Properties

Label 90.12.c.b.19.5
Level $90$
Weight $12$
Character 90.19
Analytic conductor $69.151$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [90,12,Mod(19,90)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(90, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1])) N = Newforms(chi, 12, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("90.19"); S:= CuspForms(chi, 12); N := Newforms(S);
 
Level: \( N \) \(=\) \( 90 = 2 \cdot 3^{2} \cdot 5 \)
Weight: \( k \) \(=\) \( 12 \)
Character orbit: \([\chi]\) \(=\) 90.c (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,0,0,-6144,-530] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(69.1508862504\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: \(\mathbb{Q}[x]/(x^{6} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 2x^{5} + 2x^{4} + 198x^{3} + 3568321x^{2} - 6762620x + 6408200 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{19}\cdot 3^{2}\cdot 5^{5} \)
Twist minimal: no (minimal twist has level 10)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 19.5
Root \(-30.7073 - 30.7073i\) of defining polynomial
Character \(\chi\) \(=\) 90.19
Dual form 90.12.c.b.19.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+32.0000i q^{2} -1024.00 q^{4} +(-1594.62 + 6803.33i) q^{5} +24477.0i q^{7} -32768.0i q^{8} +(-217707. - 51027.9i) q^{10} +669055. q^{11} +579245. i q^{13} -783265. q^{14} +1.04858e6 q^{16} +7.85051e6i q^{17} +1.81223e7 q^{19} +(1.63289e6 - 6.96661e6i) q^{20} +2.14098e7i q^{22} +1.97203e7i q^{23} +(-4.37425e7 - 2.16975e7i) q^{25} -1.85358e7 q^{26} -2.50645e7i q^{28} +2.02707e8 q^{29} +1.02789e8 q^{31} +3.35544e7i q^{32} -2.51216e8 q^{34} +(-1.66525e8 - 3.90316e7i) q^{35} -5.02591e8i q^{37} +5.79913e8i q^{38} +(2.22932e8 + 5.22525e7i) q^{40} -3.44964e8 q^{41} +1.43221e9i q^{43} -6.85112e8 q^{44} -6.31051e8 q^{46} +1.38179e9i q^{47} +1.37820e9 q^{49} +(6.94319e8 - 1.39976e9i) q^{50} -5.93147e8i q^{52} +2.89531e8i q^{53} +(-1.06689e9 + 4.55180e9i) q^{55} +8.02063e8 q^{56} +6.48664e9i q^{58} -2.47487e9 q^{59} +9.16284e7 q^{61} +3.28926e9i q^{62} -1.07374e9 q^{64} +(-3.94079e9 - 9.23676e8i) q^{65} +3.09287e7i q^{67} -8.03893e9i q^{68} +(1.24901e9 - 5.32881e9i) q^{70} -2.42503e10 q^{71} -3.55008e9i q^{73} +1.60829e10 q^{74} -1.85572e10 q^{76} +1.63765e10i q^{77} +1.16350e10 q^{79} +(-1.67208e9 + 7.13381e9i) q^{80} -1.10389e10i q^{82} -2.33729e10i q^{83} +(-5.34096e10 - 1.25186e10i) q^{85} -4.58307e10 q^{86} -2.19236e10i q^{88} -1.02379e11 q^{89} -1.41782e10 q^{91} -2.01936e10i q^{92} -4.42174e10 q^{94} +(-2.88982e10 + 1.23292e11i) q^{95} -5.87705e10i q^{97} +4.41025e10i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 6144 q^{4} - 530 q^{5} - 385920 q^{10} + 642728 q^{11} + 2125952 q^{14} + 6291456 q^{16} - 24109080 q^{19} + 542720 q^{20} - 181718850 q^{25} - 89251584 q^{26} + 256409820 q^{29} + 458481792 q^{31}+ \cdots - 104896380600 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/90\mathbb{Z}\right)^\times\).

\(n\) \(11\) \(37\)
\(\chi(n)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 32.0000i 0.707107i
\(3\) 0 0
\(4\) −1024.00 −0.500000
\(5\) −1594.62 + 6803.33i −0.228204 + 0.973613i
\(6\) 0 0
\(7\) 24477.0i 0.550452i 0.961380 + 0.275226i \(0.0887527\pi\)
−0.961380 + 0.275226i \(0.911247\pi\)
\(8\) 32768.0i 0.353553i
\(9\) 0 0
\(10\) −217707. 51027.9i −0.688449 0.161364i
\(11\) 669055. 1.25257 0.626285 0.779594i \(-0.284575\pi\)
0.626285 + 0.779594i \(0.284575\pi\)
\(12\) 0 0
\(13\) 579245.i 0.432687i 0.976317 + 0.216343i \(0.0694131\pi\)
−0.976317 + 0.216343i \(0.930587\pi\)
\(14\) −783265. −0.389228
\(15\) 0 0
\(16\) 1.04858e6 0.250000
\(17\) 7.85051e6i 1.34100i 0.741909 + 0.670500i \(0.233920\pi\)
−0.741909 + 0.670500i \(0.766080\pi\)
\(18\) 0 0
\(19\) 1.81223e7 1.67907 0.839534 0.543307i \(-0.182828\pi\)
0.839534 + 0.543307i \(0.182828\pi\)
\(20\) 1.63289e6 6.96661e6i 0.114102 0.486807i
\(21\) 0 0
\(22\) 2.14098e7i 0.885701i
\(23\) 1.97203e7i 0.638868i 0.947609 + 0.319434i \(0.103493\pi\)
−0.947609 + 0.319434i \(0.896507\pi\)
\(24\) 0 0
\(25\) −4.37425e7 2.16975e7i −0.895846 0.444364i
\(26\) −1.85358e7 −0.305956
\(27\) 0 0
\(28\) 2.50645e7i 0.275226i
\(29\) 2.02707e8 1.83519 0.917594 0.397518i \(-0.130128\pi\)
0.917594 + 0.397518i \(0.130128\pi\)
\(30\) 0 0
\(31\) 1.02789e8 0.644850 0.322425 0.946595i \(-0.395502\pi\)
0.322425 + 0.946595i \(0.395502\pi\)
\(32\) 3.35544e7i 0.176777i
\(33\) 0 0
\(34\) −2.51216e8 −0.948231
\(35\) −1.66525e8 3.90316e7i −0.535928 0.125615i
\(36\) 0 0
\(37\) 5.02591e8i 1.19153i −0.803158 0.595766i \(-0.796849\pi\)
0.803158 0.595766i \(-0.203151\pi\)
\(38\) 5.79913e8i 1.18728i
\(39\) 0 0
\(40\) 2.22932e8 + 5.22525e7i 0.344224 + 0.0806821i
\(41\) −3.44964e8 −0.465011 −0.232505 0.972595i \(-0.574692\pi\)
−0.232505 + 0.972595i \(0.574692\pi\)
\(42\) 0 0
\(43\) 1.43221e9i 1.48570i 0.669460 + 0.742848i \(0.266526\pi\)
−0.669460 + 0.742848i \(0.733474\pi\)
\(44\) −6.85112e8 −0.626285
\(45\) 0 0
\(46\) −6.31051e8 −0.451748
\(47\) 1.38179e9i 0.878830i 0.898284 + 0.439415i \(0.144814\pi\)
−0.898284 + 0.439415i \(0.855186\pi\)
\(48\) 0 0
\(49\) 1.37820e9 0.697003
\(50\) 6.94319e8 1.39976e9i 0.314213 0.633459i
\(51\) 0 0
\(52\) 5.93147e8i 0.216343i
\(53\) 2.89531e8i 0.0950995i 0.998869 + 0.0475497i \(0.0151413\pi\)
−0.998869 + 0.0475497i \(0.984859\pi\)
\(54\) 0 0
