Properties

Label 448.2.z.a.271.12
Level $448$
Weight $2$
Character 448.271
Analytic conductor $3.577$
Analytic rank $0$
Dimension $56$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [448,2,Mod(47,448)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(448, base_ring=CyclotomicField(12)) chi = DirichletCharacter(H, H._module([6, 9, 10])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("448.47"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 448 = 2^{6} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 448.z (of order \(12\), degree \(4\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.57729801055\)
Analytic rank: \(0\)
Dimension: \(56\)
Relative dimension: \(14\) over \(\Q(\zeta_{12})\)
Twist minimal: no (minimal twist has level 112)
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 271.12
Character \(\chi\) \(=\) 448.271
Dual form 448.2.z.a.367.12

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(2.48480 + 0.665801i) q^{3} +(-0.837076 - 3.12401i) q^{5} +(-1.56215 - 2.13534i) q^{7} +(3.13287 + 1.80877i) q^{9} +(1.40398 + 0.376195i) q^{11} +(3.11315 + 3.11315i) q^{13} -8.31987i q^{15} +(2.02443 - 1.16881i) q^{17} +(-1.18070 - 4.40643i) q^{19} +(-2.45991 - 6.34599i) q^{21} +(1.15450 - 1.99965i) q^{23} +(-4.72861 + 2.73006i) q^{25} +(1.12329 + 1.12329i) q^{27} +(-1.55163 + 1.55163i) q^{29} +(3.88952 + 6.73685i) q^{31} +(3.23814 + 1.86954i) q^{33} +(-5.36320 + 6.66761i) q^{35} +(-1.01669 + 0.272421i) q^{37} +(5.66282 + 9.80830i) q^{39} +2.77210 q^{41} +(-7.12142 + 7.12142i) q^{43} +(3.02815 - 11.3012i) q^{45} +(1.42516 - 2.46844i) q^{47} +(-2.11939 + 6.67144i) q^{49} +(5.80851 - 1.55638i) q^{51} +(-2.97221 + 11.0925i) q^{53} -4.70094i q^{55} -11.7352i q^{57} +(-1.01120 + 3.77383i) q^{59} +(-13.9045 + 3.72571i) q^{61} +(-1.03167 - 9.51532i) q^{63} +(7.11957 - 12.3315i) q^{65} +(0.695627 - 2.59612i) q^{67} +(4.20006 - 4.20006i) q^{69} +7.48345 q^{71} +(5.65210 + 9.78973i) q^{73} +(-13.5673 + 3.63536i) q^{75} +(-1.38991 - 3.58565i) q^{77} +(-0.706717 - 0.408024i) q^{79} +(-3.38303 - 5.85958i) q^{81} +(2.65285 - 2.65285i) q^{83} +(-5.34597 - 5.34597i) q^{85} +(-4.88857 + 2.82241i) q^{87} +(2.40944 - 4.17328i) q^{89} +(1.78445 - 11.5108i) q^{91} +(5.17929 + 19.3294i) q^{93} +(-12.7774 + 7.37703i) q^{95} +5.86541i q^{97} +(3.71804 + 3.71804i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 56 q + 6 q^{3} - 6 q^{5} + 8 q^{7} - 2 q^{11} - 12 q^{17} + 6 q^{19} - 10 q^{21} + 12 q^{23} - 24 q^{29} - 12 q^{33} + 2 q^{35} + 6 q^{37} + 4 q^{39} + 12 q^{45} - 8 q^{49} + 34 q^{51} + 6 q^{53} - 42 q^{59}+ \cdots + 16 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/448\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(129\) \(197\)
\(\chi(n)\) \(-1\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 2.48480 + 0.665801i 1.43460 + 0.384400i 0.890640 0.454710i \(-0.150257\pi\)
0.543962 + 0.839110i \(0.316924\pi\)
\(4\) 0 0
\(5\) −0.837076 3.12401i −0.374352 1.39710i −0.854290 0.519797i \(-0.826008\pi\)
0.479938 0.877302i \(-0.340659\pi\)
\(6\) 0 0
\(7\) −1.56215 2.13534i −0.590436 0.807084i
\(8\) 0 0
\(9\) 3.13287 + 1.80877i 1.04429 + 0.602922i
\(10\) 0 0
\(11\) 1.40398 + 0.376195i 0.423315 + 0.113427i 0.464187 0.885737i \(-0.346347\pi\)
−0.0408713 + 0.999164i \(0.513013\pi\)
\(12\) 0 0
\(13\) 3.11315 + 3.11315i 0.863433 + 0.863433i 0.991735 0.128303i \(-0.0409528\pi\)
−0.128303 + 0.991735i \(0.540953\pi\)
\(14\) 0 0
\(15\) 8.31987i 2.14818i
\(16\) 0 0
\(17\) 2.02443 1.16881i 0.490997 0.283477i −0.233991 0.972239i \(-0.575179\pi\)
0.724988 + 0.688761i \(0.241845\pi\)
\(18\) 0 0
\(19\) −1.18070 4.40643i −0.270871 1.01090i −0.958558 0.284897i \(-0.908041\pi\)
0.687687 0.726007i \(-0.258626\pi\)
\(20\) 0 0
\(21\) −2.45991 6.34599i −0.536797 1.38481i
\(22\) 0 0
\(23\) 1.15450 1.99965i 0.240729 0.416955i −0.720193 0.693774i \(-0.755947\pi\)
0.960922 + 0.276819i \(0.0892802\pi\)
\(24\) 0 0
\(25\) −4.72861 + 2.73006i −0.945722 + 0.546013i
\(26\) 0 0
\(27\) 1.12329 + 1.12329i 0.216177 + 0.216177i
\(28\) 0 0
\(29\) −1.55163 + 1.55163i −0.288130 + 0.288130i −0.836341 0.548210i \(-0.815309\pi\)
0.548210 + 0.836341i \(0.315309\pi\)
\(30\) 0 0
\(31\) 3.88952 + 6.73685i 0.698579 + 1.20997i 0.968959 + 0.247221i \(0.0795172\pi\)
−0.270380 + 0.962754i \(0.587149\pi\)
\(32\) 0 0
\(33\) 3.23814 + 1.86954i 0.563687 + 0.325445i
\(34\) 0 0
\(35\) −5.36320 + 6.66761i −0.906546 + 1.12703i
\(36\) 0 0
\(37\) −1.01669 + 0.272421i −0.167142 + 0.0447857i −0.341420 0.939911i \(-0.610908\pi\)
0.174277 + 0.984697i \(0.444241\pi\)
\(38\) 0 0
\(39\) 5.66282 + 9.80830i 0.906778 + 1.57058i
\(40\) 0 0
\(41\) 2.77210 0.432929 0.216464 0.976290i \(-0.430547\pi\)
0.216464 + 0.976290i \(0.430547\pi\)
\(42\) 0 0
\(43\) −7.12142 + 7.12142i −1.08601 + 1.08601i −0.0900717 + 0.995935i \(0.528710\pi\)
−0.995935 + 0.0900717i \(0.971290\pi\)
\(44\) 0 0
\(45\) 3.02815 11.3012i 0.451410 1.68468i
\(46\) 0 0
\(47\) 1.42516 2.46844i 0.207880 0.360059i −0.743166 0.669107i \(-0.766677\pi\)
0.951047 + 0.309047i \(0.100010\pi\)
\(48\) 0 0
\(49\) −2.11939 + 6.67144i −0.302770 + 0.953064i
\(50\) 0 0
\(51\) 5.80851 1.55638i 0.813354 0.217937i
\(52\) 0 0
\(53\) −2.97221 + 11.0925i −0.408265 + 1.52367i 0.389689 + 0.920947i \(0.372583\pi\)
−0.797954 + 0.602719i \(0.794084\pi\)
\(54\) 0 0
\(55\) 4.70094i 0.633875i
\(56\) 0 0
\(57\) 11.7352i 1.55437i
\(58\) 0 0
\(59\) −1.01120 + 3.77383i −0.131646 + 0.491311i −0.999989 0.00465348i \(-0.998519\pi\)
0.868343 + 0.495965i \(0.165185\pi\)
\(60\) 0 0
\(61\) −13.9045 + 3.72571i −1.78029 + 0.477028i −0.990637 0.136523i \(-0.956407\pi\)
−0.789655 + 0.613551i \(0.789741\pi\)
