Properties

Label 896.2.z.a.31.3
Level $896$
Weight $2$
Character 896.31
Analytic conductor $7.155$
Analytic rank $0$
Dimension $56$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [896,2,Mod(31,896)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(896, base_ring=CyclotomicField(12)) chi = DirichletCharacter(H, H._module([6, 3, 2])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("896.31"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 896 = 2^{7} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 896.z (of order \(12\), degree \(4\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [56,0,-6] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.15459602111\)
Analytic rank: \(0\)
Dimension: \(56\)
Relative dimension: \(14\) over \(\Q(\zeta_{12})\)
Twist minimal: no (minimal twist has level 112)
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 31.3
Character \(\chi\) \(=\) 896.31
Dual form 896.2.z.a.607.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.665801 - 2.48480i) q^{3} +(3.12401 + 0.837076i) q^{5} +(-1.56215 + 2.13534i) q^{7} +(-3.13287 + 1.80877i) q^{9} +(0.376195 + 1.40398i) q^{11} +(3.11315 + 3.11315i) q^{13} -8.31987i q^{15} +(2.02443 + 1.16881i) q^{17} +(4.40643 + 1.18070i) q^{19} +(6.34599 + 2.45991i) q^{21} +(1.15450 + 1.99965i) q^{23} +(4.72861 + 2.73006i) q^{25} +(1.12329 + 1.12329i) q^{27} +(1.55163 - 1.55163i) q^{29} +(-3.88952 + 6.73685i) q^{31} +(3.23814 - 1.86954i) q^{33} +(-6.66761 + 5.36320i) q^{35} +(-0.272421 + 1.01669i) q^{37} +(5.66282 - 9.80830i) q^{39} -2.77210 q^{41} +(7.12142 - 7.12142i) q^{43} +(-11.3012 + 3.02815i) q^{45} +(-1.42516 - 2.46844i) q^{47} +(-2.11939 - 6.67144i) q^{49} +(1.55638 - 5.80851i) q^{51} +(-11.0925 + 2.97221i) q^{53} +4.70094i q^{55} -11.7352i q^{57} +(3.77383 - 1.01120i) q^{59} +(3.72571 - 13.9045i) q^{61} +(1.03167 - 9.51532i) q^{63} +(7.11957 + 12.3315i) q^{65} +(2.59612 - 0.695627i) q^{67} +(4.20006 - 4.20006i) q^{69} +7.48345 q^{71} +(-5.65210 + 9.78973i) q^{73} +(3.63536 - 13.5673i) q^{75} +(-3.58565 - 1.38991i) q^{77} +(0.706717 - 0.408024i) q^{79} +(-3.38303 + 5.85958i) q^{81} +(2.65285 - 2.65285i) q^{83} +(5.34597 + 5.34597i) q^{85} +(-4.88857 - 2.82241i) q^{87} +(-2.40944 - 4.17328i) q^{89} +(-11.5108 + 1.78445i) q^{91} +(19.3294 + 5.17929i) q^{93} +(12.7774 + 7.37703i) q^{95} -5.86541i q^{97} +(-3.71804 - 3.71804i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 56 q - 6 q^{3} + 6 q^{5} + 8 q^{7} + 2 q^{11} - 12 q^{17} - 6 q^{19} + 10 q^{21} + 12 q^{23} + 24 q^{29} - 12 q^{33} - 2 q^{35} - 6 q^{37} + 4 q^{39} - 12 q^{45} - 8 q^{49} - 34 q^{51} - 6 q^{53} + 42 q^{59}+ \cdots - 16 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/896\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(129\) \(645\)
\(\chi(n)\) \(-1\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −0.665801 2.48480i −0.384400 1.43460i −0.839110 0.543962i \(-0.816924\pi\)
0.454710 0.890640i \(-0.349743\pi\)
\(4\) 0 0
\(5\) 3.12401 + 0.837076i 1.39710 + 0.374352i 0.877302 0.479938i \(-0.159341\pi\)
0.519797 + 0.854290i \(0.326008\pi\)
\(6\) 0 0
\(7\) −1.56215 + 2.13534i −0.590436 + 0.807084i
\(8\) 0 0
\(9\) −3.13287 + 1.80877i −1.04429 + 0.602922i
\(10\) 0 0
\(11\) 0.376195 + 1.40398i 0.113427 + 0.423315i 0.999164 0.0408713i \(-0.0130134\pi\)
−0.885737 + 0.464187i \(0.846347\pi\)
\(12\) 0 0
\(13\) 3.11315 + 3.11315i 0.863433 + 0.863433i 0.991735 0.128303i \(-0.0409528\pi\)
−0.128303 + 0.991735i \(0.540953\pi\)
\(14\) 0 0
\(15\) 8.31987i 2.14818i
\(16\) 0 0
\(17\) 2.02443 + 1.16881i 0.490997 + 0.283477i 0.724988 0.688761i \(-0.241845\pi\)
−0.233991 + 0.972239i \(0.575179\pi\)
\(18\) 0 0
\(19\) 4.40643 + 1.18070i 1.01090 + 0.270871i 0.726007 0.687687i \(-0.241374\pi\)
0.284897 + 0.958558i \(0.408041\pi\)
\(20\) 0 0
\(21\) 6.34599 + 2.45991i 1.38481 + 0.536797i
\(22\) 0 0
\(23\) 1.15450 + 1.99965i 0.240729 + 0.416955i 0.960922 0.276819i \(-0.0892802\pi\)
−0.720193 + 0.693774i \(0.755947\pi\)
\(24\) 0 0
\(25\) 4.72861 + 2.73006i 0.945722 + 0.546013i
\(26\) 0 0
\(27\) 1.12329 + 1.12329i 0.216177 + 0.216177i
\(28\) 0 0
\(29\) 1.55163 1.55163i 0.288130 0.288130i −0.548210 0.836341i \(-0.684691\pi\)
0.836341 + 0.548210i \(0.184691\pi\)
\(30\) 0 0
\(31\) −3.88952 + 6.73685i −0.698579 + 1.20997i 0.270380 + 0.962754i \(0.412851\pi\)
−0.968959 + 0.247221i \(0.920483\pi\)
\(32\) 0 0
\(33\) 3.23814 1.86954i 0.563687 0.325445i
\(34\) 0 0
\(35\) −6.66761 + 5.36320i −1.12703 + 0.906546i
\(36\) 0 0
\(37\) −0.272421 + 1.01669i −0.0447857 + 0.167142i −0.984697 0.174277i \(-0.944241\pi\)
0.939911 + 0.341420i \(0.110908\pi\)
\(38\) 0 0
\(39\) 5.66282 9.80830i 0.906778 1.57058i
\(40\) 0 0
\(41\) −2.77210 −0.432929 −0.216464 0.976290i \(-0.569453\pi\)
−0.216464 + 0.976290i \(0.569453\pi\)
\(42\) 0 0
\(43\) 7.12142 7.12142i 1.08601 1.08601i 0.0900717 0.995935i \(-0.471290\pi\)
0.995935 0.0900717i \(-0.0287096\pi\)
\(44\) 0 0
\(45\) −11.3012 + 3.02815i −1.68468 + 0.451410i
\(46\) 0 0
\(47\) −1.42516 2.46844i −0.207880 0.360059i 0.743166 0.669107i \(-0.233323\pi\)
−0.951047 + 0.309047i \(0.899990\pi\)
\(48\) 0 0
\(49\) −2.11939 6.67144i −0.302770 0.953064i
\(50\) 0 0
\(51\) 1.55638 5.80851i 0.217937 0.813354i
\(52\) 0 0
\(53\) −11.0925 + 2.97221i −1.52367 + 0.408265i −0.920947 0.389689i \(-0.872583\pi\)
−0.602719 + 0.797954i \(0.705916\pi\)
\(54\) 0 0
\(55\) 4.70094i 0.633875i
\(56\) 0 0
\(57\) 11.7352i 1.55437i
\(58\) 0 0
\(59\) 3.77383 1.01120i 0.491311 0.131646i −0.00465348 0.999989i \(-0.501481\pi\)
0.495965 + 0.868343i \(0.334815\pi\)
\(60\) 0 0
\(61\) 3.72571 13.9045i 0.477028 1.78029i −0.136523 0.990637i \(-0.543593\pi\)
