Properties

Label 896.2.z.b.31.12
Level $896$
Weight $2$
Character 896.31
Analytic conductor $7.155$
Analytic rank $0$
Dimension $56$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [896,2,Mod(31,896)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(896, base_ring=CyclotomicField(12)) chi = DirichletCharacter(H, H._module([6, 3, 2])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("896.31"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 896 = 2^{7} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 896.z (of order \(12\), degree \(4\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [56,0,6] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.15459602111\)
Analytic rank: \(0\)
Dimension: \(56\)
Relative dimension: \(14\) over \(\Q(\zeta_{12})\)
Twist minimal: no (minimal twist has level 112)
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 31.12
Character \(\chi\) \(=\) 896.31
Dual form 896.2.z.b.607.12

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.665801 + 2.48480i) q^{3} +(3.12401 + 0.837076i) q^{5} +(1.56215 - 2.13534i) q^{7} +(-3.13287 + 1.80877i) q^{9} +(-0.376195 - 1.40398i) q^{11} +(3.11315 + 3.11315i) q^{13} +8.31987i q^{15} +(2.02443 + 1.16881i) q^{17} +(-4.40643 - 1.18070i) q^{19} +(6.34599 + 2.45991i) q^{21} +(-1.15450 - 1.99965i) q^{23} +(4.72861 + 2.73006i) q^{25} +(-1.12329 - 1.12329i) q^{27} +(1.55163 - 1.55163i) q^{29} +(3.88952 - 6.73685i) q^{31} +(3.23814 - 1.86954i) q^{33} +(6.66761 - 5.36320i) q^{35} +(-0.272421 + 1.01669i) q^{37} +(-5.66282 + 9.80830i) q^{39} -2.77210 q^{41} +(-7.12142 + 7.12142i) q^{43} +(-11.3012 + 3.02815i) q^{45} +(1.42516 + 2.46844i) q^{47} +(-2.11939 - 6.67144i) q^{49} +(-1.55638 + 5.80851i) q^{51} +(-11.0925 + 2.97221i) q^{53} -4.70094i q^{55} -11.7352i q^{57} +(-3.77383 + 1.01120i) q^{59} +(3.72571 - 13.9045i) q^{61} +(-1.03167 + 9.51532i) q^{63} +(7.11957 + 12.3315i) q^{65} +(-2.59612 + 0.695627i) q^{67} +(4.20006 - 4.20006i) q^{69} -7.48345 q^{71} +(-5.65210 + 9.78973i) q^{73} +(-3.63536 + 13.5673i) q^{75} +(-3.58565 - 1.38991i) q^{77} +(-0.706717 + 0.408024i) q^{79} +(-3.38303 + 5.85958i) q^{81} +(-2.65285 + 2.65285i) q^{83} +(5.34597 + 5.34597i) q^{85} +(4.88857 + 2.82241i) q^{87} +(-2.40944 - 4.17328i) q^{89} +(11.5108 - 1.78445i) q^{91} +(19.3294 + 5.17929i) q^{93} +(-12.7774 - 7.37703i) q^{95} -5.86541i q^{97} +(3.71804 + 3.71804i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 56 q + 6 q^{3} + 6 q^{5} - 8 q^{7} - 2 q^{11} - 12 q^{17} + 6 q^{19} + 10 q^{21} - 12 q^{23} + 24 q^{29} - 12 q^{33} + 2 q^{35} - 6 q^{37} - 4 q^{39} - 12 q^{45} - 8 q^{49} + 34 q^{51} - 6 q^{53} - 42 q^{59}+ \cdots + 16 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/896\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(129\) \(645\)
\(\chi(n)\) \(-1\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.665801 + 2.48480i 0.384400 + 1.43460i 0.839110 + 0.543962i \(0.183076\pi\)
−0.454710 + 0.890640i \(0.650257\pi\)
\(4\) 0 0
\(5\) 3.12401 + 0.837076i 1.39710 + 0.374352i 0.877302 0.479938i \(-0.159341\pi\)
0.519797 + 0.854290i \(0.326008\pi\)
\(6\) 0 0
\(7\) 1.56215 2.13534i 0.590436 0.807084i
\(8\) 0 0
\(9\) −3.13287 + 1.80877i −1.04429 + 0.602922i
\(10\) 0 0
\(11\) −0.376195 1.40398i −0.113427 0.423315i 0.885737 0.464187i \(-0.153653\pi\)
−0.999164 + 0.0408713i \(0.986987\pi\)
\(12\) 0 0
\(13\) 3.11315 + 3.11315i 0.863433 + 0.863433i 0.991735 0.128303i \(-0.0409528\pi\)