\(62\) 0 0
\(63\) −1.03167 9.51532i −0.129978 1.19882i
\(64\) 0 0
\(65\) 7.11957 12.3315i 0.883074 1.52953i
\(66\) 0 0
\(67\) 0.695627 2.59612i 0.0849844 0.317166i −0.910327 0.413890i \(-0.864170\pi\)
0.995311 + 0.0967240i \(0.0308364\pi\)
\(68\) 0 0
\(69\) 4.20006 4.20006i 0.505628 0.505628i
\(70\) 0 0
\(71\) 7.48345 0.888122 0.444061 0.895997i \(-0.353537\pi\)
0.444061 + 0.895997i \(0.353537\pi\)
\(72\) 0 0
\(73\) 5.65210 + 9.78973i 0.661529 + 1.14580i 0.980214 + 0.197941i \(0.0634253\pi\)
−0.318685 + 0.947861i \(0.603241\pi\)
\(74\) 0 0
\(75\) −13.5673 + 3.63536i −1.56662 + 0.419775i
\(76\) 0 0
\(77\) −1.38991 3.58565i −0.158395 0.408623i
\(78\) 0 0
\(79\) −0.706717 0.408024i −0.0795119 0.0459062i 0.459717 0.888066i \(-0.347951\pi\)
−0.539229 + 0.842159i \(0.681284\pi\)
\(80\) 0 0
\(81\) −3.38303 5.85958i −0.375892 0.651065i
\(82\) 0 0
\(83\) 2.65285 2.65285i 0.291188 0.291188i −0.546361 0.837550i \(-0.683987\pi\)
0.837550 + 0.546361i \(0.183987\pi\)
\(84\) 0 0
\(85\) −5.34597 5.34597i −0.579852 0.579852i
\(86\) 0 0
\(87\) −4.88857 + 2.82241i −0.524109 + 0.302595i
\(88\) 0 0
\(89\) 2.40944 4.17328i 0.255400 0.442367i −0.709604 0.704601i \(-0.751126\pi\)
0.965004 + 0.262234i \(0.0844594\pi\)
\(90\) 0 0
\(91\) 1.78445 11.5108i 0.187061 1.20666i
\(92\) 0 0
\(93\) 5.17929 + 19.3294i 0.537068 + 2.00436i
\(94\) 0 0
\(95\) −12.7774 + 7.37703i −1.31093 + 0.756867i
\(96\) 0 0
\(97\) 5.86541i 0.595542i 0.954637 + 0.297771i \(0.0962432\pi\)
−0.954637 + 0.297771i \(0.903757\pi\)
\(98\) 0 0
\(99\) 3.71804 + 3.71804i 0.373677 + 0.373677i
\(100\) 0 0
\(101\) 1.39442 + 0.373632i 0.138749 + 0.0371778i 0.327525 0.944842i \(-0.393785\pi\)
−0.188776 + 0.982020i \(0.560452\pi\)
\(102\) 0 0
\(103\) 2.10134 + 1.21321i 0.207051 + 0.119541i 0.599940 0.800045i \(-0.295191\pi\)
−0.392889 + 0.919586i \(0.628524\pi\)
\(104\) 0 0
\(105\) −17.7658 + 12.9969i −1.73376 + 1.26836i
\(106\) 0 0
\(107\) −1.16493 4.34758i −0.112618 0.420297i 0.886480 0.462768i \(-0.153144\pi\)
−0.999098 + 0.0424712i \(0.986477\pi\)
\(108\) 0 0
\(109\) −3.14518 0.842750i −0.301254 0.0807208i 0.105026 0.994470i \(-0.466507\pi\)
−0.406280 + 0.913749i \(0.633174\pi\)
\(110\) 0 0
\(111\) −2.70765 −0.256998
\(112\) 0 0
\(113\) 11.5397 1.08556 0.542781 0.839875i \(-0.317372\pi\)
0.542781 + 0.839875i \(0.317372\pi\)
\(114\) 0 0
\(115\) −7.21331 1.93280i −0.672645 0.180235i
\(116\) 0 0
\(117\) 4.12215 + 15.3841i 0.381093 + 1.42226i
\(118\) 0 0
\(119\) −5.65827 2.49701i −0.518693 0.228901i
\(120\) 0 0
\(121\) −7.69665 4.44366i −0.699695 0.403969i
\(122\) 0 0
\(123\) 6.88811 + 1.84566i 0.621080 + 0.166418i
\(124\) 0 0
\(125\) 1.05228 + 1.05228i 0.0941192 + 0.0941192i
\(126\) 0 0
\(127\) 4.49210i 0.398610i −0.979938 0.199305i \(-0.936132\pi\)
0.979938 0.199305i \(-0.0638684\pi\)
\(128\) 0 0
\(129\) −22.4368 + 12.9539i −1.97545 + 1.14053i
\(130\) 0 0
\(131\) 3.58012 + 13.3612i 0.312796 + 1.16737i 0.926024 + 0.377465i \(0.123204\pi\)
−0.613227 + 0.789907i \(0.710129\pi\)
\(132\) 0 0
\(133\) −7.56482 + 9.40469i −0.655953 + 0.815490i
\(134\) 0 0
\(135\) 2.56889 4.44945i 0.221095 0.382947i
\(136\) 0 0
\(137\) 2.18423 1.26106i 0.186611 0.107740i −0.403784 0.914854i \(-0.632305\pi\)
0.590395 + 0.807114i \(0.298972\pi\)
\(138\) 0 0
\(139\) 6.00381 + 6.00381i 0.509237 + 0.509237i 0.914292 0.405055i \(-0.132748\pi\)
−0.405055 + 0.914292i \(0.632748\pi\)
\(140\) 0 0
\(141\) 5.18472 5.18472i 0.436632 0.436632i
\(142\) 0 0
\(143\) 3.19964 + 5.54195i 0.267568 + 0.463441i
\(144\) 0 0
\(145\) 6.14613 + 3.54847i 0.510409 + 0.294685i
\(146\) 0 0
\(147\) −9.70812 + 15.1661i −0.800713 + 1.25088i
\(148\) 0 0
\(149\) 8.20870 2.19951i 0.672483 0.180191i 0.0936097 0.995609i \(-0.470159\pi\)
0.578873 + 0.815418i \(0.303493\pi\)
\(150\) 0 0
\(151\) −5.11927 8.86683i −0.416600 0.721572i 0.578995 0.815331i \(-0.303445\pi\)
−0.995595 + 0.0937588i \(0.970112\pi\)
\(152\) 0 0
\(153\) 8.45639 0.683659
\(154\) 0 0
\(155\) 17.7902 17.7902i 1.42894 1.42894i
\(156\) 0 0
\(157\) 3.79998 14.1817i 0.303272 1.13183i −0.631151 0.775660i \(-0.717417\pi\)
0.934423 0.356166i \(-0.115916\pi\)
\(158\) 0 0
\(159\) −14.7707 + 25.5836i −1.17139 + 2.02892i
\(160\) 0 0
\(161\) −6.07342 + 0.658494i −0.478653 + 0.0518966i
\(162\) 0 0
\(163\) −22.2047 + 5.94974i −1.73921 + 0.466019i −0.982271 0.187468i \(-0.939972\pi\)
−0.756937 + 0.653488i \(0.773305\pi\)
\(164\) 0 0
\(165\) 3.12989 11.6809i 0.243662 0.909358i
\(166\) 0 0
\(167\) 3.82099i 0.295677i 0.989011 + 0.147839i \(0.0472316\pi\)
−0.989011 + 0.147839i \(0.952768\pi\)
\(168\) 0 0
\(169\) 6.38341i 0.491032i
\(170\) 0 0
\(171\) 4.27121 15.9404i 0.326628 1.21899i
\(172\) 0 0
\(173\) 8.02996 2.15162i 0.610506 0.163585i 0.0596981 0.998216i \(-0.480986\pi\)
0.550808 + 0.834632i \(0.314320\pi\)
\(174\) 0 0
\(175\) 13.2164 + 5.83245i 0.999067 + 0.440892i
\(176\) 0 0
\(177\) −5.02524 + 8.70397i −0.377720 + 0.654230i
\(178\) 0 0
\(179\) 5.00112 18.6644i 0.373801 1.39504i −0.481288 0.876563i \(-0.659831\pi\)
0.855089 0.518482i \(-0.173503\pi\)
\(180\) 0 0
\(181\) 6.07189 6.07189i 0.451320 0.451320i −0.444472 0.895793i \(-0.646609\pi\)
0.895793 + 0.444472i \(0.146609\pi\)
\(182\) 0 0
\(183\) −37.0306 −2.73738
\(184\) 0 0
\(185\) 1.70209 + 2.94810i 0.125140 + 0.216749i
\(186\) 0 0
\(187\) 3.28196 0.879398i 0.240001 0.0643080i
\(188\) 0 0
\(189\) 0.643867 4.15336i 0.0468344 0.302112i
\(190\) 0 0
\(191\) 13.1707 + 7.60410i 0.952997 + 0.550213i 0.894011 0.448046i \(-0.147880\pi\)
0.0589865 + 0.998259i \(0.481213\pi\)
\(192\) 0 0
\(193\) −11.2397 19.4678i −0.809053 1.40132i −0.913521 0.406792i \(-0.866647\pi\)
0.104468 0.994528i \(-0.466686\pi\)
\(194\) 0 0
