Properties

Label 50.12.a.i.1.3
Level $50$
Weight $12$
Character 50.1
Self dual yes
Analytic conductor $38.417$
Analytic rank $1$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [50,12,Mod(1,50)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(50, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0])) N = Newforms(chi, 12, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("50.1"); S:= CuspForms(chi, 12); N := Newforms(S);
 
Level: \( N \) \(=\) \( 50 = 2 \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 12 \)
Character orbit: \([\chi]\) \(=\) 50.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [3,-96,-266] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(38.4171590280\)
Analytic rank: \(1\)
Dimension: \(3\)
Coefficient field: \(\mathbb{Q}[x]/(x^{3} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 3779x - 3381 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{4}\cdot 5^{3} \)
Twist minimal: no (minimal twist has level 10)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(62.4146\) of defining polynomial
Character \(\chi\) \(=\) 50.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-32.0000 q^{2} +532.146 q^{3} +1024.00 q^{4} -17028.7 q^{6} +24477.0 q^{7} -32768.0 q^{8} +106033. q^{9} -669055. q^{11} +544918. q^{12} -579245. q^{13} -783265. q^{14} +1.04858e6 q^{16} -7.85051e6 q^{17} -3.39304e6 q^{18} -1.81223e7 q^{19} +1.30254e7 q^{21} +2.14098e7 q^{22} +1.97203e7 q^{23} -1.74374e7 q^{24} +1.85358e7 q^{26} -3.78433e7 q^{27} +2.50645e7 q^{28} +2.02707e8 q^{29} +1.02789e8 q^{31} -3.35544e7 q^{32} -3.56035e8 q^{33} +2.51216e8 q^{34} +1.08577e8 q^{36} -5.02591e8 q^{37} +5.79913e8 q^{38} -3.08243e8 q^{39} +3.44964e8 q^{41} -4.16811e8 q^{42} -1.43221e9 q^{43} -6.85112e8 q^{44} -6.31051e8 q^{46} -1.38179e9 q^{47} +5.57996e8 q^{48} -1.37820e9 q^{49} -4.17762e9 q^{51} -5.93147e8 q^{52} +2.89531e8 q^{53} +1.21098e9 q^{54} -8.02063e8 q^{56} -9.64371e9 q^{57} -6.48664e9 q^{58} -2.47487e9 q^{59} +9.16284e7 q^{61} -3.28926e9 q^{62} +2.59536e9 q^{63} +1.07374e9 q^{64} +1.13931e10 q^{66} +3.09287e7 q^{67} -8.03893e9 q^{68} +1.04941e10 q^{69} +2.42503e10 q^{71} -3.47448e9 q^{72} +3.55008e9 q^{73} +1.60829e10 q^{74} -1.85572e10 q^{76} -1.63765e10 q^{77} +9.86377e9 q^{78} -1.16350e10 q^{79} -3.89215e10 q^{81} -1.10389e10 q^{82} -2.33729e10 q^{83} +1.33380e10 q^{84} +4.58307e10 q^{86} +1.07870e11 q^{87} +2.19236e10 q^{88} -1.02379e11 q^{89} -1.41782e10 q^{91} +2.01936e10 q^{92} +5.46989e10 q^{93} +4.42174e10 q^{94} -1.78559e10 q^{96} -5.87705e10 q^{97} +4.41025e10 q^{98} -7.09416e10 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q - 96 q^{2} - 266 q^{3} + 3072 q^{4} + 8512 q^{6} - 33218 q^{7} - 98304 q^{8} + 248011 q^{9} - 321364 q^{11} - 272384 q^{12} - 1394556 q^{13} + 1062976 q^{14} + 3145728 q^{16} - 3520128 q^{17} - 7936352 q^{18}+ \cdots - 260390562868 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −32.0000 −0.707107
\(3\) 532.146 1.26434 0.632170 0.774830i \(-0.282164\pi\)
0.632170 + 0.774830i \(0.282164\pi\)
\(4\) 1024.00 0.500000
\(5\) 0 0
\(6\) −17028.7 −0.894024
\(7\) 24477.0 0.550452 0.275226 0.961380i \(-0.411247\pi\)
0.275226 + 0.961380i \(0.411247\pi\)
\(8\) −32768.0 −0.353553
\(9\) 106033. 0.598557
\(10\) 0 0
\(11\) −669055. −1.25257 −0.626285 0.779594i \(-0.715425\pi\)
−0.626285 + 0.779594i \(0.715425\pi\)
\(12\) 544918. 0.632170
\(13\) −579245. −0.432687 −0.216343 0.976317i \(-0.569413\pi\)
−0.216343 + 0.976317i \(0.569413\pi\)
\(14\) −783265. −0.389228
\(15\) 0 0
\(16\) 1.04858e6 0.250000
\(17\) −7.85051e6 −1.34100 −0.670500 0.741909i \(-0.733920\pi\)
−0.670500 + 0.741909i \(0.733920\pi\)
\(18\) −3.39304e6 −0.423244
\(19\) −1.81223e7 −1.67907 −0.839534 0.543307i \(-0.817172\pi\)
−0.839534 + 0.543307i \(0.817172\pi\)
\(20\) 0 0
\(21\) 1.30254e7 0.695959
\(22\) 2.14098e7 0.885701
\(23\) 1.97203e7 0.638868 0.319434 0.947609i \(-0.396507\pi\)
0.319434 + 0.947609i \(0.396507\pi\)
\(24\) −1.74374e7 −0.447012
\(25\) 0 0
\(26\) 1.85358e7 0.305956
\(27\) −3.78433e7 −0.507561
\(28\) 2.50645e7 0.275226
\(29\) 2.02707e8 1.83519 0.917594 0.397518i \(-0.130128\pi\)
0.917594 + 0.397518i \(0.130128\pi\)
\(30\) 0 0
\(31\) 1.02789e8 0.644850 0.322425 0.946595i \(-0.395502\pi\)
0.322425 + 0.946595i \(0.395502\pi\)
\(32\) −3.35544e7 −0.176777
\(33\) −3.56035e8 −1.58368
\(34\) 2.51216e8 0.948231
\(35\) 0 0
\(36\) 1.08577e8 0.299278
\(37\) −5.02591e8 −1.19153 −0.595766 0.803158i \(-0.703151\pi\)
−0.595766 + 0.803158i \(0.703151\pi\)
\(38\) 5.79913e8 1.18728
\(39\) −3.08243e8 −0.547063
\(40\) 0 0
\(41\) 3.44964e8 0.465011 0.232505 0.972595i \(-0.425308\pi\)
0.232505 + 0.972595i \(0.425308\pi\)
\(42\) −4.16811e8 −0.492117
\(43\) −1.43221e9 −1.48570 −0.742848 0.669460i \(-0.766526\pi\)
−0.742848 + 0.669460i \(0.766526\pi\)
\(44\) −6.85112e8 −0.626285
\(45\) 0 0
\(46\) −6.31051e8 −0.451748
\(47\) −1.38179e9 −0.878830 −0.439415 0.898284i \(-0.644814\pi\)
−0.439415 + 0.898284i \(0.644814\pi\)
\(48\) 5.57996e8 0.316085
\(49\) −1.37820e9 −0.697003
\(50\) 0 0
\(51\) −4.17762e9 −1.69548
\(52\) −5.93147e8 −0.216343
\(53\) 2.89531e8 0.0950995 0.0475497 0.998869i \(-0.484859\pi\)
0.0475497 + 0.998869i \(0.484859\pi\)
\(54\) 1.21098e9 0.358900