0.613551 0.789655i \(-0.289741\pi\)
\(62\) 0 0
\(63\) 1.03167 9.51532i 0.129978 1.19882i
\(64\) 0 0
\(65\) 7.11957 + 12.3315i 0.883074 + 1.52953i
\(66\) 0 0
\(67\) 2.59612 0.695627i 0.317166 0.0849844i −0.0967240 0.995311i \(-0.530836\pi\)
0.413890 + 0.910327i \(0.364170\pi\)
\(68\) 0 0
\(69\) 4.20006 4.20006i 0.505628 0.505628i
\(70\) 0 0
\(71\) 7.48345 0.888122 0.444061 0.895997i \(-0.353537\pi\)
0.444061 + 0.895997i \(0.353537\pi\)
\(72\) 0 0
\(73\) −5.65210 + 9.78973i −0.661529 + 1.14580i 0.318685 + 0.947861i \(0.396759\pi\)
−0.980214 + 0.197941i \(0.936575\pi\)
\(74\) 0 0
\(75\) 3.63536 13.5673i 0.419775 1.56662i
\(76\) 0 0
\(77\) −3.58565 1.38991i −0.408623 0.158395i
\(78\) 0 0
\(79\) 0.706717 0.408024i 0.0795119 0.0459062i −0.459717 0.888066i \(-0.652049\pi\)
0.539229 + 0.842159i \(0.318716\pi\)
\(80\) 0 0
\(81\) −3.38303 + 5.85958i −0.375892 + 0.651065i
\(82\) 0 0
\(83\) 2.65285 2.65285i 0.291188 0.291188i −0.546361 0.837550i \(-0.683987\pi\)
0.837550 + 0.546361i \(0.183987\pi\)
\(84\) 0 0
\(85\) 5.34597 + 5.34597i 0.579852 + 0.579852i
\(86\) 0 0
\(87\) −4.88857 2.82241i −0.524109 0.302595i
\(88\) 0 0
\(89\) −2.40944 4.17328i −0.255400 0.442367i 0.709604 0.704601i \(-0.248874\pi\)
−0.965004 + 0.262234i \(0.915541\pi\)
\(90\) 0 0
\(91\) −11.5108 + 1.78445i −1.20666 + 0.187061i
\(92\) 0 0
\(93\) 19.3294 + 5.17929i 2.00436 + 0.537068i
\(94\) 0 0
\(95\) 12.7774 + 7.37703i 1.31093 + 0.756867i
\(96\) 0 0
\(97\) 5.86541i 0.595542i −0.954637 0.297771i \(-0.903757\pi\)
0.954637 0.297771i \(-0.0962432\pi\)
\(98\) 0 0
\(99\) −3.71804 3.71804i −0.373677 0.373677i
\(100\) 0 0
\(101\) −0.373632 1.39442i −0.0371778 0.138749i 0.944842 0.327525i \(-0.106215\pi\)
−0.982020 + 0.188776i \(0.939548\pi\)
\(102\) 0 0
\(103\) 2.10134 1.21321i 0.207051 0.119541i −0.392889 0.919586i \(-0.628524\pi\)
0.599940 + 0.800045i \(0.295191\pi\)
\(104\) 0 0
\(105\) 17.7658 + 12.9969i 1.73376 + 1.26836i
\(106\) 0 0
\(107\) −4.34758 1.16493i −0.420297 0.112618i 0.0424712 0.999098i \(-0.486477\pi\)
−0.462768 + 0.886480i \(0.653144\pi\)
\(108\) 0 0
\(109\) −0.842750 3.14518i −0.0807208 0.301254i 0.913749 0.406280i \(-0.133174\pi\)
−0.994470 + 0.105026i \(0.966507\pi\)
\(110\) 0 0
\(111\) 2.70765 0.256998
\(112\) 0 0
\(113\) 11.5397 1.08556 0.542781 0.839875i \(-0.317372\pi\)
0.542781 + 0.839875i \(0.317372\pi\)
\(114\) 0 0
\(115\) 1.93280 + 7.21331i 0.180235 + 0.672645i
\(116\) 0 0
\(117\) −15.3841 4.12215i −1.42226 0.381093i
\(118\) 0 0
\(119\) −5.65827 + 2.49701i −0.518693 + 0.228901i
\(120\) 0 0
\(121\) 7.69665 4.44366i 0.699695 0.403969i
\(122\) 0 0
\(123\) 1.84566 + 6.88811i 0.166418 + 0.621080i
\(124\) 0 0
\(125\) 1.05228 + 1.05228i 0.0941192 + 0.0941192i
\(126\) 0 0
\(127\) 4.49210i 0.398610i −0.979938 0.199305i \(-0.936132\pi\)
0.979938 0.199305i \(-0.0638684\pi\)
\(128\) 0 0
\(129\) −22.4368 12.9539i −1.97545 1.14053i
\(130\) 0 0
\(131\) −13.3612 3.58012i −1.16737 0.312796i −0.377465 0.926024i \(-0.623204\pi\)
−0.789907 + 0.613227i \(0.789871\pi\)
\(132\) 0 0
\(133\) −9.40469 + 7.56482i −0.815490 + 0.655953i
\(134\) 0 0
\(135\) 2.56889 + 4.44945i 0.221095 + 0.382947i
\(136\) 0 0
\(137\) −2.18423 1.26106i −0.186611 0.107740i 0.403784 0.914854i \(-0.367695\pi\)
−0.590395 + 0.807114i \(0.701028\pi\)
\(138\) 0 0
\(139\) 6.00381 + 6.00381i 0.509237 + 0.509237i 0.914292 0.405055i \(-0.132748\pi\)
−0.405055 + 0.914292i \(0.632748\pi\)
\(140\) 0 0
\(141\) −5.18472 + 5.18472i −0.436632 + 0.436632i
\(142\) 0 0
\(143\) −3.19964 + 5.54195i −0.267568 + 0.463441i
\(144\) 0 0
\(145\) 6.14613 3.54847i 0.510409 0.294685i
\(146\) 0 0
\(147\) −15.1661 + 9.70812i −1.25088 + 0.800713i
\(148\) 0 0
\(149\) 2.19951 8.20870i 0.180191 0.672483i −0.815418 0.578873i \(-0.803493\pi\)
0.995609 0.0936097i \(-0.0298406\pi\)
\(150\) 0 0
\(151\) −5.11927 + 8.86683i −0.416600 + 0.721572i −0.995595 0.0937588i \(-0.970112\pi\)
0.578995 + 0.815331i \(0.303445\pi\)
\(152\) 0 0
\(153\) −8.45639 −0.683659
\(154\) 0 0
\(155\) −17.7902 + 17.7902i −1.42894 + 1.42894i
\(156\) 0 0
\(157\) −14.1817 + 3.79998i −1.13183 + 0.303272i −0.775660 0.631151i \(-0.782583\pi\)
−0.356166 + 0.934423i \(0.615916\pi\)
\(158\) 0 0
\(159\) 14.7707 + 25.5836i 1.17139 + 2.02892i
\(160\) 0 0
\(161\) −6.07342 0.658494i −0.478653 0.0518966i
\(162\) 0 0
\(163\) −5.94974 + 22.2047i −0.466019 + 1.73921i 0.187468 + 0.982271i \(0.439972\pi\)
−0.653488 + 0.756937i \(0.726695\pi\)
\(164\) 0 0
\(165\) 11.6809 3.12989i 0.909358 0.243662i
\(166\) 0 0
\(167\) 3.82099i 0.295677i −0.989011 0.147839i \(-0.952768\pi\)
0.989011 0.147839i \(-0.0472316\pi\)
\(168\) 0 0
\(169\) 6.38341i 0.491032i
\(170\) 0 0
\(171\) −15.9404 + 4.27121i −1.21899 + 0.326628i
\(172\) 0 0
\(173\) −2.15162 + 8.02996i −0.163585 + 0.610506i 0.834632 + 0.550808i \(0.185680\pi\)
−0.998216 + 0.0596981i \(0.980986\pi\)
\(174\) 0 0
\(175\) −13.2164 + 5.83245i −0.999067 + 0.440892i
\(176\) 0 0
\(177\) −5.02524 8.70397i −0.377720 0.654230i
\(178\) 0 0
\(179\) 18.6644 5.00112i 1.39504 0.373801i 0.518482 0.855089i \(-0.326497\pi\)
0.876563 + 0.481288i \(0.159831\pi\)
\(180\) 0 0
\(181\) 6.07189 6.07189i 0.451320 0.451320i −0.444472 0.895793i \(-0.646609\pi\)
0.895793 + 0.444472i \(0.146609\pi\)
\(182\) 0 0
\(183\) −37.0306 −2.73738
\(184\) 0 0
\(185\) −1.70209 + 2.94810i −0.125140 + 0.216749i
\(186\) 0 0
\(187\) −0.879398 + 3.28196i −0.0643080 + 0.240001i
\(188\) 0 0
\(189\) −4.15336 + 0.643867i −0.302112 + 0.0468344i
\(190\) 0 0
\(191\) −13.1707 + 7.60410i −0.952997 + 0.550213i −0.894011 0.448046i \(-0.852120\pi\)
−0.0589865 + 0.998259i \(0.518787\pi\)
\(192\) 0 0
\(193\) −11.2397 + 19.4678i −0.809053 + 1.40132i 0.104468 + 0.994528i \(0.466686\pi\)