\(195\) 25.9010 25.9010i 1.85481 1.85481i
\(196\) 0 0
\(197\) −8.31581 8.31581i −0.592477 0.592477i 0.345823 0.938300i \(-0.387600\pi\)
−0.938300 + 0.345823i \(0.887600\pi\)
\(198\) 0 0
\(199\) −8.85088 + 5.11006i −0.627422 + 0.362242i −0.779753 0.626087i \(-0.784655\pi\)
0.152331 + 0.988330i \(0.451322\pi\)
\(200\) 0 0
\(201\) 3.45699 5.98769i 0.243837 0.422339i
\(202\) 0 0
\(203\) 5.73713 + 0.889390i 0.402668 + 0.0624229i
\(204\) 0 0
\(205\) −2.32046 8.66006i −0.162068 0.604845i
\(206\) 0 0
\(207\) 7.23378 4.17642i 0.502782 0.290282i
\(208\) 0 0
\(209\) 6.63070i 0.458655i
\(210\) 0 0
\(211\) −5.73766 5.73766i −0.394997 0.394997i 0.481467 0.876464i \(-0.340104\pi\)
−0.876464 + 0.481467i \(0.840104\pi\)
\(212\) 0 0
\(213\) 18.5949 + 4.98248i 1.27410 + 0.341394i
\(214\) 0 0
\(215\) 28.2086 + 16.2862i 1.92381 + 1.11071i
\(216\) 0 0
\(217\) 8.30949 18.8294i 0.564085 1.27822i
\(218\) 0 0
\(219\) 7.52635 + 28.0887i 0.508583 + 1.89806i
\(220\) 0 0
\(221\) 9.94104 + 2.66369i 0.668706 + 0.179179i
\(222\) 0 0
\(223\) 17.4929 1.17141 0.585705 0.810524i \(-0.300818\pi\)
0.585705 + 0.810524i \(0.300818\pi\)
\(224\) 0 0
\(225\) −19.7522 −1.31681
\(226\) 0 0
\(227\) 16.9291 + 4.53614i 1.12362 + 0.301074i 0.772349 0.635198i \(-0.219081\pi\)
0.351275 + 0.936272i \(0.385748\pi\)
\(228\) 0 0
\(229\) 1.80926 + 6.75227i 0.119560 + 0.446202i 0.999588 0.0287195i \(-0.00914296\pi\)
−0.880028 + 0.474922i \(0.842476\pi\)
\(230\) 0 0
\(231\) −1.06634 9.83503i −0.0701597 0.647098i
\(232\) 0 0
\(233\) −25.0933 14.4876i −1.64392 0.949116i −0.979422 0.201823i \(-0.935313\pi\)
−0.664495 0.747293i \(-0.731353\pi\)
\(234\) 0 0
\(235\) −8.90440 2.38593i −0.580859 0.155641i
\(236\) 0 0
\(237\) −1.48439 1.48439i −0.0964215 0.0964215i
\(238\) 0 0
\(239\) 13.3587i 0.864105i −0.901848 0.432053i \(-0.857789\pi\)
0.901848 0.432053i \(-0.142211\pi\)
\(240\) 0 0
\(241\) 10.5510 6.09164i 0.679651 0.392397i −0.120072 0.992765i \(-0.538313\pi\)
0.799724 + 0.600368i \(0.204979\pi\)
\(242\) 0 0
\(243\) −5.73831 21.4157i −0.368113 1.37381i
\(244\) 0 0
\(245\) 22.6157 + 1.03650i 1.44487 + 0.0662195i
\(246\) 0 0
\(247\) 10.0422 17.3936i 0.638969 1.10673i
\(248\) 0 0
\(249\) 8.35808 4.82554i 0.529672 0.305806i
\(250\) 0 0
\(251\) −6.68926 6.68926i −0.422223 0.422223i 0.463746 0.885968i \(-0.346505\pi\)
−0.885968 + 0.463746i \(0.846505\pi\)
\(252\) 0 0
\(253\) 2.37314 2.37314i 0.149198 0.149198i
\(254\) 0 0
\(255\) −9.72432 16.8430i −0.608961 1.05475i
\(256\) 0 0
\(257\) 3.32837 + 1.92163i 0.207618 + 0.119868i 0.600204 0.799847i \(-0.295086\pi\)
−0.392586 + 0.919715i \(0.628419\pi\)
\(258\) 0 0
\(259\) 2.16993 + 1.74542i 0.134833 + 0.108455i
\(260\) 0 0
\(261\) −7.66759 + 2.05452i −0.474612 + 0.127172i
\(262\) 0 0
\(263\) −3.15784 5.46953i −0.194720 0.337266i 0.752088 0.659062i \(-0.229047\pi\)
−0.946809 + 0.321797i \(0.895713\pi\)
\(264\) 0 0
\(265\) 37.1409 2.28155
\(266\) 0 0
\(267\) 8.76556 8.76556i 0.536444 0.536444i
\(268\) 0 0
\(269\) −6.24090 + 23.2914i −0.380514 + 1.42010i 0.464603 + 0.885519i \(0.346197\pi\)
−0.845118 + 0.534580i \(0.820470\pi\)
\(270\) 0 0
\(271\) −4.73315 + 8.19805i −0.287518 + 0.497996i −0.973217 0.229890i \(-0.926163\pi\)
0.685699 + 0.727886i \(0.259497\pi\)
\(272\) 0 0
\(273\) 12.0979 27.4141i 0.732200 1.65918i
\(274\) 0 0
\(275\) −7.66590 + 2.05407i −0.462271 + 0.123865i
\(276\) 0 0
\(277\) −3.03526 + 11.3278i −0.182371 + 0.680619i 0.812807 + 0.582533i \(0.197938\pi\)
−0.995178 + 0.0980853i \(0.968728\pi\)
\(278\) 0 0
\(279\) 28.1409i 1.68475i
\(280\) 0 0
\(281\) 5.59517i 0.333780i −0.985976 0.166890i \(-0.946628\pi\)
0.985976 0.166890i \(-0.0533724\pi\)
\(282\) 0 0
\(283\) −0.992910 + 3.70559i −0.0590224 + 0.220275i −0.989137 0.146994i \(-0.953040\pi\)
0.930115 + 0.367268i \(0.119707\pi\)
\(284\) 0 0
\(285\) −36.6609 + 9.82326i −2.17160 + 0.581880i
\(286\) 0 0
\(287\) −4.33042 5.91938i −0.255617 0.349410i
\(288\) 0 0
\(289\) −5.76778 + 9.99009i −0.339281 + 0.587652i
\(290\) 0 0
\(291\) −3.90519 + 14.5744i −0.228927 + 0.854365i
\(292\) 0 0
\(293\) −9.74731 + 9.74731i −0.569444 + 0.569444i −0.931973 0.362529i \(-0.881913\pi\)
0.362529 + 0.931973i \(0.381913\pi\)
\(294\) 0 0
\(295\) 12.6359 0.735692
\(296\) 0 0
\(297\) 1.15450 + 1.99965i 0.0669908 + 0.116031i
\(298\) 0 0
\(299\) 9.81932 2.63108i 0.567866 0.152159i
\(300\) 0 0
\(301\) 26.3314 + 4.08198i 1.51772 + 0.235282i
\(302\) 0 0
\(303\) 3.21608 + 1.85681i 0.184759 + 0.106671i
\(304\) 0 0
\(305\) 23.2783 + 40.3192i 1.33291 + 2.30867i
\(306\) 0 0
\(307\) −20.5735 + 20.5735i −1.17419 + 1.17419i −0.192988 + 0.981201i \(0.561818\pi\)
−0.981201 + 0.192988i \(0.938182\pi\)
\(308\) 0 0
\(309\) 4.41365 + 4.41365i 0.251084 + 0.251084i
\(310\) 0 0
\(311\) −0.495271 + 0.285945i −0.0280843 + 0.0162145i −0.513976 0.857804i \(-0.671828\pi\)
0.485892 + 0.874019i \(0.338495\pi\)
\(312\) 0 0
\(313\) −0.707287 + 1.22506i −0.0399782 + 0.0692443i −0.885322 0.464978i \(-0.846062\pi\)
0.845344 + 0.534222i \(0.179396\pi\)
\(314\) 0 0
\(315\) −28.8624 + 11.1880i −1.62621 + 0.630372i
\(316\) 0 0
\(317\) 6.77681 + 25.2914i 0.380624 + 1.42051i 0.844951 + 0.534843i \(0.179629\pi\)
−0.464328 + 0.885663i \(0.653704\pi\)
\(318\) 0 0
\(319\) −2.76217 + 1.59474i −0.154652 + 0.0892882i
\(320\) 0 0
\(321\) 11.5785i 0.646248i
\(322\) 0 0
\(323\) −7.54051 7.54051i −0.419565 0.419565i
\(324\) 0 0
\(325\) −23.2200 6.22177i −1.28801 0.345122i
\(326\) 0 0
\(327\) −7.25406 4.18813i −0.401150 0.231604i
\(328\) 0 0
\(329\) −7.49728 + 0.812871i −0.413338 + 0.0448150i
\(330\) 0 0
\(331\) 0.727156 + 2.71378i 0.0399681 + 0.149163i 0.983026 0.183465i \(-0.0587313\pi\)
−0.943058 + 0.332628i \(0.892065\pi\)
