Newspace parameters
| Level: | \( N \) | \(=\) | \( 896 = 2^{7} \cdot 7 \) |
| Weight: | \( k \) | \(=\) | \( 2 \) |
| Character orbit: | \([\chi]\) | \(=\) | 896.z (of order \(12\), degree \(4\), not minimal) |
Newform invariants
| Self dual: | no |
| Analytic conductor: | \(7.15459602111\) |
| Analytic rank: | \(0\) |
| Dimension: | \(56\) |
| Relative dimension: | \(14\) over \(\Q(\zeta_{12})\) |
| Twist minimal: | no (minimal twist has level 112) |
| Sato-Tate group: | $\mathrm{SU}(2)[C_{12}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
| Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 31.1 | 0 | −0.825526 | − | 3.08091i | 0 | −1.86998 | − | 0.501060i | 0 | −2.17953 | − | 1.49988i | 0 | −6.21241 | + | 3.58674i | 0 | ||||||||||
| 31.2 | 0 | −0.700587 | − | 2.61463i | 0 | −0.450647 | − | 0.120751i | 0 | 2.37326 | + | 1.16946i | 0 | −3.74737 | + | 2.16355i | 0 | ||||||||||
| 31.3 | 0 | −0.665801 | − | 2.48480i | 0 | 3.12401 | + | 0.837076i | 0 | −1.56215 | + | 2.13534i | 0 | −3.13287 | + | 1.80877i | 0 | ||||||||||
| 31.4 | 0 | −0.388227 | − | 1.44888i | 0 | −2.81809 | − | 0.755106i | 0 | 1.47726 | + | 2.19493i | 0 | 0.649537 | − | 0.375010i | 0 | ||||||||||
| 31.5 | 0 | −0.282507 | − | 1.05433i | 0 | 1.39922 | + | 0.374919i | 0 | 0.298614 | − | 2.62885i | 0 | 1.56627 | − | 0.904287i | 0 | ||||||||||
| 31.6 | 0 | −0.237312 | − | 0.885661i | 0 | −3.05579 | − | 0.818796i | 0 | 0.640837 | − | 2.56697i | 0 | 1.87000 | − | 1.07964i | 0 | ||||||||||
| 31.7 | 0 | −0.204601 | − | 0.763582i | 0 | 3.81370 | + | 1.02188i | 0 | 2.64575 | − | 0.00379639i | 0 | 2.05688 | − | 1.18754i | 0 | ||||||||||
| 31.8 | 0 | −0.0661591 | − | 0.246909i | 0 | 0.499339 | + | 0.133797i | 0 | −2.45011 | + | 0.998472i | 0 | 2.54149 | − | 1.46733i | 0 | ||||||||||
| 31.9 | 0 | 0.0530773 | + | 0.198087i | 0 | 1.82029 | + | 0.487744i | 0 | −1.84933 | − | 1.89208i | 0 | 2.56165 | − | 1.47897i | 0 | ||||||||||
| 31.10 | 0 | 0.350301 | + | 1.30734i | 0 | −1.09872 | − | 0.294400i | 0 | 1.56831 | + | 2.13082i | 0 | 1.01165 | − | 0.584076i | 0 | ||||||||||
| 31.11 | 0 | 0.449868 | + | 1.67893i | 0 | −0.731029 | − | 0.195879i | 0 | −2.52163 | + | 0.800849i | 0 | −0.0183525 | + | 0.0105958i | 0 | ||||||||||
| 31.12 | 0 | 0.524583 | + | 1.95777i | 0 | −2.48890 | − | 0.666898i | 0 | 2.38027 | − | 1.15512i | 0 | −0.959602 | + | 0.554026i | 0 | ||||||||||
| 31.13 | 0 | 0.615336 | + | 2.29647i | 0 | 0.835825 | + | 0.223959i | 0 | 1.25761 | − | 2.32775i | 0 | −2.29704 | + | 1.32620i | 0 | ||||||||||
| 31.14 | 0 | 0.743580 | + | 2.77508i | 0 | 3.38680 | + | 0.907491i | 0 | −0.0791552 | + | 2.64457i | 0 | −4.55008 | + | 2.62699i | 0 | ||||||||||
| 159.1 | 0 | −3.08091 | − | 0.825526i | 0 | −0.501060 | − | 1.86998i | 0 | −2.17953 | + | 1.49988i | 0 | 6.21241 | + | 3.58674i | 0 | ||||||||||
| 159.2 | 0 | −2.61463 | − | 0.700587i | 0 | −0.120751 | − | 0.450647i | 0 | 2.37326 | − | 1.16946i | 0 | 3.74737 | + | 2.16355i | 0 | ||||||||||
| 159.3 | 0 | −2.48480 | − | 0.665801i | 0 | 0.837076 | + | 3.12401i | 0 | −1.56215 | − | 2.13534i | 0 | 3.13287 | + | 1.80877i | 0 | ||||||||||
| 159.4 | 0 | −1.44888 | − | 0.388227i | 0 | −0.755106 | − | 2.81809i | 0 | 1.47726 | − | 2.19493i | 0 | −0.649537 | − | 0.375010i | 0 | ||||||||||