−0.913521 + 0.406792i \(0.866647\pi\)
\(194\) 0 0
\(195\) 25.9010 25.9010i 1.85481 1.85481i
\(196\) 0 0
\(197\) 8.31581 + 8.31581i 0.592477 + 0.592477i 0.938300 0.345823i \(-0.112400\pi\)
−0.345823 + 0.938300i \(0.612400\pi\)
\(198\) 0 0
\(199\) −8.85088 5.11006i −0.627422 0.362242i 0.152331 0.988330i \(-0.451322\pi\)
−0.779753 + 0.626087i \(0.784655\pi\)
\(200\) 0 0
\(201\) −3.45699 5.98769i −0.243837 0.422339i
\(202\) 0 0
\(203\) 0.889390 + 5.73713i 0.0624229 + 0.402668i
\(204\) 0 0
\(205\) −8.66006 2.32046i −0.604845 0.162068i
\(206\) 0 0
\(207\) −7.23378 4.17642i −0.502782 0.290282i
\(208\) 0 0
\(209\) 6.63070i 0.458655i
\(210\) 0 0
\(211\) 5.73766 + 5.73766i 0.394997 + 0.394997i 0.876464 0.481467i \(-0.159896\pi\)
−0.481467 + 0.876464i \(0.659896\pi\)
\(212\) 0 0
\(213\) −4.98248 18.5949i −0.341394 1.27410i
\(214\) 0 0
\(215\) 28.2086 16.2862i 1.92381 1.11071i
\(216\) 0 0
\(217\) −8.30949 18.8294i −0.564085 1.27822i
\(218\) 0 0
\(219\) 28.0887 + 7.52635i 1.89806 + 0.508583i
\(220\) 0 0
\(221\) 2.66369 + 9.94104i 0.179179 + 0.668706i
\(222\) 0 0
\(223\) −17.4929 −1.17141 −0.585705 0.810524i \(-0.699182\pi\)
−0.585705 + 0.810524i \(0.699182\pi\)
\(224\) 0 0
\(225\) −19.7522 −1.31681
\(226\) 0 0
\(227\) −4.53614 16.9291i −0.301074 1.12362i −0.936272 0.351275i \(-0.885748\pi\)
0.635198 0.772349i \(-0.280919\pi\)
\(228\) 0 0
\(229\) −6.75227 1.80926i −0.446202 0.119560i 0.0287195 0.999588i \(-0.490857\pi\)
−0.474922 + 0.880028i \(0.657524\pi\)
\(230\) 0 0
\(231\) −1.06634 + 9.83503i −0.0701597 + 0.647098i
\(232\) 0 0
\(233\) 25.0933 14.4876i 1.64392 0.949116i 0.664495 0.747293i \(-0.268647\pi\)
0.979422 0.201823i \(-0.0646866\pi\)
\(234\) 0 0
\(235\) −2.38593 8.90440i −0.155641 0.580859i
\(236\) 0 0
\(237\) −1.48439 1.48439i −0.0964215 0.0964215i
\(238\) 0 0
\(239\) 13.3587i 0.864105i −0.901848 0.432053i \(-0.857789\pi\)
0.901848 0.432053i \(-0.142211\pi\)
\(240\) 0 0
\(241\) 10.5510 + 6.09164i 0.679651 + 0.392397i 0.799724 0.600368i \(-0.204979\pi\)
−0.120072 + 0.992765i \(0.538313\pi\)
\(242\) 0 0
\(243\) 21.4157 + 5.73831i 1.37381 + 0.368113i
\(244\) 0 0
\(245\) −1.03650 22.6157i −0.0662195 1.44487i
\(246\) 0 0
\(247\) 10.0422 + 17.3936i 0.638969 + 1.10673i
\(248\) 0 0
\(249\) −8.35808 4.82554i −0.529672 0.305806i
\(250\) 0 0
\(251\) −6.68926 6.68926i −0.422223 0.422223i 0.463746 0.885968i \(-0.346505\pi\)
−0.885968 + 0.463746i \(0.846505\pi\)
\(252\) 0 0
\(253\) −2.37314 + 2.37314i −0.149198 + 0.149198i
\(254\) 0 0
\(255\) 9.72432 16.8430i 0.608961 1.05475i
\(256\) 0 0
\(257\) 3.32837 1.92163i 0.207618 0.119868i −0.392586 0.919715i \(-0.628419\pi\)
0.600204 + 0.799847i \(0.295086\pi\)
\(258\) 0 0
\(259\) −1.74542 2.16993i −0.108455 0.134833i
\(260\) 0 0
\(261\) −2.05452 + 7.66759i −0.127172 + 0.474612i
\(262\) 0 0
\(263\) −3.15784 + 5.46953i −0.194720 + 0.337266i −0.946809 0.321797i \(-0.895713\pi\)
0.752088 + 0.659062i \(0.229047\pi\)
\(264\) 0 0
\(265\) −37.1409 −2.28155
\(266\) 0 0
\(267\) −8.76556 + 8.76556i −0.536444 + 0.536444i
\(268\) 0 0
\(269\) 23.2914 6.24090i 1.42010 0.380514i 0.534580 0.845118i \(-0.320470\pi\)
0.885519 + 0.464603i \(0.153803\pi\)
\(270\) 0 0
\(271\) 4.73315 + 8.19805i 0.287518 + 0.497996i 0.973217 0.229890i \(-0.0738365\pi\)
−0.685699 + 0.727886i \(0.740503\pi\)
\(272\) 0 0
\(273\) 12.0979 + 27.4141i 0.732200 + 1.65918i
\(274\) 0 0
\(275\) −2.05407 + 7.66590i −0.123865 + 0.462271i
\(276\) 0 0
\(277\) −11.3278 + 3.03526i −0.680619 + 0.182371i −0.582533 0.812807i \(-0.697938\pi\)
−0.0980853 + 0.995178i \(0.531272\pi\)
\(278\) 0 0
\(279\) 28.1409i 1.68475i
\(280\) 0 0
\(281\) 5.59517i 0.333780i −0.985976 0.166890i \(-0.946628\pi\)
0.985976 0.166890i \(-0.0533724\pi\)
\(282\) 0 0
\(283\) 3.70559 0.992910i 0.220275 0.0590224i −0.146994 0.989137i \(-0.546960\pi\)
0.367268 + 0.930115i \(0.380293\pi\)
\(284\) 0 0
\(285\) 9.82326 36.6609i 0.581880 2.17160i
\(286\) 0 0
\(287\) 4.33042 5.91938i 0.255617 0.349410i
\(288\) 0 0
\(289\) −5.76778 9.99009i −0.339281 0.587652i
\(290\) 0 0
\(291\) −14.5744 + 3.90519i −0.854365 + 0.228927i
\(292\) 0 0
\(293\) −9.74731 + 9.74731i −0.569444 + 0.569444i −0.931973 0.362529i \(-0.881913\pi\)
0.362529 + 0.931973i \(0.381913\pi\)
\(294\) 0 0
\(295\) 12.6359 0.735692
\(296\) 0 0
\(297\) −1.15450 + 1.99965i −0.0669908 + 0.116031i
\(298\) 0 0
\(299\) −2.63108 + 9.81932i −0.152159 + 0.567866i
\(300\) 0 0
\(301\) 4.08198 + 26.3314i 0.235282 + 1.51772i
\(302\) 0 0
\(303\) −3.21608 + 1.85681i −0.184759 + 0.106671i
\(304\) 0 0
\(305\) 23.2783 40.3192i 1.33291 2.30867i
\(306\) 0 0
\(307\) −20.5735 + 20.5735i −1.17419 + 1.17419i −0.192988 + 0.981201i \(0.561818\pi\)
−0.981201 + 0.192988i \(0.938182\pi\)
\(308\) 0 0
\(309\) −4.41365 4.41365i −0.251084 0.251084i
\(310\) 0 0
\(311\) −0.495271 0.285945i −0.0280843 0.0162145i 0.485892 0.874019i \(-0.338495\pi\)
−0.513976 + 0.857804i \(0.671828\pi\)
\(312\) 0 0
\(313\) 0.707287 + 1.22506i 0.0399782 + 0.0692443i 0.885322 0.464978i \(-0.153938\pi\)
−0.845344 + 0.534222i \(0.820604\pi\)
\(314\) 0 0
\(315\) 11.1880 28.8624i 0.630372 1.62621i
\(316\) 0 0
\(317\) 25.2914 + 6.77681i 1.42051 + 0.380624i 0.885663 0.464328i \(-0.153704\pi\)
0.534843 + 0.844951i \(0.320371\pi\)
\(318\) 0 0
\(319\) 2.76217 + 1.59474i 0.154652 + 0.0892882i
\(320\) 0 0
\(321\) 11.5785i 0.646248i
\(322\) 0 0
\(323\) 7.54051 + 7.54051i 0.419565 + 0.419565i
\(324\) 0 0
\(325\) 6.22177 + 23.2200i 0.345122 + 1.28801i
\(326\) 0 0
\(327\) −7.25406 + 4.18813i −0.401150 + 0.231604i
\(328\) 0 0
\(329\) 7.49728 + 0.812871i 0.413338 + 0.0448150i
\(330\) 0 0
\(331\) 2.71378 + 0.727156i 0.149163 + 0.0399681i 0.332628 0.943058i \(-0.392065\pi\)