\(332\) 0 0
\(333\) −3.67790 0.985490i −0.201548 0.0540045i
\(334\) 0 0
\(335\) −8.69259 −0.474927
\(336\) 0 0
\(337\) −23.9205 −1.30303 −0.651517 0.758634i \(-0.725867\pi\)
−0.651517 + 0.758634i \(0.725867\pi\)
\(338\) 0 0
\(339\) 28.6738 + 7.68312i 1.55735 + 0.417290i
\(340\) 0 0
\(341\) 2.92644 + 10.9216i 0.158475 + 0.591438i
\(342\) 0 0
\(343\) 17.5566 5.89614i 0.947969 0.318362i
\(344\) 0 0
\(345\) −16.6368 9.60525i −0.895695 0.517130i
\(346\) 0 0
\(347\) −12.0814 3.23720i −0.648563 0.173782i −0.0804837 0.996756i \(-0.525647\pi\)
−0.568079 + 0.822974i \(0.692313\pi\)
\(348\) 0 0
\(349\) −21.9157 21.9157i −1.17312 1.17312i −0.981461 0.191662i \(-0.938612\pi\)
−0.191662 0.981461i \(-0.561388\pi\)
\(350\) 0 0
\(351\) 6.99394i 0.373309i
\(352\) 0 0
\(353\) −18.1984 + 10.5069i −0.968604 + 0.559224i −0.898810 0.438337i \(-0.855567\pi\)
−0.0697939 + 0.997561i \(0.522234\pi\)
\(354\) 0 0
\(355\) −6.26421 23.3784i −0.332470 1.24079i
\(356\) 0 0
\(357\) −12.3972 9.97186i −0.656127 0.527767i
\(358\) 0 0
\(359\) −4.78310 + 8.28458i −0.252443 + 0.437243i −0.964198 0.265184i \(-0.914567\pi\)
0.711755 + 0.702428i \(0.247901\pi\)
\(360\) 0 0
\(361\) −1.56807 + 0.905328i −0.0825302 + 0.0476488i
\(362\) 0 0
\(363\) −16.1661 16.1661i −0.848498 0.848498i
\(364\) 0 0
\(365\) 25.8520 25.8520i 1.35315 1.35315i
\(366\) 0 0
\(367\) −3.06305 5.30536i −0.159890 0.276938i 0.774939 0.632036i \(-0.217781\pi\)
−0.934829 + 0.355099i \(0.884447\pi\)
\(368\) 0 0
\(369\) 8.68463 + 5.01408i 0.452104 + 0.261022i
\(370\) 0 0
\(371\) 28.3292 10.9813i 1.47078 0.570123i
\(372\) 0 0
\(373\) 15.8673 4.25162i 0.821575 0.220140i 0.176540 0.984293i \(-0.443509\pi\)
0.645035 + 0.764153i \(0.276843\pi\)
\(374\) 0 0
\(375\) 1.91411 + 3.31533i 0.0988440 + 0.171203i
\(376\) 0 0
\(377\) −9.66091 −0.497562
\(378\) 0 0
\(379\) −6.05253 + 6.05253i −0.310897 + 0.310897i −0.845257 0.534360i \(-0.820553\pi\)
0.534360 + 0.845257i \(0.320553\pi\)
\(380\) 0 0
\(381\) 2.99085 11.1620i 0.153226 0.571846i
\(382\) 0 0
\(383\) 9.64030 16.6975i 0.492596 0.853202i −0.507367 0.861730i \(-0.669381\pi\)
0.999964 + 0.00852805i \(0.00271459\pi\)
\(384\) 0 0
\(385\) −10.0381 + 7.34357i −0.511591 + 0.374263i
\(386\) 0 0
\(387\) −35.1915 + 9.42954i −1.78889 + 0.479330i
\(388\) 0 0
\(389\) 7.40814 27.6476i 0.375608 1.40179i −0.476847 0.878986i \(-0.658221\pi\)
0.852455 0.522801i \(-0.175113\pi\)
\(390\) 0 0
\(391\) 5.39753i 0.272965i
\(392\) 0 0
\(393\) 35.5835i 1.79495i
\(394\) 0 0
\(395\) −0.683093 + 2.54934i −0.0343701 + 0.128271i
\(396\) 0 0
\(397\) −8.95799 + 2.40028i −0.449588 + 0.120467i −0.476507 0.879171i \(-0.658097\pi\)
0.0269184 + 0.999638i \(0.491431\pi\)
\(398\) 0 0
\(399\) −25.0587 + 18.3321i −1.25451 + 0.917754i
\(400\) 0 0
\(401\) 17.5281 30.3596i 0.875312 1.51609i 0.0188827 0.999822i \(-0.493989\pi\)
0.856430 0.516264i \(-0.172678\pi\)
\(402\) 0 0
\(403\) −8.86416 + 33.0815i −0.441555 + 1.64791i
\(404\) 0 0
\(405\) −15.4735 + 15.4735i −0.768886 + 0.768886i
\(406\) 0 0
\(407\) −1.52989 −0.0758338
\(408\) 0 0
\(409\) 17.4392 + 30.2056i 0.862314 + 1.49357i 0.869690 + 0.493598i \(0.164319\pi\)
−0.00737621 + 0.999973i \(0.502348\pi\)
\(410\) 0 0
\(411\) 6.26699 1.67923i 0.309128 0.0828306i
\(412\) 0 0
\(413\) 9.63807 3.73603i 0.474258 0.183838i
\(414\) 0 0
\(415\) −10.5082 6.06689i −0.515826 0.297812i
\(416\) 0 0
\(417\) 10.9209 + 18.9156i 0.534801 + 0.926302i
\(418\) 0 0
\(419\) 8.57828 8.57828i 0.419076 0.419076i −0.465809 0.884885i \(-0.654237\pi\)
0.884885 + 0.465809i \(0.154237\pi\)
\(420\) 0 0
\(421\) −7.41183 7.41183i −0.361230 0.361230i 0.503035 0.864266i \(-0.332217\pi\)
−0.864266 + 0.503035i \(0.832217\pi\)
\(422\) 0 0
\(423\) 8.92967 5.15555i 0.434175 0.250671i
\(424\) 0 0
\(425\) −6.38184 + 11.0537i −0.309565 + 0.536182i
\(426\) 0 0
\(427\) 29.6766 + 23.8709i 1.43615 + 1.15519i
\(428\) 0 0
\(429\) 4.26065 + 15.9010i 0.205706 + 0.767706i
\(430\) 0 0
\(431\) −1.39637 + 0.806195i −0.0672608 + 0.0388331i −0.533253 0.845956i \(-0.679031\pi\)
0.465992 + 0.884789i \(0.345697\pi\)
\(432\) 0 0
\(433\) 13.0869i 0.628917i 0.949271 + 0.314458i \(0.101823\pi\)
−0.949271 + 0.314458i \(0.898177\pi\)
\(434\) 0 0
\(435\) 12.9093 + 12.9093i 0.618956 + 0.618956i
\(436\) 0 0
\(437\) −10.1744 2.72622i −0.486708 0.130413i
\(438\) 0 0
\(439\) −1.71358 0.989334i −0.0817846 0.0472184i 0.458550 0.888669i \(-0.348369\pi\)
−0.540335 + 0.841450i \(0.681702\pi\)
\(440\) 0 0
\(441\) −18.7069 + 17.0673i −0.890803 + 0.812729i
\(442\) 0 0
\(443\) −8.98048 33.5156i −0.426675 1.59237i −0.760237 0.649646i \(-0.774917\pi\)
0.333562 0.942728i \(-0.391749\pi\)
\(444\) 0 0
\(445\) −15.0542 4.03377i −0.713640 0.191219i
\(446\) 0 0
\(447\) 21.8614 1.03401
\(448\) 0 0
\(449\) 20.0460 0.946031 0.473015 0.881054i \(-0.343166\pi\)
0.473015 + 0.881054i \(0.343166\pi\)
\(450\) 0 0
\(451\) 3.89196 + 1.04285i 0.183265 + 0.0491058i
\(452\) 0 0
\(453\) −6.81682 25.4407i −0.320282 1.19531i
\(454\) 0 0
\(455\) −37.4537 + 4.06081i −1.75586 + 0.190374i
\(456\) 0 0
\(457\) 25.9859 + 15.0030i 1.21557 + 0.701810i 0.963967 0.266020i \(-0.0857088\pi\)
0.251603 + 0.967830i \(0.419042\pi\)
\(458\) 0 0
\(459\) 3.58693 + 0.961116i 0.167424 + 0.0448611i
\(460\) 0 0
\(461\) −18.2334 18.2334i −0.849213 0.849213i 0.140822 0.990035i \(-0.455026\pi\)
−0.990035 + 0.140822i \(0.955026\pi\)
\(462\) 0 0
\(463\) 31.3804i 1.45837i 0.684316 + 0.729186i \(0.260101\pi\)
−0.684316 + 0.729186i \(0.739899\pi\)
\(464\) 0 0
\(465\) 56.0497 32.3603i 2.59924 1.50067i
\(466\) 0 0
\(467\) 6.17115 + 23.0310i 0.285567 + 1.06575i 0.948424 + 0.317004i \(0.102677\pi\)
−0.662858 + 0.748745i \(0.730657\pi\)
