ |
90.e |
9.c |
$3$ |
$4$ |
$2$ |
$0.719$ |
\(\Q(\sqrt{-3}, \sqrt{-11})\) |
None |
|
✓ |
✓ |
|
90.2.e.c |
$2$ |
$0$ |
\(2\) |
\(2\) |
\(2\) |
\(-1\) |
|
$1$ |
$\mathrm{SU}(2)[C_{3}]$ |
\(q+\beta _{2}q^{2}+(1-\beta _{1}+\beta _{3})q^{3}+(-1+\beta _{2}+\cdots)q^{4}+\cdots\) |
90.2.f.a |
$90$ |
$2$ |
90.f |
15.e |
$4$ |
$4$ |
$2$ |
$0.719$ |
\(\Q(\zeta_{8})\) |
None |
|
✓ |
✓ |
✓ |
90.2.f.a |
$4$ |
$0$ |
\(0\) |
\(0\) |
\(0\) |
\(8\) |
|
$1$ |
$\mathrm{SU}(2)[C_{4}]$ |
\(q+\zeta_{8}q^{2}+\zeta_{8}^{2}q^{4}+(\zeta_{8}+2\zeta_{8}^{3})q^{5}+\cdots\) |
90.2.i.a |
$90$ |
$2$ |
90.i |
45.j |
$6$ |
$4$ |
$2$ |
$0.719$ |
\(\Q(\zeta_{12})\) |
None |
|
✓ |
|
|
90.2.i.a |
$4$ |
$0$ |
\(0\) |
\(0\) |
\(2\) |
\(0\) |
|
$1$ |
$\mathrm{SU}(2)[C_{6}]$ |
\(q+\zeta_{12}q^{2}+(-\zeta_{12}-\zeta_{12}^{3})q^{3}+\zeta_{12}^{2}q^{4}+\cdots\) |
90.2.i.b |
$90$ |
$2$ |
90.i |
45.j |
$6$ |
$8$ |
$4$ |
$0.719$ |
\(\Q(\zeta_{24})\) |
None |
|
✓ |
✓ |
|
90.2.i.b |
$4$ |
$0$ |
\(0\) |
\(0\) |
\(-4\) |
\(0\) |
|
$1$ |
$\mathrm{SU}(2)[C_{6}]$ |
\(q+\zeta_{24}^{2}q^{2}+(\zeta_{24}^{2}+\zeta_{24}^{3}-\zeta_{24}^{5}+\cdots)q^{3}+\cdots\) |
90.2.l.a |
$90$ |
$2$ |
90.l |
45.l |
$12$ |
$8$ |
$2$ |
$0.719$ |
\(\Q(\zeta_{24})\) |
None |
|
✓ |
|
|
90.2.l.a |
$4$ |
$0$ |
\(0\) |
\(4\) |
\(12\) |
\(-8\) |
|
$1$ |
$\mathrm{SU}(2)[C_{12}]$ |
\(q+\zeta_{24}^{7}q^{2}+(1+\zeta_{24}^{2}-\zeta_{24}^{4}+\zeta_{24}^{5}+\cdots)q^{3}+\cdots\) |
90.2.l.b |
$90$ |
$2$ |
90.l |
45.l |
$12$ |
$16$ |
$4$ |
$0.719$ |
16.0.\(\cdots\).9 |
None |
|
✓ |
✓ |
|
90.2.l.b |
$4$ |
$0$ |
\(0\) |
\(0\) |
\(-12\) |
\(8\) |
|
$1$ |
$\mathrm{SU}(2)[C_{12}]$ |
\(q-\beta _{11}q^{2}+(-\beta _{3}-\beta _{4}-\beta _{5}+\beta _{8}+\cdots)q^{3}+\cdots\) |
90.3.b.a |
$90$ |
$3$ |
90.b |
15.d |
$2$ |
$4$ |
$4$ |
$2.452$ |
\(\Q(\zeta_{8})\) |
None |
|
✓ |
✓ |
✓ |
90.3.b.a |
$4$ |
$0$ |
\(0\) |
\(0\) |
\(0\) |
\(0\) |
|
$1$ |
$\mathrm{SU}(2)[C_{2}]$ |