−0.183465 + 0.983026i \(0.558731\pi\)
\(332\) 0 0
\(333\) −0.985490 3.67790i −0.0540045 0.201548i
\(334\) 0 0
\(335\) 8.69259 0.474927
\(336\) 0 0
\(337\) −23.9205 −1.30303 −0.651517 0.758634i \(-0.725867\pi\)
−0.651517 + 0.758634i \(0.725867\pi\)
\(338\) 0 0
\(339\) −7.68312 28.6738i −0.417290 1.55735i
\(340\) 0 0
\(341\) −10.9216 2.92644i −0.591438 0.158475i
\(342\) 0 0
\(343\) 17.5566 + 5.89614i 0.947969 + 0.318362i
\(344\) 0 0
\(345\) 16.6368 9.60525i 0.895695 0.517130i
\(346\) 0 0
\(347\) −3.23720 12.0814i −0.173782 0.648563i −0.996756 0.0804837i \(-0.974353\pi\)
0.822974 0.568079i \(-0.192313\pi\)
\(348\) 0 0
\(349\) −21.9157 21.9157i −1.17312 1.17312i −0.981461 0.191662i \(-0.938612\pi\)
−0.191662 0.981461i \(-0.561388\pi\)
\(350\) 0 0
\(351\) 6.99394i 0.373309i
\(352\) 0 0
\(353\) −18.1984 10.5069i −0.968604 0.559224i −0.0697939 0.997561i \(-0.522234\pi\)
−0.898810 + 0.438337i \(0.855567\pi\)
\(354\) 0 0
\(355\) 23.3784 + 6.26421i 1.24079 + 0.332470i
\(356\) 0 0
\(357\) 9.97186 + 12.3972i 0.527767 + 0.656127i
\(358\) 0 0
\(359\) −4.78310 8.28458i −0.252443 0.437243i 0.711755 0.702428i \(-0.247901\pi\)
−0.964198 + 0.265184i \(0.914567\pi\)
\(360\) 0 0
\(361\) 1.56807 + 0.905328i 0.0825302 + 0.0476488i
\(362\) 0 0
\(363\) −16.1661 16.1661i −0.848498 0.848498i
\(364\) 0 0
\(365\) −25.8520 + 25.8520i −1.35315 + 1.35315i
\(366\) 0 0
\(367\) 3.06305 5.30536i 0.159890 0.276938i −0.774939 0.632036i \(-0.782219\pi\)
0.934829 + 0.355099i \(0.115553\pi\)
\(368\) 0 0
\(369\) 8.68463 5.01408i 0.452104 0.261022i
\(370\) 0 0
\(371\) 10.9813 28.3292i 0.570123 1.47078i
\(372\) 0 0
\(373\) 4.25162 15.8673i 0.220140 0.821575i −0.764153 0.645035i \(-0.776843\pi\)
0.984293 0.176540i \(-0.0564906\pi\)
\(374\) 0 0
\(375\) 1.91411 3.31533i 0.0988440 0.171203i
\(376\) 0 0
\(377\) 9.66091 0.497562
\(378\) 0 0
\(379\) 6.05253 6.05253i 0.310897 0.310897i −0.534360 0.845257i \(-0.679447\pi\)
0.845257 + 0.534360i \(0.179447\pi\)
\(380\) 0 0
\(381\) −11.1620 + 2.99085i −0.571846 + 0.153226i
\(382\) 0 0
\(383\) −9.64030 16.6975i −0.492596 0.853202i 0.507367 0.861730i \(-0.330619\pi\)
−0.999964 + 0.00852805i \(0.997285\pi\)
\(384\) 0 0
\(385\) −10.0381 7.34357i −0.511591 0.374263i
\(386\) 0 0
\(387\) −9.42954 + 35.1915i −0.479330 + 1.78889i
\(388\) 0 0
\(389\) 27.6476 7.40814i 1.40179 0.375608i 0.522801 0.852455i \(-0.324887\pi\)
0.878986 + 0.476847i \(0.158221\pi\)
\(390\) 0 0
\(391\) 5.39753i 0.272965i
\(392\) 0 0
\(393\) 35.5835i 1.79495i
\(394\) 0 0
\(395\) 2.54934 0.683093i 0.128271 0.0343701i
\(396\) 0 0
\(397\) 2.40028 8.95799i 0.120467 0.449588i −0.879171 0.476507i \(-0.841903\pi\)
0.999638 + 0.0269184i \(0.00856943\pi\)
\(398\) 0 0
\(399\) 25.0587 + 18.3321i 1.25451 + 0.917754i
\(400\) 0 0
\(401\) 17.5281 + 30.3596i 0.875312 + 1.51609i 0.856430 + 0.516264i \(0.172678\pi\)
0.0188827 + 0.999822i \(0.493989\pi\)
\(402\) 0 0
\(403\) −33.0815 + 8.86416i −1.64791 + 0.441555i
\(404\) 0 0
\(405\) −15.4735 + 15.4735i −0.768886 + 0.768886i
\(406\) 0 0
\(407\) −1.52989 −0.0758338
\(408\) 0 0
\(409\) −17.4392 + 30.2056i −0.862314 + 1.49357i 0.00737621 + 0.999973i \(0.497652\pi\)
−0.869690 + 0.493598i \(0.835681\pi\)
\(410\) 0 0
\(411\) −1.67923 + 6.26699i −0.0828306 + 0.309128i
\(412\) 0 0
\(413\) −3.73603 + 9.63807i −0.183838 + 0.474258i
\(414\) 0 0
\(415\) 10.5082 6.06689i 0.515826 0.297812i
\(416\) 0 0
\(417\) 10.9209 18.9156i 0.534801 0.926302i
\(418\) 0 0
\(419\) 8.57828 8.57828i 0.419076 0.419076i −0.465809 0.884885i \(-0.654237\pi\)
0.884885 + 0.465809i \(0.154237\pi\)
\(420\) 0 0
\(421\) 7.41183 + 7.41183i 0.361230 + 0.361230i 0.864266 0.503035i \(-0.167783\pi\)
−0.503035 + 0.864266i \(0.667783\pi\)
\(422\) 0 0
\(423\) 8.92967 + 5.15555i 0.434175 + 0.250671i
\(424\) 0 0
\(425\) 6.38184 + 11.0537i 0.309565 + 0.536182i
\(426\) 0 0
\(427\) 23.8709 + 29.6766i 1.15519 + 1.43615i
\(428\) 0 0
\(429\) 15.9010 + 4.26065i 0.767706 + 0.205706i
\(430\) 0 0
\(431\) 1.39637 + 0.806195i 0.0672608 + 0.0388331i 0.533253 0.845956i \(-0.320969\pi\)
−0.465992 + 0.884789i \(0.654303\pi\)
\(432\) 0 0
\(433\) 13.0869i 0.628917i −0.949271 0.314458i \(-0.898177\pi\)
0.949271 0.314458i \(-0.101823\pi\)
\(434\) 0 0
\(435\) −12.9093 12.9093i −0.618956 0.618956i
\(436\) 0 0
\(437\) 2.72622 + 10.1744i 0.130413 + 0.486708i
\(438\) 0 0
\(439\) −1.71358 + 0.989334i −0.0817846 + 0.0472184i −0.540335 0.841450i \(-0.681702\pi\)
0.458550 + 0.888669i \(0.348369\pi\)
\(440\) 0 0
\(441\) 18.7069 + 17.0673i 0.890803 + 0.812729i
\(442\) 0 0
\(443\) −33.5156 8.98048i −1.59237 0.426675i −0.649646 0.760237i \(-0.725083\pi\)
−0.942728 + 0.333562i \(0.891749\pi\)
\(444\) 0 0
\(445\) −4.03377 15.0542i −0.191219 0.713640i
\(446\) 0 0
\(447\) −21.8614 −1.03401
\(448\) 0 0
\(449\) 20.0460 0.946031 0.473015 0.881054i \(-0.343166\pi\)
0.473015 + 0.881054i \(0.343166\pi\)
\(450\) 0 0
\(451\) −1.04285 3.89196i −0.0491058 0.183265i
\(452\) 0 0
\(453\) 25.4407 + 6.81682i 1.19531 + 0.320282i
\(454\) 0 0
\(455\) −37.4537 4.06081i −1.75586 0.190374i
\(456\) 0 0
\(457\) −25.9859 + 15.0030i −1.21557 + 0.701810i −0.963967 0.266020i \(-0.914291\pi\)
−0.251603 + 0.967830i \(0.580958\pi\)
\(458\) 0 0
\(459\) 0.961116 + 3.58693i 0.0448611 + 0.167424i
\(460\) 0 0
\(461\) −18.2334 18.2334i −0.849213 0.849213i 0.140822 0.990035i \(-0.455026\pi\)
−0.990035 + 0.140822i \(0.955026\pi\)
\(462\) 0 0
\(463\) 31.3804i 1.45837i 0.684316 + 0.729186i \(0.260101\pi\)
−0.684316 + 0.729186i \(0.739899\pi\)
\(464\) 0 0
\(465\) 56.0497 + 32.3603i 2.59924 + 1.50067i
\(466\) 0 0
\(467\) −23.0310 6.17115i −1.06575 0.285567i −0.317004 0.948424i \(-0.602677\pi\)
−0.748745 + 0.662858i \(0.769343\pi\)