\(55\) −1.06689e9 + 4.55180e9i −0.285841 + 1.21952i
\(56\) 8.02063e8 0.194614
\(57\) 0 0
\(58\) 6.48664e9i 1.29767i
\(59\) −2.47487e9 −0.450678 −0.225339 0.974280i \(-0.572349\pi\)
−0.225339 + 0.974280i \(0.572349\pi\)
\(60\) 0 0
\(61\) 9.16284e7 0.0138904 0.00694522 0.999976i \(-0.497789\pi\)
0.00694522 + 0.999976i \(0.497789\pi\)
\(62\) 3.28926e9i 0.455977i
\(63\) 0 0
\(64\) −1.07374e9 −0.125000
\(65\) −3.94079e9 9.23676e8i −0.421270 0.0987406i
\(66\) 0 0
\(67\) 3.09287e7i 0.00279866i 0.999999 + 0.00139933i \(0.000445421\pi\)
−0.999999 + 0.00139933i \(0.999555\pi\)
\(68\) 8.03893e9i 0.670500i
\(69\) 0 0
\(70\) 1.24901e9 5.32881e9i 0.0888233 0.378958i
\(71\) −2.42503e10 −1.59513 −0.797565 0.603233i \(-0.793879\pi\)
−0.797565 + 0.603233i \(0.793879\pi\)
\(72\) 0 0
\(73\) 3.55008e9i 0.200430i −0.994966 0.100215i \(-0.968047\pi\)
0.994966 0.100215i \(-0.0319531\pi\)
\(74\) 1.60829e10 0.842540
\(75\) 0 0
\(76\) −1.85572e10 −0.839534
\(77\) 1.63765e10i 0.689480i
\(78\) 0 0
\(79\) 1.16350e10 0.425419 0.212709 0.977116i \(-0.431771\pi\)
0.212709 + 0.977116i \(0.431771\pi\)
\(80\) −1.67208e9 + 7.13381e9i −0.0570509 + 0.243403i
\(81\) 0 0
\(82\) 1.10389e10i 0.328812i
\(83\) 2.33729e10i 0.651302i −0.945490 0.325651i \(-0.894417\pi\)
0.945490 0.325651i \(-0.105583\pi\)
\(84\) 0 0
\(85\) −5.34096e10 1.25186e10i −1.30562 0.306021i
\(86\) −4.58307e10 −1.05055
\(87\) 0 0
\(88\) 2.19236e10i 0.442851i
\(89\) −1.02379e11 −1.94342 −0.971710 0.236175i \(-0.924106\pi\)
−0.971710 + 0.236175i \(0.924106\pi\)
\(90\) 0 0
\(91\) −1.41782e10 −0.238173
\(92\) 2.01936e10i 0.319434i
\(93\) 0 0
\(94\) −4.42174e10 −0.621426
\(95\) −2.88982e10 + 1.23292e11i −0.383169 + 1.63476i
\(96\) 0 0
\(97\) 5.87705e10i 0.694888i −0.937701 0.347444i \(-0.887050\pi\)
0.937701 0.347444i \(-0.112950\pi\)
\(98\) 4.41025e10i 0.492855i
\(99\) 0 0
\(100\) 4.47923e10 + 2.22182e10i 0.447923 + 0.222182i
\(101\) −3.48576e9 −0.0330012 −0.0165006 0.999864i \(-0.505253\pi\)
−0.0165006 + 0.999864i \(0.505253\pi\)
\(102\) 0 0
\(103\) 8.04437e10i 0.683734i 0.939748 + 0.341867i \(0.111059\pi\)
−0.939748 + 0.341867i \(0.888941\pi\)
\(104\) 1.89807e10 0.152978
\(105\) 0 0
\(106\) −9.26500e9 −0.0672455
\(107\) 1.62166e11i 1.11776i −0.829249 0.558880i \(-0.811231\pi\)
0.829249 0.558880i \(-0.188769\pi\)
\(108\) 0 0
\(109\) −1.55539e11 −0.968266 −0.484133 0.874994i \(-0.660865\pi\)
−0.484133 + 0.874994i \(0.660865\pi\)
\(110\) −1.45658e11 3.41405e10i −0.862330 0.202120i
\(111\) 0 0
\(112\) 2.56660e10i 0.137613i
\(113\) 1.26270e11i 0.644717i 0.946618 + 0.322359i \(0.104476\pi\)
−0.946618 + 0.322359i \(0.895524\pi\)
\(114\) 0 0
\(115\) −1.34164e11 3.14464e10i −0.622010 0.145792i
\(116\) −2.07572e11 −0.917594
\(117\) 0 0
\(118\) 7.91958e10i 0.318677i
\(119\) −1.92157e11 −0.738157
\(120\) 0 0
\(121\) 1.62323e11 0.568933
\(122\) 2.93211e9i 0.00982202i
\(123\) 0 0
\(124\) −1.05256e11 −0.322425
\(125\) 2.17368e11 2.62995e11i 0.637074 0.770803i
\(126\) 0 0
\(127\) 4.06263e11i 1.09116i 0.838060 + 0.545578i \(0.183690\pi\)
−0.838060 + 0.545578i \(0.816310\pi\)
\(128\) 3.43597e10i 0.0883883i
\(129\) 0 0
\(130\) 2.95576e10 1.26105e11i 0.0698202 0.297883i
\(131\) −4.67394e11 −1.05850 −0.529251 0.848466i \(-0.677527\pi\)
−0.529251 + 0.848466i \(0.677527\pi\)
\(132\) 0 0
\(133\) 4.43580e11i 0.924247i
\(134\) −9.89718e8 −0.00197895
\(135\) 0 0
\(136\) 2.57246e11 0.474115
\(137\) 5.88796e11i 1.04232i 0.853459 + 0.521161i \(0.174501\pi\)
−0.853459 + 0.521161i \(0.825499\pi\)
\(138\) 0 0
\(139\) 2.38206e11 0.389378 0.194689 0.980865i \(-0.437630\pi\)
0.194689 + 0.980865i \(0.437630\pi\)
\(140\) 1.70522e11 + 3.99683e10i 0.267964 + 0.0628076i
\(141\) 0 0
\(142\) 7.76010e11i 1.12793i
\(143\) 3.87547e11i 0.541971i
\(144\) 0 0
\(145\) −3.23242e11 + 1.37909e12i −0.418797 + 1.78676i
\(146\) 1.13603e11 0.141725
\(147\) 0 0
\(148\) 5.14653e11i 0.595766i
\(149\) 1.19618e12 1.33436 0.667179 0.744897i \(-0.267501\pi\)
0.667179 + 0.744897i \(0.267501\pi\)
\(150\) 0 0
\(151\) −4.69044e10 −0.0486229 −0.0243114 0.999704i \(-0.507739\pi\)
−0.0243114 + 0.999704i \(0.507739\pi\)
\(152\) 5.93831e11i 0.593640i
\(153\) 0 0
\(154\) −5.24047e11 −0.487536
\(155\) −1.63910e11 + 6.99309e11i −0.147157 + 0.627834i
\(156\) 0 0
\(157\) 1.12550e12i 0.941665i −0.882223 0.470833i \(-0.843954\pi\)
0.882223 0.470833i \(-0.156046\pi\)
\(158\) 3.72319e11i 0.300816i
\(159\) 0 0
\(160\) −2.28282e11 5.35066e10i −0.172112 0.0403411i
\(161\) −4.82695e11 −0.351666
\(162\) 0 0
\(163\) 1.26983e12i 0.864396i −0.901779 0.432198i \(-0.857738\pi\)
0.901779 0.432198i \(-0.142262\pi\)
\(164\) 3.53244e11 0.232505
\(165\) 0 0
\(166\) 7.47932e11 0.460540
\(167\) 6.55303e11i 0.390393i 0.980764 + 0.195196i \(0.0625344\pi\)
−0.980764 + 0.195196i \(0.937466\pi\)
\(168\) 0 0
\(169\) 1.45664e12 0.812782
\(170\) 4.00595e11 1.70911e12i 0.216390 0.923210i
\(171\) 0 0
\(172\) 1.46658e12i 0.742848i
\(173\) 2.29440e12i 1.12568i −0.826565 0.562842i \(-0.809708\pi\)
0.826565 0.562842i \(-0.190292\pi\)
\(174\) 0 0
\(175\) 5.31089e11 1.07069e12i 0.244601 0.493120i
\(176\) 7.01555e11 0.313143
\(177\) 0 0
\(178\) 3.27614e12i 1.37421i
\(179\) 2.90384e12 1.18108 0.590542 0.807007i \(-0.298914\pi\)
0.590542 + 0.807007i \(0.298914\pi\)
\(180\) 0 0
\(181\) 2.57501e12 0.985250 0.492625 0.870242i \(-0.336037\pi\)
0.492625 + 0.870242i \(0.336037\pi\)
\(182\) 4.53702e11i 0.168414i
