Properties

Label 90.12.c.a.19.4
Level $90$
Weight $12$
Character 90.19
Analytic conductor $69.151$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [90,12,Mod(19,90)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("90.19"); S:= CuspForms(chi, 12); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(90, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1])) N = Newforms(chi, 12, names="a")
 
Level: \( N \) \(=\) \( 90 = 2 \cdot 3^{2} \cdot 5 \)
Weight: \( k \) \(=\) \( 12 \)
Character orbit: \([\chi]\) \(=\) 90.c (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,0,-4096,-4950] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(69.1508862504\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(i, \sqrt{1129})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 565x^{2} + 79524 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{3}\cdot 5^{2} \)
Twist minimal: no (minimal twist has level 30)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 19.4
Root \(17.3003i\) of defining polynomial
Character \(\chi\) \(=\) 90.19
Dual form 90.12.c.a.19.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+32.0000i q^{2} -1024.00 q^{4} +(4222.60 - 5567.57i) q^{5} +17733.1i q^{7} -32768.0i q^{8} +(178162. + 135123. i) q^{10} +92684.6 q^{11} -1.02948e6i q^{13} -567458. q^{14} +1.04858e6 q^{16} +4.19323e6i q^{17} +8.22974e6 q^{19} +(-4.32394e6 + 5.70119e6i) q^{20} +2.96591e6i q^{22} +2.30941e7i q^{23} +(-1.31675e7 - 4.70192e7i) q^{25} +3.29432e7 q^{26} -1.81587e7i q^{28} +6.33811e7 q^{29} -2.97961e8 q^{31} +3.35544e7i q^{32} -1.34183e8 q^{34} +(9.87300e7 + 7.48796e7i) q^{35} -4.43154e8i q^{37} +2.63352e8i q^{38} +(-1.82438e8 - 1.38366e8i) q^{40} -3.17205e8 q^{41} -1.53142e9i q^{43} -9.49091e7 q^{44} -7.39010e8 q^{46} -1.68921e9i q^{47} +1.66287e9 q^{49} +(1.50461e9 - 4.21359e8i) q^{50} +1.05418e9i q^{52} -9.14498e7i q^{53} +(3.91370e8 - 5.16028e8i) q^{55} +5.81077e8 q^{56} +2.02819e9i q^{58} -6.42961e8 q^{59} +4.06590e9 q^{61} -9.53476e9i q^{62} -1.07374e9 q^{64} +(-5.73167e9 - 4.34706e9i) q^{65} +6.00020e9i q^{67} -4.29387e9i q^{68} +(-2.39615e9 + 3.15936e9i) q^{70} -1.58004e9 q^{71} -2.53729e10i q^{73} +1.41809e10 q^{74} -8.42725e9 q^{76} +1.64358e9i q^{77} +1.79005e10 q^{79} +(4.42771e9 - 5.83802e9i) q^{80} -1.01506e10i q^{82} +2.17112e10i q^{83} +(2.33461e10 + 1.77063e10i) q^{85} +4.90053e10 q^{86} -3.03709e9i q^{88} +9.05198e10 q^{89} +1.82558e10 q^{91} -2.36483e10i q^{92} +5.40547e10 q^{94} +(3.47509e10 - 4.58196e10i) q^{95} -9.98403e10i q^{97} +5.32117e10i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 4096 q^{4} - 4950 q^{5} + 228800 q^{10} + 452052 q^{11} - 1775232 q^{14} + 4194304 q^{16} + 36378480 q^{19} + 5068800 q^{20} + 55440000 q^{25} + 56098944 q^{26} - 257619420 q^{29} - 300753272 q^{31}+ \cdots - 63907668000 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/90\mathbb{Z}\right)^\times\).

\(n\) \(11\) \(37\)
\(\chi(n)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 32.0000i 0.707107i
\(3\) 0 0
\(4\) −1024.00 −0.500000
\(5\) 4222.60 5567.57i 0.604289 0.796765i
\(6\) 0 0
\(7\) 17733.1i 0.398790i 0.979919 + 0.199395i \(0.0638977\pi\)
−0.979919 + 0.199395i \(0.936102\pi\)
\(8\) 32768.0i 0.353553i
\(9\) 0 0
\(10\) 178162. + 135123.i 0.563398 + 0.427297i
\(11\) 92684.6 0.173519 0.0867597 0.996229i \(-0.472349\pi\)
0.0867597 + 0.996229i \(0.472349\pi\)
\(12\) 0 0
\(13\) 1.02948e6i 0.769002i −0.923125 0.384501i \(-0.874373\pi\)
0.923125 0.384501i \(-0.125627\pi\)
\(14\) −567458. −0.281987
\(15\) 0 0
\(16\) 1.04858e6 0.250000
\(17\) 4.19323e6i 0.716275i 0.933669 + 0.358138i \(0.116588\pi\)
−0.933669 + 0.358138i \(0.883412\pi\)
\(18\) 0 0
\(19\) 8.22974e6 0.762503 0.381251 0.924471i \(-0.375493\pi\)
0.381251 + 0.924471i \(0.375493\pi\)
\(20\) −4.32394e6 + 5.70119e6i −0.302144 + 0.398383i
\(21\) 0 0
\(22\) 2.96591e6i 0.122697i
\(23\) 2.30941e7i 0.748164i 0.927396 + 0.374082i \(0.122042\pi\)
−0.927396 + 0.374082i \(0.877958\pi\)
\(24\) 0 0
\(25\) −1.31675e7 4.70192e7i −0.269670 0.962953i
\(26\) 3.29432e7 0.543767
\(27\) 0 0
\(28\) 1.81587e7i 0.199395i
\(29\) 6.33811e7 0.573813 0.286907 0.957959i \(-0.407373\pi\)
0.286907 + 0.957959i \(0.407373\pi\)
\(30\) 0 0
\(31\) −2.97961e8 −1.86926 −0.934632 0.355617i \(-0.884271\pi\)
−0.934632 + 0.355617i \(0.884271\pi\)
\(32\) 3.35544e7i 0.176777i
\(33\) 0 0
\(34\) −1.34183e8 −0.506483
\(35\) 9.87300e7 + 7.48796e7i 0.317742 + 0.240985i
\(36\) 0 0
\(37\) 4.43154e8i 1.05062i −0.850911 0.525309i \(-0.823950\pi\)
0.850911 0.525309i \(-0.176050\pi\)
\(38\) 2.63352e8i 0.539171i
\(39\) 0 0
\(40\) −1.82438e8 1.38366e8i −0.281699 0.213648i
\(41\) −3.17205e8 −0.427591 −0.213795 0.976878i \(-0.568583\pi\)
−0.213795 + 0.976878i \(0.568583\pi\)
\(42\) 0 0
\(43\) 1.53142e9i 1.58861i −0.607521 0.794304i \(-0.707836\pi\)
0.607521 0.794304i \(-0.292164\pi\)
\(44\) −9.49091e7 −0.0867597
\(45\) 0 0
\(46\) −7.39010e8 −0.529032
\(47\) 1.68921e9i 1.07435i −0.843471 0.537175i \(-0.819492\pi\)
0.843471 0.537175i \(-0.180508\pi\)
\(48\) 0 0
\(49\) 1.66287e9 0.840966
\(50\) 1.50461e9 4.21359e8i 0.680910 0.190685i
\(51\) 0 0
\(52\) 1.05418e9i 0.384501i
\(53\) 9.14498e7i 0.0300376i −0.999887 0.0150188i \(-0.995219\pi\)
0.999887 0.0150188i \(-0.00478081\pi\)
\(54\) 0 0
\(55\) 3.91370e8 5.16028e8i 0.104856 0.138254i
\(56\) 5.81077e8 0.140994
\(57\) 0 0