\(55\) 0 0
\(56\) −8.02063e8 −0.194614
\(57\) −9.64371e9 −2.12291
\(58\) −6.48664e9 −1.29767
\(59\) −2.47487e9 −0.450678 −0.225339 0.974280i \(-0.572349\pi\)
−0.225339 + 0.974280i \(0.572349\pi\)
\(60\) 0 0
\(61\) 9.16284e7 0.0138904 0.00694522 0.999976i \(-0.497789\pi\)
0.00694522 + 0.999976i \(0.497789\pi\)
\(62\) −3.28926e9 −0.455977
\(63\) 2.59536e9 0.329477
\(64\) 1.07374e9 0.125000
\(65\) 0 0
\(66\) 1.13931e10 1.11983
\(67\) 3.09287e7 0.00279866 0.00139933 0.999999i \(-0.499555\pi\)
0.00139933 + 0.999999i \(0.499555\pi\)
\(68\) −8.03893e9 −0.670500
\(69\) 1.04941e10 0.807747
\(70\) 0 0
\(71\) 2.42503e10 1.59513 0.797565 0.603233i \(-0.206121\pi\)
0.797565 + 0.603233i \(0.206121\pi\)
\(72\) −3.47448e9 −0.211622
\(73\) 3.55008e9 0.200430 0.100215 0.994966i \(-0.468047\pi\)
0.100215 + 0.994966i \(0.468047\pi\)
\(74\) 1.60829e10 0.842540
\(75\) 0 0
\(76\) −1.85572e10 −0.839534
\(77\) −1.63765e10 −0.689480
\(78\) 9.86377e9 0.386832
\(79\) −1.16350e10 −0.425419 −0.212709 0.977116i \(-0.568229\pi\)
−0.212709 + 0.977116i \(0.568229\pi\)
\(80\) 0 0
\(81\) −3.89215e10 −1.24029
\(82\) −1.10389e10 −0.328812
\(83\) −2.33729e10 −0.651302 −0.325651 0.945490i \(-0.605583\pi\)
−0.325651 + 0.945490i \(0.605583\pi\)
\(84\) 1.33380e10 0.347979
\(85\) 0 0
\(86\) 4.58307e10 1.05055
\(87\) 1.07870e11 2.32030
\(88\) 2.19236e10 0.442851
\(89\) −1.02379e11 −1.94342 −0.971710 0.236175i \(-0.924106\pi\)
−0.971710 + 0.236175i \(0.924106\pi\)
\(90\) 0 0
\(91\) −1.41782e10 −0.238173
\(92\) 2.01936e10 0.319434
\(93\) 5.46989e10 0.815309
\(94\) 4.42174e10 0.621426
\(95\) 0 0
\(96\) −1.78559e10 −0.223506
\(97\) −5.87705e10 −0.694888 −0.347444 0.937701i \(-0.612950\pi\)
−0.347444 + 0.937701i \(0.612950\pi\)
\(98\) 4.41025e10 0.492855
\(99\) −7.09416e10 −0.749735
\(100\) 0 0
\(101\) 3.48576e9 0.0330012 0.0165006 0.999864i \(-0.494747\pi\)
0.0165006 + 0.999864i \(0.494747\pi\)
\(102\) 1.33684e11 1.19889
\(103\) −8.04437e10 −0.683734 −0.341867 0.939748i \(-0.611059\pi\)
−0.341867 + 0.939748i \(0.611059\pi\)
\(104\) 1.89807e10 0.152978
\(105\) 0 0
\(106\) −9.26500e9 −0.0672455
\(107\) 1.62166e11 1.11776 0.558880 0.829249i \(-0.311231\pi\)
0.558880 + 0.829249i \(0.311231\pi\)
\(108\) −3.87515e10 −0.253780
\(109\) 1.55539e11 0.968266 0.484133 0.874994i \(-0.339135\pi\)
0.484133 + 0.874994i \(0.339135\pi\)
\(110\) 0 0
\(111\) −2.67452e11 −1.50650
\(112\) 2.56660e10 0.137613
\(113\) 1.26270e11 0.644717 0.322359 0.946618i \(-0.395524\pi\)
0.322359 + 0.946618i \(0.395524\pi\)
\(114\) 3.08599e11 1.50113
\(115\) 0 0
\(116\) 2.07572e11 0.917594
\(117\) −6.14188e10 −0.258988
\(118\) 7.91958e10 0.318677
\(119\) −1.92157e11 −0.738157
\(120\) 0 0
\(121\) 1.62323e11 0.568933
\(122\) −2.93211e9 −0.00982202
\(123\) 1.83572e11 0.587932
\(124\) 1.05256e11 0.322425
\(125\) 0 0
\(126\) −8.30516e10 −0.232975
\(127\) 4.06263e11 1.09116 0.545578 0.838060i \(-0.316310\pi\)
0.545578 + 0.838060i \(0.316310\pi\)
\(128\) −3.43597e10 −0.0883883
\(129\) −7.62145e11 −1.87843
\(130\) 0 0
\(131\) 4.67394e11 1.05850 0.529251 0.848466i \(-0.322473\pi\)
0.529251 + 0.848466i \(0.322473\pi\)
\(132\) −3.64580e11 −0.791838
\(133\) −4.43580e11 −0.924247
\(134\) −9.89718e8 −0.00197895
\(135\) 0 0
\(136\) 2.57246e11 0.474115
\(137\) −5.88796e11 −1.04232 −0.521161 0.853459i \(-0.674501\pi\)
−0.521161 + 0.853459i \(0.674501\pi\)
\(138\) −3.35811e11 −0.571163
\(139\) −2.38206e11 −0.389378 −0.194689 0.980865i \(-0.562370\pi\)
−0.194689 + 0.980865i \(0.562370\pi\)
\(140\) 0 0
\(141\) −7.35316e11 −1.11114
\(142\) −7.76010e11 −1.12793
\(143\) 3.87547e11 0.541971
\(144\) 1.11183e11 0.149639
\(145\) 0 0
\(146\) −1.13603e11 −0.141725
\(147\) −7.33405e11 −0.881249
\(148\) −5.14653e11 −0.595766
\(149\) 1.19618e12 1.33436 0.667179 0.744897i \(-0.267501\pi\)
0.667179 + 0.744897i \(0.267501\pi\)
\(150\) 0 0
\(151\) −4.69044e10 −0.0486229 −0.0243114 0.999704i \(-0.507739\pi\)
−0.0243114 + 0.999704i \(0.507739\pi\)
\(152\) 5.93831e11 0.593640
\(153\) −8.32410e11 −0.802665
\(154\) 5.24047e11 0.487536
\(155\) 0 0
\(156\) −3.15641e11 −0.273532
\(157\) −1.12550e12 −0.941665 −0.470833 0.882223i \(-0.656046\pi\)
−0.470833 + 0.882223i \(0.656046\pi\)
\(158\) 3.72319e11 0.300816
\(159\) 1.54073e11 0.120238
\(160\) 0 0
\(161\) 4.82695e11 0.351666
\(162\) 1.24549e12 0.877015
\(163\) 1.26983e12 0.864396 0.432198 0.901779i \(-0.357738\pi\)
0.432198 + 0.901779i \(0.357738\pi\)
\(164\) 3.53244e11 0.232505
\(165\) 0 0
\(166\) 7.47932e11 0.460540
\(167\) −6.55303e11 −0.390393 −0.195196 0.980764i \(-0.562534\pi\)
−0.195196 + 0.980764i \(0.562534\pi\)
\(168\) −4.26815e11 −0.246059
\(169\) −1.45664e12 −0.812782
\(170\) 0 0
\(171\) −1.92155e12 −1.00502
\(172\) −1.46658e12 −0.742848
\(173\) −2.29440e12 −1.12568 −0.562842 0.826565i \(-0.690292\pi\)
−0.562842 + 0.826565i \(0.690292\pi\)
\(174\) −3.45184e12 −1.64070
\(175\) 0 0
\(176\) −7.01555e11 −0.313143
\(177\) −1.31699e12 −0.569810
\(178\) 3.27614e12 1.37421
\(179\) 2.90384e12 1.18108 0.590542 0.807007i \(-0.298914\pi\)
0.590542 + 0.807007i \(0.298914\pi\)
\(180\) 0 0
\(181\) 2.57501e12 0.985250 0.492625 0.870242i \(-0.336037\pi\)
0.492625 + 0.870242i \(0.336037\pi\)
\(182\) 4.53702e11 0.168414