\(183\) 0 0
\(184\) 6.46196e11 0.225874
\(185\) 3.41929e12 + 8.01442e11i 1.16009 + 0.271912i
\(186\) 0 0
\(187\) 5.25243e12i 1.67970i
\(188\) 1.41496e12i 0.439415i
\(189\) 0 0
\(190\) −3.94534e12 9.24742e11i −1.15595 0.270942i
\(191\) −2.23479e11 −0.0636140 −0.0318070 0.999494i \(-0.510126\pi\)
−0.0318070 + 0.999494i \(0.510126\pi\)
\(192\) 0 0
\(193\) 3.24295e12i 0.871716i 0.900015 + 0.435858i \(0.143555\pi\)
−0.900015 + 0.435858i \(0.856445\pi\)
\(194\) 1.88066e12 0.491360
\(195\) 0 0
\(196\) −1.41128e12 −0.348501
\(197\) 5.15178e12i 1.23707i −0.785758 0.618534i \(-0.787727\pi\)
0.785758 0.618534i \(-0.212273\pi\)
\(198\) 0 0
\(199\) 6.92866e11 0.157383 0.0786914 0.996899i \(-0.474926\pi\)
0.0786914 + 0.996899i \(0.474926\pi\)
\(200\) −7.10982e11 + 1.43335e12i −0.157106 + 0.316729i
\(201\) 0 0
\(202\) 1.11544e11i 0.0233354i
\(203\) 4.96168e12i 1.01018i
\(204\) 0 0
\(205\) 5.50087e11 2.34691e12i 0.106117 0.452741i
\(206\) −2.57420e12 −0.483473
\(207\) 0 0
\(208\) 6.07382e11i 0.108172i
\(209\) 1.21248e13 2.10315
\(210\) 0 0
\(211\) 7.15534e12 1.17781 0.588907 0.808201i \(-0.299558\pi\)
0.588907 + 0.808201i \(0.299558\pi\)
\(212\) 2.96480e11i 0.0475497i
\(213\) 0 0
\(214\) 5.18930e12 0.790375
\(215\) −9.74380e12 2.28383e12i −1.44649 0.339041i
\(216\) 0 0
\(217\) 2.51598e12i 0.354959i
\(218\) 4.97726e12i 0.684667i
\(219\) 0 0
\(220\) 1.09249e12 4.66105e12i 0.142921 0.609760i
\(221\) −4.54737e12 −0.580233
\(222\) 0 0
\(223\) 7.85354e12i 0.953650i 0.878998 + 0.476825i \(0.158212\pi\)
−0.878998 + 0.476825i \(0.841788\pi\)
\(224\) −8.21313e11 −0.0973071
\(225\) 0 0
\(226\) −4.04065e12 −0.455884
\(227\) 5.24834e12i 0.577936i 0.957339 + 0.288968i \(0.0933121\pi\)
−0.957339 + 0.288968i \(0.906688\pi\)
\(228\) 0 0
\(229\) −2.54851e12 −0.267419 −0.133709 0.991021i \(-0.542689\pi\)
−0.133709 + 0.991021i \(0.542689\pi\)
\(230\) 1.00629e12 4.29325e12i 0.103090 0.439828i
\(231\) 0 0
\(232\) 6.64232e12i 0.648837i
\(233\) 1.29244e13i 1.23297i 0.787368 + 0.616483i \(0.211443\pi\)
−0.787368 + 0.616483i \(0.788557\pi\)
\(234\) 0 0
\(235\) −9.40079e12 2.20344e12i −0.855640 0.200552i
\(236\) 2.53427e12 0.225339
\(237\) 0 0
\(238\) 6.14903e12i 0.521955i
\(239\) −3.04646e12 −0.252701 −0.126350 0.991986i \(-0.540326\pi\)
−0.126350 + 0.991986i \(0.540326\pi\)
\(240\) 0 0
\(241\) −1.51377e13 −1.19940 −0.599701 0.800224i \(-0.704714\pi\)
−0.599701 + 0.800224i \(0.704714\pi\)
\(242\) 5.19434e12i 0.402296i
\(243\) 0 0
\(244\) −9.38275e10 −0.00694522
\(245\) −2.19771e12 + 9.37636e12i −0.159058 + 0.678611i
\(246\) 0 0
\(247\) 1.04972e13i 0.726511i
\(248\) 3.36820e12i 0.227989i
\(249\) 0 0
\(250\) 8.41585e12 + 6.95577e12i 0.545040 + 0.450479i
\(251\) 5.88554e12 0.372890 0.186445 0.982465i \(-0.440303\pi\)
0.186445 + 0.982465i \(0.440303\pi\)
\(252\) 0 0
\(253\) 1.31940e13i 0.800227i
\(254\) −1.30004e13 −0.771564
\(255\) 0 0
\(256\) 1.09951e12 0.0625000
\(257\) 1.26568e13i 0.704194i 0.935964 + 0.352097i \(0.114531\pi\)
−0.935964 + 0.352097i \(0.885469\pi\)
\(258\) 0 0
\(259\) 1.23019e13 0.655881
\(260\) 4.03537e12 + 9.45844e11i 0.210635 + 0.0493703i
\(261\) 0 0
\(262\) 1.49566e13i 0.748473i
\(263\) 1.94934e13i 0.955280i −0.878556 0.477640i \(-0.841492\pi\)
0.878556 0.477640i \(-0.158508\pi\)
\(264\) 0 0
\(265\) −1.96978e12 4.61693e11i −0.0925901 0.0217020i
\(266\) −1.41946e13 −0.653541
\(267\) 0 0
\(268\) 3.16710e10i 0.00139933i
\(269\) −4.34447e12 −0.188061 −0.0940306 0.995569i \(-0.529975\pi\)
−0.0940306 + 0.995569i \(0.529975\pi\)
\(270\) 0 0
\(271\) 2.67882e12 0.111330 0.0556650 0.998449i \(-0.482272\pi\)
0.0556650 + 0.998449i \(0.482272\pi\)
\(272\) 8.23186e12i 0.335250i
\(273\) 0 0
\(274\) −1.88415e13 −0.737032
\(275\) −2.92661e13 1.45168e13i −1.12211 0.556597i
\(276\) 0 0
\(277\) 1.30102e13i 0.479343i 0.970854 + 0.239672i \(0.0770398\pi\)
−0.970854 + 0.239672i \(0.922960\pi\)
\(278\) 7.62260e12i 0.275332i
\(279\) 0 0
\(280\) −1.27899e12 + 5.45670e12i −0.0444116 + 0.189479i
\(281\) −2.90772e13 −0.990075 −0.495037 0.868872i \(-0.664846\pi\)
−0.495037 + 0.868872i \(0.664846\pi\)
\(282\) 0 0
\(283\) 8.21076e12i 0.268880i −0.990922 0.134440i \(-0.957076\pi\)
0.990922 0.134440i \(-0.0429235\pi\)
\(284\) 2.48323e13 0.797565
\(285\) 0 0
\(286\) −1.24015e13 −0.383231
\(287\) 8.44371e12i 0.255966i
\(288\) 0 0
\(289\) −2.73587e13 −0.798283
\(290\) −4.41308e13 1.03437e13i −1.26343 0.296134i
\(291\) 0 0
\(292\) 3.63529e12i 0.100215i
\(293\) 8.70497e12i 0.235502i 0.993043 + 0.117751i \(0.0375685\pi\)
−0.993043 + 0.117751i \(0.962431\pi\)
\(294\) 0 0
\(295\) 3.94648e12 1.68374e13i 0.102846 0.438786i
\(296\) −1.64689e13 −0.421270
\(297\) 0 0
\(298\) 3.82778e13i 0.943534i
\(299\) −1.14229e13 −0.276430
\(300\) 0 0
\(301\) −3.50562e13 −0.817805
\(302\) 1.50094e12i 0.0343816i
\(303\) 0 0
\(304\) 1.90026e13 0.419767
\(305\) −1.46112e11 + 6.23378e11i −0.00316985 + 0.0135239i
\(306\) 0 0
\(307\) 6.59577e13i 1.38040i −0.723620 0.690199i \(-0.757523\pi\)
0.723620 0.690199i \(-0.242477\pi\)
\(308\) 1.67695e13i 0.344740i
\(309\) 0 0
\(310\) −2.23779e13 5.24512e12i −0.443946 0.104056i
\(311\) 2.13842e13 0.416783 0.208392 0.978045i \(-0.433177\pi\)
0.208392 + 0.978045i \(0.433177\pi\)
\(312\) 0 0
\(313\) 2.84379e13i 0.535062i −0.963549 0.267531i \(-0.913792\pi\)
0.963549 0.267531i \(-0.0862078\pi\)
\(314\) 3.60159e13 0.665858
\(315\) 0 0
\(316\) −1.19142e13 −0.212709