\(468\) 0 0
\(469\) −2.57011 + 6.63028i −0.118677 + 0.306158i
\(470\) 0 0
\(471\) 18.8844 + 32.7088i 0.870148 + 1.50714i
\(472\) 0 0
\(473\) 12.6774 + 7.31928i 0.582906 + 0.336541i
\(474\) 0 0
\(475\) 17.6129 + 17.6129i 0.808135 + 0.808135i
\(476\) 0 0
\(477\) 29.3752 29.3752i 1.34500 1.34500i
\(478\) 0 0
\(479\) 17.6784 30.6199i 0.807747 1.39906i −0.106674 0.994294i \(-0.534020\pi\)
0.914421 0.404764i \(-0.132646\pi\)
\(480\) 0 0
\(481\) −4.01319 + 2.31701i −0.182986 + 0.105647i
\(482\) 0 0
\(483\) 2.40746 + 15.5297i 0.109543 + 0.706625i
\(484\) 0 0
\(485\) 4.90979 18.3236i 0.222942 0.832032i
\(486\) 0 0
\(487\) −5.31153 + 9.19984i −0.240688 + 0.416884i −0.960911 0.276859i \(-0.910706\pi\)
0.720222 + 0.693743i \(0.244040\pi\)
\(488\) 0 0
\(489\) 59.1357 2.67421
\(490\) 0 0
\(491\) 26.9088 26.9088i 1.21438 1.21438i 0.244806 0.969572i \(-0.421276\pi\)
0.969572 0.244806i \(-0.0787243\pi\)
\(492\) 0 0
\(493\) 4.95472 1.32761i 0.223149 0.0597927i
\(494\) 0 0
\(495\) −8.50291 14.7275i −0.382177 0.661950i
\(496\) 0 0
\(497\) −11.6902 + 15.9797i −0.524379 + 0.716789i
\(498\) 0 0
\(499\) 3.28081 12.2441i 0.146869 0.548123i −0.852796 0.522244i \(-0.825095\pi\)
0.999665 0.0258790i \(-0.00823846\pi\)
\(500\) 0 0
\(501\) −9.49441 + 2.54402i −0.424179 + 0.113658i
\(502\) 0 0
\(503\) 13.7074i 0.611183i −0.952163 0.305591i \(-0.901146\pi\)
0.952163 0.305591i \(-0.0988542\pi\)
\(504\) 0 0
\(505\) 4.66892i 0.207764i
\(506\) 0 0
\(507\) 15.8615 4.25008i 0.704434 0.188753i
\(508\) 0 0
\(509\) −6.16734 + 23.0168i −0.273363 + 1.02020i 0.683568 + 0.729887i \(0.260427\pi\)
−0.956931 + 0.290317i \(0.906239\pi\)
\(510\) 0 0
\(511\) −12.0750 27.3622i −0.534168 1.21043i
\(512\) 0 0
\(513\) 3.62343 + 6.27596i 0.159978 + 0.277091i
\(514\) 0 0
\(515\) 7.58014 2.03109i 0.334021 0.0895007i
\(516\) 0 0
\(517\) 2.92950 2.92950i 0.128839 0.128839i
\(518\) 0 0
\(519\) 21.3854 0.938715
\(520\) 0 0
\(521\) 11.8589 20.5402i 0.519548 0.899884i −0.480194 0.877163i \(-0.659434\pi\)
0.999742 0.0227214i \(-0.00723308\pi\)
\(522\) 0 0
\(523\) 4.85978 18.1369i 0.212503 0.793073i −0.774527 0.632540i \(-0.782012\pi\)
0.987031 0.160532i \(-0.0513211\pi\)
\(524\) 0 0
\(525\) 23.2920 + 28.9569i 1.01655 + 1.26378i
\(526\) 0 0
\(527\) −15.7482 + 9.09220i −0.686000 + 0.396063i
\(528\) 0 0
\(529\) 8.83428 15.3014i 0.384099 0.665279i
\(530\) 0 0
\(531\) −9.99392 + 9.99392i −0.433699 + 0.433699i
\(532\) 0 0
\(533\) −8.62996 8.62996i −0.373805 0.373805i
\(534\) 0 0
\(535\) −12.6067 7.27851i −0.545037 0.314677i
\(536\) 0 0
\(537\) −24.8536 43.0476i −1.07251 1.85764i
\(538\) 0 0
\(539\) 8.56926 5.48534i 0.369104 0.236271i
\(540\) 0 0
\(541\) −25.2496 6.76561i −1.08556 0.290876i −0.328691 0.944437i \(-0.606608\pi\)
−0.756874 + 0.653561i \(0.773274\pi\)
\(542\) 0 0
\(543\) −19.1301 11.0448i −0.820952 0.473977i
\(544\) 0 0
\(545\) 10.5310i 0.451100i
\(546\) 0 0
\(547\) −23.8532 23.8532i −1.01989 1.01989i −0.999798 0.0200929i \(-0.993604\pi\)
−0.0200929 0.999798i \(-0.506396\pi\)
\(548\) 0 0
\(549\) 13.4779 + 50.3001i 0.575221 + 2.14675i
\(550\) 0 0
\(551\) 8.66915 5.00513i 0.369318 0.213226i
\(552\) 0 0
\(553\) −0.232726 + 2.14648i −0.00989651 + 0.0912775i
\(554\) 0 0
\(555\) 8.45871 + 2.26650i 0.359052 + 0.0962077i
\(556\) 0 0
\(557\) −11.1522 41.6206i −0.472534 1.76352i −0.630617 0.776094i \(-0.717198\pi\)
0.158083 0.987426i \(-0.449468\pi\)
\(558\) 0 0
\(559\) 44.3401 1.87539
\(560\) 0 0
\(561\) 8.74052 0.369025
\(562\) 0 0
\(563\) −2.30901 8.61735i −0.0973133 0.363178i 0.900047 0.435793i \(-0.143532\pi\)
−0.997360 + 0.0726153i \(0.976865\pi\)
\(564\) 0 0
\(565\) 36.0500 + 9.65958i 1.51664 + 0.406382i
\(566\) 0 0
\(567\) −7.22743 16.3775i −0.303524 0.687789i
\(568\) 0 0
\(569\) −5.49552 + 3.17284i −0.230384 + 0.133012i −0.610749 0.791824i \(-0.709132\pi\)
0.380365 + 0.924836i \(0.375798\pi\)
\(570\) 0 0
\(571\) −9.71490 36.2565i −0.406556 1.51729i −0.801168 0.598439i \(-0.795788\pi\)
0.394612 0.918848i \(-0.370879\pi\)
\(572\) 0 0
\(573\) 27.6637 + 27.6637i 1.15567 + 1.15567i
\(574\) 0 0
\(575\) 12.6074i 0.525765i
\(576\) 0 0
\(577\) −1.63907 0.946316i −0.0682353 0.0393957i 0.465494 0.885051i \(-0.345877\pi\)
−0.533729 + 0.845655i \(0.679210\pi\)
\(578\) 0 0
\(579\) 55.8569 + 14.9668i 2.32134 + 0.622000i
\(580\) 0 0
\(581\) 1.52061 + 9.80889i 0.0630854 + 0.406941i
\(582\) 0 0
\(583\) −8.34585 14.4554i −0.345650 0.598683i
\(584\) 0 0
\(585\) −44.6094 25.7553i −1.84437 1.06485i
\(586\) 0 0
\(587\) 26.8519 + 26.8519i 1.10830 + 1.10830i 0.993374 + 0.114923i \(0.0366621\pi\)
0.114923 + 0.993374i \(0.463338\pi\)
\(588\) 0 0
\(589\) −25.0931 + 25.0931i −1.03394 + 1.03394i
\(590\) 0 0
\(591\) 15.1265 26.1998i 0.622220 1.07772i
\(592\) 0 0
\(593\) −23.8885 + 13.7920i −0.980984 + 0.566372i −0.902567 0.430549i \(-0.858320\pi\)
−0.0784171 + 0.996921i \(0.524987\pi\)
\(594\) 0 0
\(595\) −19.7667 + 3.06430i −0.810354 + 0.125624i
\(596\) 0 0
\(597\) −6.80456 + 25.3950i −0.278492 + 1.03935i
\(598\) 0 0
\(599\) 11.8101 20.4557i 0.482548 0.835797i −0.517252 0.855833i \(-0.673045\pi\)
0.999799 + 0.0200365i \(0.00637824\pi\)
\(600\) 0 0
\(601\) 5.61717 0.229129 0.114565 0.993416i \(-0.463453\pi\)
0.114565 + 0.993416i \(0.463453\pi\)
\(602\) 0 0
\(603\) −6.87508 + 6.87508i −0.279975 + 0.279975i
\(604\) 0 0
\(605\) 27.7641 7.43936i 1.12877 0.302453i
\(606\) 0 0
\(607\) 2.43281 + 4.21375i 0.0987446 + 0.171031i 0.911165 0.412041i \(-0.135184\pi\)
−0.812421 + 0.583072i \(0.801851\pi\)
\(608\) 0 0
\(609\) 13.6635 6.02975i 0.553672 0.244338i
\(610\) 0 0
\(611\) 3.24791 12.1214i 0.131396 0.490378i
\(612\) 0 0
\(613\) −3.99109 + 1.06941i −0.161199 + 0.0431931i −0.338516 0.940961i \(-0.609925\pi\)