\(58\) 2.02819e9i 0.405747i
\(59\) −6.42961e8 −0.117084 −0.0585421 0.998285i \(-0.518645\pi\)
−0.0585421 + 0.998285i \(0.518645\pi\)
\(60\) 0 0
\(61\) 4.06590e9 0.616371 0.308186 0.951326i \(-0.400278\pi\)
0.308186 + 0.951326i \(0.400278\pi\)
\(62\) 9.53476e9i 1.32177i
\(63\) 0 0
\(64\) −1.07374e9 −0.125000
\(65\) −5.73167e9 4.34706e9i −0.612714 0.464699i
\(66\) 0 0
\(67\) 6.00020e9i 0.542943i 0.962446 + 0.271471i \(0.0875103\pi\)
−0.962446 + 0.271471i \(0.912490\pi\)
\(68\) 4.29387e9i 0.358138i
\(69\) 0 0
\(70\) −2.39615e9 + 3.15936e9i −0.170402 + 0.224678i
\(71\) −1.58004e9 −0.103931 −0.0519657 0.998649i \(-0.516549\pi\)
−0.0519657 + 0.998649i \(0.516549\pi\)
\(72\) 0 0
\(73\) 2.53729e10i 1.43250i −0.697844 0.716250i \(-0.745857\pi\)
0.697844 0.716250i \(-0.254143\pi\)
\(74\) 1.41809e10 0.742899
\(75\) 0 0
\(76\) −8.42725e9 −0.381251
\(77\) 1.64358e9i 0.0691979i
\(78\) 0 0
\(79\) 1.79005e10 0.654508 0.327254 0.944936i \(-0.393877\pi\)
0.327254 + 0.944936i \(0.393877\pi\)
\(80\) 4.42771e9 5.83802e9i 0.151072 0.199191i
\(81\) 0 0
\(82\) 1.01506e10i 0.302352i
\(83\) 2.17112e10i 0.604997i 0.953150 + 0.302499i \(0.0978208\pi\)
−0.953150 + 0.302499i \(0.902179\pi\)
\(84\) 0 0
\(85\) 2.33461e10 + 1.77063e10i 0.570703 + 0.432837i
\(86\) 4.90053e10 1.12332
\(87\) 0 0
\(88\) 3.03709e9i 0.0613484i
\(89\) 9.05198e10 1.71830 0.859149 0.511726i \(-0.170994\pi\)
0.859149 + 0.511726i \(0.170994\pi\)
\(90\) 0 0
\(91\) 1.82558e10 0.306671
\(92\) 2.36483e10i 0.374082i
\(93\) 0 0
\(94\) 5.40547e10 0.759680
\(95\) 3.47509e10 4.58196e10i 0.460772 0.607536i
\(96\) 0 0
\(97\) 9.98403e10i 1.18049i −0.807225 0.590244i \(-0.799032\pi\)
0.807225 0.590244i \(-0.200968\pi\)
\(98\) 5.32117e10i 0.594653i
\(99\) 0 0
\(100\) 1.34835e10 + 4.81476e10i 0.134835 + 0.481476i
\(101\) 1.98701e11 1.88119 0.940595 0.339531i \(-0.110268\pi\)
0.940595 + 0.339531i \(0.110268\pi\)
\(102\) 0 0
\(103\) 1.41496e10i 0.120265i −0.998190 0.0601327i \(-0.980848\pi\)
0.998190 0.0601327i \(-0.0191524\pi\)
\(104\) −3.37339e10 −0.271883
\(105\) 0 0
\(106\) 2.92639e9 0.0212398
\(107\) 1.45833e11i 1.00518i −0.864524 0.502592i \(-0.832380\pi\)
0.864524 0.502592i \(-0.167620\pi\)
\(108\) 0 0
\(109\) 2.34206e10 0.145798 0.0728992 0.997339i \(-0.476775\pi\)
0.0728992 + 0.997339i \(0.476775\pi\)
\(110\) 1.65129e10 + 1.25238e10i 0.0977605 + 0.0741443i
\(111\) 0 0
\(112\) 1.85945e10i 0.0996976i
\(113\) 2.82794e11i 1.44391i −0.691942 0.721953i \(-0.743244\pi\)
0.691942 0.721953i \(-0.256756\pi\)
\(114\) 0 0
\(115\) 1.28578e11 + 9.75169e10i 0.596111 + 0.452107i
\(116\) −6.49022e10 −0.286907
\(117\) 0 0
\(118\) 2.05747e10i 0.0827911i
\(119\) −7.43589e10 −0.285644
\(120\) 0 0
\(121\) −2.76721e11 −0.969891
\(122\) 1.30109e11i 0.435840i
\(123\) 0 0
\(124\) 3.05112e11 0.934632
\(125\) −3.17383e11 1.25232e11i −0.930206 0.367038i
\(126\) 0 0
\(127\) 2.22914e11i 0.598709i −0.954142 0.299355i \(-0.903229\pi\)
0.954142 0.299355i \(-0.0967714\pi\)
\(128\) 3.43597e10i 0.0883883i
\(129\) 0 0
\(130\) 1.39106e11 1.83414e11i 0.328592 0.433254i
\(131\) 5.28629e11 1.19718 0.598589 0.801056i \(-0.295728\pi\)
0.598589 + 0.801056i \(0.295728\pi\)
\(132\) 0 0
\(133\) 1.45939e11i 0.304079i
\(134\) −1.92006e11 −0.383919
\(135\) 0 0
\(136\) 1.37404e11 0.253241
\(137\) 6.18656e11i 1.09518i −0.836746 0.547591i \(-0.815545\pi\)
0.836746 0.547591i \(-0.184455\pi\)
\(138\) 0 0
\(139\) −3.12179e11 −0.510297 −0.255148 0.966902i \(-0.582124\pi\)
−0.255148 + 0.966902i \(0.582124\pi\)
\(140\) −1.01100e11 7.66767e10i −0.158871 0.120492i
\(141\) 0 0
\(142\) 5.05612e10i 0.0734906i
\(143\) 9.54166e10i 0.133437i
\(144\) 0 0
\(145\) 2.67633e11 3.52878e11i 0.346749 0.457194i
\(146\) 8.11933e11 1.01293
\(147\) 0 0
\(148\) 4.53790e11i 0.525309i
\(149\) 6.31691e11 0.704661 0.352330 0.935876i \(-0.385389\pi\)
0.352330 + 0.935876i \(0.385389\pi\)
\(150\) 0 0
\(151\) −1.53380e12 −1.59000 −0.794998 0.606612i \(-0.792528\pi\)
−0.794998 + 0.606612i \(0.792528\pi\)
\(152\) 2.69672e11i 0.269585i
\(153\) 0 0
\(154\) −5.25947e10 −0.0489303
\(155\) −1.25817e12 + 1.65892e12i −1.12958 + 1.48936i
\(156\) 0 0
\(157\) 1.16558e12i 0.975199i −0.873067 0.487599i \(-0.837873\pi\)
0.873067 0.487599i \(-0.162127\pi\)
\(158\) 5.72815e11i 0.462807i
\(159\) 0 0
\(160\) 1.86817e11 + 1.41687e11i 0.140850 + 0.106824i
\(161\) −4.09528e11 −0.298361
\(162\) 0 0
\(163\) 8.50999e11i 0.579292i −0.957134 0.289646i \(-0.906462\pi\)
0.957134 0.289646i \(-0.0935375\pi\)
\(164\) 3.24818e11 0.213795
\(165\) 0 0
\(166\) −6.94757e11 −0.427798
\(167\) 2.62566e12i 1.56422i 0.623139 + 0.782111i \(0.285857\pi\)
−0.623139 + 0.782111i \(0.714143\pi\)
\(168\) 0 0
\(169\) 7.32341e11 0.408636
\(170\) −5.66603e11 + 7.47075e11i −0.306062 + 0.403548i
\(171\) 0 0
\(172\) 1.56817e12i 0.794304i
\(173\) 3.19469e11i 0.156738i −0.996924 0.0783692i \(-0.975029\pi\)
0.996924 0.0783692i \(-0.0249713\pi\)
\(174\) 0 0
\(175\) 8.33794e11 2.33500e11i 0.384016 0.107542i
\(176\) 9.71869e10 0.0433798
\(177\) 0 0
\(178\) 2.89663e12i 1.21502i
\(179\) −4.74402e12 −1.92955 −0.964773 0.263083i \(-0.915261\pi\)
−0.964773 + 0.263083i \(0.915261\pi\)
\(180\) 0 0
\(181\) −4.43161e12 −1.69563 −0.847813 0.530296i \(-0.822081\pi\)
−0.847813 + 0.530296i \(0.822081\pi\)
\(182\) 5.84184e11i 0.216849i
\(183\) 0 0
\(184\) 7.56746e11 0.264516
\(185\) −2.46729e12 1.87126e12i −0.837096 0.634877i