\(317\) 1.06352e14i 1.86603i −0.359833 0.933017i \(-0.617166\pi\)
0.359833 0.933017i \(-0.382834\pi\)
\(318\) 0 0
\(319\) 1.35622e14 2.29870
\(320\) 1.71221e12 7.30502e12i 0.0285254 0.121702i
\(321\) 0 0
\(322\) 1.54462e13i 0.248666i
\(323\) 1.42269e14i 2.25163i
\(324\) 0 0
\(325\) 1.25681e13 2.53376e13i 0.192270 0.387621i
\(326\) 4.06344e13 0.611220
\(327\) 0 0
\(328\) 1.13038e13i 0.164406i
\(329\) −3.38222e13 −0.483754
\(330\) 0 0
\(331\) −1.23331e14 −1.70616 −0.853079 0.521781i \(-0.825268\pi\)
−0.853079 + 0.521781i \(0.825268\pi\)
\(332\) 2.39338e13i 0.325651i
\(333\) 0 0
\(334\) −2.09697e13 −0.276049
\(335\) −2.10418e11 4.93195e10i −0.00272481 0.000638664i
\(336\) 0 0
\(337\) 4.55439e13i 0.570776i 0.958412 + 0.285388i \(0.0921225\pi\)
−0.958412 + 0.285388i \(0.907877\pi\)
\(338\) 4.66124e13i 0.574724i
\(339\) 0 0
\(340\) 5.46915e13 + 1.28190e13i 0.652808 + 0.153011i
\(341\) 6.87717e13 0.807719
\(342\) 0 0
\(343\) 8.21334e13i 0.934119i
\(344\) 4.69307e13 0.525273
\(345\) 0 0
\(346\) 7.34209e13 0.795978
\(347\) 8.36511e13i 0.892605i −0.894882 0.446303i \(-0.852741\pi\)
0.894882 0.446303i \(-0.147259\pi\)
\(348\) 0 0
\(349\) −6.38318e13 −0.659929 −0.329965 0.943993i \(-0.607037\pi\)
−0.329965 + 0.943993i \(0.607037\pi\)
\(350\) 3.42620e13 + 1.69949e13i 0.348689 + 0.172959i
\(351\) 0 0
\(352\) 2.24498e13i 0.221425i
\(353\) 3.55388e13i 0.345097i −0.985001 0.172549i \(-0.944800\pi\)
0.985001 0.172549i \(-0.0552002\pi\)
\(354\) 0 0
\(355\) 3.86700e13 1.64983e14i 0.364014 1.55304i
\(356\) 1.04836e14 0.971710
\(357\) 0 0
\(358\) 9.29229e13i 0.835153i
\(359\) 1.40868e14 1.24679 0.623393 0.781909i \(-0.285754\pi\)
0.623393 + 0.781909i \(0.285754\pi\)
\(360\) 0 0
\(361\) 2.11927e14 1.81927
\(362\) 8.24003e13i 0.696677i
\(363\) 0 0
\(364\) 1.45185e13 0.119087
\(365\) 2.41524e13 + 5.66104e12i 0.195141 + 0.0457388i
\(366\) 0 0
\(367\) 5.21259e13i 0.408686i −0.978899 0.204343i \(-0.934494\pi\)
0.978899 0.204343i \(-0.0655058\pi\)
\(368\) 2.06783e13i 0.159717i
\(369\) 0 0
\(370\) −2.56462e13 + 1.09417e14i −0.192271 + 0.820308i
\(371\) −7.08687e12 −0.0523477
\(372\) 0 0
\(373\) 1.12302e14i 0.805355i 0.915342 + 0.402677i \(0.131920\pi\)
−0.915342 + 0.402677i \(0.868080\pi\)
\(374\) −1.68078e14 −1.18773
\(375\) 0 0
\(376\) 4.52786e13 0.310713
\(377\) 1.17417e14i 0.794062i
\(378\) 0 0
\(379\) 8.23254e13 0.540777 0.270388 0.962751i \(-0.412848\pi\)
0.270388 + 0.962751i \(0.412848\pi\)
\(380\) 2.95917e13 1.26251e14i 0.191585 0.817382i
\(381\) 0 0
\(382\) 7.15132e12i 0.0449819i
\(383\) 1.86623e14i 1.15710i −0.815645 0.578552i \(-0.803618\pi\)
0.815645 0.578552i \(-0.196382\pi\)
\(384\) 0 0
\(385\) −1.11415e14 2.61143e13i −0.671287 0.157342i
\(386\) −1.03774e14 −0.616396
\(387\) 0 0
\(388\) 6.01810e13i 0.347444i
\(389\) 1.33809e14 0.761660 0.380830 0.924645i \(-0.375638\pi\)
0.380830 + 0.924645i \(0.375638\pi\)
\(390\) 0 0
\(391\) −1.54815e14 −0.856722
\(392\) 4.51609e13i 0.246428i
\(393\) 0 0
\(394\) 1.64857e14 0.874739
\(395\) −1.85534e13 + 7.91566e13i −0.0970820 + 0.414193i
\(396\) 0 0
\(397\) 3.34373e14i 1.70170i −0.525406 0.850851i \(-0.676087\pi\)
0.525406 0.850851i \(-0.323913\pi\)
\(398\) 2.21717e13i 0.111286i
\(399\) 0 0
\(400\) −4.58673e13 2.27514e13i −0.223962 0.111091i
\(401\) 1.88539e14 0.908043 0.454021 0.890991i \(-0.349989\pi\)
0.454021 + 0.890991i \(0.349989\pi\)
\(402\) 0 0
\(403\) 5.95401e13i 0.279018i
\(404\) 3.56942e12 0.0165006
\(405\) 0 0
\(406\) −1.58774e14 −0.714308
\(407\) 3.36261e14i 1.49248i
\(408\) 0 0
\(409\) −3.34993e14 −1.44730 −0.723649 0.690168i \(-0.757537\pi\)
−0.723649 + 0.690168i \(0.757537\pi\)
\(410\) 7.51010e13 + 1.76028e13i 0.320136 + 0.0750361i
\(411\) 0 0
\(412\) 8.23744e13i 0.341867i
\(413\) 6.05774e13i 0.248077i
\(414\) 0 0
\(415\) 1.59013e14 + 3.72709e13i 0.634117 + 0.148629i
\(416\) −1.94362e13 −0.0764889
\(417\) 0 0
\(418\) 3.87994e14i 1.48715i
\(419\) −1.56423e14 −0.591729 −0.295864 0.955230i \(-0.595608\pi\)
−0.295864 + 0.955230i \(0.595608\pi\)
\(420\) 0 0
\(421\) 5.29550e14 1.95144 0.975721 0.219015i \(-0.0702845\pi\)
0.975721 + 0.219015i \(0.0702845\pi\)
\(422\) 2.28971e14i 0.832840i
\(423\) 0 0
\(424\) 9.48736e12 0.0336227
\(425\) 1.70336e14 3.43401e14i 0.595892 1.20133i
\(426\) 0 0
\(427\) 2.24279e12i 0.00764602i
\(428\) 1.66058e14i 0.558880i
\(429\) 0 0
\(430\) 7.30826e13 3.11802e14i 0.239738 1.02283i
\(431\) −8.37388e13 −0.271208 −0.135604 0.990763i \(-0.543297\pi\)
−0.135604 + 0.990763i \(0.543297\pi\)
\(432\) 0 0
\(433\) 9.93342e13i 0.313628i 0.987628 + 0.156814i \(0.0501224\pi\)
−0.987628 + 0.156814i \(0.949878\pi\)
\(434\) −8.05112e13 −0.250994
\(435\) 0 0
\(436\) 1.59272e14 0.484133
\(437\) 3.57378e14i 1.07270i
\(438\) 0 0
\(439\) −5.35579e14 −1.56772 −0.783860 0.620938i \(-0.786752\pi\)
−0.783860 + 0.620938i \(0.786752\pi\)
\(440\) 1.49154e14 + 3.49598e13i 0.431165 + 0.101060i
\(441\) 0 0
\(442\) 1.45516e14i 0.410287i
\(443\) 4.64925e14i 1.29468i 0.762201 + 0.647341i \(0.224119\pi\)
−0.762201 + 0.647341i \(0.775881\pi\)
\(444\) 0 0
\(445\) 1.63256e14 6.96520e14i 0.443496 1.89214i
\(446\) −2.51313e14 −0.674332
\(447\) 0 0
\(448\) 2.62820e13i 0.0688065i
\(449\) −5.07045e14 −1.31127 −0.655634 0.755079i \(-0.727599\pi\)
−0.655634 + 0.755079i \(0.727599\pi\)
\(450\) 0 0
\(451\) −2.30800e14 −0.582459
\(452\) 1.29301e14i 0.322359i
\(453\) 0 0
\(454\) −1.67947e14 −0.408662
