Properties

Label 2-90-5.4-c11-0-18
Degree $2$
Conductor $90$
Sign $-0.161 + 0.986i$
Analytic cond. $69.1508$
Root an. cond. $8.31570$
Motivic weight $11$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 32i·2-s − 1.02e3·4-s + (6.89e3 + 1.13e3i)5-s + 1.43e4i·7-s + 3.27e4i·8-s + (3.61e4 − 2.20e5i)10-s − 4.93e5·11-s + 9.84e5i·13-s + 4.60e5·14-s + 1.04e6·16-s − 9.98e6i·17-s − 9.97e6·19-s + (−7.06e6 − 1.15e6i)20-s + 1.57e7i·22-s − 4.66e6i·23-s + ⋯
L(s)  = 1  − 0.707i·2-s − 0.5·4-s + (0.986 + 0.161i)5-s + 0.323i·7-s + 0.353i·8-s + (0.114 − 0.697i)10-s − 0.924·11-s + 0.735i·13-s + 0.228·14-s + 0.250·16-s − 1.70i·17-s − 0.924·19-s + (−0.493 − 0.0809i)20-s + 0.653i·22-s − 0.151i·23-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 90 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.161 + 0.986i)\, \overline{\Lambda}(12-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 90 ^{s/2} \, \Gamma_{\C}(s+11/2) \, L(s)\cr =\mathstrut & (-0.161 + 0.986i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(90\)    =    \(2 \cdot 3^{2} \cdot 5\)
Sign: $-0.161 + 0.986i$
Analytic conductor: \(69.1508\)
Root analytic conductor: \(8.31570\)
Motivic weight: \(11\)
Rational: no
Arithmetic: yes
Character: $\chi_{90} (19, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 90,\ (\ :11/2),\ -0.161 + 0.986i)\)

Particular Values

\(L(6)\) \(\approx\) \(1.25727 - 1.48028i\)
\(L(\frac12)\) \(\approx\) \(1.25727 - 1.48028i\)
\(L(\frac{13}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + 32iT \)
3 \( 1 \)
5 \( 1 + (-6.89e3 - 1.13e3i)T \)
good7 \( 1 - 1.43e4iT - 1.97e9T^{2} \)
11 \( 1 + 4.93e5T + 2.85e11T^{2} \)
13 \( 1 - 9.84e5iT - 1.79e12T^{2} \)
17 \( 1 + 9.98e6iT - 3.42e13T^{2} \)
19 \( 1 + 9.97e6T + 1.16e14T^{2} \)
23 \( 1 + 4.66e6iT - 9.52e14T^{2} \)
29 \( 1 - 4.31e7T + 1.22e16T^{2} \)
31 \( 1 - 1.06e8T + 2.54e16T^{2} \)
37 \( 1 - 1.33e8iT - 1.77e17T^{2} \)
41 \( 1 - 1.24e9T + 5.50e17T^{2} \)
43 \( 1 + 1.57e9iT - 9.29e17T^{2} \)
47 \( 1 - 3.78e8iT - 2.47e18T^{2} \)
53 \( 1 + 3.54e9iT - 9.26e18T^{2} \)
59 \( 1 - 6.43e9T + 3.01e19T^{2} \)
61 \( 1 - 2.83e8T + 4.35e19T^{2} \)
67 \( 1 + 7.62e9iT - 1.22e20T^{2} \)
71 \( 1 + 1.48e9T + 2.31e20T^{2} \)
73 \( 1 + 1.24e10iT - 3.13e20T^{2} \)
79 \( 1 + 3.51e10T + 7.47e20T^{2} \)
83 \( 1 - 9.64e9iT - 1.28e21T^{2} \)
89 \( 1 + 4.39e10T + 2.77e21T^{2} \)
97 \( 1 + 1.45e11iT - 7.15e21T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.53455984189990590559403540733, −10.47125834085807561288012015912, −9.577793067475085036262388020421, −8.619270825368912569312628718070, −7.01925475487646675448341681876, −5.65722476915691396939638913985, −4.58455754007430294314562917774, −2.80490144745316059449076687581, −2.07405233524716523092090156845, −0.52721811993465941155334658503, 1.03338546796581251215225176377, 2.54282306844757839709199420596, 4.25619370824149681684371435158, 5.56216304177598894962226264041, 6.34087867185546868512651144323, 7.78719538501883087825259578074, 8.707740085406296191918176302430, 10.06515511039191896586307084213, 10.70746519799647033105471947194, 12.73216288008401875307322643888

Graph of the $Z$-function along the critical line