Properties

Label 90.12.c.a
Level $90$
Weight $12$
Character orbit 90.c
Analytic conductor $69.151$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [90,12,Mod(19,90)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("90.19"); S:= CuspForms(chi, 12); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(90, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1])) N = Newforms(chi, 12, names="a")
 
Level: \( N \) \(=\) \( 90 = 2 \cdot 3^{2} \cdot 5 \)
Weight: \( k \) \(=\) \( 12 \)
Character orbit: \([\chi]\) \(=\) 90.c (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,0,-4096,-4950] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(69.1508862504\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(i, \sqrt{1129})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 565x^{2} + 79524 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{3}\cdot 5^{2} \)
Twist minimal: no (minimal twist has level 30)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + 8 \beta_1 q^{2} - 1024 q^{4} + ( - 10 \beta_{3} - 55 \beta_{2} + \cdots - 1205) q^{5} + ( - 23 \beta_{3} + 23 \beta_{2} + 3450 \beta_1) q^{7} - 8192 \beta_1 q^{8} + ( - 1760 \beta_{3} + 320 \beta_{2} + \cdots + 57920) q^{10}+ \cdots + (20415168 \beta_{3} + \cdots + 14175683832 \beta_1) q^{98}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 4096 q^{4} - 4950 q^{5} + 228800 q^{10} + 452052 q^{11} - 1775232 q^{14} + 4194304 q^{16} + 36378480 q^{19} + 5068800 q^{20} + 55440000 q^{25} + 56098944 q^{26} - 257619420 q^{29} - 300753272 q^{31}+ \cdots - 63907668000 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} + 565x^{2} + 79524 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( -2\nu^{3} - 566\nu ) / 141 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( \nu^{3} + 1410\nu^{2} + 1693\nu + 398466 ) / 282 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( -\nu^{3} + 1410\nu^{2} - 1693\nu + 398466 ) / 282 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( -2\beta_{3} + 2\beta_{2} + \beta_1 ) / 20 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( \beta_{3} + \beta_{2} - 2826 ) / 10 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( 566\beta_{3} - 566\beta_{2} - 1693\beta_1 ) / 20 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/90\mathbb{Z}\right)^\times\).

\(n\) \(11\) \(37\)
\(\chi(n)\) \(1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
19.1
16.3003i
17.3003i
16.3003i
17.3003i
32.0000i 0 −1024.00 −6697.60 1992.57i 0 10004.9i 32768.0i 0 −63762.1 + 214323.i
19.2 32.0000i 0 −1024.00 4222.60 + 5567.57i 0 17733.1i 32768.0i 0 178162. 135123.i
19.3 32.0000i 0 −1024.00 −6697.60 + 1992.57i 0 10004.9i 32768.0i 0 −63762.1 214323.i
19.4 32.0000i 0 −1024.00 4222.60 5567.57i 0 17733.1i 32768.0i 0 178162. + 135123.i
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 90.12.c.a 4
3.b odd 2 1 30.12.c.a 4
5.b even 2 1 inner 90.12.c.a 4
12.b even 2 1 240.12.f.a 4
15.d odd 2 1 30.12.c.a 4
15.e even 4 1 150.12.a.k 2
15.e even 4 1 150.12.a.r 2
60.h even 2 1 240.12.f.a 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
30.12.c.a 4 3.b odd 2 1
30.12.c.a 4 15.d odd 2 1
90.12.c.a 4 1.a even 1 1 trivial
90.12.c.a 4 5.b even 2 1 inner
150.12.a.k 2 15.e even 4 1
150.12.a.r 2 15.e even 4 1
240.12.f.a 4 12.b even 2 1
240.12.f.a 4 60.h even 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{7}^{4} + 414560372T_{7}^{2} + 31477194981714496 \) acting on \(S_{12}^{\mathrm{new}}(90, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T^{2} + 1024)^{2} \) Copy content Toggle raw display
$3$ \( T^{4} \) Copy content Toggle raw display
$5$ \( T^{4} + \cdots + 23\!\cdots\!25 \) Copy content Toggle raw display
$7$ \( T^{4} + \cdots + 31\!\cdots\!96 \) Copy content Toggle raw display
$11$ \( (T^{2} - 226026 T + 12358695944)^{2} \) Copy content Toggle raw display
$13$ \( T^{4} + \cdots + 24\!\cdots\!16 \) Copy content Toggle raw display
$17$ \( T^{4} + \cdots + 11\!\cdots\!76 \) Copy content Toggle raw display
$19$ \( (T^{2} + \cdots + 81964096704000)^{2} \) Copy content Toggle raw display
$23$ \( T^{4} + \cdots + 18\!\cdots\!76 \) Copy content Toggle raw display
$29$ \( (T^{2} + \cdots - 12\!\cdots\!00)^{2} \) Copy content Toggle raw display
$31$ \( (T^{2} + \cdots - 43\!\cdots\!76)^{2} \) Copy content Toggle raw display
$37$ \( T^{4} + \cdots + 30\!\cdots\!36 \) Copy content Toggle raw display
$41$ \( (T^{2} + \cdots + 38\!\cdots\!64)^{2} \) Copy content Toggle raw display
$43$ \( T^{4} + \cdots + 13\!\cdots\!96 \) Copy content Toggle raw display
$47$ \( T^{4} + \cdots + 61\!\cdots\!16 \) Copy content Toggle raw display
$53$ \( T^{4} + \cdots + 86\!\cdots\!56 \) Copy content Toggle raw display
$59$ \( (T^{2} + \cdots - 54\!\cdots\!00)^{2} \) Copy content Toggle raw display
$61$ \( (T^{2} + \cdots - 17\!\cdots\!56)^{2} \) Copy content Toggle raw display
$67$ \( T^{4} + \cdots + 67\!\cdots\!76 \) Copy content Toggle raw display
$71$ \( (T^{2} + \cdots - 21\!\cdots\!16)^{2} \) Copy content Toggle raw display
$73$ \( T^{4} + \cdots + 30\!\cdots\!76 \) Copy content Toggle raw display
$79$ \( (T^{2} + \cdots - 33\!\cdots\!00)^{2} \) Copy content Toggle raw display
$83$ \( T^{4} + \cdots + 11\!\cdots\!36 \) Copy content Toggle raw display
$89$ \( (T^{2} + \cdots - 51\!\cdots\!00)^{2} \) Copy content Toggle raw display
$97$ \( T^{4} + \cdots + 46\!\cdots\!16 \) Copy content Toggle raw display
show more
show less