\(183\) 4.87597e10 0.0175622
\(184\) −6.46196e11 −0.225874
\(185\) 0 0
\(186\) −1.75037e12 −0.576511
\(187\) 5.25243e12 1.67970
\(188\) −1.41496e12 −0.439415
\(189\) −9.26291e11 −0.279388
\(190\) 0 0
\(191\) 2.23479e11 0.0636140 0.0318070 0.999494i \(-0.489874\pi\)
0.0318070 + 0.999494i \(0.489874\pi\)
\(192\) 5.71388e11 0.158043
\(193\) −3.24295e12 −0.871716 −0.435858 0.900015i \(-0.643555\pi\)
−0.435858 + 0.900015i \(0.643555\pi\)
\(194\) 1.88066e12 0.491360
\(195\) 0 0
\(196\) −1.41128e12 −0.348501
\(197\) 5.15178e12 1.23707 0.618534 0.785758i \(-0.287727\pi\)
0.618534 + 0.785758i \(0.287727\pi\)
\(198\) 2.27013e12 0.530143
\(199\) −6.92866e11 −0.157383 −0.0786914 0.996899i \(-0.525074\pi\)
−0.0786914 + 0.996899i \(0.525074\pi\)
\(200\) 0 0
\(201\) 1.64586e10 0.00353846
\(202\) −1.11544e11 −0.0233354
\(203\) 4.96168e12 1.01018
\(204\) −4.27788e12 −0.847741
\(205\) 0 0
\(206\) 2.57420e12 0.483473
\(207\) 2.09100e12 0.382399
\(208\) −6.07382e11 −0.108172
\(209\) 1.21248e13 2.10315
\(210\) 0 0
\(211\) 7.15534e12 1.17781 0.588907 0.808201i \(-0.299558\pi\)
0.588907 + 0.808201i \(0.299558\pi\)
\(212\) 2.96480e11 0.0475497
\(213\) 1.29047e13 2.01679
\(214\) −5.18930e12 −0.790375
\(215\) 0 0
\(216\) 1.24005e12 0.179450
\(217\) 2.51598e12 0.354959
\(218\) −4.97726e12 −0.684667
\(219\) 1.88916e12 0.253412
\(220\) 0 0
\(221\) 4.54737e12 0.580233
\(222\) 8.55846e12 1.06526
\(223\) −7.85354e12 −0.953650 −0.476825 0.878998i \(-0.658212\pi\)
−0.476825 + 0.878998i \(0.658212\pi\)
\(224\) −8.21313e11 −0.0973071
\(225\) 0 0
\(226\) −4.04065e12 −0.455884
\(227\) −5.24834e12 −0.577936 −0.288968 0.957339i \(-0.593312\pi\)
−0.288968 + 0.957339i \(0.593312\pi\)
\(228\) −9.87516e12 −1.06146
\(229\) 2.54851e12 0.267419 0.133709 0.991021i \(-0.457311\pi\)
0.133709 + 0.991021i \(0.457311\pi\)
\(230\) 0 0
\(231\) −8.71468e12 −0.871738
\(232\) −6.64232e12 −0.648837
\(233\) 1.29244e13 1.23297 0.616483 0.787368i \(-0.288557\pi\)
0.616483 + 0.787368i \(0.288557\pi\)
\(234\) 1.96540e12 0.183132
\(235\) 0 0
\(236\) −2.53427e12 −0.225339
\(237\) −6.19151e12 −0.537874
\(238\) 6.14903e12 0.521955
\(239\) −3.04646e12 −0.252701 −0.126350 0.991986i \(-0.540326\pi\)
−0.126350 + 0.991986i \(0.540326\pi\)
\(240\) 0 0
\(241\) −1.51377e13 −1.19940 −0.599701 0.800224i \(-0.704714\pi\)
−0.599701 + 0.800224i \(0.704714\pi\)
\(242\) −5.19434e12 −0.402296
\(243\) −1.40081e13 −1.06058
\(244\) 9.38275e10 0.00694522
\(245\) 0 0
\(246\) −5.87429e12 −0.415731
\(247\) 1.04972e13 0.726511
\(248\) −3.36820e12 −0.227989
\(249\) −1.24378e13 −0.823468
\(250\) 0 0
\(251\) −5.88554e12 −0.372890 −0.186445 0.982465i \(-0.559697\pi\)
−0.186445 + 0.982465i \(0.559697\pi\)
\(252\) 2.65765e12 0.164738
\(253\) −1.31940e13 −0.800227
\(254\) −1.30004e13 −0.771564
\(255\) 0 0
\(256\) 1.09951e12 0.0625000
\(257\) −1.26568e13 −0.704194 −0.352097 0.935964i \(-0.614531\pi\)
−0.352097 + 0.935964i \(0.614531\pi\)
\(258\) 2.43886e13 1.32825
\(259\) −1.23019e13 −0.655881
\(260\) 0 0
\(261\) 2.14936e13 1.09847
\(262\) −1.49566e13 −0.748473
\(263\) −1.94934e13 −0.955280 −0.477640 0.878556i \(-0.658508\pi\)
−0.477640 + 0.878556i \(0.658508\pi\)
\(264\) 1.16666e13 0.559914
\(265\) 0 0
\(266\) 1.41946e13 0.653541
\(267\) −5.44807e13 −2.45715
\(268\) 3.16710e10 0.00139933
\(269\) −4.34447e12 −0.188061 −0.0940306 0.995569i \(-0.529975\pi\)
−0.0940306 + 0.995569i \(0.529975\pi\)
\(270\) 0 0
\(271\) 2.67882e12 0.111330 0.0556650 0.998449i \(-0.482272\pi\)
0.0556650 + 0.998449i \(0.482272\pi\)
\(272\) −8.23186e12 −0.335250
\(273\) −7.54487e12 −0.301132
\(274\) 1.88415e13 0.737032
\(275\) 0 0
\(276\) 1.07460e13 0.403873
\(277\) 1.30102e13 0.479343 0.239672 0.970854i \(-0.422960\pi\)
0.239672 + 0.970854i \(0.422960\pi\)
\(278\) 7.62260e12 0.275332
\(279\) 1.08990e13 0.385979
\(280\) 0 0
\(281\) 2.90772e13 0.990075 0.495037 0.868872i \(-0.335154\pi\)
0.495037 + 0.868872i \(0.335154\pi\)
\(282\) 2.35301e13 0.785694
\(283\) 8.21076e12 0.268880 0.134440 0.990922i \(-0.457076\pi\)
0.134440 + 0.990922i \(0.457076\pi\)
\(284\) 2.48323e13 0.797565
\(285\) 0 0
\(286\) −1.24015e13 −0.383231
\(287\) 8.44371e12 0.255966
\(288\) −3.55786e12 −0.105811
\(289\) 2.73587e13 0.798283
\(290\) 0 0
\(291\) −3.12745e13 −0.878575
\(292\) 3.63529e12 0.100215
\(293\) 8.70497e12 0.235502 0.117751 0.993043i \(-0.462431\pi\)
0.117751 + 0.993043i \(0.462431\pi\)
\(294\) 2.34690e13 0.623137
\(295\) 0 0
\(296\) 1.64689e13 0.421270
\(297\) 2.53192e13 0.635756
\(298\) −3.82778e13 −0.943534
\(299\) −1.14229e13 −0.276430
\(300\) 0 0
\(301\) −3.50562e13 −0.817805
\(302\) 1.50094e12 0.0343816
\(303\) 1.85493e12 0.0417248
\(304\) −1.90026e13 −0.419767
\(305\) 0 0
\(306\) 2.66371e13 0.567570
\(307\) −6.59577e13 −1.38040 −0.690199 0.723620i \(-0.742477\pi\)
−0.690199 + 0.723620i \(0.742477\pi\)
\(308\) −1.67695e13 −0.344740
\(309\) −4.28078e13 −0.864473
\(310\) 0 0
\(311\) −2.13842e13 −0.416783 −0.208392 0.978045i \(-0.566823\pi\)
−0.208392 + 0.978045i \(0.566823\pi\)
\(312\) 1.01005e13 0.193416
\(313\) 2.84379e13 0.535062 0.267531 0.963549i \(-0.413792\pi\)
0.267531 + 0.963549i \(0.413792\pi\)
\(314\) 3.60159e13 0.665858
\(315\) 0 0
\(316\) −1.19142e13 −0.212709