\(468\) 0 0
\(469\) −6.63028 + 2.57011i −0.306158 + 0.118677i
\(470\) 0 0
\(471\) 18.8844 32.7088i 0.870148 1.50714i
\(472\) 0 0
\(473\) −12.6774 + 7.31928i −0.582906 + 0.336541i
\(474\) 0 0
\(475\) 17.6129 + 17.6129i 0.808135 + 0.808135i
\(476\) 0 0
\(477\) −29.3752 + 29.3752i −1.34500 + 1.34500i
\(478\) 0 0
\(479\) −17.6784 30.6199i −0.807747 1.39906i −0.914421 0.404764i \(-0.867354\pi\)
0.106674 0.994294i \(-0.465980\pi\)
\(480\) 0 0
\(481\) −4.01319 2.31701i −0.182986 0.105647i
\(482\) 0 0
\(483\) −15.5297 2.40746i −0.706625 0.109543i
\(484\) 0 0
\(485\) 18.3236 4.90979i 0.832032 0.222942i
\(486\) 0 0
\(487\) −5.31153 9.19984i −0.240688 0.416884i 0.720222 0.693743i \(-0.244040\pi\)
−0.960911 + 0.276859i \(0.910706\pi\)
\(488\) 0 0
\(489\) −59.1357 −2.67421
\(490\) 0 0
\(491\) −26.9088 + 26.9088i −1.21438 + 1.21438i −0.244806 + 0.969572i \(0.578724\pi\)
−0.969572 + 0.244806i \(0.921276\pi\)
\(492\) 0 0
\(493\) −1.32761 + 4.95472i −0.0597927 + 0.223149i
\(494\) 0 0
\(495\) 8.50291 14.7275i 0.382177 0.661950i
\(496\) 0 0
\(497\) −11.6902 15.9797i −0.524379 0.716789i
\(498\) 0 0
\(499\) 12.2441 3.28081i 0.548123 0.146869i 0.0258790 0.999665i \(-0.491762\pi\)
0.522244 + 0.852796i \(0.325095\pi\)
\(500\) 0 0
\(501\) −2.54402 + 9.49441i −0.113658 + 0.424179i
\(502\) 0 0
\(503\) 13.7074i 0.611183i 0.952163 + 0.305591i \(0.0988542\pi\)
−0.952163 + 0.305591i \(0.901146\pi\)
\(504\) 0 0
\(505\) 4.66892i 0.207764i
\(506\) 0 0
\(507\) −4.25008 + 15.8615i −0.188753 + 0.704434i
\(508\) 0 0
\(509\) 23.0168 6.16734i 1.02020 0.273363i 0.290317 0.956931i \(-0.406239\pi\)
0.729887 + 0.683568i \(0.239573\pi\)
\(510\) 0 0
\(511\) 12.0750 27.3622i 0.534168 1.21043i
\(512\) 0 0
\(513\) 3.62343 6.27596i 0.159978 0.277091i
\(514\) 0 0
\(515\) 2.03109 7.58014i 0.0895007 0.334021i
\(516\) 0 0
\(517\) 2.92950 2.92950i 0.128839 0.128839i
\(518\) 0 0
\(519\) 21.3854 0.938715
\(520\) 0 0
\(521\) −11.8589 20.5402i −0.519548 0.899884i −0.999742 0.0227214i \(-0.992767\pi\)
0.480194 0.877163i \(-0.340566\pi\)
\(522\) 0 0
\(523\) −18.1369 + 4.85978i −0.793073 + 0.212503i −0.632540 0.774527i \(-0.717988\pi\)
−0.160532 + 0.987031i \(0.551321\pi\)
\(524\) 0 0
\(525\) 28.9569 + 23.2920i 1.26378 + 1.01655i
\(526\) 0 0
\(527\) 15.7482 + 9.09220i 0.686000 + 0.396063i
\(528\) 0 0
\(529\) 8.83428 + 15.3014i 0.384099 + 0.665279i
\(530\) 0 0
\(531\) −9.99392 + 9.99392i −0.433699 + 0.433699i
\(532\) 0 0
\(533\) 8.62996 + 8.62996i 0.373805 + 0.373805i
\(534\) 0 0
\(535\) −12.6067 + 7.27851i −0.545037 + 0.314677i
\(536\) 0 0
\(537\) 24.8536 43.0476i 1.07251 1.85764i
\(538\) 0 0
\(539\) −5.48534 + 8.56926i −0.236271 + 0.369104i
\(540\) 0 0
\(541\) −6.76561 25.2496i −0.290876 1.08556i −0.944437 0.328691i \(-0.893392\pi\)
0.653561 0.756874i \(-0.273274\pi\)
\(542\) 0 0
\(543\) 19.1301 11.0448i 0.820952 0.473977i
\(544\) 0 0
\(545\) 10.5310i 0.451100i
\(546\) 0 0
\(547\) 23.8532 + 23.8532i 1.01989 + 1.01989i 0.999798 + 0.0200929i \(0.00639620\pi\)
0.0200929 + 0.999798i \(0.493604\pi\)
\(548\) 0 0
\(549\) −50.3001 13.4779i −2.14675 0.575221i
\(550\) 0 0
\(551\) 8.66915 + 5.00513i 0.369318 + 0.213226i
\(552\) 0 0
\(553\) 0.232726 + 2.14648i 0.00989651 + 0.0912775i
\(554\) 0 0
\(555\) 2.26650 + 8.45871i 0.0962077 + 0.359052i
\(556\) 0 0
\(557\) −41.6206 11.1522i −1.76352 0.472534i −0.776094 0.630617i \(-0.782802\pi\)
−0.987426 + 0.158083i \(0.949468\pi\)
\(558\) 0 0
\(559\) −44.3401 −1.87539
\(560\) 0 0
\(561\) 8.74052 0.369025
\(562\) 0 0
\(563\) 8.61735 + 2.30901i 0.363178 + 0.0973133i 0.435793 0.900047i \(-0.356468\pi\)
−0.0726153 + 0.997360i \(0.523135\pi\)
\(564\) 0 0
\(565\) −9.65958 36.0500i −0.406382 1.51664i
\(566\) 0 0
\(567\) −7.22743 + 16.3775i −0.303524 + 0.687789i
\(568\) 0 0
\(569\) 5.49552 + 3.17284i 0.230384 + 0.133012i 0.610749 0.791824i \(-0.290868\pi\)
−0.380365 + 0.924836i \(0.624202\pi\)
\(570\) 0 0
\(571\) −36.2565 9.71490i −1.51729 0.406556i −0.598439 0.801168i \(-0.704212\pi\)
−0.918848 + 0.394612i \(0.870879\pi\)
\(572\) 0 0
\(573\) 27.6637 + 27.6637i 1.15567 + 1.15567i
\(574\) 0 0
\(575\) 12.6074i 0.525765i
\(576\) 0 0
\(577\) −1.63907 + 0.946316i −0.0682353 + 0.0393957i −0.533729 0.845655i \(-0.679210\pi\)
0.465494 + 0.885051i \(0.345877\pi\)
\(578\) 0 0
\(579\) −14.9668 55.8569i −0.622000 2.32134i
\(580\) 0 0
\(581\) −9.80889 1.52061i −0.406941 0.0630854i
\(582\) 0 0
\(583\) −8.34585 + 14.4554i −0.345650 + 0.598683i
\(584\) 0 0
\(585\) 44.6094 25.7553i 1.84437 1.06485i
\(586\) 0 0
\(587\) 26.8519 + 26.8519i 1.10830 + 1.10830i 0.993374 + 0.114923i \(0.0366621\pi\)
0.114923 + 0.993374i \(0.463338\pi\)
\(588\) 0 0
\(589\) 25.0931 25.0931i 1.03394 1.03394i
\(590\) 0 0
\(591\) −15.1265 26.1998i −0.622220 1.07772i
\(592\) 0 0
\(593\) −23.8885 13.7920i −0.980984 0.566372i −0.0784171 0.996921i \(-0.524987\pi\)
−0.902567 + 0.430549i \(0.858320\pi\)
\(594\) 0 0
\(595\) −3.06430 + 19.7667i −0.125624 + 0.810354i
\(596\) 0 0
\(597\) −25.3950 + 6.80456i −1.03935 + 0.278492i
\(598\) 0 0
\(599\) 11.8101 + 20.4557i 0.482548 + 0.835797i 0.999799 0.0200365i \(-0.00637824\pi\)
−0.517252 + 0.855833i \(0.673045\pi\)
\(600\) 0 0
\(601\) −5.61717 −0.229129 −0.114565 0.993416i \(-0.536547\pi\)
−0.114565 + 0.993416i \(0.536547\pi\)
\(602\) 0 0
\(603\) 6.87508 6.87508i 0.279975 0.279975i
\(604\) 0 0
\(605\) −7.43936 + 27.7641i −0.302453 + 1.12877i
\(606\) 0 0
\(607\) −2.43281 + 4.21375i −0.0987446 + 0.171031i −0.911165 0.412041i \(-0.864816\pi\)
0.812421 + 0.583072i \(0.198149\pi\)
\(608\) 0 0
\(609\) 13.6635 + 6.02975i 0.553672 + 0.244338i
\(610\) 0 0
\(611\) 12.1214 3.24791i 0.490378 0.131396i
\(612\) 0 0