\(q+(\zeta_{8}-\zeta_{8}^{3})q^{2}+2q^{4}+5\zeta_{8}q^{5}-4\zeta_{8}^{2}q^{7}+\cdots\) |
90.3.g.a |
$90$ |
$3$ |
90.g |
5.c |
$4$ |
$2$ |
$1$ |
$2.452$ |
\(\Q(\sqrt{-1}) \) |
None |
|
✓ |
|
|
90.3.g.a |
$2$ |
$0$ |
\(-2\) |
\(0\) |
\(-6\) |
\(16\) |
|
$1$ |
$\mathrm{SU}(2)[C_{4}]$ |
\(q+(-i-1)q^{2}+2 i q^{4}+(4 i-3)q^{5}+\cdots\) |
90.3.g.b |
$90$ |
$3$ |
90.g |
5.c |
$4$ |
$2$ |
$1$ |
$2.452$ |
\(\Q(\sqrt{-1}) \) |
None |
|
|
|
|
10.3.c.a |
$2$ |
$0$ |
\(2\) |
\(0\) |
\(0\) |
\(4\) |
|
$1$ |
$\mathrm{SU}(2)[C_{4}]$ |
\(q+(i+1)q^{2}+2 i q^{4}+5 i q^{5}+(2 i+2)q^{7}+\cdots\) |
90.3.g.c |
$90$ |
$3$ |
90.g |
5.c |
$4$ |
$2$ |
$1$ |
$2.452$ |
\(\Q(\sqrt{-1}) \) |
None |
|
✓ |
|
|
90.3.g.a |
$2$ |
$0$ |
\(2\) |
\(0\) |
\(6\) |
\(16\) |
|
$1$ |
$\mathrm{SU}(2)[C_{4}]$ |
\(q+(i+1)q^{2}+2 i q^{4}+(-4 i+3)q^{5}+\cdots\) |
90.3.g.d |
$90$ |
$3$ |
90.g |
5.c |
$4$ |
$4$ |
$2$ |
$2.452$ |
\(\Q(i, \sqrt{6})\) |
None |
|
|
✓ |
|
30.3.f.a |
$2$ |
$0$ |
\(-4\) |
\(0\) |
\(0\) |
\(-16\) |
|
$2^{3}$ |
$\mathrm{SU}(2)[C_{4}]$ |
\(q+(-1-\beta _{1})q^{2}+2\beta _{1}q^{4}+(\beta _{1}-\beta _{3})q^{5}+\cdots\) |
90.3.h.a |
$90$ |
$3$ |
90.h |
9.d |
$6$ |
$16$ |
$8$ |
$2.452$ |
\(\mathbb{Q}[x]/(x^{16} - \cdots)\) |
None |
|
✓ |
✓ |
✓ |
90.3.h.a |
$2$ |
$0$ |
\(0\) |
\(-4\) |
\(0\) |
\(-4\) |
|
$2^{4}\cdot 3^{3}$ |
$\mathrm{SU}(2)[C_{6}]$ |
\(q-\beta _{5}q^{2}+(-1-\beta _{2}-\beta _{4}-\beta _{10}+\beta _{12}+\cdots)q^{3}+\cdots\) |
90.3.j.a |
$90$ |
$3$ |
90.j |
45.h |
$6$ |
$8$ |
$4$ |
$2.452$ |
\(\Q(\zeta_{24})\) |
None |
|
✓ |
|
|
90.3.j.a |
$4$ |
$0$ |
\(0\) |
\(0\) |
\(-12\) |
\(0\) |
|
$2^{2}$ |
$\mathrm{SU}(2)[C_{6}]$ |
\(q-\beta_{4} q^{2}+3\beta_1 q^{3}+(2\beta_{2}-2)q^{4}+\cdots\) |
90.3.j.b |
$90$ |
$3$ |
90.j |
45.h |
$6$ |
$16$ |
$8$ |
$2.452$ |
\(\mathbb{Q}[x]/(x^{16} + \cdots)\) |
None |
|
✓ |
✓ |
|
90.3.j.b |
$4$ |
$0$ |
\(0\) |
\(0\) |
\(30\) |
\(0\) |
|
$3^{2}$ |
$\mathrm{SU}(2)[C_{6}]$ |