\(455\) 2.26088e13 9.64589e13i 0.0543520 0.231889i
\(456\) 0 0
\(457\) 5.05346e14i 1.18591i 0.805237 + 0.592953i \(0.202038\pi\)
−0.805237 + 0.592953i \(0.797962\pi\)
\(458\) 8.15524e13i 0.189094i
\(459\) 0 0
\(460\) 1.37384e14 + 3.22012e13i 0.311005 + 0.0728960i
\(461\) −7.16573e14 −1.60290 −0.801448 0.598064i \(-0.795937\pi\)
−0.801448 + 0.598064i \(0.795937\pi\)
\(462\) 0 0
\(463\) 1.12357e14i 0.245418i 0.992443 + 0.122709i \(0.0391581\pi\)
−0.992443 + 0.122709i \(0.960842\pi\)
\(464\) 2.12554e14 0.458797
\(465\) 0 0
\(466\) −4.13579e14 −0.871839
\(467\) 2.21056e14i 0.460532i −0.973128 0.230266i \(-0.926040\pi\)
0.973128 0.230266i \(-0.0739597\pi\)
\(468\) 0 0
\(469\) −7.57042e11 −0.00154053
\(470\) 7.05099e13 3.00825e14i 0.141812 0.605029i
\(471\) 0 0
\(472\) 8.10965e13i 0.159339i
\(473\) 9.58227e14i 1.86094i
\(474\) 0 0
\(475\) −7.92714e14 3.93208e14i −1.50419 0.746118i
\(476\) 1.96769e14 0.369078
\(477\) 0 0
\(478\) 9.74866e13i 0.178686i
\(479\) −9.23603e14 −1.67356 −0.836778 0.547543i \(-0.815563\pi\)
−0.836778 + 0.547543i \(0.815563\pi\)
\(480\) 0 0
\(481\) 2.91123e14 0.515560
\(482\) 4.84405e14i 0.848106i
\(483\) 0 0
\(484\) −1.66219e14 −0.284466
\(485\) 3.99835e14 + 9.37167e13i 0.676552 + 0.158576i
\(486\) 0 0
\(487\) 4.58584e14i 0.758594i −0.925275 0.379297i \(-0.876166\pi\)
0.925275 0.379297i \(-0.123834\pi\)
\(488\) 3.00248e12i 0.00491101i
\(489\) 0 0
\(490\) −3.00044e14 7.03267e13i −0.479850 0.112471i
\(491\) 2.27335e14 0.359516 0.179758 0.983711i \(-0.442469\pi\)
0.179758 + 0.983711i \(0.442469\pi\)
\(492\) 0 0
\(493\) 1.59136e15i 2.46099i
\(494\) −3.35912e14 −0.513721
\(495\) 0 0
\(496\) 1.07782e14 0.161212
\(497\) 5.93575e14i 0.878043i
\(498\) 0 0
\(499\) 6.20100e14 0.897240 0.448620 0.893723i \(-0.351916\pi\)
0.448620 + 0.893723i \(0.351916\pi\)
\(500\) −2.22585e14 + 2.69307e14i −0.318537 + 0.385401i
\(501\) 0 0
\(502\) 1.88337e14i 0.263673i
\(503\) 3.45337e14i 0.478211i 0.970994 + 0.239105i \(0.0768541\pi\)
−0.970994 + 0.239105i \(0.923146\pi\)
\(504\) 0 0
\(505\) 5.55847e12 2.37148e13i 0.00753100 0.0321304i
\(506\) −4.22208e14 −0.565846
\(507\) 0 0
\(508\) 4.16013e14i 0.545578i
\(509\) 1.29592e14 0.168125 0.0840624 0.996460i \(-0.473210\pi\)
0.0840624 + 0.996460i \(0.473210\pi\)
\(510\) 0 0
\(511\) 8.68955e13 0.110327
\(512\) 3.51844e13i 0.0441942i
\(513\) 0 0
\(514\) −4.05018e14 −0.497940
\(515\) −5.47285e14 1.28277e14i −0.665693 0.156031i
\(516\) 0 0
\(517\) 9.24496e14i 1.10080i
\(518\) 3.93662e14i 0.463778i
\(519\) 0 0
\(520\) −3.02670e13 + 1.29132e14i −0.0349101 + 0.148941i
\(521\) −8.63535e14 −0.985536 −0.492768 0.870161i \(-0.664015\pi\)
−0.492768 + 0.870161i \(0.664015\pi\)
\(522\) 0 0
\(523\) 1.76403e15i 1.97128i 0.168870 + 0.985638i \(0.445988\pi\)
−0.168870 + 0.985638i \(0.554012\pi\)
\(524\) 4.78612e14 0.529251
\(525\) 0 0
\(526\) 6.23789e14 0.675485
\(527\) 8.06948e14i 0.864744i
\(528\) 0 0
\(529\) 5.63918e14 0.591848
\(530\) 1.47742e13 6.30329e13i 0.0153457 0.0654711i
\(531\) 0 0
\(532\) 4.54226e14i 0.462123i
\(533\) 1.99819e14i 0.201204i
\(534\) 0 0
\(535\) 1.10327e15 + 2.58593e14i 1.08827 + 0.255077i
\(536\) 1.01347e12 0.000989475
\(537\) 0 0
\(538\) 1.39023e14i 0.132979i
\(539\) 9.22093e14 0.873045
\(540\) 0 0
\(541\) −5.96542e14 −0.553421 −0.276711 0.960953i \(-0.589244\pi\)
−0.276711 + 0.960953i \(0.589244\pi\)
\(542\) 8.57223e13i 0.0787223i
\(543\) 0 0
\(544\) −2.63419e14 −0.237058
\(545\) 2.48026e14 1.05819e15i 0.220962 0.942717i
\(546\) 0 0
\(547\) 1.72805e15i 1.50878i −0.656426 0.754390i \(-0.727933\pi\)
0.656426 0.754390i \(-0.272067\pi\)
\(548\) 6.02927e14i 0.521161i
\(549\) 0 0
\(550\) 4.64538e14 9.36517e14i 0.393574 0.793452i
\(551\) 3.67352e15 3.08141
\(552\) 0 0
\(553\) 2.84790e14i 0.234173i
\(554\) −4.16328e14 −0.338947
\(555\) 0 0
\(556\) −2.43923e14 −0.194689
\(557\) 1.11647e15i 0.882353i 0.897420 + 0.441177i \(0.145439\pi\)
−0.897420 + 0.441177i \(0.854561\pi\)
\(558\) 0 0
\(559\) −8.29600e14 −0.642841
\(560\) −1.74614e14 4.09276e13i −0.133982 0.0314038i
\(561\) 0 0
\(562\) 9.30471e14i 0.700089i
\(563\) 3.81802e13i 0.0284474i −0.999899 0.0142237i \(-0.995472\pi\)
0.999899 0.0142237i \(-0.00452769\pi\)
\(564\) 0 0
\(565\) −8.59058e14 2.01353e14i −0.627705 0.147127i
\(566\) 2.62744e14 0.190127
\(567\) 0 0
\(568\) 7.94634e14i 0.563964i
\(569\) −8.00530e14 −0.562678 −0.281339 0.959608i \(-0.590779\pi\)
−0.281339 + 0.959608i \(0.590779\pi\)
\(570\) 0 0
\(571\) −1.20542e12 −0.000831073 −0.000415536 1.00000i \(-0.500132\pi\)
−0.000415536 1.00000i \(0.500132\pi\)
\(572\) 3.96848e14i 0.270985i
\(573\) 0 0
\(574\) 2.70199e14 0.180995
\(575\) 4.27881e14 8.62616e14i 0.283890 0.572327i
\(576\) 0 0
\(577\) 1.11237e15i 0.724075i −0.932163 0.362038i \(-0.882081\pi\)
0.932163 0.362038i \(-0.117919\pi\)
\(578\) 8.75477e14i 0.564471i
\(579\) 0 0
\(580\) 3.30999e14 1.41218e15i 0.209398 0.893382i
\(581\) 5.72099e14 0.358511
\(582\) 0 0
\(583\) 1.93712e14i 0.119119i
\(584\) −1.16329e14 −0.0708627
\(585\) 0 0
\(586\) −2.78559e14 −0.166525
\(587\) 1.41072e15i 0.835474i −0.908568 0.417737i \(-0.862823\pi\)
0.908568 0.417737i \(-0.137177\pi\)
\(588\) 0 0
\(589\) 1.86278e15 1.08275
\(590\) 5.38795e14 + 1.26287e14i 0.310268 + 0.0727233i
\(591\) 0 0
\(592\) 5.27005e14i 0.297883i
\(593\) 2.95927e15i 1.65723i 0.559816 + 0.828617i \(0.310872\pi\)
−0.559816 + 0.828617i \(0.689128\pi\)