\(317\) 1.06352e14 1.86603 0.933017 0.359833i \(-0.117166\pi\)
0.933017 + 0.359833i \(0.117166\pi\)
\(318\) −4.93033e12 −0.0850212
\(319\) −1.35622e14 −2.29870
\(320\) 0 0
\(321\) 8.62959e13 1.41323
\(322\) −1.54462e13 −0.248666
\(323\) 1.42269e14 2.25163
\(324\) −3.98556e13 −0.620143
\(325\) 0 0
\(326\) −4.06344e13 −0.611220
\(327\) 8.27697e13 1.22422
\(328\) −1.13038e13 −0.164406
\(329\) −3.38222e13 −0.483754
\(330\) 0 0
\(331\) −1.23331e14 −1.70616 −0.853079 0.521781i \(-0.825268\pi\)
−0.853079 + 0.521781i \(0.825268\pi\)
\(332\) −2.39338e13 −0.325651
\(333\) −5.32910e13 −0.713199
\(334\) 2.09697e13 0.276049
\(335\) 0 0
\(336\) 1.36581e13 0.173990
\(337\) 4.55439e13 0.570776 0.285388 0.958412i \(-0.407877\pi\)
0.285388 + 0.958412i \(0.407877\pi\)
\(338\) 4.66124e13 0.574724
\(339\) 6.71942e13 0.815142
\(340\) 0 0
\(341\) −6.87717e13 −0.807719
\(342\) 6.14897e13 0.710655
\(343\) −8.21334e13 −0.934119
\(344\) 4.69307e13 0.525273
\(345\) 0 0
\(346\) 7.34209e13 0.795978
\(347\) 8.36511e13 0.892605 0.446303 0.894882i \(-0.352741\pi\)
0.446303 + 0.894882i \(0.352741\pi\)
\(348\) 1.10459e14 1.16015
\(349\) 6.38318e13 0.659929 0.329965 0.943993i \(-0.392963\pi\)
0.329965 + 0.943993i \(0.392963\pi\)
\(350\) 0 0
\(351\) 2.19205e13 0.219615
\(352\) 2.24498e13 0.221425
\(353\) −3.55388e13 −0.345097 −0.172549 0.985001i \(-0.555200\pi\)
−0.172549 + 0.985001i \(0.555200\pi\)
\(354\) 4.21437e13 0.402917
\(355\) 0 0
\(356\) −1.04836e14 −0.971710
\(357\) −1.02256e14 −0.933281
\(358\) −9.29229e13 −0.835153
\(359\) 1.40868e14 1.24679 0.623393 0.781909i \(-0.285754\pi\)
0.623393 + 0.781909i \(0.285754\pi\)
\(360\) 0 0
\(361\) 2.11927e14 1.81927
\(362\) −8.24003e13 −0.696677
\(363\) 8.63796e13 0.719325
\(364\) −1.45185e13 −0.119087
\(365\) 0 0
\(366\) −1.56031e12 −0.0124184
\(367\) −5.21259e13 −0.408686 −0.204343 0.978899i \(-0.565506\pi\)
−0.204343 + 0.978899i \(0.565506\pi\)
\(368\) 2.06783e13 0.159717
\(369\) 3.65775e13 0.278336
\(370\) 0 0
\(371\) 7.08687e12 0.0523477
\(372\) 5.60117e13 0.407655
\(373\) −1.12302e14 −0.805355 −0.402677 0.915342i \(-0.631920\pi\)
−0.402677 + 0.915342i \(0.631920\pi\)
\(374\) −1.68078e14 −1.18773
\(375\) 0 0
\(376\) 4.52786e13 0.310713
\(377\) −1.17417e14 −0.794062
\(378\) 2.96413e13 0.197557
\(379\) −8.23254e13 −0.540777 −0.270388 0.962751i \(-0.587152\pi\)
−0.270388 + 0.962751i \(0.587152\pi\)
\(380\) 0 0
\(381\) 2.16191e14 1.37959
\(382\) −7.15132e12 −0.0449819
\(383\) −1.86623e14 −1.15710 −0.578552 0.815645i \(-0.696382\pi\)
−0.578552 + 0.815645i \(0.696382\pi\)
\(384\) −1.82844e13 −0.111753
\(385\) 0 0
\(386\) 1.03774e14 0.616396
\(387\) −1.51861e14 −0.889274
\(388\) −6.01810e13 −0.347444
\(389\) 1.33809e14 0.761660 0.380830 0.924645i \(-0.375638\pi\)
0.380830 + 0.924645i \(0.375638\pi\)
\(390\) 0 0
\(391\) −1.54815e14 −0.856722
\(392\) 4.51609e13 0.246428
\(393\) 2.48722e14 1.33831
\(394\) −1.64857e14 −0.874739
\(395\) 0 0
\(396\) −7.26442e13 −0.374867
\(397\) −3.34373e14 −1.70170 −0.850851 0.525406i \(-0.823913\pi\)
−0.850851 + 0.525406i \(0.823913\pi\)
\(398\) 2.21717e13 0.111286
\(399\) −2.36049e14 −1.16856
\(400\) 0 0
\(401\) −1.88539e14 −0.908043 −0.454021 0.890991i \(-0.650011\pi\)
−0.454021 + 0.890991i \(0.650011\pi\)
\(402\) −5.26675e11 −0.00250207
\(403\) −5.95401e13 −0.279018
\(404\) 3.56942e12 0.0165006
\(405\) 0 0
\(406\) −1.58774e14 −0.714308
\(407\) 3.36261e14 1.49248
\(408\) 1.36892e14 0.599443
\(409\) 3.34993e14 1.44730 0.723649 0.690168i \(-0.242463\pi\)
0.723649 + 0.690168i \(0.242463\pi\)
\(410\) 0 0
\(411\) −3.13325e14 −1.31785
\(412\) −8.23744e13 −0.341867
\(413\) −6.05774e13 −0.248077
\(414\) −6.69119e13 −0.270397
\(415\) 0 0
\(416\) 1.94362e13 0.0764889
\(417\) −1.26761e14 −0.492307
\(418\) −3.87994e14 −1.48715
\(419\) −1.56423e14 −0.591729 −0.295864 0.955230i \(-0.595608\pi\)
−0.295864 + 0.955230i \(0.595608\pi\)
\(420\) 0 0
\(421\) 5.29550e14 1.95144 0.975721 0.219015i \(-0.0702845\pi\)
0.975721 + 0.219015i \(0.0702845\pi\)
\(422\) −2.28971e14 −0.832840
\(423\) −1.46515e14 −0.526030
\(424\) −9.48736e12 −0.0336227
\(425\) 0 0
\(426\) −4.12951e14 −1.42608
\(427\) 2.24279e12 0.00764602
\(428\) 1.66058e14 0.558880
\(429\) 2.06231e14 0.685235
\(430\) 0 0
\(431\) 8.37388e13 0.271208 0.135604 0.990763i \(-0.456703\pi\)
0.135604 + 0.990763i \(0.456703\pi\)
\(432\) −3.96816e13 −0.126890
\(433\) −9.93342e13 −0.313628 −0.156814 0.987628i \(-0.550122\pi\)
−0.156814 + 0.987628i \(0.550122\pi\)
\(434\) −8.05112e13 −0.250994
\(435\) 0 0
\(436\) 1.59272e14 0.484133
\(437\) −3.57378e14 −1.07270
\(438\) −6.04532e13 −0.179189
\(439\) 5.35579e14 1.56772 0.783860 0.620938i \(-0.213248\pi\)
0.783860 + 0.620938i \(0.213248\pi\)
\(440\) 0 0
\(441\) −1.46134e14 −0.417196
\(442\) −1.45516e14 −0.410287
\(443\) 4.64925e14 1.29468 0.647341 0.762201i \(-0.275881\pi\)
0.647341 + 0.762201i \(0.275881\pi\)
\(444\) −2.73871e14 −0.753251
\(445\) 0 0
\(446\) 2.51313e14 0.674332
\(447\) 6.36544e14 1.68708
\(448\) 2.62820e13 0.0688065
\(449\) −5.07045e14 −1.31127 −0.655634 0.755079i \(-0.727599\pi\)
−0.655634 + 0.755079i \(0.727599\pi\)
\(450\) 0 0
\(451\) −2.30800e14 −0.582459
\(452\) 1.29301e14 0.322359
\(453\) −2.49600e13 −0.0614759