\(186\) 0 0
\(187\) 3.88648e11i 0.124288i
\(188\) 1.72975e12i 0.537175i
\(189\) 0 0
\(190\) 1.46623e12 + 1.11203e12i 0.429593 + 0.325815i
\(191\) −8.61562e11 −0.245247 −0.122623 0.992453i \(-0.539131\pi\)
−0.122623 + 0.992453i \(0.539131\pi\)
\(192\) 0 0
\(193\) 2.65521e12i 0.713729i 0.934156 + 0.356864i \(0.116154\pi\)
−0.934156 + 0.356864i \(0.883846\pi\)
\(194\) 3.19489e12 0.834731
\(195\) 0 0
\(196\) −1.70277e12 −0.420483
\(197\) 6.13480e11i 0.147311i −0.997284 0.0736556i \(-0.976533\pi\)
0.997284 0.0736556i \(-0.0234666\pi\)
\(198\) 0 0
\(199\) 6.69462e12 1.52067 0.760333 0.649533i \(-0.225036\pi\)
0.760333 + 0.649533i \(0.225036\pi\)
\(200\) −1.54072e12 + 4.31472e11i −0.340455 + 0.0953427i
\(201\) 0 0
\(202\) 6.35843e12i 1.33020i
\(203\) 1.12394e12i 0.228831i
\(204\) 0 0
\(205\) −1.33943e12 + 1.76606e12i −0.258388 + 0.340690i
\(206\) 4.52788e11 0.0850405
\(207\) 0 0
\(208\) 1.07948e12i 0.192251i
\(209\) 7.62771e11 0.132309
\(210\) 0 0
\(211\) −2.93358e12 −0.482886 −0.241443 0.970415i \(-0.577621\pi\)
−0.241443 + 0.970415i \(0.577621\pi\)
\(212\) 9.36446e10i 0.0150188i
\(213\) 0 0
\(214\) 4.66666e12 0.710772
\(215\) −8.52626e12 6.46655e12i −1.26575 0.959978i
\(216\) 0 0
\(217\) 5.28377e12i 0.745444i
\(218\) 7.49460e11i 0.103095i
\(219\) 0 0
\(220\) −4.00763e11 + 5.28413e11i −0.0524279 + 0.0691271i
\(221\) 4.31683e12 0.550817
\(222\) 0 0
\(223\) 1.03502e13i 1.25682i −0.777884 0.628408i \(-0.783707\pi\)
0.777884 0.628408i \(-0.216293\pi\)
\(224\) −5.95023e11 −0.0704968
\(225\) 0 0
\(226\) 9.04942e12 1.02100
\(227\) 7.14950e12i 0.787288i 0.919263 + 0.393644i \(0.128786\pi\)
−0.919263 + 0.393644i \(0.871214\pi\)
\(228\) 0 0
\(229\) −1.34181e13 −1.40798 −0.703990 0.710210i \(-0.748600\pi\)
−0.703990 + 0.710210i \(0.748600\pi\)
\(230\) −3.12054e12 + 4.11449e12i −0.319688 + 0.421514i
\(231\) 0 0
\(232\) 2.07687e12i 0.202874i
\(233\) 2.18579e12i 0.208522i 0.994550 + 0.104261i \(0.0332477\pi\)
−0.994550 + 0.104261i \(0.966752\pi\)
\(234\) 0 0
\(235\) −9.40479e12 7.13286e12i −0.856005 0.649218i
\(236\) 6.58392e11 0.0585421
\(237\) 0 0
\(238\) 2.37948e12i 0.201981i
\(239\) 1.55254e13 1.28781 0.643907 0.765104i \(-0.277312\pi\)
0.643907 + 0.765104i \(0.277312\pi\)
\(240\) 0 0
\(241\) −1.45886e13 −1.15590 −0.577951 0.816071i \(-0.696148\pi\)
−0.577951 + 0.816071i \(0.696148\pi\)
\(242\) 8.85508e12i 0.685817i
\(243\) 0 0
\(244\) −4.16348e12 −0.308186
\(245\) 7.02161e12 9.25811e12i 0.508187 0.670053i
\(246\) 0 0
\(247\) 8.47232e12i 0.586366i
\(248\) 9.76359e12i 0.660884i
\(249\) 0 0
\(250\) 4.00743e12 1.01563e13i 0.259535 0.657755i
\(251\) −7.86073e12 −0.498032 −0.249016 0.968499i \(-0.580107\pi\)
−0.249016 + 0.968499i \(0.580107\pi\)
\(252\) 0 0
\(253\) 2.14046e12i 0.129821i
\(254\) 7.13323e12 0.423351
\(255\) 0 0
\(256\) 1.09951e12 0.0625000
\(257\) 1.74113e13i 0.968719i −0.874869 0.484360i \(-0.839053\pi\)
0.874869 0.484360i \(-0.160947\pi\)
\(258\) 0 0
\(259\) 7.85848e12 0.418977
\(260\) 5.86923e12 + 4.45139e12i 0.306357 + 0.232350i
\(261\) 0 0
\(262\) 1.69161e13i 0.846533i
\(263\) 1.44399e13i 0.707633i −0.935315 0.353817i \(-0.884884\pi\)
0.935315 0.353817i \(-0.115116\pi\)
\(264\) 0 0
\(265\) −5.09153e11 3.86155e11i −0.0239329 0.0181514i
\(266\) −4.67003e12 −0.215016
\(267\) 0 0
\(268\) 6.14420e12i 0.271471i
\(269\) 3.70372e13 1.60325 0.801623 0.597830i \(-0.203970\pi\)
0.801623 + 0.597830i \(0.203970\pi\)
\(270\) 0 0
\(271\) 4.68050e13 1.94519 0.972594 0.232510i \(-0.0746940\pi\)
0.972594 + 0.232510i \(0.0746940\pi\)
\(272\) 4.39692e12i 0.179069i
\(273\) 0 0
\(274\) 1.97970e13 0.774410
\(275\) −1.22042e12 4.35796e12i −0.0467930 0.167091i
\(276\) 0 0
\(277\) 2.71382e12i 0.0999867i 0.998750 + 0.0499934i \(0.0159200\pi\)
−0.998750 + 0.0499934i \(0.984080\pi\)
\(278\) 9.98974e12i 0.360834i
\(279\) 0 0
\(280\) 2.45365e12 3.23519e12i 0.0852009 0.112339i
\(281\) −1.90126e12 −0.0647376 −0.0323688 0.999476i \(-0.510305\pi\)
−0.0323688 + 0.999476i \(0.510305\pi\)
\(282\) 0 0
\(283\) 2.31481e13i 0.758036i 0.925389 + 0.379018i \(0.123738\pi\)
−0.925389 + 0.379018i \(0.876262\pi\)
\(284\) 1.61796e12 0.0519657
\(285\) 0 0
\(286\) 3.05333e12 0.0943541
\(287\) 5.62501e12i 0.170519i
\(288\) 0 0
\(289\) 1.66887e13 0.486950
\(290\) 1.12921e13 + 8.56425e12i 0.323285 + 0.245189i
\(291\) 0 0
\(292\) 2.59819e13i 0.716250i
\(293\) 2.15915e13i 0.584131i −0.956398 0.292066i \(-0.905657\pi\)
0.956398 0.292066i \(-0.0943426\pi\)
\(294\) 0 0
\(295\) −2.71496e12 + 3.57973e12i −0.0707527 + 0.0932887i
\(296\) −1.45213e13 −0.371450
\(297\) 0 0
\(298\) 2.02141e13i 0.498270i
\(299\) 2.37748e13 0.575340
\(300\) 0 0
\(301\) 2.71567e13 0.633522
\(302\) 4.90817e13i 1.12430i
\(303\) 0 0
\(304\) 8.62951e12 0.190626
\(305\) 1.71686e13 2.26372e13i 0.372466 0.491103i
\(306\) 0 0
\(307\) 9.13551e13i 1.91193i −0.293482 0.955965i \(-0.594814\pi\)
0.293482 0.955965i \(-0.405186\pi\)
\(308\) 1.68303e12i 0.0345989i
\(309\) 0 0
\(310\) −5.30854e13 4.02614e13i −1.05314 0.798730i
\(311\) −9.13888e13 −1.78119 −0.890596 0.454795i \(-0.849713\pi\)
−0.890596 + 0.454795i \(0.849713\pi\)
\(312\) 0 0
\(313\) 1.00924e14i 1.89889i 0.313927 + 0.949447i \(0.398355\pi\)
−0.313927 + 0.949447i \(0.601645\pi\)
\(314\) 3.72985e13 0.689570
\(315\) 0 0
\(316\) −1.83301e13 −0.327254
\(317\) 8.27651e13i 1.45218i 0.687598 + 0.726092i \(0.258665\pi\)
−0.687598 + 0.726092i \(0.741335\pi\)