\(594\) 0 0
\(595\) 3.06418e14 1.30731e15i 0.168450 0.718679i
\(596\) −1.22489e15 −0.667179
\(597\) 0 0
\(598\) 3.65533e14i 0.195465i
\(599\) 7.61671e14 0.403571 0.201785 0.979430i \(-0.435326\pi\)
0.201785 + 0.979430i \(0.435326\pi\)
\(600\) 0 0
\(601\) −5.33224e14 −0.277396 −0.138698 0.990335i \(-0.544292\pi\)
−0.138698 + 0.990335i \(0.544292\pi\)
\(602\) 1.12180e15i 0.578275i
\(603\) 0 0
\(604\) 4.80301e13 0.0243114
\(605\) −2.58844e14 + 1.10434e15i −0.129832 + 0.553921i
\(606\) 0 0
\(607\) 2.82058e15i 1.38931i −0.719341 0.694657i \(-0.755556\pi\)
0.719341 0.694657i \(-0.244444\pi\)
\(608\) 6.08083e14i 0.296820i
\(609\) 0 0
\(610\) −1.99481e13 4.67560e12i −0.00956285 0.00224142i
\(611\) −8.00396e14 −0.380258
\(612\) 0 0
\(613\) 3.94879e15i 1.84260i 0.388850 + 0.921301i \(0.372873\pi\)
−0.388850 + 0.921301i \(0.627127\pi\)
\(614\) 2.11065e15 0.976089
\(615\) 0 0
\(616\) 5.36625e14 0.243768
\(617\) 4.71962e14i 0.212490i −0.994340 0.106245i \(-0.966117\pi\)
0.994340 0.106245i \(-0.0338828\pi\)
\(618\) 0 0
\(619\) −6.15999e14 −0.272447 −0.136223 0.990678i \(-0.543496\pi\)
−0.136223 + 0.990678i \(0.543496\pi\)
\(620\) 1.67844e14 7.16093e14i 0.0735785 0.313917i
\(621\) 0 0
\(622\) 6.84293e14i 0.294710i
\(623\) 2.50594e15i 1.06976i
\(624\) 0 0
\(625\) 1.44263e15 + 1.89820e15i 0.605081 + 0.796164i
\(626\) 9.10014e14 0.378346
\(627\) 0 0
\(628\) 1.15251e15i 0.470833i
\(629\) 3.94560e15 1.59784
\(630\) 0 0
\(631\) 7.19339e14 0.286267 0.143134 0.989703i \(-0.454282\pi\)
0.143134 + 0.989703i \(0.454282\pi\)
\(632\) 3.81255e14i 0.150408i
\(633\) 0 0
\(634\) 3.40326e15 1.31949
\(635\) −2.76394e15 6.47836e14i −1.06236 0.249006i
\(636\) 0 0
\(637\) 7.98316e14i 0.301584i
\(638\) 4.33992e15i 1.62543i
\(639\) 0 0
\(640\) 2.33761e14 + 5.47907e13i 0.0860561 + 0.0201705i
\(641\) 2.58937e15 0.945094 0.472547 0.881306i \(-0.343335\pi\)
0.472547 + 0.881306i \(0.343335\pi\)
\(642\) 0 0
\(643\) 9.64667e14i 0.346112i 0.984912 + 0.173056i \(0.0553642\pi\)
−0.984912 + 0.173056i \(0.944636\pi\)
\(644\) 4.94280e14 0.175833
\(645\) 0 0
\(646\) −4.55262e15 −1.59214
\(647\) 1.46486e15i 0.507951i −0.967211 0.253976i \(-0.918262\pi\)
0.967211 0.253976i \(-0.0817383\pi\)
\(648\) 0 0
\(649\) −1.65582e15 −0.564506
\(650\) 8.10803e14 + 4.02180e14i 0.274089 + 0.135956i
\(651\) 0 0
\(652\) 1.30030e15i 0.432198i
\(653\) 6.05527e14i 0.199577i −0.995009 0.0997886i \(-0.968183\pi\)
0.995009 0.0997886i \(-0.0318166\pi\)
\(654\) 0 0
\(655\) 7.45317e14 3.17984e15i 0.241554 1.03057i
\(656\) −3.61721e14 −0.116253
\(657\) 0 0
\(658\) 1.08231e15i 0.342065i
\(659\) −3.25431e15 −1.01998 −0.509988 0.860182i \(-0.670350\pi\)
−0.509988 + 0.860182i \(0.670350\pi\)
\(660\) 0 0
\(661\) 3.71162e15 1.14408 0.572038 0.820227i \(-0.306153\pi\)
0.572038 + 0.820227i \(0.306153\pi\)
\(662\) 3.94660e15i 1.20644i
\(663\) 0 0
\(664\) −7.65882e14 −0.230270
\(665\) −3.01782e15 7.07342e14i −0.899859 0.210916i
\(666\) 0 0
\(667\) 3.99746e15i 1.17244i
\(668\) 6.71031e14i 0.195196i
\(669\) 0 0
\(670\) 1.57822e12 6.73338e12i 0.000451604 0.00192673i
\(671\) 6.13044e13 0.0173987
\(672\) 0 0
\(673\) 9.34378e14i 0.260879i 0.991456 + 0.130440i \(0.0416389\pi\)
−0.991456 + 0.130440i \(0.958361\pi\)
\(674\) −1.45741e15 −0.403600
\(675\) 0 0
\(676\) −1.49160e15 −0.406391
\(677\) 4.76512e15i 1.28776i 0.765125 + 0.643882i \(0.222677\pi\)
−0.765125 + 0.643882i \(0.777323\pi\)
\(678\) 0 0
\(679\) 1.43853e15 0.382503
\(680\) −4.10209e14 + 1.75013e15i −0.108195 + 0.461605i
\(681\) 0 0
\(682\) 2.20069e15i 0.571144i
\(683\) 2.09026e14i 0.0538130i −0.999638 0.0269065i \(-0.991434\pi\)
0.999638 0.0269065i \(-0.00856564\pi\)
\(684\) 0 0
\(685\) −4.00577e15 9.38906e14i −1.01482 0.237861i
\(686\) −2.62827e15 −0.660522
\(687\) 0 0
\(688\) 1.50178e15i 0.371424i
\(689\) −1.67709e14 −0.0411483
\(690\) 0 0
\(691\) −3.22483e15 −0.778712 −0.389356 0.921087i \(-0.627302\pi\)
−0.389356 + 0.921087i \(0.627302\pi\)
\(692\) 2.34947e15i 0.562842i
\(693\) 0 0
\(694\) 2.67683e15 0.631167
\(695\) −3.79849e14 + 1.62060e15i −0.0888575 + 0.379104i
\(696\) 0 0
\(697\) 2.70815e15i 0.623580i
\(698\) 2.04262e15i 0.466641i
\(699\) 0 0
\(700\) −5.43836e14 + 1.09638e15i −0.122301 + 0.246560i
\(701\) 1.50206e13 0.00335149 0.00167575 0.999999i \(-0.499467\pi\)
0.00167575 + 0.999999i \(0.499467\pi\)
\(702\) 0 0
\(703\) 9.10811e15i 2.00066i
\(704\) −7.18393e14 −0.156571
\(705\) 0 0
\(706\) 1.13724e15 0.244021
\(707\) 8.53211e13i 0.0181656i
\(708\) 0 0
\(709\) −2.05916e14 −0.0431654 −0.0215827 0.999767i \(-0.506871\pi\)
−0.0215827 + 0.999767i \(0.506871\pi\)
\(710\) 5.27945e15 + 1.23744e15i 1.09817 + 0.257397i
\(711\) 0 0
\(712\) 3.35476e15i 0.687103i
\(713\) 2.02704e15i 0.411974i
\(714\) 0 0
\(715\) −2.63661e15 6.17990e14i −0.527670 0.123680i
\(716\) −2.97353e15 −0.590542
\(717\) 0 0
\(718\) 4.50776e15i 0.881611i
\(719\) 1.06708e15 0.207104 0.103552 0.994624i \(-0.466979\pi\)
0.103552 + 0.994624i \(0.466979\pi\)
\(720\) 0 0
\(721\) −1.96902e15 −0.376363
\(722\) 6.78168e15i 1.28642i
\(723\) 0 0
\(724\) −2.63681e15 −0.492625
\(725\) −8.86693e15 4.39824e15i −1.64405 0.815492i
\(726\) 0 0
\(727\) 3.85905e15i 0.704759i −0.935857 0.352380i \(-0.885373\pi\)
0.935857 0.352380i \(-0.114627\pi\)
\(728\) 4.64591e14i 0.0842070i
\(729\) 0 0
\(730\) −1.81153e14 + 7.72876e14i −0.0323422 + 0.137986i
\(731\) −1.12436e16 −1.99232
\(732\) 0 0