\(q-\beta _{7}q^{2}+\beta _{13}q^{3}+2\beta _{6}q^{4}+(2-\beta _{1}+\cdots)q^{5}+\cdots\) |
90.3.k.a |
$90$ |
$3$ |
90.k |
45.k |
$12$ |
$24$ |
$6$ |
$2.452$ |
|
None |
|
✓ |
|
|
90.3.k.a |
$4$ |
$0$ |
\(-12\) |
\(0\) |
\(0\) |
\(-6\) |
|
|
$\mathrm{SU}(2)[C_{12}]$ |
|
90.3.k.b |
$90$ |
$3$ |
90.k |
45.k |
$12$ |
$24$ |
$6$ |
$2.452$ |
|
None |
|
✓ |
|
|
90.3.k.b |
$4$ |
$0$ |
\(12\) |
\(4\) |
\(0\) |
\(6\) |
|
|
$\mathrm{SU}(2)[C_{12}]$ |
|
90.4.a.a |
$90$ |
$4$ |
90.a |
1.a |
$1$ |
$1$ |
$1$ |
$5.310$ |
\(\Q\) |
None |
✓ |
|
✓ |
✓ |
10.4.a.a |
$1$ |
$1$ |
\(-2\) |
\(0\) |
\(-5\) |
\(-4\) |
$-$ |
$1$ |
$\mathrm{SU}(2)$ |
\(q-2q^{2}+4q^{4}-5q^{5}-4q^{7}-8q^{8}+\cdots\) |
90.4.a.b |
$90$ |
$4$ |
90.a |
1.a |
$1$ |
$1$ |
$1$ |
$5.310$ |
\(\Q\) |
None |
✓ |
✓ |
✓ |
✓ |
90.4.a.b |
$1$ |
$0$ |
\(-2\) |
\(0\) |
\(-5\) |
\(14\) |
$+$ |
$1$ |
$\mathrm{SU}(2)$ |
\(q-2q^{2}+4q^{4}-5q^{5}+14q^{7}-8q^{8}+\cdots\) |
90.4.a.c |
$90$ |
$4$ |
90.a |
1.a |
$1$ |
$1$ |
$1$ |
$5.310$ |
\(\Q\) |
None |
✓ |
|
✓ |
✓ |
30.4.a.b |
$1$ |
$0$ |
\(-2\) |
\(0\) |
\(5\) |
\(-4\) |
$+$ |
$1$ |
$\mathrm{SU}(2)$ |
\(q-2q^{2}+4q^{4}+5q^{5}-4q^{7}-8q^{8}+\cdots\) |
90.4.a.d |
$90$ |
$4$ |
90.a |
1.a |
$1$ |
$1$ |
$1$ |
$5.310$ |
\(\Q\) |
None |
✓ |
|
✓ |
✓ |
30.4.a.a |
$1$ |
$0$ |
\(2\) |
\(0\) |
\(-5\) |
\(32\) |
$+$ |
$1$ |
$\mathrm{SU}(2)$ |
\(q+2q^{2}+4q^{4}-5q^{5}+2^{5}q^{7}+8q^{8}+\cdots\) |
90.4.a.e |
$90$ |
$4$ |
90.a |
1.a |
$1$ |
$1$ |
$1$ |
$5.310$ |
\(\Q\) |
None |
✓ |
✓ |
✓ |
✓ |
90.4.a.b |
$1$ |
$0$ |
\(2\) |
\(0\) |
\(5\) |
\(14\) |
$+$ |
$1$ |
$\mathrm{SU}(2)$ |
\(q+2q^{2}+4q^{4}+5q^{5}+14q^{7}+8q^{8}+\cdots\) |
90.4.c.a |
$90$ |
$4$ |
90.c |
5.b |
$2$ |
$2$ |
$2$ |
$5.310$ |
\(\Q(\sqrt{-1}) \) |
None |
|
|
|
|
30.4.c.a |
$2$ |
$0$ |
\(0\) |
\(0\) |
\(-4\) |
\(0\) |
|
$1$ |
$\mathrm{SU}(2)[C_{2}]$ |
\(q+2 i q^{2}-4 q^{4}+(11 i-2)q^{5}+2 i q^{7}+\cdots\) |
90.4.c.b |
$90$ |