0.177317 + 0.984154i \(0.443258\pi\)
\(614\) 0 0
\(615\) 23.0635i 0.930010i
\(616\) 0 0
\(617\) 25.3025i 1.01864i 0.860578 + 0.509319i \(0.170103\pi\)
−0.860578 + 0.509319i \(0.829897\pi\)
\(618\) 0 0
\(619\) −17.7405 + 4.75356i −0.713051 + 0.191062i −0.597069 0.802190i \(-0.703668\pi\)
−0.115982 + 0.993251i \(0.537002\pi\)
\(620\) 0 0
\(621\) −0.949348 + 3.54302i −0.0380960 + 0.142176i
\(622\) 0 0
\(623\) 12.6753 + 1.37428i 0.507825 + 0.0550595i
\(624\) 0 0
\(625\) −11.2438 19.4749i −0.449753 0.778995i
\(626\) 0 0
\(627\) 16.4760 4.41472i 0.657987 0.176307i
\(628\) 0 0
\(629\) −1.73981 + 1.73981i −0.0693707 + 0.0693707i
\(630\) 0 0
\(631\) 41.4293 1.64928 0.824638 0.565661i \(-0.191379\pi\)
0.824638 + 0.565661i \(0.191379\pi\)
\(632\) 0 0
\(633\) 10.4368 18.0771i 0.414826 0.718500i
\(634\) 0 0
\(635\) 3.76023 14.0334i 0.149220 0.556897i
\(636\) 0 0
\(637\) 14.1712 27.3672i 0.561484 1.08433i
\(638\) 0 0
\(639\) −23.4447 + 13.5358i −0.927458 + 0.535468i
\(640\) 0 0
\(641\) −17.0933 + 29.6065i −0.675146 + 1.16939i 0.301280 + 0.953536i \(0.402586\pi\)
−0.976426 + 0.215852i \(0.930747\pi\)
\(642\) 0 0
\(643\) −3.46526 + 3.46526i −0.136657 + 0.136657i −0.772126 0.635469i \(-0.780807\pi\)
0.635469 + 0.772126i \(0.280807\pi\)
\(644\) 0 0
\(645\) −59.2493 59.2493i −2.33294 2.33294i
\(646\) 0 0
\(647\) −27.2890 15.7553i −1.07284 0.619406i −0.143886 0.989594i \(-0.545960\pi\)
−0.928957 + 0.370188i \(0.879293\pi\)
\(648\) 0 0
\(649\) 2.83939 + 4.91797i 0.111456 + 0.193047i
\(650\) 0 0
\(651\) −41.2549 + 33.1841i −1.61691 + 1.30059i
\(652\) 0 0
\(653\) −19.3649 5.18880i −0.757805 0.203053i −0.140828 0.990034i \(-0.544976\pi\)
−0.616977 + 0.786981i \(0.711643\pi\)
\(654\) 0 0
\(655\) −38.7436 22.3686i −1.51384 0.874015i
\(656\) 0 0
\(657\) 40.8933i 1.59540i
\(658\) 0 0
\(659\) 29.3969 + 29.3969i 1.14514 + 1.14514i 0.987496 + 0.157643i \(0.0503896\pi\)
0.157643 + 0.987496i \(0.449610\pi\)
\(660\) 0 0
\(661\) −12.5518 46.8440i −0.488208 1.82202i −0.565157 0.824984i \(-0.691184\pi\)
0.0769483 0.997035i \(-0.475482\pi\)
\(662\) 0 0
\(663\) 22.9280 13.2375i 0.890450 0.514102i
\(664\) 0 0
\(665\) −35.7127 + 15.7601i −1.38488 + 0.611151i
\(666\) 0 0
\(667\) 4.89406 + 1.31136i 0.189499 + 0.0507760i
\(668\) 0 0
\(669\) 11.6468 + 43.4664i 0.450290 + 1.68051i
\(670\) 0 0
\(671\) 20.9232 0.807733
\(672\) 0 0
\(673\) 11.6457 0.448909 0.224454 0.974485i \(-0.427940\pi\)
0.224454 + 0.974485i \(0.427940\pi\)
\(674\) 0 0
\(675\) 2.24495 + 8.37826i 0.0864080 + 0.322479i
\(676\) 0 0
\(677\) −32.6233 8.74138i −1.25381 0.335959i −0.430006 0.902826i \(-0.641488\pi\)
−0.823809 + 0.566868i \(0.808155\pi\)
\(678\) 0 0
\(679\) 12.5247 + 9.16263i 0.480653 + 0.351630i
\(680\) 0 0
\(681\) −39.0453 + 22.5428i −1.49622 + 0.863843i
\(682\) 0 0
\(683\) 1.76166 + 6.57460i 0.0674080 + 0.251570i 0.991405 0.130830i \(-0.0417643\pi\)
−0.923997 + 0.382400i \(0.875098\pi\)
\(684\) 0 0
\(685\) −5.76794 5.76794i −0.220382 0.220382i
\(686\) 0 0
\(687\) 17.9827i 0.686081i
\(688\) 0 0
\(689\) −43.7854 25.2795i −1.66809 0.963073i
\(690\) 0 0
\(691\) 29.7544 + 7.97267i 1.13191 + 0.303295i 0.775695 0.631108i \(-0.217400\pi\)
0.356217 + 0.934403i \(0.384066\pi\)
\(692\) 0 0
\(693\) 13.7474 2.13117i 0.522221 0.0809565i
\(694\) 0 0
\(695\) 13.7303 + 23.7816i 0.520821 + 0.902088i
\(696\) 0 0
\(697\) −5.61193 3.24005i −0.212567 0.122726i
\(698\) 0 0
\(699\) −52.7060 52.7060i −1.99352 1.99352i
\(700\) 0 0
\(701\) 28.2191 28.2191i 1.06582 1.06582i 0.0681440 0.997675i \(-0.478292\pi\)
0.997675 0.0681440i \(-0.0217077\pi\)
\(702\) 0 0
\(703\) −2.40080 + 4.15831i −0.0905480 + 0.156834i
\(704\) 0 0
\(705\) −20.5371 + 11.8571i −0.773473 + 0.446565i
\(706\) 0 0
\(707\) 3.56123 + 1.38045i 0.133934 + 0.0519171i
\(708\) 0 0
\(709\) 4.97862 18.5805i 0.186976 0.697804i −0.807223 0.590247i \(-0.799030\pi\)
0.994199 0.107557i \(-0.0343028\pi\)
\(710\) 0 0
\(711\) −1.47604 + 2.55657i −0.0553557 + 0.0958790i
\(712\) 0 0
\(713\) −17.9618 −0.672673
\(714\) 0 0
\(715\) −14.6347 + 14.6347i −0.547308 + 0.547308i
\(716\) 0 0
\(717\) −33.1938 + 8.89426i −1.23965 + 0.332162i
\(718\) 0 0
\(719\) −11.9289 20.6615i −0.444873 0.770543i 0.553170 0.833068i \(-0.313418\pi\)
−0.998043 + 0.0625253i \(0.980085\pi\)
\(720\) 0 0
\(721\) −0.691981 + 6.38229i −0.0257707 + 0.237689i
\(722\) 0 0
\(723\) 8.11163 30.2730i 0.301675 1.12587i
\(724\) 0 0
\(725\) 11.5731 3.10100i 0.429814 0.115168i
\(726\) 0 0
\(727\) 28.5645i 1.05940i 0.848185 + 0.529700i \(0.177695\pi\)
−0.848185 + 0.529700i \(0.822305\pi\)
\(728\) 0 0
\(729\) 36.7360i 1.36059i
\(730\) 0 0
\(731\) 22.7404 6.09328i 0.841085 0.225368i
\(732\) 0 0
\(733\) −6.04445 + 22.5582i −0.223257 + 0.833206i 0.759839 + 0.650112i \(0.225278\pi\)
−0.983095 + 0.183094i \(0.941389\pi\)
\(734\) 0 0
\(735\) −55.5055 + 17.6331i −2.04735 + 0.650406i
\(736\) 0 0
\(737\) 1.95329 + 3.38320i 0.0719504 + 0.124622i
\(738\) 0 0
\(739\) 1.72028 0.460947i 0.0632814 0.0169562i −0.227039 0.973886i \(-0.572905\pi\)
0.290321 + 0.956929i \(0.406238\pi\)
\(740\) 0 0
\(741\) 36.5335 36.5335i 1.34209 1.34209i
\(742\) 0 0
\(743\) −16.7041 −0.612815 −0.306407 0.951900i \(-0.599127\pi\)
−0.306407 + 0.951900i \(0.599127\pi\)
\(744\) 0 0
\(745\) 13.7426 23.8029i 0.503490 0.872070i
\(746\) 0 0
\(747\) −3.51266 + 13.1094i −0.128522 + 0.479649i
\(748\) 0 0
\(749\) 9.27909 7.46379i 0.339051 0.272721i
\(750\) 0 0
\(751\) −1.51512 + 0.874754i −0.0552874 + 0.0319202i −0.527389 0.849624i \(-0.676829\pi\)
0.472101 + 0.881544i \(0.343496\pi\)
\(752\) 0 0
\(753\) −12.1678 + 21.0752i −0.443419 + 0.768024i
\(754\) 0 0
\(755\) −23.4148 + 23.4148i −0.852153 + 0.852153i