\(318\) 0 0
\(319\) 5.87445e12 0.0995677
\(320\) −4.53398e12 + 5.97813e12i −0.0755361 + 0.0995957i
\(321\) 0 0
\(322\) 1.31049e13i 0.210973i
\(323\) 3.45092e13i 0.546162i
\(324\) 0 0
\(325\) −4.84051e13 + 1.35556e13i −0.740513 + 0.207377i
\(326\) 2.72320e13 0.409621
\(327\) 0 0
\(328\) 1.03942e13i 0.151176i
\(329\) 2.99549e13 0.428440
\(330\) 0 0
\(331\) 6.66951e13 0.922656 0.461328 0.887230i \(-0.347373\pi\)
0.461328 + 0.887230i \(0.347373\pi\)
\(332\) 2.22322e13i 0.302499i
\(333\) 0 0
\(334\) −8.40212e13 −1.10607
\(335\) 3.34065e13 + 2.53364e13i 0.432598 + 0.328094i
\(336\) 0 0
\(337\) 8.05140e13i 1.00904i −0.863401 0.504518i \(-0.831670\pi\)
0.863401 0.504518i \(-0.168330\pi\)
\(338\) 2.34349e13i 0.288949i
\(339\) 0 0
\(340\) −2.39064e13 1.81313e13i −0.285352 0.216419i
\(341\) −2.76164e13 −0.324353
\(342\) 0 0
\(343\) 6.45518e13i 0.734160i
\(344\) −5.01814e13 −0.561658
\(345\) 0 0
\(346\) 1.02230e13 0.110831
\(347\) 1.32024e14i 1.40877i 0.709817 + 0.704386i \(0.248778\pi\)
−0.709817 + 0.704386i \(0.751222\pi\)
\(348\) 0 0
\(349\) −3.92975e13 −0.406280 −0.203140 0.979150i \(-0.565115\pi\)
−0.203140 + 0.979150i \(0.565115\pi\)
\(350\) 7.47199e12 + 2.66814e13i 0.0760435 + 0.271541i
\(351\) 0 0
\(352\) 3.10998e12i 0.0306742i
\(353\) 1.33047e14i 1.29195i 0.763360 + 0.645973i \(0.223548\pi\)
−0.763360 + 0.645973i \(0.776452\pi\)
\(354\) 0 0
\(355\) −6.67186e12 + 8.79697e12i −0.0628045 + 0.0828089i
\(356\) −9.26922e13 −0.859149
\(357\) 0 0
\(358\) 1.51809e14i 1.36440i
\(359\) −6.12598e13 −0.542196 −0.271098 0.962552i \(-0.587387\pi\)
−0.271098 + 0.962552i \(0.587387\pi\)
\(360\) 0 0
\(361\) −4.87616e13 −0.418590
\(362\) 1.41812e14i 1.19899i
\(363\) 0 0
\(364\) −1.86939e13 −0.153335
\(365\) −1.41265e14 1.07140e14i −1.14137 0.865643i
\(366\) 0 0
\(367\) 3.85669e13i 0.302379i 0.988505 + 0.151189i \(0.0483103\pi\)
−0.988505 + 0.151189i \(0.951690\pi\)
\(368\) 2.42159e13i 0.187041i
\(369\) 0 0
\(370\) 5.98803e13 7.89532e13i 0.448926 0.591917i
\(371\) 1.62168e12 0.0119787
\(372\) 0 0
\(373\) 1.48417e14i 1.06435i 0.846635 + 0.532174i \(0.178625\pi\)
−0.846635 + 0.532174i \(0.821375\pi\)
\(374\) −1.24367e13 −0.0878846
\(375\) 0 0
\(376\) −5.53521e13 −0.379840
\(377\) 6.52493e13i 0.441264i
\(378\) 0 0
\(379\) −2.32826e13 −0.152938 −0.0764691 0.997072i \(-0.524365\pi\)
−0.0764691 + 0.997072i \(0.524365\pi\)
\(380\) −3.55849e13 + 4.69193e13i −0.230386 + 0.303768i
\(381\) 0 0
\(382\) 2.75700e13i 0.173416i
\(383\) 1.04288e12i 0.00646605i −0.999995 0.00323303i \(-0.998971\pi\)
0.999995 0.00323303i \(-0.00102911\pi\)
\(384\) 0 0
\(385\) 9.15076e12 + 6.94019e12i 0.0551345 + 0.0418155i
\(386\) −8.49666e13 −0.504682
\(387\) 0 0
\(388\) 1.02236e14i 0.590244i
\(389\) −1.43212e14 −0.815187 −0.407593 0.913163i \(-0.633632\pi\)
−0.407593 + 0.913163i \(0.633632\pi\)
\(390\) 0 0
\(391\) −9.68387e13 −0.535892
\(392\) 5.44888e13i 0.297326i
\(393\) 0 0
\(394\) 1.96313e13 0.104165
\(395\) 7.55864e13 9.96620e13i 0.395512 0.521490i
\(396\) 0 0
\(397\) 5.28208e13i 0.268817i 0.990926 + 0.134409i \(0.0429135\pi\)
−0.990926 + 0.134409i \(0.957087\pi\)
\(398\) 2.14228e14i 1.07527i
\(399\) 0 0
\(400\) −1.38071e13 4.93032e13i −0.0674175 0.240738i
\(401\) 2.10904e14 1.01576 0.507880 0.861428i \(-0.330429\pi\)
0.507880 + 0.861428i \(0.330429\pi\)
\(402\) 0 0
\(403\) 3.06744e14i 1.43747i
\(404\) −2.03470e14 −0.940595
\(405\) 0 0
\(406\) −3.59661e13 −0.161808
\(407\) 4.10736e13i 0.182303i
\(408\) 0 0
\(409\) 9.65539e13 0.417149 0.208575 0.978006i \(-0.433118\pi\)
0.208575 + 0.978006i \(0.433118\pi\)
\(410\) −5.65139e13 4.28617e13i −0.240904 0.182708i
\(411\) 0 0
\(412\) 1.44892e13i 0.0601327i
\(413\) 1.14017e13i 0.0466921i
\(414\) 0 0
\(415\) 1.20878e14 + 9.16774e13i 0.482041 + 0.365593i
\(416\) 3.45435e13 0.135942
\(417\) 0 0
\(418\) 2.44087e13i 0.0935566i
\(419\) −1.21273e13 −0.0458761 −0.0229381 0.999737i \(-0.507302\pi\)
−0.0229381 + 0.999737i \(0.507302\pi\)
\(420\) 0 0
\(421\) 1.96716e13 0.0724916 0.0362458 0.999343i \(-0.488460\pi\)
0.0362458 + 0.999343i \(0.488460\pi\)
\(422\) 9.38746e13i 0.341452i
\(423\) 0 0
\(424\) −2.99663e12 −0.0106199
\(425\) 1.97162e14 5.52143e13i 0.689739 0.193158i
\(426\) 0 0
\(427\) 7.21008e13i 0.245803i
\(428\) 1.49333e14i 0.502592i
\(429\) 0 0
\(430\) 2.06930e14 2.72840e14i 0.678807 0.895019i
\(431\) 2.13646e14 0.691941 0.345971 0.938245i \(-0.387550\pi\)
0.345971 + 0.938245i \(0.387550\pi\)
\(432\) 0 0
\(433\) 1.18328e13i 0.0373598i −0.999826 0.0186799i \(-0.994054\pi\)
0.999826 0.0186799i \(-0.00594634\pi\)
\(434\) 1.69081e14 0.527109
\(435\) 0 0
\(436\) −2.39827e13 −0.0728992
\(437\) 1.90058e14i 0.570477i
\(438\) 0 0
\(439\) 1.12906e14 0.330494 0.165247 0.986252i \(-0.447158\pi\)
0.165247 + 0.986252i \(0.447158\pi\)
\(440\) −1.69092e13 1.28244e13i −0.0488803 0.0370721i
\(441\) 0 0
\(442\) 1.38139e14i 0.389487i
\(443\) 5.15214e14i 1.43472i 0.696703 + 0.717360i \(0.254649\pi\)
−0.696703 + 0.717360i \(0.745351\pi\)
\(444\) 0 0
\(445\) 3.82228e14 5.03975e14i 1.03835 1.36908i
\(446\) 3.31206e14 0.888703
\(447\) 0 0
\(448\) 1.90407e13i 0.0498488i
\(449\) −5.91800e14 −1.53045 −0.765227 0.643761i \(-0.777373\pi\)
−0.765227 + 0.643761i \(0.777373\pi\)
\(450\) 0 0
\(451\) −2.94000e13 −0.0741953
\(452\) 2.89581e14i 0.721953i
\(453\) 0 0
\(454\) −2.28784e14 −0.556697
\(455\) 7.70867e13 1.01640e14i 0.185318 0.244345i