\(454\) 1.67947e14 0.408662
\(455\) 0 0
\(456\) 3.16005e14 0.750564
\(457\) 5.05346e14 1.18591 0.592953 0.805237i \(-0.297962\pi\)
0.592953 + 0.805237i \(0.297962\pi\)
\(458\) −8.15524e13 −0.189094
\(459\) 2.97089e14 0.680639
\(460\) 0 0
\(461\) 7.16573e14 1.60290 0.801448 0.598064i \(-0.204063\pi\)
0.801448 + 0.598064i \(0.204063\pi\)
\(462\) 2.78870e14 0.616411
\(463\) −1.12357e14 −0.245418 −0.122709 0.992443i \(-0.539158\pi\)
−0.122709 + 0.992443i \(0.539158\pi\)
\(464\) 2.12554e14 0.458797
\(465\) 0 0
\(466\) −4.13579e14 −0.871839
\(467\) 2.21056e14 0.460532 0.230266 0.973128i \(-0.426040\pi\)
0.230266 + 0.973128i \(0.426040\pi\)
\(468\) −6.28928e13 −0.129494
\(469\) 7.57042e11 0.00154053
\(470\) 0 0
\(471\) −5.98929e14 −1.19059
\(472\) 8.10965e13 0.159339
\(473\) 9.58227e14 1.86094
\(474\) 1.98128e14 0.380334
\(475\) 0 0
\(476\) −1.96769e14 −0.369078
\(477\) 3.06997e13 0.0569225
\(478\) 9.74866e13 0.178686
\(479\) −9.23603e14 −1.67356 −0.836778 0.547543i \(-0.815563\pi\)
−0.836778 + 0.547543i \(0.815563\pi\)
\(480\) 0 0
\(481\) 2.91123e14 0.515560
\(482\) 4.84405e14 0.848106
\(483\) 2.56864e14 0.444626
\(484\) 1.66219e14 0.284466
\(485\) 0 0
\(486\) 4.48259e14 0.749946
\(487\) −4.58584e14 −0.758594 −0.379297 0.925275i \(-0.623834\pi\)
−0.379297 + 0.925275i \(0.623834\pi\)
\(488\) −3.00248e12 −0.00491101
\(489\) 6.75733e14 1.09289
\(490\) 0 0
\(491\) −2.27335e14 −0.359516 −0.179758 0.983711i \(-0.557531\pi\)
−0.179758 + 0.983711i \(0.557531\pi\)
\(492\) 1.87977e14 0.293966
\(493\) −1.59136e15 −2.46099
\(494\) −3.35912e14 −0.513721
\(495\) 0 0
\(496\) 1.07782e14 0.161212
\(497\) 5.93575e14 0.878043
\(498\) 3.98009e14 0.582280
\(499\) −6.20100e14 −0.897240 −0.448620 0.893723i \(-0.648084\pi\)
−0.448620 + 0.893723i \(0.648084\pi\)
\(500\) 0 0
\(501\) −3.48717e14 −0.493589
\(502\) 1.88337e14 0.263673
\(503\) 3.45337e14 0.478211 0.239105 0.970994i \(-0.423146\pi\)
0.239105 + 0.970994i \(0.423146\pi\)
\(504\) −8.50448e13 −0.116488
\(505\) 0 0
\(506\) 4.22208e14 0.565846
\(507\) −7.75143e14 −1.02763
\(508\) 4.16013e14 0.545578
\(509\) 1.29592e14 0.168125 0.0840624 0.996460i \(-0.473210\pi\)
0.0840624 + 0.996460i \(0.473210\pi\)
\(510\) 0 0
\(511\) 8.68955e13 0.110327
\(512\) −3.51844e13 −0.0441942
\(513\) 6.85807e14 0.852229
\(514\) 4.05018e14 0.497940
\(515\) 0 0
\(516\) −7.80436e14 −0.939213
\(517\) 9.24496e14 1.10080
\(518\) 3.93662e14 0.463778
\(519\) −1.22096e15 −1.42325
\(520\) 0 0
\(521\) 8.63535e14 0.985536 0.492768 0.870161i \(-0.335985\pi\)
0.492768 + 0.870161i \(0.335985\pi\)
\(522\) −6.87795e14 −0.776732
\(523\) −1.76403e15 −1.97128 −0.985638 0.168870i \(-0.945988\pi\)
−0.985638 + 0.168870i \(0.945988\pi\)
\(524\) 4.78612e14 0.529251
\(525\) 0 0
\(526\) 6.23789e14 0.675485
\(527\) −8.06948e14 −0.864744
\(528\) −3.73330e14 −0.395919
\(529\) −5.63918e14 −0.591848
\(530\) 0 0
\(531\) −2.62417e14 −0.269756
\(532\) −4.54226e14 −0.462123
\(533\) −1.99819e14 −0.201204
\(534\) 1.74338e15 1.73746
\(535\) 0 0
\(536\) −1.01347e12 −0.000989475 0
\(537\) 1.54527e15 1.49329
\(538\) 1.39023e14 0.132979
\(539\) 9.22093e14 0.873045
\(540\) 0 0
\(541\) −5.96542e14 −0.553421 −0.276711 0.960953i \(-0.589244\pi\)
−0.276711 + 0.960953i \(0.589244\pi\)
\(542\) −8.57223e13 −0.0787223
\(543\) 1.37028e15 1.24569
\(544\) 2.63419e14 0.237058
\(545\) 0 0
\(546\) 2.41436e14 0.212933
\(547\) −1.72805e15 −1.50878 −0.754390 0.656426i \(-0.772067\pi\)
−0.754390 + 0.656426i \(0.772067\pi\)
\(548\) −6.02927e14 −0.521161
\(549\) 9.71559e12 0.00831422
\(550\) 0 0
\(551\) −3.67352e15 −3.08141
\(552\) −3.43871e14 −0.285582
\(553\) −2.84790e14 −0.234173
\(554\) −4.16328e14 −0.338947
\(555\) 0 0
\(556\) −2.43923e14 −0.194689
\(557\) −1.11647e15 −0.882353 −0.441177 0.897420i \(-0.645439\pi\)
−0.441177 + 0.897420i \(0.645439\pi\)
\(558\) −3.48768e14 −0.272928
\(559\) 8.29600e14 0.642841
\(560\) 0 0
\(561\) 2.79506e15 2.12371
\(562\) −9.30471e14 −0.700089
\(563\) −3.81802e13 −0.0284474 −0.0142237 0.999899i \(-0.504528\pi\)
−0.0142237 + 0.999899i \(0.504528\pi\)
\(564\) −7.52963e14 −0.555570
\(565\) 0 0
\(566\) −2.62744e14 −0.190127
\(567\) −9.52683e14 −0.682718
\(568\) −7.94634e14 −0.563964
\(569\) −8.00530e14 −0.562678 −0.281339 0.959608i \(-0.590779\pi\)
−0.281339 + 0.959608i \(0.590779\pi\)
\(570\) 0 0
\(571\) −1.20542e12 −0.000831073 0 −0.000415536 1.00000i \(-0.500132\pi\)
−0.000415536 1.00000i \(0.500132\pi\)
\(572\) 3.96848e14 0.270985
\(573\) 1.18923e14 0.0804297
\(574\) −2.70199e14 −0.180995
\(575\) 0 0
\(576\) 1.13852e14 0.0748196
\(577\) −1.11237e15 −0.724075 −0.362038 0.932163i \(-0.617919\pi\)
−0.362038 + 0.932163i \(0.617919\pi\)
\(578\) −8.75477e14 −0.564471
\(579\) −1.72572e15 −1.10215
\(580\) 0 0
\(581\) −5.72099e14 −0.358511
\(582\) 1.00078e15 0.621246
\(583\) −1.93712e14 −0.119119
\(584\) −1.16329e14 −0.0708627
\(585\) 0 0
\(586\) −2.78559e14 −0.166525
\(587\) 1.41072e15 0.835474 0.417737 0.908568i \(-0.362823\pi\)
0.417737 + 0.908568i \(0.362823\pi\)
\(588\) −7.51006e14 −0.440624
\(589\) −1.86278e15 −1.08275
\(590\) 0 0
\(591\) 2.74150e15 1.56407
\(592\) −5.27005e14 −0.297883
\(593\) 2.95927e15 1.65723 0.828617 0.559816i \(-0.189128\pi\)
0.828617 + 0.559816i \(0.189128\pi\)