\(613\) −1.06941 + 3.99109i −0.0431931 + 0.161199i −0.984154 0.177317i \(-0.943258\pi\)
0.940961 + 0.338516i \(0.109925\pi\)
\(614\) 0 0
\(615\) 23.0635i 0.930010i
\(616\) 0 0
\(617\) 25.3025i 1.01864i 0.860578 + 0.509319i \(0.170103\pi\)
−0.860578 + 0.509319i \(0.829897\pi\)
\(618\) 0 0
\(619\) 4.75356 17.7405i 0.191062 0.713051i −0.802190 0.597069i \(-0.796332\pi\)
0.993251 0.115982i \(-0.0370015\pi\)
\(620\) 0 0
\(621\) 3.54302 0.949348i 0.142176 0.0380960i
\(622\) 0 0
\(623\) −12.6753 + 1.37428i −0.507825 + 0.0550595i
\(624\) 0 0
\(625\) −11.2438 + 19.4749i −0.449753 + 0.778995i
\(626\) 0 0
\(627\) 4.41472 16.4760i 0.176307 0.657987i
\(628\) 0 0
\(629\) −1.73981 + 1.73981i −0.0693707 + 0.0693707i
\(630\) 0 0
\(631\) 41.4293 1.64928 0.824638 0.565661i \(-0.191379\pi\)
0.824638 + 0.565661i \(0.191379\pi\)
\(632\) 0 0
\(633\) −10.4368 18.0771i −0.414826 0.718500i
\(634\) 0 0
\(635\) −14.0334 + 3.76023i −0.556897 + 0.149220i
\(636\) 0 0
\(637\) −27.3672 + 14.1712i −1.08433 + 0.561484i
\(638\) 0 0
\(639\) 23.4447 + 13.5358i 0.927458 + 0.535468i
\(640\) 0 0
\(641\) −17.0933 29.6065i −0.675146 1.16939i −0.976426 0.215852i \(-0.930747\pi\)
0.301280 0.953536i \(-0.402586\pi\)
\(642\) 0 0
\(643\) −3.46526 + 3.46526i −0.136657 + 0.136657i −0.772126 0.635469i \(-0.780807\pi\)
0.635469 + 0.772126i \(0.280807\pi\)
\(644\) 0 0
\(645\) 59.2493 + 59.2493i 2.33294 + 2.33294i
\(646\) 0 0
\(647\) −27.2890 + 15.7553i −1.07284 + 0.619406i −0.928957 0.370188i \(-0.879293\pi\)
−0.143886 + 0.989594i \(0.545960\pi\)
\(648\) 0 0
\(649\) −2.83939 + 4.91797i −0.111456 + 0.193047i
\(650\) 0 0
\(651\) 33.1841 41.2549i 1.30059 1.61691i
\(652\) 0 0
\(653\) −5.18880 19.3649i −0.203053 0.757805i −0.990034 0.140828i \(-0.955024\pi\)
0.786981 0.616977i \(-0.211643\pi\)
\(654\) 0 0
\(655\) 38.7436 22.3686i 1.51384 0.874015i
\(656\) 0 0
\(657\) 40.8933i 1.59540i
\(658\) 0 0
\(659\) −29.3969 29.3969i −1.14514 1.14514i −0.987496 0.157643i \(-0.949610\pi\)
−0.157643 0.987496i \(-0.550390\pi\)
\(660\) 0 0
\(661\) 46.8440 + 12.5518i 1.82202 + 0.488208i 0.997035 0.0769483i \(-0.0245176\pi\)
0.824984 + 0.565157i \(0.191184\pi\)
\(662\) 0 0
\(663\) 22.9280 + 13.2375i 0.890450 + 0.514102i
\(664\) 0 0
\(665\) 35.7127 + 15.7601i 1.38488 + 0.611151i
\(666\) 0 0
\(667\) 1.31136 + 4.89406i 0.0507760 + 0.189499i
\(668\) 0 0
\(669\) 43.4664 + 11.6468i 1.68051 + 0.450290i
\(670\) 0 0
\(671\) −20.9232 −0.807733
\(672\) 0 0
\(673\) 11.6457 0.448909 0.224454 0.974485i \(-0.427940\pi\)
0.224454 + 0.974485i \(0.427940\pi\)
\(674\) 0 0
\(675\) −8.37826 2.24495i −0.322479 0.0864080i
\(676\) 0 0
\(677\) 8.74138 + 32.6233i 0.335959 + 1.25381i 0.902826 + 0.430006i \(0.141488\pi\)
−0.566868 + 0.823809i \(0.691845\pi\)
\(678\) 0 0
\(679\) 12.5247 9.16263i 0.480653 0.351630i
\(680\) 0 0
\(681\) 39.0453 + 22.5428i 1.49622 + 0.863843i
\(682\) 0 0
\(683\) 6.57460 + 1.76166i 0.251570 + 0.0674080i 0.382400 0.923997i \(-0.375098\pi\)
−0.130830 + 0.991405i \(0.541764\pi\)
\(684\) 0 0
\(685\) −5.76794 5.76794i −0.220382 0.220382i
\(686\) 0 0
\(687\) 17.9827i 0.686081i
\(688\) 0 0
\(689\) −43.7854 + 25.2795i −1.66809 + 0.963073i
\(690\) 0 0
\(691\) −7.97267 29.7544i −0.303295 1.13191i −0.934403 0.356217i \(-0.884066\pi\)
0.631108 0.775695i \(-0.282600\pi\)
\(692\) 0 0
\(693\) 2.13117 13.7474i 0.0809565 0.522221i
\(694\) 0 0
\(695\) 13.7303 23.7816i 0.520821 0.902088i
\(696\) 0 0
\(697\) 5.61193 3.24005i 0.212567 0.122726i
\(698\) 0 0
\(699\) −52.7060 52.7060i −1.99352 1.99352i
\(700\) 0 0
\(701\) −28.2191 + 28.2191i −1.06582 + 1.06582i −0.0681440 + 0.997675i \(0.521708\pi\)
−0.997675 + 0.0681440i \(0.978292\pi\)
\(702\) 0 0
\(703\) 2.40080 + 4.15831i 0.0905480 + 0.156834i
\(704\) 0 0
\(705\) −20.5371 11.8571i −0.773473 0.446565i
\(706\) 0 0
\(707\) −1.38045 3.56123i −0.0519171 0.133934i
\(708\) 0 0
\(709\) 18.5805 4.97862i 0.697804 0.186976i 0.107557 0.994199i \(-0.465697\pi\)
0.590247 + 0.807223i \(0.299030\pi\)
\(710\) 0 0
\(711\) −1.47604 2.55657i −0.0553557 0.0958790i
\(712\) 0 0
\(713\) 17.9618 0.672673
\(714\) 0 0
\(715\) 14.6347 14.6347i 0.547308 0.547308i
\(716\) 0 0
\(717\) 8.89426 33.1938i 0.332162 1.23965i
\(718\) 0 0
\(719\) 11.9289 20.6615i 0.444873 0.770543i −0.553170 0.833068i \(-0.686582\pi\)
0.998043 + 0.0625253i \(0.0199154\pi\)
\(720\) 0 0
\(721\) −0.691981 6.38229i −0.0257707 0.237689i
\(722\) 0 0
\(723\) 30.2730 8.11163i 1.12587 0.301675i
\(724\) 0 0
\(725\) 3.10100 11.5731i 0.115168 0.429814i
\(726\) 0 0
\(727\) 28.5645i 1.05940i −0.848185 0.529700i \(-0.822305\pi\)
0.848185 0.529700i \(-0.177695\pi\)
\(728\) 0 0
\(729\) 36.7360i 1.36059i
\(730\) 0 0
\(731\) −6.09328 + 22.7404i −0.225368 + 0.841085i
\(732\) 0 0
\(733\) 22.5582 6.04445i 0.833206 0.223257i 0.183094 0.983095i \(-0.441389\pi\)
0.650112 + 0.759839i \(0.274722\pi\)
\(734\) 0 0
\(735\) 55.5055 + 17.6331i 2.04735 + 0.650406i
\(736\) 0 0
\(737\) 1.95329 3.38320i 0.0719504 0.124622i
\(738\) 0 0
\(739\) 0.460947 1.72028i 0.0169562 0.0632814i −0.956929 0.290321i \(-0.906238\pi\)
0.973886 + 0.227039i \(0.0729046\pi\)
\(740\) 0 0
\(741\) 36.5335 36.5335i 1.34209 1.34209i
\(742\) 0 0
\(743\) −16.7041 −0.612815 −0.306407 0.951900i \(-0.599127\pi\)
−0.306407 + 0.951900i \(0.599127\pi\)
\(744\) 0 0
\(745\) −13.7426 23.8029i −0.503490 0.872070i
\(746\) 0 0
\(747\) 13.1094 3.51266i 0.479649 0.128522i
\(748\) 0 0
\(749\) −7.46379 + 9.27909i −0.272721 + 0.339051i
\(750\) 0 0
\(751\) 1.51512 + 0.874754i 0.0552874 + 0.0319202i 0.527389 0.849624i \(-0.323171\pi\)
−0.472101 + 0.881544i \(0.656504\pi\)
\(752\) 0 0
\(753\) −12.1678 21.0752i −0.443419 0.768024i
\(754\) 0 0
\(755\) −23.4148 + 23.4148i −0.852153 + 0.852153i