$4$ |
90.c |
5.b |
$2$ |
$2$ |
$2$ |
$5.310$ |
\(\Q(\sqrt{-1}) \) |
None |
|
|
|
|
10.4.b.a |
$2$ |
$0$ |
\(0\) |
\(0\) |
\(10\) |
\(0\) |
|
$2$ |
$\mathrm{SU}(2)[C_{2}]$ |
\(q+\beta q^{2}-4 q^{4}+(-5\beta+5)q^{5}-13\beta q^{7}+\cdots\) |
90.4.c.c |
$90$ |
$4$ |
90.c |
5.b |
$2$ |
$4$ |
$4$ |
$5.310$ |
\(\Q(i, \sqrt{31})\) |
None |
|
✓ |
✓ |
|
90.4.c.c |
$4$ |
$0$ |
\(0\) |
\(0\) |
\(0\) |
\(0\) |
|
$2^{6}$ |
$\mathrm{SU}(2)[C_{2}]$ |
\(q-\beta _{2}q^{2}-4q^{4}-\beta _{1}q^{5}-\beta _{3}q^{7}+4\beta _{2}q^{8}+\cdots\) |
90.4.e.a |
$90$ |
$4$ |
90.e |
9.c |
$3$ |
$2$ |
$1$ |
$5.310$ |
\(\Q(\sqrt{-3}) \) |
None |
|
✓ |
|
|
90.4.e.a |
$2$ |
$0$ |
\(-2\) |
\(-9\) |
\(5\) |
\(16\) |
|
$1$ |
$\mathrm{SU}(2)[C_{3}]$ |
\(q+(-2+2\zeta_{6})q^{2}+(-3-3\zeta_{6})q^{3}+\cdots\) |
90.4.e.b |
$90$ |
$4$ |
90.e |
9.c |
$3$ |
$4$ |
$2$ |
$5.310$ |
\(\Q(\sqrt{-3}, \sqrt{-5})\) |
None |
|
✓ |
|
|
90.4.e.b |
$2$ |
$0$ |
\(-4\) |
\(12\) |
\(10\) |
\(-16\) |
|
$3$ |
$\mathrm{SU}(2)[C_{3}]$ |
\(q+(-2+2\beta _{1})q^{2}+(4-2\beta _{1}+\beta _{2})q^{3}+\cdots\) |
90.4.e.c |
$90$ |
$4$ |
90.e |
9.c |
$3$ |
$4$ |
$2$ |
$5.310$ |
\(\Q(\sqrt{-2}, \sqrt{-3})\) |
None |
|
✓ |
|
|
90.4.e.c |
$2$ |
$0$ |
\(4\) |
\(6\) |
\(10\) |
\(2\) |
|
$3$ |
$\mathrm{SU}(2)[C_{3}]$ |
\(q+2\beta _{1}q^{2}+(3-3\beta _{1}-\beta _{2}-\beta _{3})q^{3}+\cdots\) |
90.4.e.d |
$90$ |
$4$ |
90.e |
9.c |
$3$ |
$6$ |
$3$ |
$5.310$ |
6.0.41783472.1 |
None |
|
✓ |
|
|
90.4.e.d |
$2$ |
$0$ |
\(6\) |
\(-9\) |
\(-15\) |
\(-3\) |
|
$3^{3}$ |
$\mathrm{SU}(2)[C_{3}]$ |
\(q+(2+2\beta _{1})q^{2}+(-2-\beta _{4})q^{3}+4\beta _{1}q^{4}+\cdots\) |
90.4.e.e |
$90$ |
$4$ |
90.e |
9.c |
$3$ |
$8$ |
$4$ |
$5.310$ |
\(\mathbb{Q}[x]/(x^{8} - \cdots)\) |
None |
|
✓ |
✓ |
|
90.4.e.e |
$2$ |
$0$ |
\(-8\) |
\(2\) |
\(-20\) |
\(-23\) |
|
$3^{3}$ |
$\mathrm{SU}(2)[C_{3}]$ |
\(q+(-2-2\beta _{3})q^{2}-\beta _{1}q^{3}+4\beta _{3}q^{4}+\cdots\) |
90.4.f.a |