\(456\) 0 0
\(457\) 6.79879e14i 1.59549i −0.602998 0.797743i \(-0.706027\pi\)
0.602998 0.797743i \(-0.293973\pi\)
\(458\) 4.29380e14i 0.995592i
\(459\) 0 0
\(460\) −1.31664e14 9.98573e13i −0.298056 0.226054i
\(461\) 8.70498e14 1.94721 0.973604 0.228243i \(-0.0732979\pi\)
0.973604 + 0.228243i \(0.0732979\pi\)
\(462\) 0 0
\(463\) 6.66296e14i 1.45537i 0.685914 + 0.727683i \(0.259403\pi\)
−0.685914 + 0.727683i \(0.740597\pi\)
\(464\) 6.64599e13 0.143453
\(465\) 0 0
\(466\) −6.99453e13 −0.147447
\(467\) 2.78736e14i 0.580697i −0.956921 0.290349i \(-0.906229\pi\)
0.956921 0.290349i \(-0.0937713\pi\)
\(468\) 0 0
\(469\) −1.06402e14 −0.216520
\(470\) 2.28251e14 3.00953e14i 0.459066 0.605287i
\(471\) 0 0
\(472\) 2.10685e13i 0.0413955i
\(473\) 1.41939e14i 0.275654i
\(474\) 0 0
\(475\) −1.08365e14 3.86956e14i −0.205624 0.734254i
\(476\) 7.61435e13 0.142822
\(477\) 0 0
\(478\) 4.96811e14i 0.910622i
\(479\) 3.12280e14 0.565847 0.282923 0.959143i \(-0.408696\pi\)
0.282923 + 0.959143i \(0.408696\pi\)
\(480\) 0 0
\(481\) −4.56216e14 −0.807928
\(482\) 4.66837e14i 0.817347i
\(483\) 0 0
\(484\) 2.83363e14 0.484946
\(485\) −5.55868e14 4.21585e14i −0.940572 0.713356i
\(486\) 0 0
\(487\) 5.72468e14i 0.946982i −0.880799 0.473491i \(-0.842994\pi\)
0.880799 0.473491i \(-0.157006\pi\)
\(488\) 1.33231e14i 0.217920i
\(489\) 0 0
\(490\) 2.96260e14 + 2.24691e14i 0.473799 + 0.359342i
\(491\) 4.72897e14 0.747856 0.373928 0.927458i \(-0.378011\pi\)
0.373928 + 0.927458i \(0.378011\pi\)
\(492\) 0 0
\(493\) 2.65772e14i 0.411008i
\(494\) 2.71114e14 0.414624
\(495\) 0 0
\(496\) −3.12435e14 −0.467316
\(497\) 2.80189e13i 0.0414468i
\(498\) 0 0
\(499\) −2.15127e14 −0.311274 −0.155637 0.987814i \(-0.549743\pi\)
−0.155637 + 0.987814i \(0.549743\pi\)
\(500\) 3.25001e14 + 1.28238e14i 0.465103 + 0.183519i
\(501\) 0 0
\(502\) 2.51544e14i 0.352162i
\(503\) 5.75007e14i 0.796250i −0.917331 0.398125i \(-0.869661\pi\)
0.917331 0.398125i \(-0.130339\pi\)
\(504\) 0 0
\(505\) 8.39034e14 1.10628e15i 1.13678 1.49887i
\(506\) −6.84948e13 −0.0917973
\(507\) 0 0
\(508\) 2.28264e14i 0.299355i
\(509\) −5.10104e14 −0.661776 −0.330888 0.943670i \(-0.607348\pi\)
−0.330888 + 0.943670i \(0.607348\pi\)
\(510\) 0 0
\(511\) 4.49939e14 0.571267
\(512\) 3.51844e13i 0.0441942i
\(513\) 0 0
\(514\) 5.57160e14 0.684988
\(515\) −7.87791e13 5.97482e13i −0.0958233 0.0726750i
\(516\) 0 0
\(517\) 1.56564e14i 0.186420i
\(518\) 2.51471e14i 0.296261i
\(519\) 0 0
\(520\) −1.42444e14 + 1.87815e14i −0.164296 + 0.216627i
\(521\) −1.40565e15 −1.60424 −0.802122 0.597160i \(-0.796296\pi\)
−0.802122 + 0.597160i \(0.796296\pi\)
\(522\) 0 0
\(523\) 1.00053e15i 1.11807i 0.829144 + 0.559035i \(0.188828\pi\)
−0.829144 + 0.559035i \(0.811172\pi\)
\(524\) −5.41316e14 −0.598589
\(525\) 0 0
\(526\) 4.62077e14 0.500372
\(527\) 1.24942e15i 1.33891i
\(528\) 0 0
\(529\) 4.19475e14 0.440250
\(530\) 1.23570e13 1.62929e13i 0.0128350 0.0169231i
\(531\) 0 0
\(532\) 1.49441e14i 0.152039i
\(533\) 3.26555e14i 0.328818i
\(534\) 0 0
\(535\) −8.11935e14 6.15794e14i −0.800895 0.607421i
\(536\) 1.96614e14 0.191959
\(537\) 0 0
\(538\) 1.18519e15i 1.13367i
\(539\) 1.54122e14 0.145924
\(540\) 0 0
\(541\) −2.10941e14 −0.195693 −0.0978466 0.995202i \(-0.531195\pi\)
−0.0978466 + 0.995202i \(0.531195\pi\)
\(542\) 1.49776e15i 1.37546i
\(543\) 0 0
\(544\) −1.40702e14 −0.126621
\(545\) 9.88958e13 1.30396e14i 0.0881043 0.116167i
\(546\) 0 0
\(547\) 2.52114e14i 0.220123i 0.993925 + 0.110062i \(0.0351048\pi\)
−0.993925 + 0.110062i \(0.964895\pi\)
\(548\) 6.33504e14i 0.547591i
\(549\) 0 0
\(550\) 1.39455e14 3.90535e13i 0.118151 0.0330876i
\(551\) 5.21610e14 0.437534
\(552\) 0 0
\(553\) 3.17430e14i 0.261012i
\(554\) −8.68423e13 −0.0707013
\(555\) 0 0
\(556\) 3.19672e14 0.255148
\(557\) 5.86436e14i 0.463465i −0.972780 0.231733i \(-0.925561\pi\)
0.972780 0.231733i \(-0.0744395\pi\)
\(558\) 0 0
\(559\) −1.57656e15 −1.22164
\(560\) 1.03526e14 + 7.85169e13i 0.0794356 + 0.0602461i
\(561\) 0 0
\(562\) 6.08403e13i 0.0457764i
\(563\) 2.38879e15i 1.77984i 0.456117 + 0.889920i \(0.349240\pi\)
−0.456117 + 0.889920i \(0.650760\pi\)
\(564\) 0 0
\(565\) −1.57448e15 1.19413e15i −1.15045 0.872537i
\(566\) −7.40739e14 −0.536012
\(567\) 0 0
\(568\) 5.17747e13i 0.0367453i
\(569\) 2.07492e14 0.145843 0.0729213 0.997338i \(-0.476768\pi\)
0.0729213 + 0.997338i \(0.476768\pi\)
\(570\) 0 0
\(571\) −4.55927e14 −0.314338 −0.157169 0.987572i \(-0.550237\pi\)
−0.157169 + 0.987572i \(0.550237\pi\)
\(572\) 9.77066e13i 0.0667184i
\(573\) 0 0
\(574\) 1.80000e14 0.120575
\(575\) 1.08586e15 3.04090e14i 0.720447 0.201757i
\(576\) 0 0
\(577\) 1.28823e14i 0.0838542i −0.999121 0.0419271i \(-0.986650\pi\)
0.999121 0.0419271i \(-0.0133497\pi\)
\(578\) 5.34038e14i 0.344326i
\(579\) 0 0
\(580\) −2.74056e14 + 3.61347e14i −0.173374 + 0.228597i
\(581\) −3.85005e14 −0.241267
\(582\) 0 0
\(583\) 8.47599e12i 0.00521211i
\(584\) −8.31419e14 −0.506465
\(585\) 0 0
\(586\) 6.90927e14 0.413043
\(587\) 3.49044e14i 0.206714i −0.994644 0.103357i \(-0.967042\pi\)
0.994644 0.103357i \(-0.0329584\pi\)
\(588\) 0 0
\(589\) −2.45214e15 −1.42532
\(590\) −1.14551e14 8.68789e13i −0.0659650 0.0500297i
\(591\) 0 0
\(592\) 4.64681e14i 0.262655i
\(593\) 1.98920e15i 1.11398i 0.830518 + 0.556991i \(0.188044\pi\)
−0.830518 + 0.556991i \(0.811956\pi\)
\(594\) 0 0