\(756\) 0 0
\(757\) −15.6771 15.6771i −0.569792 0.569792i 0.362278 0.932070i \(-0.381999\pi\)
−0.932070 + 0.362278i \(0.881999\pi\)
\(758\) 0 0
\(759\) 7.47683 4.31675i 0.271392 0.156688i
\(760\) 0 0
\(761\) 25.9814 45.0012i 0.941826 1.63129i 0.179842 0.983695i \(-0.442441\pi\)
0.761984 0.647596i \(-0.224225\pi\)
\(762\) 0 0
\(763\) 3.11368 + 8.03255i 0.112723 + 0.290798i
\(764\) 0 0
\(765\) −7.07864 26.4178i −0.255929 0.955139i
\(766\) 0 0
\(767\) −14.8965 + 8.60050i −0.537882 + 0.310546i
\(768\) 0 0
\(769\) 34.9699i 1.26105i −0.776170 0.630524i \(-0.782840\pi\)
0.776170 0.630524i \(-0.217160\pi\)
\(770\) 0 0
\(771\) 6.99090 + 6.99090i 0.251771 + 0.251771i
\(772\) 0 0
\(773\) −13.2793 3.55817i −0.477622 0.127978i 0.0119731 0.999928i \(-0.496189\pi\)
−0.489595 + 0.871950i \(0.662855\pi\)
\(774\) 0 0
\(775\) −36.7841 21.2373i −1.32132 0.762866i
\(776\) 0 0
\(777\) 4.22974 + 5.78176i 0.151741 + 0.207419i
\(778\) 0 0
\(779\) −3.27301 12.2150i −0.117268 0.437650i
\(780\) 0 0
\(781\) 10.5066 + 2.81523i 0.375956 + 0.100737i
\(782\) 0 0
\(783\) −3.48586 −0.124574
\(784\) 0 0
\(785\) −47.4847 −1.69480
\(786\) 0 0
\(787\) −23.9812 6.42575i −0.854838 0.229053i −0.195318 0.980740i \(-0.562574\pi\)
−0.659520 + 0.751687i \(0.729240\pi\)
\(788\) 0 0
\(789\) −4.20498 15.6932i −0.149701 0.558692i
\(790\) 0 0
\(791\) −18.0267 24.6412i −0.640954 0.876139i
\(792\) 0 0
\(793\) −54.8856 31.6882i −1.94904 1.12528i
\(794\) 0 0
\(795\) 92.2878 + 24.7284i 3.27311 + 0.877027i
\(796\) 0 0
\(797\) 13.3302 + 13.3302i 0.472179 + 0.472179i 0.902619 0.430440i \(-0.141642\pi\)
−0.430440 + 0.902619i \(0.641642\pi\)
\(798\) 0 0
\(799\) 6.66293i 0.235717i
\(800\) 0 0
\(801\) 15.0970 8.71624i 0.533425 0.307973i
\(802\) 0 0
\(803\) 4.25258 + 15.8709i 0.150070 + 0.560070i
\(804\) 0 0
\(805\) 7.14106 + 18.4222i 0.251689 + 0.649298i
\(806\) 0 0
\(807\) −31.0148 + 53.7192i −1.09177 + 1.89101i
\(808\) 0 0
\(809\) −18.7601 + 10.8311i −0.659569 + 0.380803i −0.792113 0.610375i \(-0.791019\pi\)
0.132544 + 0.991177i \(0.457686\pi\)
\(810\) 0 0
\(811\) −1.51326 1.51326i −0.0531379 0.0531379i 0.680039 0.733176i \(-0.261963\pi\)
−0.733176 + 0.680039i \(0.761963\pi\)
\(812\) 0 0
\(813\) −17.2192 + 17.2192i −0.603904 + 0.603904i
\(814\) 0 0
\(815\) 37.1741 + 64.3874i 1.30215 + 2.25539i
\(816\) 0 0
\(817\) 39.7883 + 22.9718i 1.39202 + 0.803681i
\(818\) 0 0
\(819\) 26.4109 32.8344i 0.922871 1.14733i
\(820\) 0 0
\(821\) −46.3574 + 12.4214i −1.61788 + 0.433511i −0.950379 0.311094i \(-0.899305\pi\)
−0.667506 + 0.744605i \(0.732638\pi\)
\(822\) 0 0
\(823\) 15.0408 + 26.0514i 0.524290 + 0.908096i 0.999600 + 0.0282782i \(0.00900244\pi\)
−0.475310 + 0.879818i \(0.657664\pi\)
\(824\) 0 0
\(825\) −20.4158 −0.710789
\(826\) 0 0
\(827\) −22.5866 + 22.5866i −0.785414 + 0.785414i −0.980739 0.195325i \(-0.937424\pi\)
0.195325 + 0.980739i \(0.437424\pi\)
\(828\) 0 0
\(829\) 8.56747 31.9742i 0.297561 1.11051i −0.641602 0.767038i \(-0.721730\pi\)
0.939162 0.343473i \(-0.111603\pi\)
\(830\) 0 0
\(831\) −15.0840 + 26.1263i −0.523260 + 0.906313i
\(832\) 0 0
\(833\) 3.50706 + 15.9831i 0.121512 + 0.553780i
\(834\) 0 0
\(835\) 11.9368 3.19846i 0.413091 0.110687i
\(836\) 0 0
\(837\) −3.19838 + 11.9365i −0.110552 + 0.412586i
\(838\) 0 0
\(839\) 35.7894i 1.23559i −0.786340 0.617794i \(-0.788027\pi\)
0.786340 0.617794i \(-0.211973\pi\)
\(840\) 0 0
\(841\) 24.1849i 0.833962i
\(842\) 0 0
\(843\) 3.72527 13.9029i 0.128305 0.478841i
\(844\) 0 0
\(845\) 19.9418 5.34340i 0.686020 0.183818i
\(846\) 0 0
\(847\) 2.53455 + 23.3766i 0.0870880 + 0.803231i
\(848\) 0 0
\(849\) −4.93437 + 8.54658i −0.169347 + 0.293318i
\(850\) 0 0
\(851\) −0.629017 + 2.34752i −0.0215624 + 0.0804721i
\(852\) 0 0
\(853\) −1.27195 + 1.27195i −0.0435507 + 0.0435507i −0.728547 0.684996i \(-0.759804\pi\)
0.684996 + 0.728547i \(0.259804\pi\)
\(854\) 0 0
\(855\) −53.3733 −1.82533
\(856\) 0 0
\(857\) 17.1377 + 29.6834i 0.585412 + 1.01396i 0.994824 + 0.101614i \(0.0324008\pi\)
−0.409411 + 0.912350i \(0.634266\pi\)
\(858\) 0 0
\(859\) 43.1714 11.5677i 1.47299 0.394686i 0.569034 0.822314i \(-0.307317\pi\)
0.903955 + 0.427628i \(0.140651\pi\)
\(860\) 0 0
\(861\) −6.81912 17.5917i −0.232395 0.599523i
\(862\) 0 0
\(863\) −32.5858 18.8134i −1.10923 0.640416i −0.170602 0.985340i \(-0.554571\pi\)
−0.938631 + 0.344924i \(0.887905\pi\)
\(864\) 0 0
\(865\) −13.4434 23.2846i −0.457088 0.791700i
\(866\) 0 0
\(867\) −20.9832 + 20.9832i −0.712627 + 0.712627i
\(868\) 0 0
\(869\) −0.838719 0.838719i −0.0284516 0.0284516i
\(870\) 0 0
\(871\) 10.2477 5.91651i 0.347230 0.200473i
\(872\) 0 0
\(873\) −10.6092 + 18.3756i −0.359065 + 0.621920i
\(874\) 0 0
\(875\) 0.603167 3.89081i 0.0203908 0.131533i
\(876\) 0 0
\(877\) 5.49616 + 20.5119i 0.185592 + 0.692639i 0.994503 + 0.104708i \(0.0333907\pi\)
−0.808911 + 0.587931i \(0.799943\pi\)
\(878\) 0 0
\(879\) −30.7099 + 17.7304i −1.03582 + 0.598031i
\(880\) 0 0
\(881\) 3.13017i 0.105458i −0.998609 0.0527291i \(-0.983208\pi\)
0.998609 0.0527291i \(-0.0167920\pi\)
\(882\) 0 0
\(883\) −5.90657 5.90657i −0.198772 0.198772i 0.600702 0.799473i \(-0.294888\pi\)
−0.799473 + 0.600702i \(0.794888\pi\)
\(884\) 0 0
\(885\) 31.3978 + 8.41301i 1.05543 + 0.282800i
\(886\) 0 0
\(887\) −41.9702 24.2315i −1.40922 0.813615i −0.413908 0.910318i \(-0.635837\pi\)
−0.995313 + 0.0967040i \(0.969170\pi\)
\(888\) 0 0
\(889\) −9.59219 + 7.01733i −0.321712 + 0.235354i
\(890\) 0 0
\(891\) −2.54536 9.49940i −0.0852727 0.318242i
\(892\) 0 0
\(893\) −12.5597 3.36536i −0.420294 0.112617i
\(894\) 0 0
\(895\) −62.4941 −2.08895
\(896\) 0 0
\(897\) 26.1508 0.873151
\(898\) 0 0
\(899\) −16.4882 4.41800i −0.549912 0.147348i