\(594\) −8.10216e14 −0.449547
\(595\) 0 0
\(596\) 1.22489e15 0.667179
\(597\) −3.68706e14 −0.198985
\(598\) 3.65533e14 0.195465
\(599\) 7.61671e14 0.403571 0.201785 0.979430i \(-0.435326\pi\)
0.201785 + 0.979430i \(0.435326\pi\)
\(600\) 0 0
\(601\) −5.33224e14 −0.277396 −0.138698 0.990335i \(-0.544292\pi\)
−0.138698 + 0.990335i \(0.544292\pi\)
\(602\) 1.12180e15 0.578275
\(603\) 3.27945e12 0.00167516
\(604\) −4.80301e13 −0.0243114
\(605\) 0 0
\(606\) −5.93579e13 −0.0295039
\(607\) −2.82058e15 −1.38931 −0.694657 0.719341i \(-0.744444\pi\)
−0.694657 + 0.719341i \(0.744444\pi\)
\(608\) 6.08083e14 0.296820
\(609\) 2.64034e15 1.27722
\(610\) 0 0
\(611\) 8.00396e14 0.380258
\(612\) −8.52388e14 −0.401333
\(613\) −3.94879e15 −1.84260 −0.921301 0.388850i \(-0.872873\pi\)
−0.921301 + 0.388850i \(0.872873\pi\)
\(614\) 2.11065e15 0.976089
\(615\) 0 0
\(616\) 5.36625e14 0.243768
\(617\) 4.71962e14 0.212490 0.106245 0.994340i \(-0.466117\pi\)
0.106245 + 0.994340i \(0.466117\pi\)
\(618\) 1.36985e15 0.611275
\(619\) 6.15999e14 0.272447 0.136223 0.990678i \(-0.456504\pi\)
0.136223 + 0.990678i \(0.456504\pi\)
\(620\) 0 0
\(621\) −7.46282e14 −0.324264
\(622\) 6.84293e14 0.294710
\(623\) −2.50594e15 −1.06976
\(624\) −3.23216e14 −0.136766
\(625\) 0 0
\(626\) −9.10014e14 −0.378346
\(627\) 6.45217e15 2.65910
\(628\) −1.15251e15 −0.470833
\(629\) 3.94560e15 1.59784
\(630\) 0 0
\(631\) 7.19339e14 0.286267 0.143134 0.989703i \(-0.454282\pi\)
0.143134 + 0.989703i \(0.454282\pi\)
\(632\) 3.81255e14 0.150408
\(633\) 3.80769e15 1.48916
\(634\) −3.40326e15 −1.31949
\(635\) 0 0
\(636\) 1.57771e14 0.0601191
\(637\) 7.98316e14 0.301584
\(638\) 4.33992e15 1.62543
\(639\) 2.57132e15 0.954777
\(640\) 0 0
\(641\) −2.58937e15 −0.945094 −0.472547 0.881306i \(-0.656665\pi\)
−0.472547 + 0.881306i \(0.656665\pi\)
\(642\) −2.76147e15 −0.999303
\(643\) −9.64667e14 −0.346112 −0.173056 0.984912i \(-0.555364\pi\)
−0.173056 + 0.984912i \(0.555364\pi\)
\(644\) 4.94280e14 0.175833
\(645\) 0 0
\(646\) −4.55262e15 −1.59214
\(647\) 1.46486e15 0.507951 0.253976 0.967211i \(-0.418262\pi\)
0.253976 + 0.967211i \(0.418262\pi\)
\(648\) 1.27538e15 0.438508
\(649\) 1.65582e15 0.564506
\(650\) 0 0
\(651\) 1.33887e15 0.448789
\(652\) 1.30030e15 0.432198
\(653\) −6.05527e14 −0.199577 −0.0997886 0.995009i \(-0.531817\pi\)
−0.0997886 + 0.995009i \(0.531817\pi\)
\(654\) −2.64863e15 −0.865653
\(655\) 0 0
\(656\) 3.61721e14 0.116253
\(657\) 3.76424e14 0.119969
\(658\) 1.08231e15 0.342065
\(659\) −3.25431e15 −1.01998 −0.509988 0.860182i \(-0.670350\pi\)
−0.509988 + 0.860182i \(0.670350\pi\)
\(660\) 0 0
\(661\) 3.71162e15 1.14408 0.572038 0.820227i \(-0.306153\pi\)
0.572038 + 0.820227i \(0.306153\pi\)
\(662\) 3.94660e15 1.20644
\(663\) 2.41986e15 0.733612
\(664\) 7.65882e14 0.230270
\(665\) 0 0
\(666\) 1.70531e15 0.504308
\(667\) 3.99746e15 1.17244
\(668\) −6.71031e14 −0.195196
\(669\) −4.17923e15 −1.20574
\(670\) 0 0
\(671\) −6.13044e13 −0.0173987
\(672\) −4.37059e14 −0.123029
\(673\) −9.34378e14 −0.260879 −0.130440 0.991456i \(-0.541639\pi\)
−0.130440 + 0.991456i \(0.541639\pi\)
\(674\) −1.45741e15 −0.403600
\(675\) 0 0
\(676\) −1.49160e15 −0.406391
\(677\) −4.76512e15 −1.28776 −0.643882 0.765125i \(-0.722677\pi\)
−0.643882 + 0.765125i \(0.722677\pi\)
\(678\) −2.15021e15 −0.576393
\(679\) −1.43853e15 −0.382503
\(680\) 0 0
\(681\) −2.79288e15 −0.730708
\(682\) 2.20069e15 0.571144
\(683\) −2.09026e14 −0.0538130 −0.0269065 0.999638i \(-0.508566\pi\)
−0.0269065 + 0.999638i \(0.508566\pi\)
\(684\) −1.96767e15 −0.502509
\(685\) 0 0
\(686\) 2.62827e15 0.660522
\(687\) 1.35618e15 0.338108
\(688\) −1.50178e15 −0.371424
\(689\) −1.67709e14 −0.0411483
\(690\) 0 0
\(691\) −3.22483e15 −0.778712 −0.389356 0.921087i \(-0.627302\pi\)
−0.389356 + 0.921087i \(0.627302\pi\)
\(692\) −2.34947e15 −0.562842
\(693\) −1.73644e15 −0.412693
\(694\) −2.67683e15 −0.631167
\(695\) 0 0
\(696\) −3.53468e15 −0.820351
\(697\) −2.70815e15 −0.623580
\(698\) −2.04262e15 −0.466641
\(699\) 6.87764e15 1.55889
\(700\) 0 0
\(701\) −1.50206e13 −0.00335149 −0.00167575 0.999999i \(-0.500533\pi\)
−0.00167575 + 0.999999i \(0.500533\pi\)
\(702\) −7.01457e14 −0.155291
\(703\) 9.10811e15 2.00066
\(704\) −7.18393e14 −0.156571
\(705\) 0 0
\(706\) 1.13724e15 0.244021
\(707\) 8.53211e13 0.0181656
\(708\) −1.34860e15 −0.284905
\(709\) 2.05916e14 0.0431654 0.0215827 0.999767i \(-0.493129\pi\)
0.0215827 + 0.999767i \(0.493129\pi\)
\(710\) 0 0
\(711\) −1.23369e15 −0.254637
\(712\) 3.35476e15 0.687103
\(713\) 2.02704e15 0.411974
\(714\) 3.27218e15 0.659929
\(715\) 0 0
\(716\) 2.97353e15 0.590542
\(717\) −1.62116e15 −0.319500
\(718\) −4.50776e15 −0.881611
\(719\) 1.06708e15 0.207104 0.103552 0.994624i \(-0.466979\pi\)
0.103552 + 0.994624i \(0.466979\pi\)
\(720\) 0 0
\(721\) −1.96902e15 −0.376363
\(722\) −6.78168e15 −1.28642
\(723\) −8.05545e15 −1.51645
\(724\) 2.63681e15 0.492625
\(725\) 0 0
\(726\) −2.76415e15 −0.508639
\(727\) −3.85905e15 −0.704759 −0.352380 0.935857i \(-0.614627\pi\)
−0.352380 + 0.935857i \(0.614627\pi\)
\(728\) 4.64591e14 0.0842070
\(729\) −5.59533e14 −0.100652
\(730\) 0 0
\(731\) 1.12436e16 1.99232
\(732\) 4.99299e13 0.00878112