\(756\) 0 0
\(757\) 15.6771 + 15.6771i 0.569792 + 0.569792i 0.932070 0.362278i \(-0.118001\pi\)
−0.362278 + 0.932070i \(0.618001\pi\)
\(758\) 0 0
\(759\) 7.47683 + 4.31675i 0.271392 + 0.156688i
\(760\) 0 0
\(761\) −25.9814 45.0012i −0.941826 1.63129i −0.761984 0.647596i \(-0.775775\pi\)
−0.179842 0.983695i \(-0.557559\pi\)
\(762\) 0 0
\(763\) 8.03255 + 3.11368i 0.290798 + 0.112723i
\(764\) 0 0
\(765\) −26.4178 7.07864i −0.955139 0.255929i
\(766\) 0 0
\(767\) 14.8965 + 8.60050i 0.537882 + 0.310546i
\(768\) 0 0
\(769\) 34.9699i 1.26105i 0.776170 + 0.630524i \(0.217160\pi\)
−0.776170 + 0.630524i \(0.782840\pi\)
\(770\) 0 0
\(771\) −6.99090 6.99090i −0.251771 0.251771i
\(772\) 0 0
\(773\) 3.55817 + 13.2793i 0.127978 + 0.477622i 0.999928 0.0119731i \(-0.00381124\pi\)
−0.871950 + 0.489595i \(0.837145\pi\)
\(774\) 0 0
\(775\) −36.7841 + 21.2373i −1.32132 + 0.762866i
\(776\) 0 0
\(777\) −4.22974 + 5.78176i −0.151741 + 0.207419i
\(778\) 0 0
\(779\) −12.2150 3.27301i −0.437650 0.117268i
\(780\) 0 0
\(781\) 2.81523 + 10.5066i 0.100737 + 0.375956i
\(782\) 0 0
\(783\) 3.48586 0.124574
\(784\) 0 0
\(785\) −47.4847 −1.69480
\(786\) 0 0
\(787\) 6.42575 + 23.9812i 0.229053 + 0.854838i 0.980740 + 0.195318i \(0.0625738\pi\)
−0.751687 + 0.659520i \(0.770760\pi\)
\(788\) 0 0
\(789\) 15.6932 + 4.20498i 0.558692 + 0.149701i
\(790\) 0 0
\(791\) −18.0267 + 24.6412i −0.640954 + 0.876139i
\(792\) 0 0
\(793\) 54.8856 31.6882i 1.94904 1.12528i
\(794\) 0 0
\(795\) 24.7284 + 92.2878i 0.877027 + 3.27311i
\(796\) 0 0
\(797\) 13.3302 + 13.3302i 0.472179 + 0.472179i 0.902619 0.430440i \(-0.141642\pi\)
−0.430440 + 0.902619i \(0.641642\pi\)
\(798\) 0 0
\(799\) 6.66293i 0.235717i
\(800\) 0 0
\(801\) 15.0970 + 8.71624i 0.533425 + 0.307973i
\(802\) 0 0
\(803\) −15.8709 4.25258i −0.560070 0.150070i
\(804\) 0 0
\(805\) −18.4222 7.14106i −0.649298 0.251689i
\(806\) 0 0
\(807\) −31.0148 53.7192i −1.09177 1.89101i
\(808\) 0 0
\(809\) 18.7601 + 10.8311i 0.659569 + 0.380803i 0.792113 0.610375i \(-0.208981\pi\)
−0.132544 + 0.991177i \(0.542314\pi\)
\(810\) 0 0
\(811\) −1.51326 1.51326i −0.0531379 0.0531379i 0.680039 0.733176i \(-0.261963\pi\)
−0.733176 + 0.680039i \(0.761963\pi\)
\(812\) 0 0
\(813\) 17.2192 17.2192i 0.603904 0.603904i
\(814\) 0 0
\(815\) −37.1741 + 64.3874i −1.30215 + 2.25539i
\(816\) 0 0
\(817\) 39.7883 22.9718i 1.39202 0.803681i
\(818\) 0 0
\(819\) 32.8344 26.4109i 1.14733 0.922871i
\(820\) 0 0
\(821\) −12.4214 + 46.3574i −0.433511 + 1.61788i 0.311094 + 0.950379i \(0.399305\pi\)
−0.744605 + 0.667506i \(0.767362\pi\)
\(822\) 0 0
\(823\) 15.0408 26.0514i 0.524290 0.908096i −0.475310 0.879818i \(-0.657664\pi\)
0.999600 0.0282782i \(-0.00900244\pi\)
\(824\) 0 0
\(825\) 20.4158 0.710789
\(826\) 0 0
\(827\) 22.5866 22.5866i 0.785414 0.785414i −0.195325 0.980739i \(-0.562576\pi\)
0.980739 + 0.195325i \(0.0625760\pi\)
\(828\) 0 0
\(829\) −31.9742 + 8.56747i −1.11051 + 0.297561i −0.767038 0.641602i \(-0.778270\pi\)
−0.343473 + 0.939162i \(0.611603\pi\)
\(830\) 0 0
\(831\) 15.0840 + 26.1263i 0.523260 + 0.906313i
\(832\) 0 0
\(833\) 3.50706 15.9831i 0.121512 0.553780i
\(834\) 0 0
\(835\) 3.19846 11.9368i 0.110687 0.413091i
\(836\) 0 0
\(837\) −11.9365 + 3.19838i −0.412586 + 0.110552i
\(838\) 0 0
\(839\) 35.7894i 1.23559i 0.786340 + 0.617794i \(0.211973\pi\)
−0.786340 + 0.617794i \(0.788027\pi\)
\(840\) 0 0
\(841\) 24.1849i 0.833962i
\(842\) 0 0
\(843\) −13.9029 + 3.72527i −0.478841 + 0.128305i
\(844\) 0 0
\(845\) −5.34340 + 19.9418i −0.183818 + 0.686020i
\(846\) 0 0
\(847\) −2.53455 + 23.3766i −0.0870880 + 0.803231i
\(848\) 0 0
\(849\) −4.93437 8.54658i −0.169347 0.293318i
\(850\) 0 0
\(851\) −2.34752 + 0.629017i −0.0804721 + 0.0215624i
\(852\) 0 0
\(853\) −1.27195 + 1.27195i −0.0435507 + 0.0435507i −0.728547 0.684996i \(-0.759804\pi\)
0.684996 + 0.728547i \(0.259804\pi\)
\(854\) 0 0
\(855\) −53.3733 −1.82533
\(856\) 0 0
\(857\) −17.1377 + 29.6834i −0.585412 + 1.01396i 0.409411 + 0.912350i \(0.365734\pi\)
−0.994824 + 0.101614i \(0.967599\pi\)
\(858\) 0 0
\(859\) −11.5677 + 43.1714i −0.394686 + 1.47299i 0.427628 + 0.903955i \(0.359349\pi\)
−0.822314 + 0.569034i \(0.807317\pi\)
\(860\) 0 0
\(861\) −17.5917 6.81912i −0.599523 0.232395i
\(862\) 0 0
\(863\) 32.5858 18.8134i 1.10923 0.640416i 0.170602 0.985340i \(-0.445429\pi\)
0.938631 + 0.344924i \(0.112095\pi\)
\(864\) 0 0
\(865\) −13.4434 + 23.2846i −0.457088 + 0.791700i
\(866\) 0 0
\(867\) −20.9832 + 20.9832i −0.712627 + 0.712627i
\(868\) 0 0
\(869\) 0.838719 + 0.838719i 0.0284516 + 0.0284516i
\(870\) 0 0
\(871\) 10.2477 + 5.91651i 0.347230 + 0.200473i
\(872\) 0 0
\(873\) 10.6092 + 18.3756i 0.359065 + 0.621920i
\(874\) 0 0
\(875\) −3.89081 + 0.603167i −0.131533 + 0.0203908i
\(876\) 0 0
\(877\) 20.5119 + 5.49616i 0.692639 + 0.185592i 0.587931 0.808911i \(-0.299943\pi\)
0.104708 + 0.994503i \(0.466609\pi\)
\(878\) 0 0
\(879\) 30.7099 + 17.7304i 1.03582 + 0.598031i
\(880\) 0 0
\(881\) 3.13017i 0.105458i 0.998609 + 0.0527291i \(0.0167920\pi\)
−0.998609 + 0.0527291i \(0.983208\pi\)
\(882\) 0 0
\(883\) 5.90657 + 5.90657i 0.198772 + 0.198772i 0.799473 0.600702i \(-0.205112\pi\)
−0.600702 + 0.799473i \(0.705112\pi\)
\(884\) 0 0
\(885\) −8.41301 31.3978i −0.282800 1.05543i
\(886\) 0 0
\(887\) −41.9702 + 24.2315i −1.40922 + 0.813615i −0.995313 0.0967040i \(-0.969170\pi\)
−0.413908 + 0.910318i \(0.635837\pi\)
\(888\) 0 0
\(889\) 9.59219 + 7.01733i 0.321712 + 0.235354i
\(890\) 0 0
\(891\) −9.49940 2.54536i −0.318242 0.0852727i
\(892\) 0 0
\(893\) −3.36536 12.5597i −0.112617 0.420294i
\(894\) 0 0
\(895\) 62.4941 2.08895
\(896\) 0 0
\(897\) 26.1508 0.873151
\(898\) 0 0