| 159.5 | 0 | −1.05433 | − | 0.282507i | 0 | 0.374919 | + | 1.39922i | 0 | 0.298614 | + | 2.62885i | 0 | −1.56627 | − | 0.904287i | 0 | ||||||||||
| 159.6 | 0 | −0.885661 | − | 0.237312i | 0 | −0.818796 | − | 3.05579i | 0 | 0.640837 | + | 2.56697i | 0 | −1.87000 | − | 1.07964i | 0 | ||||||||||
| See all 56 embeddings | |||||||||||||||||||||||||||
Inner twists
| Char | Parity | Ord | Mult | Type |
|---|---|---|---|---|
| 1.a | even | 1 | 1 | trivial |
| 7.d | odd | 6 | 1 | inner |
| 16.f | odd | 4 | 1 | inner |
| 112.v | even | 12 | 1 | inner |
Twists
| By twisting character orbit | |||||||
|---|---|---|---|---|---|---|---|
| Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
| 1.a | even | 1 | 1 | trivial | 896.2.z.a | 56 | |
| 4.b | odd | 2 | 1 | 896.2.z.b | 56 | ||
| 7.d | odd | 6 | 1 | inner | 896.2.z.a | 56 | |
| 8.b | even | 2 | 1 | 448.2.z.a | 56 | ||
| 8.d | odd | 2 | 1 | 112.2.v.a | ✓ | 56 | |
| 16.e | even | 4 | 1 | 112.2.v.a | ✓ | 56 | |
| 16.e | even | 4 | 1 | 896.2.z.b | 56 | ||
| 16.f | odd | 4 | 1 | 448.2.z.a | 56 | ||
| 16.f | odd | 4 | 1 | inner | 896.2.z.a | 56 | |
| 28.f | even | 6 | 1 | 896.2.z.b | 56 | ||
| 56.e | even | 2 | 1 | 784.2.w.f | 56 | ||
| 56.j | odd | 6 | 1 | 448.2.z.a | 56 | ||
| 56.k | odd | 6 | 1 | 784.2.j.a | 56 | ||
| 56.k | odd | 6 | 1 | 784.2.w.f | 56 | ||
| 56.m | even | 6 | 1 | 112.2.v.a | ✓ | 56 | |
| 56.m | even | 6 | 1 | 784.2.j.a | 56 | ||
| 112.l | odd | 4 | 1 | 784.2.w.f | 56 | ||
| 112.v | even | 12 | 1 | 448.2.z.a | 56 | ||
| 112.v | even | 12 | 1 | inner | 896.2.z.a | 56 | |
| 112.w | even | 12 | 1 | 784.2.j.a | 56 | ||
| 112.w | even | 12 | 1 | 784.2.w.f | 56 | ||
| 112.x | odd | 12 | 1 | 112.2.v.a | ✓ | 56 | |
| 112.x | odd | 12 | 1 | 784.2.j.a | 56 | ||
| 112.x | odd | 12 | 1 | 896.2.z.b | 56 | ||
| By twisted newform orbit | |||||||
|---|---|---|---|---|---|---|---|
| Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
| 112.2.v.a | ✓ | 56 | 8.d | odd | 2 | 1 | |
| 112.2.v.a | ✓ | 56 | 16.e | even | 4 | 1 | |
| 112.2.v.a | ✓ | 56 | 56.m | even | 6 | 1 | |
| 112.2.v.a | ✓ | 56 | 112.x | odd | 12 | 1 | |
| 448.2.z.a | 56 | 8.b | even | 2 | 1 | ||
| 448.2.z.a | 56 | 16.f | odd | 4 | 1 | ||
| 448.2.z.a | 56 | 56.j | odd | 6 | 1 | ||
| 448.2.z.a | 56 | 112.v | even | 12 | 1 | ||
| 784.2.j.a | 56 | 56.k | odd | 6 | 1 | ||
| 784.2.j.a | 56 | 56.m | even | 6 | 1 | ||
| 784.2.j.a | 56 | 112.w | even | 12 | 1 | ||
| 784.2.j.a | 56 | 112.x | odd | 12 | 1 | ||
| 784.2.w.f | 56 | 56.e | even | 2 | 1 | ||
| 784.2.w.f | 56 | 56.k | odd | 6 | 1 | ||
| 784.2.w.f | 56 | 112.l | odd | 4 | 1 | ||
| 784.2.w.f | 56 | 112.w | even | 12 | 1 | ||
| 896.2.z.a | 56 | 1.a | even | 1 | 1 | trivial | |
| 896.2.z.a | 56 | 7.d | odd | 6 | 1 | inner | |
| 896.2.z.a | 56 | 16.f | odd | 4 | 1 | inner | |
| 896.2.z.a | 56 | 112.v | even | 12 | 1 | inner | |
| 896.2.z.b | 56 | 4.b | odd | 2 | 1 | ||
| 896.2.z.b | 56 | 16.e | even | 4 | 1 | ||
| 896.2.z.b | 56 | 28.f | even | 6 | 1 | ||
| 896.2.z.b | 56 | 112.x | odd | 12 | 1 | ||
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{3}^{56} + 6 T_{3}^{55} + 18 T_{3}^{54} + 36 T_{3}^{53} - 115 T_{3}^{52} - 816 T_{3}^{51} + \cdots + 4100625 \)
acting on \(S_{2}^{\mathrm{new}}(896, [\chi])\).