\(733\) 1.09224e15 0.190653 0.0953267 0.995446i \(-0.469610\pi\)
0.0953267 + 0.995446i \(0.469610\pi\)
\(734\) 1.66803e15 0.288985
\(735\) 0 0
\(736\) −6.61704e14 −0.112937
\(737\) −2.06930e13 −0.00350552
\(738\) −1.17048e15 −0.196813
\(739\) 4.82140e15 0.804691 0.402345 0.915488i \(-0.368195\pi\)
0.402345 + 0.915488i \(0.368195\pi\)
\(740\) 0 0
\(741\) 5.58607e15 0.918557
\(742\) −2.26780e14 −0.0370154
\(743\) 2.51982e15 0.408255 0.204128 0.978944i \(-0.434564\pi\)
0.204128 + 0.978944i \(0.434564\pi\)
\(744\) −1.79237e15 −0.288255
\(745\) 0 0
\(746\) 3.59365e15 0.569472
\(747\) −2.47829e15 −0.389841
\(748\) 5.37848e15 0.839849
\(749\) 3.96934e15 0.615273
\(750\) 0 0
\(751\) 7.47268e15 1.14145 0.570725 0.821142i \(-0.306662\pi\)
0.570725 + 0.821142i \(0.306662\pi\)
\(752\) −1.44891e15 −0.219707
\(753\) −3.13197e15 −0.471460
\(754\) 3.75735e15 0.561487
\(755\) 0 0
\(756\) −9.48522e14 −0.139694
\(757\) 3.09514e15 0.452535 0.226268 0.974065i \(-0.427348\pi\)
0.226268 + 0.974065i \(0.427348\pi\)
\(758\) 2.63441e15 0.382387
\(759\) −7.02113e15 −1.01176
\(760\) 0 0
\(761\) −6.77183e15 −0.961812 −0.480906 0.876772i \(-0.659692\pi\)
−0.480906 + 0.876772i \(0.659692\pi\)
\(762\) −6.91812e15 −0.975520
\(763\) 3.80714e15 0.532984
\(764\) 2.28842e14 0.0318070
\(765\) 0 0
\(766\) 5.97194e15 0.818196
\(767\) 1.43355e15 0.195002
\(768\) 5.85101e14 0.0790213
\(769\) −1.04403e16 −1.39997 −0.699984 0.714159i \(-0.746810\pi\)
−0.699984 + 0.714159i \(0.746810\pi\)
\(770\) 0 0
\(771\) −6.73528e15 −0.890341
\(772\) −3.32078e15 −0.435858
\(773\) −1.34162e16 −1.74841 −0.874204 0.485558i \(-0.838616\pi\)
−0.874204 + 0.485558i \(0.838616\pi\)
\(774\) 4.85955e15 0.628812
\(775\) 0 0
\(776\) 1.92579e15 0.245680
\(777\) −6.54643e15 −0.829257
\(778\) −4.28187e15 −0.538575
\(779\) −6.25155e15 −0.780785
\(780\) 0 0
\(781\) −1.62248e16 −1.99801
\(782\) 4.95407e15 0.605794
\(783\) −7.67112e15 −0.931470
\(784\) −1.44515e15 −0.174251
\(785\) 0 0
\(786\) −7.95911e15 −0.946325
\(787\) −1.58544e16 −1.87193 −0.935964 0.352097i \(-0.885469\pi\)
−0.935964 + 0.352097i \(0.885469\pi\)
\(788\) 5.27543e15 0.618534
\(789\) −1.03733e16 −1.20780
\(790\) 0 0
\(791\) 3.09072e15 0.354886
\(792\) 2.32462e15 0.265071
\(793\) −5.30752e13 −0.00601021
\(794\) 1.06999e16 1.20329
\(795\) 0 0
\(796\) −7.09495e14 −0.0786914
\(797\) 2.54021e14 0.0279800 0.0139900 0.999902i \(-0.495547\pi\)
0.0139900 + 0.999902i \(0.495547\pi\)
\(798\) 7.55358e15 0.826299
\(799\) 1.08478e16 1.17851
\(800\) 0 0
\(801\) −1.08555e16 −1.16325
\(802\) 6.03324e15 0.642083
\(803\) −2.37520e15 −0.251053
\(804\) 1.68536e13 0.00176923
\(805\) 0 0
\(806\) 1.90528e15 0.197295
\(807\) −2.31189e15 −0.237773
\(808\) −1.14221e14 −0.0116677
\(809\) −1.13120e16 −1.14768 −0.573842 0.818966i \(-0.694548\pi\)
−0.573842 + 0.818966i \(0.694548\pi\)
\(810\) 0 0
\(811\) 1.05859e16 1.05953 0.529767 0.848143i \(-0.322279\pi\)
0.529767 + 0.848143i \(0.322279\pi\)
\(812\) 5.08076e15 0.505092
\(813\) 1.42552e15 0.140759
\(814\) −1.07604e16 −1.05534
\(815\) 0 0
\(816\) −4.38055e15 −0.423870
\(817\) 2.59549e16 2.49459
\(818\) −1.07198e16 −1.02339
\(819\) −1.50335e15 −0.142560
\(820\) 0 0
\(821\) −2.04679e16 −1.91508 −0.957539 0.288303i \(-0.906909\pi\)
−0.957539 + 0.288303i \(0.906909\pi\)
\(822\) 1.00264e16 0.931860
\(823\) 1.10300e16 1.01830 0.509151 0.860677i \(-0.329959\pi\)
0.509151 + 0.860677i \(0.329959\pi\)
\(824\) 2.63598e15 0.241737
\(825\) 0 0
\(826\) 1.93848e15 0.175417
\(827\) 8.21173e15 0.738167 0.369083 0.929396i \(-0.379672\pi\)
0.369083 + 0.929396i \(0.379672\pi\)
\(828\) 2.14118e15 0.191199
\(829\) 3.82596e15 0.339383 0.169691 0.985497i \(-0.445723\pi\)
0.169691 + 0.985497i \(0.445723\pi\)
\(830\) 0 0
\(831\) 6.92335e15 0.606053
\(832\) −6.21959e14 −0.0540858
\(833\) 1.08196e16 0.934681
\(834\) 4.05634e15 0.348113
\(835\) 0 0
\(836\) 1.24158e16 1.05158
\(837\) −3.88988e15 −0.327300
\(838\) 5.00553e15 0.418415
\(839\) −2.86284e15 −0.237742 −0.118871 0.992910i \(-0.537928\pi\)
−0.118871 + 0.992910i \(0.537928\pi\)
\(840\) 0 0
\(841\) 2.88898e16 2.36792
\(842\) −1.69456e16 −1.37988
\(843\) 1.54733e16 1.25179
\(844\) 7.32707e15 0.588907
\(845\) 0 0
\(846\) 4.68848e15 0.371959
\(847\) 3.97319e15 0.313170
\(848\) 3.03596e14 0.0237749
\(849\) 4.36933e15 0.339956
\(850\) 0 0
\(851\) −9.91126e15 −0.761231
\(852\) 1.32144e16 1.00839
\(853\) 8.25498e15 0.625888 0.312944 0.949772i \(-0.398685\pi\)
0.312944 + 0.949772i \(0.398685\pi\)
\(854\) −7.17693e13 −0.00540655
\(855\) 0 0
\(856\) −5.31385e15 −0.395188
\(857\) −7.60811e15 −0.562189 −0.281094 0.959680i \(-0.590697\pi\)
−0.281094 + 0.959680i \(0.590697\pi\)
\(858\) −6.59941e15 −0.484535
\(859\) −4.89672e15 −0.357226 −0.178613 0.983919i \(-0.557161\pi\)
−0.178613 + 0.983919i \(0.557161\pi\)
\(860\) 0 0
\(861\) 4.49329e15 0.323628
\(862\) −2.67964e15 −0.191773
\(863\) −2.33733e16 −1.66212 −0.831058 0.556186i \(-0.812264\pi\)
−0.831058 + 0.556186i \(0.812264\pi\)
\(864\) 1.26981e15 0.0897249
\(865\) 0 0
\(866\) 3.17869e15 0.221769
\(867\) 1.45588e16 1.00930
\(868\) 2.57636e15 0.177479
\(869\) 7.78444e15 0.532867
\(870\) 0 0
\(871\) −1.79153e13 −0.00121094
\(872\) −5.09671e15 −0.342334
\(873\) −6.23159e15 −0.415930