$90$ |
$4$ |
90.f |
15.e |
$4$ |
$4$ |
$2$ |
$5.310$ |
\(\Q(\zeta_{8})\) |
None |
|
✓ |
|
|
90.4.f.a |
$4$ |
$0$ |
\(0\) |
\(0\) |
\(0\) |
\(-16\) |
|
$1$ |
$\mathrm{SU}(2)[C_{4}]$ |
\(q+2\zeta_{8}q^{2}+4\zeta_{8}^{2}q^{4}+(5\zeta_{8}+10\zeta_{8}^{3})q^{5}+\cdots\) |
90.4.f.b |
$90$ |
$4$ |
90.f |
15.e |
$4$ |
$8$ |
$4$ |
$5.310$ |
8.0.\(\cdots\).8 |
None |
|
✓ |
✓ |
|
90.4.f.b |
$4$ |
$0$ |
\(0\) |
\(0\) |
\(0\) |
\(-8\) |
|
$2^{6}\cdot 5^{2}$ |
$\mathrm{SU}(2)[C_{4}]$ |
\(q+(-\beta _{2}-\beta _{3})q^{2}-4\beta _{1}q^{4}+(3\beta _{2}+\beta _{3}+\cdots)q^{5}+\cdots\) |
90.4.i.a |
$90$ |
$4$ |
90.i |
45.j |
$6$ |
$36$ |
$18$ |
$5.310$ |
|
None |
|
✓ |
✓ |
✓ |
90.4.i.a |
$4$ |
$0$ |
\(0\) |
\(0\) |
\(-8\) |
\(0\) |
|
|
$\mathrm{SU}(2)[C_{6}]$ |
|
90.4.l.a |
$90$ |
$4$ |
90.l |
45.l |
$12$ |
$72$ |
$18$ |
$5.310$ |
|
None |
|
✓ |
✓ |
✓ |
90.4.l.a |
$4$ |
$0$ |
\(0\) |
\(-8\) |
\(0\) |
\(0\) |
|
|
$\mathrm{SU}(2)[C_{12}]$ |
|
90.5.b.a |
$90$ |
$5$ |
90.b |
15.d |
$2$ |
$8$ |
$8$ |
$9.303$ |
8.0.\(\cdots\).1 |
None |
|
✓ |
✓ |
✓ |
90.5.b.a |
$4$ |
$0$ |
\(0\) |
\(0\) |
\(0\) |
\(0\) |
|
$2^{12}\cdot 3^{4}\cdot 5^{2}$ |
$\mathrm{SU}(2)[C_{2}]$ |
\(q-\beta _{2}q^{2}+8q^{4}+(2\beta _{2}-\beta _{3}+\beta _{4})q^{5}+\cdots\) |
90.5.d.a |
$90$ |
$5$ |
90.d |
3.b |
$2$ |
$4$ |
$4$ |
$9.303$ |
\(\Q(\sqrt{-2}, \sqrt{-5})\) |
None |
|
✓ |
|
|
90.5.d.a |
$2$ |
$0$ |
\(0\) |
\(0\) |
\(0\) |
\(32\) |
|
$2\cdot 5^{2}$ |
$\mathrm{SU}(2)[C_{2}]$ |
\(q-2\beta _{1}q^{2}-8q^{4}+\beta _{2}q^{5}+(8+3\beta _{3})q^{7}+\cdots\) |
90.5.d.b |
$90$ |
$5$ |
90.d |
3.b |
$2$ |
$4$ |
$4$ |
$9.303$ |
\(\Q(\sqrt{-2}, \sqrt{-5})\) |
None |
|
✓ |
|
|
90.5.d.b |
$2$ |
$0$ |
\(0\) |
\(0\) |
\(0\) |
\(128\) |
|
$2\cdot 5^{2}$ |
$\mathrm{SU}(2)[C_{2}]$ |
\(q-2\beta _{1}q^{2}-8q^{4}+\beta _{2}q^{5}+(2^{5}-3\beta _{3})q^{7}+\cdots\) |
90.5.g.a |
$90$ |
$5$ |
90.g |
5.c |
$4$ |
$2$ |
$1$ |
$9.303$ |
\(\Q(\sqrt{-1}) \) |