\(733\) 1.09224e15i 0.190653i −0.995446 0.0953267i \(-0.969610\pi\)
0.995446 0.0953267i \(-0.0303896\pi\)
\(734\) 1.66803e15 0.288985
\(735\) 0 0
\(736\) −6.61704e14 −0.112937
\(737\) 2.06930e13i 0.00350552i
\(738\) 0 0
\(739\) −4.82140e15 −0.804691 −0.402345 0.915488i \(-0.631805\pi\)
−0.402345 + 0.915488i \(0.631805\pi\)
\(740\) −3.50136e15 8.20677e14i −0.580045 0.135956i
\(741\) 0 0
\(742\) 2.26780e14i 0.0370154i
\(743\) 2.51982e15i 0.408255i 0.978944 + 0.204128i \(0.0654357\pi\)
−0.978944 + 0.204128i \(0.934564\pi\)
\(744\) 0 0
\(745\) −1.90746e15 + 8.13802e15i −0.304505 + 1.29915i
\(746\) −3.59365e15 −0.569472
\(747\) 0 0
\(748\) 5.37848e15i 0.839849i
\(749\) 3.96934e15 0.615273
\(750\) 0 0
\(751\) 7.47268e15 1.14145 0.570725 0.821142i \(-0.306662\pi\)
0.570725 + 0.821142i \(0.306662\pi\)
\(752\) 1.44891e15i 0.219707i
\(753\) 0 0
\(754\) −3.75735e15 −0.561487
\(755\) 7.47948e13 3.19106e14i 0.0110959 0.0473399i
\(756\) 0 0
\(757\) 3.09514e15i 0.452535i 0.974065 + 0.226268i \(0.0726524\pi\)
−0.974065 + 0.226268i \(0.927348\pi\)
\(758\) 2.63441e15i 0.382387i
\(759\) 0 0
\(760\) 4.04003e15 + 9.46936e14i 0.577976 + 0.135471i
\(761\) 6.77183e15 0.961812 0.480906 0.876772i \(-0.340308\pi\)
0.480906 + 0.876772i \(0.340308\pi\)
\(762\) 0 0
\(763\) 3.80714e15i 0.532984i
\(764\) 2.28842e14 0.0318070
\(765\) 0 0
\(766\) 5.97194e15 0.818196
\(767\) 1.43355e15i 0.195002i
\(768\) 0 0
\(769\) 1.04403e16 1.39997 0.699984 0.714159i \(-0.253190\pi\)
0.699984 + 0.714159i \(0.253190\pi\)
\(770\) 8.35657e14 3.56527e15i 0.111257 0.474672i
\(771\) 0 0
\(772\) 3.32078e15i 0.435858i
\(773\) 1.34162e16i 1.74841i −0.485558 0.874204i \(-0.661384\pi\)
0.485558 0.874204i \(-0.338616\pi\)
\(774\) 0 0
\(775\) −4.49626e15 2.23027e15i −0.577686 0.286548i
\(776\) −1.92579e15 −0.245680
\(777\) 0 0
\(778\) 4.28187e15i 0.538575i
\(779\) −6.25155e15 −0.780785
\(780\) 0 0
\(781\) −1.62248e16 −1.99801
\(782\) 4.95407e15i 0.605794i
\(783\) 0 0
\(784\) 1.44515e15 0.174251
\(785\) 7.65713e15 + 1.79474e15i 0.916818 + 0.214891i
\(786\) 0 0
\(787\) 1.58544e16i 1.87193i −0.352097 0.935964i \(-0.614531\pi\)
0.352097 0.935964i \(-0.385469\pi\)
\(788\) 5.27543e15i 0.618534i
\(789\) 0 0
\(790\) −2.53301e15 5.93708e14i −0.292879 0.0686473i
\(791\) −3.09072e15 −0.354886
\(792\) 0 0
\(793\) 5.30752e13i 0.00601021i
\(794\) 1.06999e16 1.20329
\(795\) 0 0
\(796\) −7.09495e14 −0.0786914
\(797\) 2.54021e14i 0.0279800i −0.999902 0.0139900i \(-0.995547\pi\)
0.999902 0.0139900i \(-0.00445331\pi\)
\(798\) 0 0
\(799\) −1.08478e16 −1.17851
\(800\) 7.28046e14 1.46775e15i 0.0785532 0.158365i
\(801\) 0 0
\(802\) 6.03324e15i 0.642083i
\(803\) 2.37520e15i 0.251053i
\(804\) 0 0
\(805\) 7.69716e14 3.28393e15i 0.0802515 0.342387i
\(806\) −1.90528e15 −0.197295
\(807\) 0 0
\(808\) 1.14221e14i 0.0116677i
\(809\) −1.13120e16 −1.14768 −0.573842 0.818966i \(-0.694548\pi\)
−0.573842 + 0.818966i \(0.694548\pi\)
\(810\) 0 0
\(811\) 1.05859e16 1.05953 0.529767 0.848143i \(-0.322279\pi\)
0.529767 + 0.848143i \(0.322279\pi\)
\(812\) 5.08076e15i 0.505092i
\(813\) 0 0
\(814\) 1.07604e16 1.05534
\(815\) 8.63905e15 + 2.02489e15i 0.841587 + 0.197258i
\(816\) 0 0
\(817\) 2.59549e16i 2.49459i
\(818\) 1.07198e16i 1.02339i
\(819\) 0 0
\(820\) −5.63290e14 + 2.40323e15i −0.0530586 + 0.226370i
\(821\) 2.04679e16 1.91508 0.957539 0.288303i \(-0.0930911\pi\)
0.957539 + 0.288303i \(0.0930911\pi\)
\(822\) 0 0
\(823\) 1.10300e16i 1.01830i −0.860677 0.509151i \(-0.829959\pi\)
0.860677 0.509151i \(-0.170041\pi\)
\(824\) 2.63598e15 0.241737
\(825\) 0 0
\(826\) 1.93848e15 0.175417
\(827\) 8.21173e15i 0.738167i −0.929396 0.369083i \(-0.879672\pi\)
0.929396 0.369083i \(-0.120328\pi\)
\(828\) 0 0
\(829\) −3.82596e15 −0.339383 −0.169691 0.985497i \(-0.554277\pi\)
−0.169691 + 0.985497i \(0.554277\pi\)
\(830\) −1.19267e15 + 5.08843e15i −0.105097 + 0.448388i
\(831\) 0 0
\(832\) 6.21959e14i 0.0540858i
\(833\) 1.08196e16i 0.934681i
\(834\) 0 0
\(835\) −4.45825e15 1.04496e15i −0.380092 0.0890890i
\(836\) −1.24158e16 −1.05158
\(837\) 0 0
\(838\) 5.00553e15i 0.418415i
\(839\) −2.86284e15 −0.237742 −0.118871 0.992910i \(-0.537928\pi\)
−0.118871 + 0.992910i \(0.537928\pi\)
\(840\) 0 0
\(841\) 2.88898e16 2.36792
\(842\) 1.69456e16i 1.37988i
\(843\) 0 0
\(844\) −7.32707e15 −0.588907
\(845\) −2.32278e15 + 9.90998e15i −0.185480 + 0.791336i
\(846\) 0 0
\(847\) 3.97319e15i 0.313170i
\(848\) 3.03596e14i 0.0237749i
\(849\) 0 0
\(850\) 1.09888e16 + 5.45076e15i 0.849469 + 0.421360i
\(851\) 9.91126e15 0.761231
\(852\) 0 0
\(853\) 8.25498e15i 0.625888i −0.949772 0.312944i \(-0.898685\pi\)
0.949772 0.312944i \(-0.101315\pi\)
\(854\) −7.17693e13 −0.00540655
\(855\) 0 0
\(856\) −5.31385e15 −0.395188
\(857\) 7.60811e15i 0.562189i 0.959680 + 0.281094i \(0.0906974\pi\)
−0.959680 + 0.281094i \(0.909303\pi\)
\(858\) 0 0
\(859\) 4.89672e15 0.357226 0.178613 0.983919i \(-0.442839\pi\)
0.178613 + 0.983919i \(0.442839\pi\)
\(860\) 9.97765e15 + 2.33864e15i 0.723247 + 0.169521i
\(861\) 0 0
\(862\) 2.67964e15i 0.191773i
\(863\) 2.33733e16i 1.66212i −0.556186 0.831058i \(-0.687736\pi\)
0.556186 0.831058i \(-0.312264\pi\)
\(864\) 0 0
\(865\) 1.56096e16 + 3.65870e15i 1.09598 + 0.256885i
\(866\) −3.17869e15 −0.221769
\(867\) 0 0
\(868\) 2.57636e15i 0.177479i
\(869\) 7.78444e15 0.532867
\(870\) 0 0
\(871\) −1.79153e13 −0.00121094
\(872\) 5.09671e15i 0.342334i