\(595\) −3.13988e14 + 4.13998e14i −0.172611 + 0.227591i
\(596\) −6.46851e14 −0.352330
\(597\) 0 0
\(598\) 7.60792e14i 0.406827i
\(599\) −1.03318e15 −0.547432 −0.273716 0.961811i \(-0.588253\pi\)
−0.273716 + 0.961811i \(0.588253\pi\)
\(600\) 0 0
\(601\) 1.38171e15 0.718797 0.359398 0.933184i \(-0.382982\pi\)
0.359398 + 0.933184i \(0.382982\pi\)
\(602\) 8.69015e14i 0.447967i
\(603\) 0 0
\(604\) 1.57061e15 0.794998
\(605\) −1.16848e15 + 1.54066e15i −0.586094 + 0.772776i
\(606\) 0 0
\(607\) 1.68888e15i 0.831882i 0.909392 + 0.415941i \(0.136548\pi\)
−0.909392 + 0.415941i \(0.863452\pi\)
\(608\) 2.76144e14i 0.134793i
\(609\) 0 0
\(610\) 7.24389e14 + 5.49397e14i 0.347262 + 0.263373i
\(611\) −1.73900e15 −0.826177
\(612\) 0 0
\(613\) 5.46218e14i 0.254878i 0.991846 + 0.127439i \(0.0406758\pi\)
−0.991846 + 0.127439i \(0.959324\pi\)
\(614\) 2.92336e15 1.35194
\(615\) 0 0
\(616\) 5.38569e13 0.0244651
\(617\) 4.52349e14i 0.203660i −0.994802 0.101830i \(-0.967530\pi\)
0.994802 0.101830i \(-0.0324698\pi\)
\(618\) 0 0
\(619\) 2.14770e15 0.949892 0.474946 0.880015i \(-0.342468\pi\)
0.474946 + 0.880015i \(0.342468\pi\)
\(620\) 1.28837e15 1.69873e15i 0.564788 0.744682i
\(621\) 0 0
\(622\) 2.92444e15i 1.25949i
\(623\) 1.60519e15i 0.685241i
\(624\) 0 0
\(625\) −2.03742e15 + 1.23825e15i −0.854556 + 0.519359i
\(626\) −3.22957e15 −1.34272
\(627\) 0 0
\(628\) 1.19355e15i 0.487599i
\(629\) 1.85825e15 0.752532
\(630\) 0 0
\(631\) 4.15753e15 1.65453 0.827263 0.561815i \(-0.189897\pi\)
0.827263 + 0.561815i \(0.189897\pi\)
\(632\) 5.86562e14i 0.231404i
\(633\) 0 0
\(634\) −2.64848e15 −1.02685
\(635\) −1.24109e15 9.41274e14i −0.477031 0.361793i
\(636\) 0 0
\(637\) 1.71188e15i 0.646705i
\(638\) 1.87982e14i 0.0704050i
\(639\) 0 0
\(640\) −1.91300e14 1.45087e14i −0.0704248 0.0534121i
\(641\) −3.37785e15 −1.23288 −0.616440 0.787402i \(-0.711426\pi\)
−0.616440 + 0.787402i \(0.711426\pi\)
\(642\) 0 0
\(643\) 4.67438e15i 1.67712i 0.544810 + 0.838560i \(0.316602\pi\)
−0.544810 + 0.838560i \(0.683398\pi\)
\(644\) 4.19357e14 0.149180
\(645\) 0 0
\(646\) −1.10429e15 −0.386195
\(647\) 1.48014e15i 0.513252i −0.966511 0.256626i \(-0.917389\pi\)
0.966511 0.256626i \(-0.0826109\pi\)
\(648\) 0 0
\(649\) −5.95926e13 −0.0203164
\(650\) −4.33779e14 1.54896e15i −0.146638 0.523622i
\(651\) 0 0
\(652\) 8.71423e14i 0.289646i
\(653\) 2.76712e15i 0.912023i −0.889974 0.456012i \(-0.849278\pi\)
0.889974 0.456012i \(-0.150722\pi\)
\(654\) 0 0
\(655\) 2.23219e15 2.94318e15i 0.723441 0.953870i
\(656\) −3.32613e14 −0.106898
\(657\) 0 0
\(658\) 9.58557e14i 0.302953i
\(659\) −1.23830e14 −0.0388110 −0.0194055 0.999812i \(-0.506177\pi\)
−0.0194055 + 0.999812i \(0.506177\pi\)
\(660\) 0 0
\(661\) −3.27129e15 −1.00835 −0.504175 0.863602i \(-0.668203\pi\)
−0.504175 + 0.863602i \(0.668203\pi\)
\(662\) 2.13424e15i 0.652416i
\(663\) 0 0
\(664\) 7.11431e14 0.213899
\(665\) 8.12523e14 + 6.16240e14i 0.242279 + 0.183751i
\(666\) 0 0
\(667\) 1.46373e15i 0.429307i
\(668\) 2.68868e15i 0.782111i
\(669\) 0 0
\(670\) −8.10765e14 + 1.06901e15i −0.231998 + 0.305893i
\(671\) 3.76846e14 0.106952
\(672\) 0 0
\(673\) 3.59624e15i 1.00407i −0.864846 0.502037i \(-0.832584\pi\)
0.864846 0.502037i \(-0.167416\pi\)
\(674\) 2.57645e15 0.713497
\(675\) 0 0
\(676\) −7.49917e14 −0.204318
\(677\) 2.53490e15i 0.685051i −0.939509 0.342525i \(-0.888718\pi\)
0.939509 0.342525i \(-0.111282\pi\)
\(678\) 0 0
\(679\) 1.77048e15 0.470767
\(680\) 5.80201e14 7.65005e14i 0.153031 0.201774i
\(681\) 0 0
\(682\) 8.83726e14i 0.229353i
\(683\) 2.47450e15i 0.637051i 0.947914 + 0.318525i \(0.103188\pi\)
−0.947914 + 0.318525i \(0.896812\pi\)
\(684\) 0 0
\(685\) −3.44441e15 2.61234e15i −0.872603 0.661806i
\(686\) −2.06566e15 −0.519129
\(687\) 0 0
\(688\) 1.60581e15i 0.397152i
\(689\) −9.41453e13 −0.0230990
\(690\) 0 0
\(691\) 3.64400e15 0.879932 0.439966 0.898015i \(-0.354991\pi\)
0.439966 + 0.898015i \(0.354991\pi\)
\(692\) 3.27136e14i 0.0783692i
\(693\) 0 0
\(694\) −4.22477e15 −0.996152
\(695\) −1.31821e15 + 1.73808e15i −0.308367 + 0.406587i
\(696\) 0 0
\(697\) 1.33011e15i 0.306273i
\(698\) 1.25752e15i 0.287283i
\(699\) 0 0
\(700\) −8.53805e14 + 2.39104e14i −0.192008 + 0.0537709i
\(701\) 6.80102e15 1.51749 0.758744 0.651389i \(-0.225813\pi\)
0.758744 + 0.651389i \(0.225813\pi\)
\(702\) 0 0
\(703\) 3.64704e15i 0.801099i
\(704\) −9.95194e13 −0.0216899
\(705\) 0 0
\(706\) −4.25751e15 −0.913544
\(707\) 3.52358e15i 0.750200i
\(708\) 0 0
\(709\) 3.93607e15 0.825104 0.412552 0.910934i \(-0.364638\pi\)
0.412552 + 0.910934i \(0.364638\pi\)
\(710\) −2.81503e14 2.13500e14i −0.0585547 0.0444095i
\(711\) 0 0
\(712\) 2.96615e15i 0.607510i
\(713\) 6.88113e15i 1.39852i
\(714\) 0 0
\(715\) −5.31238e14 4.02906e14i −0.106318 0.0806344i
\(716\) 4.85788e15 0.964773
\(717\) 0 0
\(718\) 1.96031e15i 0.383390i
\(719\) 7.85788e15 1.52509 0.762546 0.646933i \(-0.223949\pi\)
0.762546 + 0.646933i \(0.223949\pi\)
\(720\) 0 0
\(721\) 2.50917e14 0.0479607
\(722\) 1.56037e15i 0.295988i
\(723\) 0 0
\(724\) 4.53797e15 0.847813
\(725\) −8.34569e14 2.98013e15i −0.154740 0.552555i
\(726\) 0 0
\(727\) 4.90765e14i 0.0896261i 0.998995 + 0.0448130i \(0.0142692\pi\)
−0.998995 + 0.0448130i \(0.985731\pi\)
\(728\) 5.98205e14i 0.108424i
\(729\) 0 0
\(730\) 3.42847e15 4.52049e15i 0.612102 0.807068i
\(731\) 6.42158e15 1.13788
\(732\) 0 0