\(899\) 4.41800 + 16.4882i 0.147348 + 0.549912i
\(900\) 0 0
\(901\) −25.9299 6.94789i −0.863849 0.231468i
\(902\) 0 0
\(903\) 62.7105 27.6744i 2.08688 0.920946i
\(904\) 0 0
\(905\) 24.0513 13.8860i 0.799491 0.461587i
\(906\) 0 0
\(907\) −9.69974 36.1999i −0.322075 1.20200i −0.917220 0.398381i \(-0.869572\pi\)
0.595146 0.803618i \(-0.297094\pi\)
\(908\) 0 0
\(909\) 3.69271 + 3.69271i 0.122480 + 0.122480i
\(910\) 0 0
\(911\) 12.0871i 0.400463i −0.979749 0.200231i \(-0.935831\pi\)
0.979749 0.200231i \(-0.0641694\pi\)
\(912\) 0 0
\(913\) 4.72253 + 2.72656i 0.156293 + 0.0902358i
\(914\) 0 0
\(915\) −115.684 30.9974i −3.82439 1.02474i
\(916\) 0 0
\(917\) 28.5169 22.9381i 0.941712 0.757481i
\(918\) 0 0
\(919\) −27.6308 47.8579i −0.911455 1.57869i −0.812010 0.583643i \(-0.801627\pi\)
−0.0994447 0.995043i \(-0.531707\pi\)
\(920\) 0 0
\(921\) 64.8188 + 37.4231i 2.13585 + 1.23313i
\(922\) 0 0
\(923\) 23.2971 + 23.2971i 0.766833 + 0.766833i
\(924\) 0 0
\(925\) −4.06379 + 4.06379i −0.133617 + 0.133617i
\(926\) 0 0
\(927\) −4.38882 + 7.60165i −0.144148 + 0.249671i
\(928\) 0 0
\(929\) 8.64695 4.99232i 0.283697 0.163793i −0.351399 0.936226i \(-0.614294\pi\)
0.635096 + 0.772433i \(0.280961\pi\)
\(930\) 0 0
\(931\) −1.46199 31.8996i −0.0479147 1.04547i
\(932\) 0 0
\(933\) −0.380765 + 1.42103i −0.0124657 + 0.0465226i
\(934\) 0 0
\(935\) −5.49450 + 9.51675i −0.179689 + 0.311231i
\(936\) 0 0
\(937\) −7.92416 −0.258871 −0.129436 0.991588i \(-0.541317\pi\)
−0.129436 + 0.991588i \(0.541317\pi\)
\(938\) 0 0
\(939\) 2.57311 2.57311i 0.0839703 0.0839703i
\(940\) 0 0
\(941\) −6.10702 + 1.63637i −0.199083 + 0.0533441i −0.356983 0.934111i \(-0.616194\pi\)
0.157900 + 0.987455i \(0.449528\pi\)
\(942\) 0 0
\(943\) −3.20038 5.54321i −0.104219 0.180512i
\(944\) 0 0
\(945\) −13.5141 1.46523i −0.439613 0.0476638i
\(946\) 0 0
\(947\) −2.94453 + 10.9891i −0.0956843 + 0.357098i −0.997122 0.0758096i \(-0.975846\pi\)
0.901438 + 0.432908i \(0.142513\pi\)
\(948\) 0 0
\(949\) −48.0727 + 12.8811i −1.56051 + 0.418137i
\(950\) 0 0
\(951\) 67.3561i 2.18417i
\(952\) 0 0
\(953\) 12.7329i 0.412460i 0.978504 + 0.206230i \(0.0661195\pi\)
−0.978504 + 0.206230i \(0.933880\pi\)
\(954\) 0 0
\(955\) −47.5105 + 12.7304i −1.53741 + 0.411946i
\(956\) 0 0
\(957\) 2.12356 7.92522i 0.0686448 0.256186i
\(958\) 0 0
\(959\) 6.10489 2.69411i 0.197137 0.0869974i
\(960\) 0 0
\(961\) −14.7568 25.5595i −0.476025 0.824500i
\(962\) 0 0
\(963\) 15.7275 4.21417i 0.506812 0.135800i
\(964\) 0 0
\(965\) −51.4090 + 51.4090i −1.65491 + 1.65491i
\(966\) 0 0
\(967\) 10.6644 0.342944 0.171472 0.985189i \(-0.445148\pi\)
0.171472 + 0.985189i \(0.445148\pi\)
\(968\) 0 0
\(969\) 13.7162 23.7571i 0.440628 0.763190i
\(970\) 0 0
\(971\) 0.596517 2.22623i 0.0191431 0.0714431i −0.955694 0.294364i \(-0.904892\pi\)
0.974837 + 0.222920i \(0.0715590\pi\)
\(972\) 0 0
\(973\) −22.1990 + 3.44137i −0.711669 + 0.110325i
\(974\) 0 0
\(975\) 53.5546 30.9198i 1.71512 0.990225i
\(976\) 0 0
\(977\) 7.66274 13.2723i 0.245153 0.424617i −0.717022 0.697051i \(-0.754495\pi\)
0.962175 + 0.272434i \(0.0878286\pi\)
\(978\) 0 0
\(979\) 4.95277 4.95277i 0.158291 0.158291i
\(980\) 0 0
\(981\) 8.32913 + 8.32913i 0.265929 + 0.265929i
\(982\) 0 0
\(983\) −16.1184 9.30595i −0.514097 0.296814i 0.220419 0.975405i \(-0.429257\pi\)
−0.734516 + 0.678591i \(0.762591\pi\)
\(984\) 0 0
\(985\) 19.0177 + 32.9396i 0.605954 + 1.04954i
\(986\) 0 0
\(987\) −2.97187 19.1705i −0.0945956 0.610202i
\(988\) 0 0
\(989\) 22.4620 + 6.01867i 0.714249 + 0.191383i
\(990\) 0 0
\(991\) −23.7555 13.7153i −0.754619 0.435680i 0.0727413 0.997351i \(-0.476825\pi\)
−0.827361 + 0.561671i \(0.810159\pi\)
\(992\) 0 0
\(993\) 7.22736i 0.229353i
\(994\) 0 0
\(995\) −23.3727 23.3727i −0.740965 0.740965i
\(996\) 0 0
\(997\) −5.02660 18.7595i −0.159194 0.594120i −0.998710 0.0507843i \(-0.983828\pi\)
0.839516 0.543335i \(-0.182839\pi\)
\(998\) 0 0
\(999\) −1.44804 + 0.836028i −0.0458140 + 0.0264507i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 896.2.z.a.31.3 56
4.3 odd 2 896.2.z.b.31.12 56
7.5 odd 6 inner 896.2.z.a.159.3 56
8.3 odd 2 112.2.v.a.59.7 yes 56
8.5 even 2 448.2.z.a.143.12 56
16.3 odd 4 inner 896.2.z.a.479.3 56
16.5 even 4 112.2.v.a.3.13 56
16.11 odd 4 448.2.z.a.367.12 56
16.13 even 4 896.2.z.b.479.12 56
28.19 even 6 896.2.z.b.159.12 56
56.3 even 6 784.2.j.a.587.6 56
56.5 odd 6 448.2.z.a.271.12 56
56.11 odd 6 784.2.j.a.587.5 56
56.19 even 6 112.2.v.a.75.13 yes 56
56.27 even 2 784.2.w.f.619.7 56
56.51 odd 6 784.2.w.f.411.13 56
112.5 odd 12 112.2.v.a.19.7 yes 56
112.19 even 12 inner 896.2.z.a.607.3 56
112.37 even 12 784.2.w.f.19.7 56
112.53 even 12 784.2.j.a.195.6 56
112.61 odd 12 896.2.z.b.607.12 56
112.69 odd 4 784.2.w.f.227.13 56
112.75 even 12 448.2.z.a.47.12 56
112.101 odd 12 784.2.j.a.195.5 56
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
112.2.v.a.3.13 56 16.5 even 4
112.2.v.a.19.7 yes 56 112.5 odd 12
112.2.v.a.59.7 yes 56 8.3 odd 2
112.2.v.a.75.13 yes 56 56.19 even 6
448.2.z.a.47.12 56 112.75 even 12
448.2.z.a.143.12 56 8.5 even 2
448.2.z.a.271.12 56 56.5 odd 6
448.2.z.a.367.12 56 16.11 odd 4
784.2.j.a.195.5 56 112.101 odd 12
784.2.j.a.195.6 56 112.53 even 12
784.2.j.a.587.5 56 56.11 odd 6
784.2.j.a.587.6 56 56.3 even 6
784.2.w.f.19.7 56 112.37 even 12
784.2.w.f.227.13 56 112.69 odd 4
784.2.w.f.411.13 56 56.51 odd 6
784.2.w.f.619.7 56 56.27 even 2
896.2.z.a.31.3 56 1.1 even 1 trivial
896.2.z.a.159.3 56 7.5 odd 6 inner
896.2.z.a.479.3 56 16.3 odd 4 inner
896.2.z.a.607.3 56 112.19 even 12 inner
896.2.z.b.31.12 56 4.3 odd 2
896.2.z.b.159.12 56 28.19 even 6
896.2.z.b.479.12 56 16.13 even 4
896.2.z.b.607.12 56 112.61 odd 12