\(874\) 1.14361e16 0.758516
\(875\) 0 0
\(876\) 1.93450e15 0.126706
\(877\) 2.29255e16 1.49218 0.746089 0.665846i \(-0.231929\pi\)
0.746089 + 0.665846i \(0.231929\pi\)
\(878\) −1.71385e16 −1.10855
\(879\) 4.63232e15 0.297755
\(880\) 0 0
\(881\) −4.14708e15 −0.263254 −0.131627 0.991299i \(-0.542020\pi\)
−0.131627 + 0.991299i \(0.542020\pi\)
\(882\) 4.67630e15 0.295002
\(883\) 1.24171e15 0.0778461 0.0389231 0.999242i \(-0.487607\pi\)
0.0389231 + 0.999242i \(0.487607\pi\)
\(884\) 4.65650e15 0.290117
\(885\) 0 0
\(886\) −1.48776e16 −0.915478
\(887\) 7.53940e15 0.461060 0.230530 0.973065i \(-0.425954\pi\)
0.230530 + 0.973065i \(0.425954\pi\)
\(888\) 8.76387e15 0.532629
\(889\) 9.94412e15 0.600629
\(890\) 0 0
\(891\) 2.60406e16 1.55355
\(892\) −8.04203e15 −0.476825
\(893\) 2.50413e16 1.47562
\(894\) −2.03694e16 −1.19295
\(895\) 0 0
\(896\) −8.41024e14 −0.0486535
\(897\) −6.07865e15 −0.349501
\(898\) 1.62254e16 0.927207
\(899\) 2.08362e16 1.18342
\(900\) 0 0
\(901\) −2.27297e15 −0.127528
\(902\) 7.38561e15 0.411861
\(903\) −1.86550e16 −1.03398
\(904\) −4.13762e15 −0.227942
\(905\) 0 0
\(906\) 7.98721e14 0.0434700
\(907\) −1.84213e16 −0.996505 −0.498253 0.867032i \(-0.666025\pi\)
−0.498253 + 0.867032i \(0.666025\pi\)
\(908\) −5.37430e15 −0.288968
\(909\) 3.69604e14 0.0197531
\(910\) 0 0
\(911\) −1.91486e16 −1.01108 −0.505539 0.862804i \(-0.668706\pi\)
−0.505539 + 0.862804i \(0.668706\pi\)
\(912\) −1.01122e16 −0.530729
\(913\) 1.56377e16 0.815802
\(914\) −1.61711e16 −0.838562
\(915\) 0 0
\(916\) 2.60968e15 0.133709
\(917\) 1.14404e16 0.582654
\(918\) −9.50685e15 −0.481285
\(919\) −2.24328e16 −1.12888 −0.564440 0.825474i \(-0.690908\pi\)
−0.564440 + 0.825474i \(0.690908\pi\)
\(920\) 0 0
\(921\) −3.50991e16 −1.74529
\(922\) −2.29303e16 −1.13342
\(923\) −1.40469e16 −0.690192
\(924\) −8.92384e15 −0.435869
\(925\) 0 0
\(926\) 3.59543e15 0.173536
\(927\) −8.52965e15 −0.409254
\(928\) −6.80173e15 −0.324419
\(929\) −3.69311e16 −1.75108 −0.875540 0.483145i \(-0.839494\pi\)
−0.875540 + 0.483145i \(0.839494\pi\)
\(930\) 0 0
\(931\) 2.49762e16 1.17031
\(932\) 1.32345e16 0.616483
\(933\) −1.13795e16 −0.526956
\(934\) −7.07380e15 −0.325646
\(935\) 0 0
\(936\) 2.01257e15 0.0915660
\(937\) −2.97721e15 −0.134661 −0.0673306 0.997731i \(-0.521448\pi\)
−0.0673306 + 0.997731i \(0.521448\pi\)
\(938\) −2.42254e13 −0.00108932
\(939\) 1.51331e16 0.676501
\(940\) 0 0
\(941\) −1.24483e16 −0.550004 −0.275002 0.961444i \(-0.588679\pi\)
−0.275002 + 0.961444i \(0.588679\pi\)
\(942\) 1.91657e16 0.841871
\(943\) 6.80281e15 0.297081
\(944\) −2.59509e15 −0.112669
\(945\) 0 0
\(946\) −3.06633e16 −1.31588
\(947\) −3.25711e16 −1.38966 −0.694829 0.719175i \(-0.744520\pi\)
−0.694829 + 0.719175i \(0.744520\pi\)
\(948\) −6.34010e15 −0.268937
\(949\) −2.05637e15 −0.0867234
\(950\) 0 0
\(951\) 5.65948e16 2.35930
\(952\) 6.29661e15 0.260978
\(953\) −8.18081e15 −0.337121 −0.168560 0.985691i \(-0.553912\pi\)
−0.168560 + 0.985691i \(0.553912\pi\)
\(954\) −9.82392e14 −0.0402503
\(955\) 0 0
\(956\) −3.11957e15 −0.126350
\(957\) −7.21710e16 −2.90634
\(958\) 2.95553e16 1.18338
\(959\) −1.44120e16 −0.573748
\(960\) 0 0
\(961\) −1.48428e16 −0.584169
\(962\) −9.31594e15 −0.364556
\(963\) 1.71948e16 0.669043
\(964\) −1.55010e16 −0.599701
\(965\) 0 0
\(966\) −8.21966e15 −0.314398
\(967\) 2.01660e16 0.766961 0.383480 0.923549i \(-0.374725\pi\)
0.383480 + 0.923549i \(0.374725\pi\)
\(968\) −5.31900e15 −0.201148
\(969\) 7.57081e16 2.84683
\(970\) 0 0
\(971\) −2.84728e16 −1.05858 −0.529291 0.848440i \(-0.677542\pi\)
−0.529291 + 0.848440i \(0.677542\pi\)
\(972\) −1.43443e16 −0.530292
\(973\) −5.83058e15 −0.214334
\(974\) 1.46747e16 0.536407
\(975\) 0 0
\(976\) 9.60793e13 0.00347261
\(977\) −1.91832e15 −0.0689448 −0.0344724 0.999406i \(-0.510975\pi\)
−0.0344724 + 0.999406i \(0.510975\pi\)
\(978\) −2.16235e16 −0.772790
\(979\) 6.84974e16 2.43427
\(980\) 0 0
\(981\) 1.64922e16 0.579562
\(982\) 7.27472e15 0.254216
\(983\) −2.65744e16 −0.923463 −0.461732 0.887020i \(-0.652772\pi\)
−0.461732 + 0.887020i \(0.652772\pi\)
\(984\) −6.01527e15 −0.207865
\(985\) 0 0
\(986\) 5.09234e16 1.74018
\(987\) −1.79983e16 −0.611629
\(988\) 1.07492e16 0.363255
\(989\) −2.82436e16 −0.949164
\(990\) 0 0
\(991\) −4.40916e16 −1.46538 −0.732690 0.680562i \(-0.761736\pi\)
−0.732690 + 0.680562i \(0.761736\pi\)
\(992\) −3.44903e15 −0.113994
\(993\) −6.56303e16 −2.15717
\(994\) −1.89944e16 −0.620870
\(995\) 0 0
\(996\) −1.27363e16 −0.411734
\(997\) 3.52203e16 1.13232 0.566161 0.824295i \(-0.308428\pi\)
0.566161 + 0.824295i \(0.308428\pi\)
\(998\) 1.98432e16 0.634444
\(999\) 1.90197e16 0.604774
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 50.12.a.i.1.3 3
5.2 odd 4 10.12.b.a.9.1 6
5.3 odd 4 10.12.b.a.9.6 yes 6
5.4 even 2 50.12.a.j.1.1 3
15.2 even 4 90.12.c.b.19.5 6
15.8 even 4 90.12.c.b.19.2 6
20.3 even 4 80.12.c.c.49.2 6
20.7 even 4 80.12.c.c.49.5 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
10.12.b.a.9.1 6 5.2 odd 4
10.12.b.a.9.6 yes 6 5.3 odd 4
50.12.a.i.1.3 3 1.1 even 1 trivial
50.12.a.j.1.1 3 5.4 even 2
80.12.c.c.49.2 6 20.3 even 4
80.12.c.c.49.5 6 20.7 even 4
90.12.c.b.19.2 6 15.8 even 4
90.12.c.b.19.5 6 15.2 even 4