\(873\) 0 0
\(874\) −1.14361e16 −0.758516
\(875\) 6.43735e15 + 5.32052e15i 0.424290 + 0.350679i
\(876\) 0 0
\(877\) 2.29255e16i 1.49218i 0.665846 + 0.746089i \(0.268071\pi\)
−0.665846 + 0.746089i \(0.731929\pi\)
\(878\) 1.71385e16i 1.10855i
\(879\) 0 0
\(880\) −1.11871e15 + 4.77291e15i −0.0714603 + 0.304880i
\(881\) 4.14708e15 0.263254 0.131627 0.991299i \(-0.457980\pi\)
0.131627 + 0.991299i \(0.457980\pi\)
\(882\) 0 0
\(883\) 1.24171e15i 0.0778461i −0.999242 0.0389231i \(-0.987607\pi\)
0.999242 0.0389231i \(-0.0123927\pi\)
\(884\) 4.65650e15 0.290117
\(885\) 0 0
\(886\) −1.48776e16 −0.915478
\(887\) 7.53940e15i 0.461060i −0.973065 0.230530i \(-0.925954\pi\)
0.973065 0.230530i \(-0.0740459\pi\)
\(888\) 0 0
\(889\) −9.94412e15 −0.600629
\(890\) 2.22886e16 + 5.22419e15i 1.33795 + 0.313599i
\(891\) 0 0
\(892\) 8.04203e15i 0.476825i
\(893\) 2.50413e16i 1.47562i
\(894\) 0 0
\(895\) −4.63052e15 + 1.97558e16i −0.269528 + 1.14992i
\(896\) 8.41024e14 0.0486535
\(897\) 0 0
\(898\) 1.62254e16i 0.927207i
\(899\) 2.08362e16 1.18342
\(900\) 0 0
\(901\) −2.27297e15 −0.127528
\(902\) 7.38561e15i 0.411861i
\(903\) 0 0
\(904\) 4.13762e15 0.227942
\(905\) −4.10616e15 + 1.75186e16i −0.224838 + 0.959253i
\(906\) 0 0
\(907\) 1.84213e16i 0.996505i −0.867032 0.498253i \(-0.833975\pi\)
0.867032 0.498253i \(-0.166025\pi\)
\(908\) 5.37430e15i 0.288968i
\(909\) 0 0
\(910\) 3.08669e15 + 7.23483e14i 0.163970 + 0.0384327i
\(911\) 1.91486e16 1.01108 0.505539 0.862804i \(-0.331294\pi\)
0.505539 + 0.862804i \(0.331294\pi\)
\(912\) 0 0
\(913\) 1.56377e16i 0.815802i
\(914\) −1.61711e16 −0.838562
\(915\) 0 0
\(916\) 2.60968e15 0.133709
\(917\) 1.14404e16i 0.582654i
\(918\) 0 0
\(919\) 2.24328e16 1.12888 0.564440 0.825474i \(-0.309092\pi\)
0.564440 + 0.825474i \(0.309092\pi\)
\(920\) −1.03044e15 + 4.39628e15i −0.0515452 + 0.219914i
\(921\) 0 0
\(922\) 2.29303e16i 1.13342i
\(923\) 1.40469e16i 0.690192i
\(924\) 0 0
\(925\) −1.09050e16 + 2.19846e16i −0.529474 + 1.06743i
\(926\) −3.59543e15 −0.173536
\(927\) 0 0
\(928\) 6.80173e15i 0.324419i
\(929\) −3.69311e16 −1.75108 −0.875540 0.483145i \(-0.839494\pi\)
−0.875540 + 0.483145i \(0.839494\pi\)
\(930\) 0 0
\(931\) 2.49762e16 1.17031
\(932\) 1.32345e16i 0.616483i
\(933\) 0 0
\(934\) 7.07380e15 0.325646
\(935\) −3.57340e16 8.37563e15i −1.63538 0.383313i
\(936\) 0 0
\(937\) 2.97721e15i 0.134661i −0.997731 0.0673306i \(-0.978552\pi\)
0.997731 0.0673306i \(-0.0214482\pi\)
\(938\) 2.42254e13i 0.00108932i
\(939\) 0 0
\(940\) 9.62641e15 + 2.25632e15i 0.427820 + 0.100276i
\(941\) 1.24483e16 0.550004 0.275002 0.961444i \(-0.411321\pi\)
0.275002 + 0.961444i \(0.411321\pi\)
\(942\) 0 0
\(943\) 6.80281e15i 0.297081i
\(944\) −2.59509e15 −0.112669
\(945\) 0 0
\(946\) −3.06633e16 −1.31588
\(947\) 3.25711e16i 1.38966i 0.719175 + 0.694829i \(0.244520\pi\)
−0.719175 + 0.694829i \(0.755480\pi\)
\(948\) 0 0
\(949\) 2.05637e15 0.0867234
\(950\) 1.25827e16 2.53669e16i 0.527585 1.06362i
\(951\) 0 0
\(952\) 6.29661e15i 0.260978i
\(953\) 8.18081e15i 0.337121i −0.985691 0.168560i \(-0.946088\pi\)
0.985691 0.168560i \(-0.0539118\pi\)
\(954\) 0 0
\(955\) 3.56364e14 1.52040e15i 0.0145169 0.0619354i
\(956\) 3.11957e15 0.126350
\(957\) 0 0
\(958\) 2.95553e16i 1.18338i
\(959\) −1.44120e16 −0.573748
\(960\) 0 0
\(961\) −1.48428e16 −0.584169
\(962\) 9.31594e15i 0.364556i
\(963\) 0 0
\(964\) 1.55010e16 0.599701
\(965\) −2.20629e16 5.17127e15i −0.848714 0.198929i
\(966\) 0 0
\(967\) 2.01660e16i 0.766961i 0.923549 + 0.383480i \(0.125275\pi\)
−0.923549 + 0.383480i \(0.874725\pi\)
\(968\) 5.31900e15i 0.201148i
\(969\) 0 0
\(970\) −2.99893e15 + 1.27947e16i −0.112130 + 0.478395i
\(971\) 2.84728e16 1.05858 0.529291 0.848440i \(-0.322458\pi\)
0.529291 + 0.848440i \(0.322458\pi\)
\(972\) 0 0
\(973\) 5.83058e15i 0.214334i
\(974\) 1.46747e16 0.536407
\(975\) 0 0
\(976\) 9.60793e13 0.00347261
\(977\) 1.91832e15i 0.0689448i 0.999406 + 0.0344724i \(0.0109751\pi\)
−0.999406 + 0.0344724i \(0.989025\pi\)
\(978\) 0 0
\(979\) −6.84974e16 −2.43427
\(980\) 2.25045e15 9.60139e15i 0.0795292 0.339306i
\(981\) 0 0
\(982\) 7.27472e15i 0.254216i
\(983\) 2.65744e16i 0.923463i −0.887020 0.461732i \(-0.847228\pi\)
0.887020 0.461732i \(-0.152772\pi\)
\(984\) 0 0
\(985\) 3.50493e16 + 8.21514e15i 1.20443 + 0.282303i
\(986\) −5.09234e16 −1.74018
\(987\) 0 0
\(988\) 1.07492e16i 0.363255i
\(989\) −2.82436e16 −0.949164
\(990\) 0 0
\(991\) −4.40916e16 −1.46538 −0.732690 0.680562i \(-0.761736\pi\)
−0.732690 + 0.680562i \(0.761736\pi\)
\(992\) 3.44903e15i 0.113994i
\(993\) 0 0
\(994\) 1.89944e16 0.620870
\(995\) −1.10486e15 + 4.71379e15i −0.0359153 + 0.153230i
\(996\) 0 0
\(997\) 3.52203e16i 1.13232i 0.824295 + 0.566161i \(0.191572\pi\)
−0.824295 + 0.566161i \(0.808428\pi\)
\(998\) 1.98432e16i 0.634444i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 90.12.c.b.19.5 6
3.2 odd 2 10.12.b.a.9.1 6
5.4 even 2 inner 90.12.c.b.19.2 6
12.11 even 2 80.12.c.c.49.5 6
15.2 even 4 50.12.a.j.1.1 3
15.8 even 4 50.12.a.i.1.3 3
15.14 odd 2 10.12.b.a.9.6 yes 6
60.59 even 2 80.12.c.c.49.2 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
10.12.b.a.9.1 6 3.2 odd 2
10.12.b.a.9.6 yes 6 15.14 odd 2
50.12.a.i.1.3 3 15.8 even 4
50.12.a.j.1.1 3 15.2 even 4
80.12.c.c.49.2 6 60.59 even 2
80.12.c.c.49.5 6 12.11 even 2
90.12.c.b.19.2 6 5.4 even 2 inner
90.12.c.b.19.5 6 1.1 even 1 trivial