\(900\) 0 0
\(901\) 6.94789 + 25.9299i 0.231468 + 0.863849i
\(902\) 0 0
\(903\) 62.7105 + 27.6744i 2.08688 + 0.920946i
\(904\) 0 0
\(905\) −24.0513 13.8860i −0.799491 0.461587i
\(906\) 0 0
\(907\) −36.1999 9.69974i −1.20200 0.322075i −0.398381 0.917220i \(-0.630428\pi\)
−0.803618 + 0.595146i \(0.797094\pi\)
\(908\) 0 0
\(909\) 3.69271 + 3.69271i 0.122480 + 0.122480i
\(910\) 0 0
\(911\) 12.0871i 0.400463i −0.979749 0.200231i \(-0.935831\pi\)
0.979749 0.200231i \(-0.0641694\pi\)
\(912\) 0 0
\(913\) 4.72253 2.72656i 0.156293 0.0902358i
\(914\) 0 0
\(915\) 30.9974 + 115.684i 1.02474 + 3.82439i
\(916\) 0 0
\(917\) 22.9381 28.5169i 0.757481 0.941712i
\(918\) 0 0
\(919\) −27.6308 + 47.8579i −0.911455 + 1.57869i −0.0994447 + 0.995043i \(0.531707\pi\)
−0.812010 + 0.583643i \(0.801627\pi\)
\(920\) 0 0
\(921\) −64.8188 + 37.4231i −2.13585 + 1.23313i
\(922\) 0 0
\(923\) 23.2971 + 23.2971i 0.766833 + 0.766833i
\(924\) 0 0
\(925\) 4.06379 4.06379i 0.133617 0.133617i
\(926\) 0 0
\(927\) 4.38882 + 7.60165i 0.144148 + 0.249671i
\(928\) 0 0
\(929\) 8.64695 + 4.99232i 0.283697 + 0.163793i 0.635096 0.772433i \(-0.280961\pi\)
−0.351399 + 0.936226i \(0.614294\pi\)
\(930\) 0 0
\(931\) 31.8996 + 1.46199i 1.04547 + 0.0479147i
\(932\) 0 0
\(933\) −1.42103 + 0.380765i −0.0465226 + 0.0124657i
\(934\) 0 0
\(935\) −5.49450 9.51675i −0.179689 0.311231i
\(936\) 0 0
\(937\) 7.92416 0.258871 0.129436 0.991588i \(-0.458683\pi\)
0.129436 + 0.991588i \(0.458683\pi\)
\(938\) 0 0
\(939\) −2.57311 + 2.57311i −0.0839703 + 0.0839703i
\(940\) 0 0
\(941\) 1.63637 6.10702i 0.0533441 0.199083i −0.934111 0.356983i \(-0.883806\pi\)
0.987455 + 0.157900i \(0.0504722\pi\)
\(942\) 0 0
\(943\) 3.20038 5.54321i 0.104219 0.180512i
\(944\) 0 0
\(945\) −13.5141 + 1.46523i −0.439613 + 0.0476638i
\(946\) 0 0
\(947\) −10.9891 + 2.94453i −0.357098 + 0.0956843i −0.432908 0.901438i \(-0.642513\pi\)
0.0758096 + 0.997122i \(0.475846\pi\)
\(948\) 0 0
\(949\) −12.8811 + 48.0727i −0.418137 + 1.56051i
\(950\) 0 0
\(951\) 67.3561i 2.18417i
\(952\) 0 0
\(953\) 12.7329i 0.412460i 0.978504 + 0.206230i \(0.0661195\pi\)
−0.978504 + 0.206230i \(0.933880\pi\)
\(954\) 0 0
\(955\) 12.7304 47.5105i 0.411946 1.53741i
\(956\) 0 0
\(957\) −7.92522 + 2.12356i −0.256186 + 0.0686448i
\(958\) 0 0
\(959\) −6.10489 2.69411i −0.197137 0.0869974i
\(960\) 0 0
\(961\) −14.7568 + 25.5595i −0.476025 + 0.824500i
\(962\) 0 0
\(963\) 4.21417 15.7275i 0.135800 0.506812i
\(964\) 0 0
\(965\) −51.4090 + 51.4090i −1.65491 + 1.65491i
\(966\) 0 0
\(967\) 10.6644 0.342944 0.171472 0.985189i \(-0.445148\pi\)
0.171472 + 0.985189i \(0.445148\pi\)
\(968\) 0 0
\(969\) −13.7162 23.7571i −0.440628 0.763190i
\(970\) 0 0
\(971\) −2.22623 + 0.596517i −0.0714431 + 0.0191431i −0.294364 0.955694i \(-0.595108\pi\)
0.222920 + 0.974837i \(0.428441\pi\)
\(972\) 0 0
\(973\) 3.44137 22.1990i 0.110325 0.711669i
\(974\) 0 0
\(975\) −53.5546 30.9198i −1.71512 0.990225i
\(976\) 0 0
\(977\) 7.66274 + 13.2723i 0.245153 + 0.424617i 0.962175 0.272434i \(-0.0878286\pi\)
−0.717022 + 0.697051i \(0.754495\pi\)
\(978\) 0 0
\(979\) 4.95277 4.95277i 0.158291 0.158291i
\(980\) 0 0
\(981\) −8.32913 8.32913i −0.265929 0.265929i
\(982\) 0 0
\(983\) −16.1184 + 9.30595i −0.514097 + 0.296814i −0.734516 0.678591i \(-0.762591\pi\)
0.220419 + 0.975405i \(0.429257\pi\)
\(984\) 0 0
\(985\) −19.0177 + 32.9396i −0.605954 + 1.04954i
\(986\) 0 0
\(987\) −19.1705 2.97187i −0.610202 0.0945956i
\(988\) 0 0
\(989\) 6.01867 + 22.4620i 0.191383 + 0.714249i
\(990\) 0 0
\(991\) 23.7555 13.7153i 0.754619 0.435680i −0.0727413 0.997351i \(-0.523175\pi\)
0.827361 + 0.561671i \(0.189841\pi\)
\(992\) 0 0
\(993\) 7.22736i 0.229353i
\(994\) 0 0
\(995\) 23.3727 + 23.3727i 0.740965 + 0.740965i
\(996\) 0 0
\(997\) 18.7595 + 5.02660i 0.594120 + 0.159194i 0.543335 0.839516i \(-0.317161\pi\)
0.0507843 + 0.998710i \(0.483828\pi\)
\(998\) 0 0
\(999\) −1.44804 0.836028i −0.0458140 0.0264507i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 448.2.z.a.271.12 56
4.3 odd 2 112.2.v.a.75.13 yes 56
7.3 odd 6 inner 448.2.z.a.143.12 56
8.3 odd 2 896.2.z.b.159.12 56
8.5 even 2 896.2.z.a.159.3 56
16.3 odd 4 inner 448.2.z.a.47.12 56
16.5 even 4 896.2.z.b.607.12 56
16.11 odd 4 896.2.z.a.607.3 56
16.13 even 4 112.2.v.a.19.7 yes 56
28.3 even 6 112.2.v.a.59.7 yes 56
28.11 odd 6 784.2.w.f.619.7 56
28.19 even 6 784.2.j.a.587.5 56
28.23 odd 6 784.2.j.a.587.6 56
28.27 even 2 784.2.w.f.411.13 56
56.3 even 6 896.2.z.b.31.12 56
56.45 odd 6 896.2.z.a.31.3 56
112.3 even 12 inner 448.2.z.a.367.12 56
112.13 odd 4 784.2.w.f.19.7 56
112.45 odd 12 112.2.v.a.3.13 56
112.59 even 12 896.2.z.a.479.3 56
112.61 odd 12 784.2.j.a.195.6 56
112.93 even 12 784.2.j.a.195.5 56
112.101 odd 12 896.2.z.b.479.12 56
112.109 even 12 784.2.w.f.227.13 56
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
112.2.v.a.3.13 56 112.45 odd 12
112.2.v.a.19.7 yes 56 16.13 even 4
112.2.v.a.59.7 yes 56 28.3 even 6
112.2.v.a.75.13 yes 56 4.3 odd 2
448.2.z.a.47.12 56 16.3 odd 4 inner
448.2.z.a.143.12 56 7.3 odd 6 inner
448.2.z.a.271.12 56 1.1 even 1 trivial
448.2.z.a.367.12 56 112.3 even 12 inner
784.2.j.a.195.5 56 112.93 even 12
784.2.j.a.195.6 56 112.61 odd 12
784.2.j.a.587.5 56 28.19 even 6
784.2.j.a.587.6 56 28.23 odd 6
784.2.w.f.19.7 56 112.13 odd 4
784.2.w.f.227.13 56 112.109 even 12
784.2.w.f.411.13 56 28.27 even 2
784.2.w.f.619.7 56 28.11 odd 6
896.2.z.a.31.3 56 56.45 odd 6
896.2.z.a.159.3 56 8.5 even 2
896.2.z.a.479.3 56 112.59 even 12
896.2.z.a.607.3 56 16.11 odd 4
896.2.z.b.31.12 56 56.3 even 6
896.2.z.b.159.12 56 8.3 odd 2
896.2.z.b.479.12 56 112.101 odd 12
896.2.z.b.607.12 56 16.5 even 4