None |
|
|
|
|
10.5.c.b |
$2$ |
$0$ |
\(-4\) |
\(0\) |
\(30\) |
\(-38\) |
|
$1$ |
$\mathrm{SU}(2)[C_{4}]$ |
\(q+(-2 i-2)q^{2}+8 i q^{4}+(20 i+15)q^{5}+\cdots\) |
90.5.g.b |
$90$ |
$5$ |
90.g |
5.c |
$4$ |
$2$ |
$1$ |
$9.303$ |
\(\Q(\sqrt{-1}) \) |
None |
|
|
|
|
10.5.c.a |
$2$ |
$0$ |
\(4\) |
\(0\) |
\(30\) |
\(58\) |
|
$1$ |
$\mathrm{SU}(2)[C_{4}]$ |
\(q+(2 i+2)q^{2}+8 i q^{4}+(-20 i+15)q^{5}+\cdots\) |
90.5.g.c |
$90$ |
$5$ |
90.g |
5.c |
$4$ |
$4$ |
$2$ |
$9.303$ |
\(\Q(i, \sqrt{6})\) |
None |
|
|
|
|
30.5.f.b |
$2$ |
$0$ |
\(-8\) |
\(0\) |
\(-36\) |
\(68\) |
|
$1$ |
$\mathrm{SU}(2)[C_{4}]$ |
\(q+(-2+2\beta _{2})q^{2}-8\beta _{2}q^{4}+(-9-11\beta _{1}+\cdots)q^{5}+\cdots\) |
90.5.g.d |
$90$ |
$5$ |
90.g |
5.c |
$4$ |
$4$ |
$2$ |
$9.303$ |
\(\Q(i, \sqrt{26})\) |
None |
|
✓ |
|
|
90.5.g.d |
$2$ |
$0$ |
\(-8\) |
\(0\) |
\(-24\) |
\(-100\) |
|
$3^{2}$ |
$\mathrm{SU}(2)[C_{4}]$ |
\(q+(-2-2\beta _{2})q^{2}+8\beta _{2}q^{4}+(-6-2\beta _{1}+\cdots)q^{5}+\cdots\) |
90.5.g.e |
$90$ |
$5$ |
90.g |
5.c |
$4$ |
$4$ |
$2$ |
$9.303$ |
\(\Q(i, \sqrt{6})\) |
None |
|
|
|
|
30.5.f.a |
$2$ |
$0$ |
\(8\) |
\(0\) |
\(-84\) |
\(-28\) |
|
$3^{2}$ |
$\mathrm{SU}(2)[C_{4}]$ |
\(q+(2-2\beta _{2})q^{2}-8\beta _{2}q^{4}+(-21+\beta _{1}+\cdots)q^{5}+\cdots\) |
90.5.g.f |
$90$ |
$5$ |
90.g |
5.c |
$4$ |
$4$ |
$2$ |
$9.303$ |
\(\Q(i, \sqrt{26})\) |
None |
|
✓ |
|
|
90.5.g.d |
$2$ |
$0$ |
\(8\) |
\(0\) |
\(24\) |
\(-100\) |
|
$3^{2}$ |
$\mathrm{SU}(2)[C_{4}]$ |
\(q+(2+2\beta _{2})q^{2}+8\beta _{2}q^{4}+(6-2\beta _{1}+\cdots)q^{5}+\cdots\) |
90.5.h.a |
$90$ |
$5$ |
90.h |
9.d |
$6$ |
$32$ |
$16$ |
$9.303$ |
|
None |
|
✓ |
✓ |
✓ |
90.5.h.a |
$2$ |
$0$ |
\(0\) |
\(8\) |
\(0\) |
\(52\) |
|
|
$\mathrm{SU}(2)[C_{6}]$ |
|
90.5.j.a |
$90$ |
$5$ |
90.j |
45.h |
$6$ |
$48$ |
$24$ |
$9.303$ |
|
None |
|
✓ |
✓ |
✓ |
90.5.j.a |
$4$ |
$0$ |
\(0\) |
\(0\) |
\(-18\) |
\(0\) |
|
|
$\mathrm{SU}(2)[C_{6}]$ |
|