\(733\) 6.34430e15i 1.10742i 0.832710 + 0.553710i \(0.186788\pi\)
−0.832710 + 0.553710i \(0.813212\pi\)
\(734\) −1.23414e15 −0.213814
\(735\) 0 0
\(736\) −7.74908e14 −0.132258
\(737\) 5.56126e14i 0.0942111i
\(738\) 0 0
\(739\) 9.30410e15 1.55285 0.776426 0.630208i \(-0.217030\pi\)
0.776426 + 0.630208i \(0.217030\pi\)
\(740\) 2.52650e15 + 1.91617e15i 0.418548 + 0.317439i
\(741\) 0 0
\(742\) 5.18939e13i 0.00847023i
\(743\) 4.15515e15i 0.673206i 0.941647 + 0.336603i \(0.109278\pi\)
−0.941647 + 0.336603i \(0.890722\pi\)
\(744\) 0 0
\(745\) 2.66738e15 3.51698e15i 0.425819 0.561449i
\(746\) −4.74933e15 −0.752608
\(747\) 0 0
\(748\) 3.97976e14i 0.0621438i
\(749\) 2.58607e15 0.400857
\(750\) 0 0
\(751\) 3.04610e14 0.0465291 0.0232646 0.999729i \(-0.492594\pi\)
0.0232646 + 0.999729i \(0.492594\pi\)
\(752\) 1.77127e15i 0.268587i
\(753\) 0 0
\(754\) 2.08798e15 0.312020
\(755\) −6.47663e15 + 8.53954e15i −0.960817 + 1.26685i
\(756\) 0 0
\(757\) 7.96714e15i 1.16486i 0.812880 + 0.582432i \(0.197899\pi\)
−0.812880 + 0.582432i \(0.802101\pi\)
\(758\) 7.45044e14i 0.108144i
\(759\) 0 0
\(760\) −1.50142e15 1.13872e15i −0.214796 0.162907i
\(761\) 1.18903e16 1.68880 0.844401 0.535711i \(-0.179956\pi\)
0.844401 + 0.535711i \(0.179956\pi\)
\(762\) 0 0
\(763\) 4.15319e14i 0.0581430i
\(764\) 8.82239e14 0.122623
\(765\) 0 0
\(766\) 3.33720e13 0.00457219
\(767\) 6.61912e14i 0.0900380i
\(768\) 0 0
\(769\) −1.11777e16 −1.49885 −0.749424 0.662091i \(-0.769669\pi\)
−0.749424 + 0.662091i \(0.769669\pi\)
\(770\) −2.22086e14 + 2.92824e14i −0.0295680 + 0.0389859i
\(771\) 0 0
\(772\) 2.71893e15i 0.356864i
\(773\) 6.96394e15i 0.907545i −0.891118 0.453772i \(-0.850078\pi\)
0.891118 0.453772i \(-0.149922\pi\)
\(774\) 0 0
\(775\) 3.92340e15 + 1.40099e16i 0.504084 + 1.80001i
\(776\) −3.27157e15 −0.417365
\(777\) 0 0
\(778\) 4.58279e15i 0.576424i
\(779\) −2.61051e15 −0.326039
\(780\) 0 0
\(781\) −1.46445e14 −0.0180341
\(782\) 3.09884e15i 0.378933i
\(783\) 0 0
\(784\) 1.74364e15 0.210242
\(785\) −6.48943e15 4.92177e15i −0.777005 0.589302i
\(786\) 0 0
\(787\) 1.62122e16i 1.91418i 0.289795 + 0.957089i \(0.406413\pi\)
−0.289795 + 0.957089i \(0.593587\pi\)
\(788\) 6.28203e14i 0.0736556i
\(789\) 0 0
\(790\) 3.18918e15 + 2.41877e15i 0.368749 + 0.279669i
\(791\) 5.01481e15 0.575816
\(792\) 0 0
\(793\) 4.18574e15i 0.473991i
\(794\) −1.69027e15 −0.190083
\(795\) 0 0
\(796\) −6.85529e15 −0.760333
\(797\) 5.20007e15i 0.572781i −0.958113 0.286391i \(-0.907545\pi\)
0.958113 0.286391i \(-0.0924555\pi\)
\(798\) 0 0
\(799\) 7.08325e15 0.769530
\(800\) 1.57770e15 4.41827e14i 0.170228 0.0476714i
\(801\) 0 0
\(802\) 6.74894e15i 0.718251i
\(803\) 2.35168e15i 0.248566i
\(804\) 0 0
\(805\) −1.72927e15 + 2.28008e15i −0.180296 + 0.237724i
\(806\) −9.81580e15 −1.01644
\(807\) 0 0
\(808\) 6.51104e15i 0.665101i
\(809\) −1.16758e16 −1.18459 −0.592296 0.805720i \(-0.701778\pi\)
−0.592296 + 0.805720i \(0.701778\pi\)
\(810\) 0 0
\(811\) −6.13788e15 −0.614333 −0.307167 0.951656i \(-0.599381\pi\)
−0.307167 + 0.951656i \(0.599381\pi\)
\(812\) 1.15092e15i 0.114416i
\(813\) 0 0
\(814\) 1.31435e15 0.128907
\(815\) −4.73799e15 3.59343e15i −0.461559 0.350059i
\(816\) 0 0
\(817\) 1.26032e16i 1.21132i
\(818\) 3.08972e15i 0.294969i
\(819\) 0 0
\(820\) 1.37157e15 1.80844e15i 0.129194 0.170345i
\(821\) −1.81708e15 −0.170015 −0.0850075 0.996380i \(-0.527091\pi\)
−0.0850075 + 0.996380i \(0.527091\pi\)
\(822\) 0 0
\(823\) 2.50540e15i 0.231302i −0.993290 0.115651i \(-0.963105\pi\)
0.993290 0.115651i \(-0.0368954\pi\)
\(824\) −4.63655e14 −0.0425202
\(825\) 0 0
\(826\) 3.64853e14 0.0330163
\(827\) 1.93870e16i 1.74273i 0.490631 + 0.871367i \(0.336766\pi\)
−0.490631 + 0.871367i \(0.663234\pi\)
\(828\) 0 0
\(829\) −8.91873e15 −0.791139 −0.395570 0.918436i \(-0.629453\pi\)
−0.395570 + 0.918436i \(0.629453\pi\)
\(830\) −2.93368e15 + 3.86811e15i −0.258513 + 0.340854i
\(831\) 0 0
\(832\) 1.10539e15i 0.0961253i
\(833\) 6.97278e15i 0.602363i
\(834\) 0 0
\(835\) 1.46186e16 + 1.10871e16i 1.24632 + 0.945242i
\(836\) −7.81077e14 −0.0661545
\(837\) 0 0
\(838\) 3.88073e14i 0.0324393i
\(839\) −1.40832e16 −1.16953 −0.584764 0.811204i \(-0.698813\pi\)
−0.584764 + 0.811204i \(0.698813\pi\)
\(840\) 0 0
\(841\) −8.18335e15 −0.670738
\(842\) 6.29491e14i 0.0512593i
\(843\) 0 0
\(844\) 3.00399e15 0.241443
\(845\) 3.09238e15 4.07736e15i 0.246934 0.325587i
\(846\) 0 0
\(847\) 4.90712e15i 0.386783i
\(848\) 9.58920e13i 0.00750940i
\(849\) 0 0
\(850\) 1.76686e15 + 6.30920e15i 0.136583 + 0.487719i
\(851\) 1.02342e16 0.786035
\(852\) 0 0
\(853\) 2.18003e16i 1.65288i −0.563023 0.826441i \(-0.690362\pi\)
0.563023 0.826441i \(-0.309638\pi\)
\(854\) −2.30723e15 −0.173809
\(855\) 0 0
\(856\) −4.77866e15 −0.355386
\(857\) 9.84653e15i 0.727593i 0.931478 + 0.363797i \(0.118520\pi\)
−0.931478 + 0.363797i \(0.881480\pi\)
\(858\) 0 0
\(859\) −1.89097e16 −1.37950 −0.689751 0.724046i \(-0.742280\pi\)
−0.689751 + 0.724046i \(0.742280\pi\)
\(860\) 8.73089e15 + 6.62175e15i 0.632874 + 0.479989i
\(861\) 0 0
\(862\) 6.83666e15i 0.489276i
\(863\) 2.09992e15i 0.149329i 0.997209 + 0.0746643i \(0.0237885\pi\)
−0.997209 + 0.0746643i \(0.976211\pi\)
\(864\) 0 0
\(865\) −1.77867e15 1.34899e15i −0.124884 0.0947153i
\(866\) 3.78650e14 0.0264174
\(867\) 0 0
\(868\) 5.41058e15i 0.372722i
\(869\) 1.65910e15 0.113570
\(870\) 0 0
\(871\) 6.17706e15 0.417524
\(872\) 7.67447e14i 0.0515475i
\(873\) 0 0
\(874\) −6.08186e15 −0.403388
\(875\) 2.22075e15 5.62818e15i 0.146371 0.370957i
\(876\) 0 0
\(877\) 1.35726e16i 0.883413i −0.897160 0.441706i \(-0.854373\pi\)
0.897160 0.441706i \(-0.145627\pi\)
\(878\) 3.61300e15i 0.233694i
\(879\) 0 0
\(880\) 4.10381e14 5.41095e14i 0.0262140 0.0345636i
\(881\) −8.32387e15 −0.528394 −0.264197 0.964469i \(-0.585107\pi\)
−0.264197 + 0.964469i \(0.585107\pi\)
\(882\) 0 0
\(883\) 1.83191e16i 1.14847i −0.818689 0.574237i \(-0.805299\pi\)
0.818689 0.574237i \(-0.194701\pi\)
\(884\) −4.42043e15 −0.275409
\(885\) 0 0
\(886\) −1.64868e16 −1.01450
\(887\) 3.28697e15i 0.201009i −0.994937 0.100504i \(-0.967954\pi\)
0.994937 0.100504i \(-0.0320457\pi\)
\(888\) 0 0
\(889\) 3.95294e15 0.238760
\(890\) 1.61272e16 + 1.22313e16i 0.968086 + 0.734223i
\(891\) 0 0
\(892\) 1.05986e16i 0.628408i
\(893\) 1.39018e16i 0.819194i
\(894\) 0 0
\(895\) −2.00321e16 + 2.64127e16i −1.16600 + 1.53740i
\(896\) 6.09304e14 0.0352484
\(897\) 0 0
\(898\) 1.89376e16i 1.08219i
\(899\) −1.88851e16 −1.07261
\(900\) 0 0
\(901\) 3.83470e14 0.0215152
\(902\) 9.40800e14i 0.0524640i
\(903\) 0 0
\(904\) −9.26660e15 −0.510498
\(905\) −1.87129e16 + 2.46733e16i −1.02465 + 1.35102i
\(906\) 0 0
\(907\) 7.53749e15i 0.407743i −0.978998 0.203872i \(-0.934648\pi\)
0.978998 0.203872i \(-0.0653525\pi\)
\(908\) 7.32109e15i 0.393644i
\(909\) 0 0
\(910\) 3.25249e15 + 2.46677e15i 0.172778 + 0.131039i
\(911\) 1.55366e16 0.820360 0.410180 0.912005i \(-0.365466\pi\)
0.410180 + 0.912005i \(0.365466\pi\)
\(912\) 0 0
\(913\) 2.01229e15i 0.104979i
\(914\) 2.17561e16 1.12818
\(915\) 0 0
\(916\) 1.37402e16 0.703990
\(917\) 9.37421e15i 0.477423i
\(918\) 0 0
\(919\) 6.33154e15 0.318621 0.159310 0.987229i \(-0.449073\pi\)
0.159310 + 0.987229i \(0.449073\pi\)
\(920\) 3.19543e15 4.21323e15i 0.159844 0.210757i
\(921\) 0 0
\(922\) 2.78559e16i 1.37688i
\(923\) 1.62661e15i 0.0799234i
\(924\) 0 0
\(925\) −2.08367e16 + 5.83522e15i −1.01170 + 0.283320i
\(926\) −2.13215e16 −1.02910
\(927\) 0 0
\(928\) 2.12672e15i 0.101437i
\(929\) −4.05211e16 −1.92130 −0.960650 0.277762i \(-0.910407\pi\)
−0.960650 + 0.277762i \(0.910407\pi\)
\(930\) 0 0
\(931\) 1.36849e16 0.641239
\(932\) 2.23825e15i 0.104261i
\(933\) 0 0
\(934\) 8.91955e15 0.410615
\(935\) 2.16383e15 + 1.64110e15i 0.0990281 + 0.0751056i
\(936\) 0 0
\(937\) 2.81645e16i 1.27390i −0.770907 0.636948i \(-0.780197\pi\)
0.770907 0.636948i \(-0.219803\pi\)
\(938\) 3.40486e15i 0.153103i
\(939\) 0 0
\(940\) 9.63051e15 + 7.30404e15i 0.428002 + 0.324609i
\(941\) −1.99421e16 −0.881107 −0.440553 0.897726i \(-0.645218\pi\)
−0.440553 + 0.897726i \(0.645218\pi\)
\(942\) 0 0
\(943\) 7.32554e15i 0.319908i
\(944\) −6.74193e14 −0.0292711
\(945\) 0 0
\(946\) 4.54204e15 0.194917
\(947\) 1.16923e16i 0.498858i −0.968393 0.249429i \(-0.919757\pi\)
0.968393 0.249429i \(-0.0802429\pi\)
\(948\) 0 0
\(949\) −2.61208e16 −1.10160
\(950\) 1.23826e16 3.46768e15i 0.519196 0.145398i
\(951\) 0 0
\(952\) 2.43659e15i 0.100990i
\(953\) 1.31930e16i 0.543666i −0.962344 0.271833i \(-0.912370\pi\)
0.962344 0.271833i \(-0.0876299\pi\)
\(954\) 0 0
\(955\) −3.63803e15 + 4.79680e15i −0.148200 + 0.195404i
\(956\) −1.58980e16 −0.643907
\(957\) 0 0
\(958\) 9.99296e15i 0.400114i
\(959\) 1.09707e16 0.436748
\(960\) 0 0
\(961\) 6.33724e16 2.49415
\(962\) 1.45989e16i 0.571291i
\(963\) 0 0
\(964\) 1.49388e16 0.577951
\(965\) 1.47830e16 + 1.12119e16i 0.568674 + 0.431298i
\(966\) 0 0
\(967\) 4.22542e16i 1.60703i 0.595284 + 0.803516i \(0.297040\pi\)
−0.595284 + 0.803516i \(0.702960\pi\)
\(968\) 9.06760e15i 0.342908i
\(969\) 0 0
\(970\) 1.34907e16 1.77878e16i 0.504419 0.665085i
\(971\) 3.97016e16 1.47606 0.738028 0.674771i \(-0.235757\pi\)
0.738028 + 0.674771i \(0.235757\pi\)
\(972\) 0 0
\(973\) 5.53590e15i 0.203501i
\(974\) 1.83190e16 0.669617
\(975\) 0 0
\(976\) 4.26340e15 0.154093
\(977\) 7.32402e15i 0.263226i 0.991301 + 0.131613i \(0.0420157\pi\)
−0.991301 + 0.131613i \(0.957984\pi\)
\(978\) 0 0
\(979\) 8.38979e15 0.298158
\(980\) −7.19013e15 + 9.48031e15i −0.254093 + 0.335026i
\(981\) 0 0
\(982\) 1.51327e16i 0.528814i
\(983\) 4.23299e16i 1.47097i −0.677543 0.735483i \(-0.736955\pi\)
0.677543 0.735483i \(-0.263045\pi\)
\(984\) 0 0
\(985\) −3.41559e15 2.59048e15i −0.117372 0.0890185i
\(986\) −8.50469e15 −0.290627
\(987\) 0 0
\(988\) 8.67565e15i 0.293183i
\(989\) 3.53666e16 1.18854
\(990\) 0 0
\(991\) 1.94163e16 0.645299 0.322649 0.946519i \(-0.395427\pi\)
0.322649 + 0.946519i \(0.395427\pi\)
\(992\) 9.99792e15i 0.330442i
\(993\) 0 0
\(994\) 8.96605e14 0.0293073
\(995\) 2.82687e16 3.72727e16i 0.918922 1.21161i
\(996\) 0 0
\(997\) 1.08203e16i 0.347869i 0.984757 + 0.173934i \(0.0556481\pi\)
−0.984757 + 0.173934i \(0.944352\pi\)
\(998\) 6.88408e15i 0.220104i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 90.12.c.a.19.4 4
3.2 odd 2 30.12.c.a.19.1 4
5.4 even 2 inner 90.12.c.a.19.2 4
12.11 even 2 240.12.f.a.49.1 4
15.2 even 4 150.12.a.r.1.1 2
15.8 even 4 150.12.a.k.1.2 2
15.14 odd 2 30.12.c.a.19.3 yes 4
60.59 even 2 240.12.f.a.49.3 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
30.12.c.a.19.1 4 3.2 odd 2
30.12.c.a.19.3 yes 4 15.14 odd 2
90.12.c.a.19.2 4 5.4 even 2 inner
90.12.c.a.19.4 4 1.1 even 1 trivial
150.12.a.k.1.2 2 15.8 even 4
150.12.a.r.1.1 2 15.2 even 4
240.12.f.a.49.1 4 12.11 even 2
240.12.f.a.49.3 4 60.59 even 2