−0.128303 + 0.991735i \(0.540953\pi\)
\(14\) 0 0
\(15\) 8.31987i 2.14818i
\(16\) 0 0
\(17\) 2.02443 + 1.16881i 0.490997 + 0.283477i 0.724988 0.688761i \(-0.241845\pi\)
−0.233991 + 0.972239i \(0.575179\pi\)
\(18\) 0 0
\(19\) −4.40643 1.18070i −1.01090 0.270871i −0.284897 0.958558i \(-0.591959\pi\)
−0.726007 + 0.687687i \(0.758626\pi\)
\(20\) 0 0
\(21\) 6.34599 + 2.45991i 1.38481 + 0.536797i
\(22\) 0 0
\(23\) −1.15450 1.99965i −0.240729 0.416955i 0.720193 0.693774i \(-0.244053\pi\)
−0.960922 + 0.276819i \(0.910720\pi\)
\(24\) 0 0
\(25\) 4.72861 + 2.73006i 0.945722 + 0.546013i
\(26\) 0 0
\(27\) −1.12329 1.12329i −0.216177 0.216177i
\(28\) 0 0
\(29\) 1.55163 1.55163i 0.288130 0.288130i −0.548210 0.836341i \(-0.684691\pi\)
0.836341 + 0.548210i \(0.184691\pi\)
\(30\) 0 0
\(31\) 3.88952 6.73685i 0.698579 1.20997i −0.270380 0.962754i \(-0.587149\pi\)
0.968959 0.247221i \(-0.0795172\pi\)
\(32\) 0 0
\(33\) 3.23814 1.86954i 0.563687 0.325445i
\(34\) 0 0
\(35\) 6.66761 5.36320i 1.12703 0.906546i
\(36\) 0 0
\(37\) −0.272421 + 1.01669i −0.0447857 + 0.167142i −0.984697 0.174277i \(-0.944241\pi\)
0.939911 + 0.341420i \(0.110908\pi\)
\(38\) 0 0
\(39\) −5.66282 + 9.80830i −0.906778 + 1.57058i
\(40\) 0 0
\(41\) −2.77210 −0.432929 −0.216464 0.976290i \(-0.569453\pi\)
−0.216464 + 0.976290i \(0.569453\pi\)
\(42\) 0 0
\(43\) −7.12142 + 7.12142i −1.08601 + 1.08601i −0.0900717 + 0.995935i \(0.528710\pi\)
−0.995935 + 0.0900717i \(0.971290\pi\)
\(44\) 0 0
\(45\) −11.3012 + 3.02815i −1.68468 + 0.451410i
\(46\) 0 0
\(47\) 1.42516 + 2.46844i 0.207880 + 0.360059i 0.951047 0.309047i \(-0.100010\pi\)
−0.743166 + 0.669107i \(0.766677\pi\)
\(48\) 0 0
\(49\) −2.11939 6.67144i −0.302770 0.953064i
\(50\) 0 0
\(51\) −1.55638 + 5.80851i −0.217937 + 0.813354i
\(52\) 0 0
\(53\) −11.0925 + 2.97221i −1.52367 + 0.408265i −0.920947 0.389689i \(-0.872583\pi\)
−0.602719 + 0.797954i \(0.705916\pi\)
\(54\) 0 0
\(55\) 4.70094i 0.633875i
\(56\) 0 0
\(57\) 11.7352i 1.55437i
\(58\) 0 0
\(59\) −3.77383 + 1.01120i −0.491311 + 0.131646i −0.495965 0.868343i \(-0.665185\pi\)
0.00465348 + 0.999989i \(0.498519\pi\)
\(60\) 0 0
\(61\) 3.72571 13.9045i 0.477028 1.78029i −0.136523 0.990637i \(-0.543593\pi\)
0.613551 0.789655i \(-0.289741\pi\)
\(62\) 0 0
\(63\) −1.03167 + 9.51532i −0.129978 + 1.19882i
\(64\) 0 0
\(65\) 7.11957 + 12.3315i 0.883074 + 1.52953i
\(66\) 0 0
\(67\) −2.59612 + 0.695627i −0.317166 + 0.0849844i −0.413890 0.910327i \(-0.635830\pi\)
0.0967240 + 0.995311i \(0.469164\pi\)
\(68\) 0 0
\(69\) 4.20006 4.20006i 0.505628 0.505628i
\(70\) 0 0
\(71\) −7.48345 −0.888122 −0.444061 0.895997i \(-0.646463\pi\)
−0.444061 + 0.895997i \(0.646463\pi\)
\(72\) 0 0
\(73\) −5.65210 + 9.78973i −0.661529 + 1.14580i 0.318685 + 0.947861i \(0.396759\pi\)
−0.980214 + 0.197941i \(0.936575\pi\)
\(74\) 0 0
\(75\) −3.63536 + 13.5673i −0.419775 + 1.56662i
\(76\) 0 0
\(77\) −3.58565 1.38991i −0.408623 0.158395i
\(78\) 0 0
\(79\) −0.706717 + 0.408024i −0.0795119 + 0.0459062i −0.539229 0.842159i \(-0.681284\pi\)
0.459717 + 0.888066i \(0.347951\pi\)
\(80\) 0 0
\(81\) −3.38303 + 5.85958i −0.375892 + 0.651065i
\(82\) 0 0
\(83\) −2.65285 + 2.65285i −0.291188 + 0.291188i −0.837550 0.546361i \(-0.816013\pi\)
0.546361 + 0.837550i \(0.316013\pi\)
\(84\) 0 0
\(85\) 5.34597 + 5.34597i 0.579852 + 0.579852i
\(86\) 0 0
\(87\) 4.88857 + 2.82241i 0.524109 + 0.302595i
\(88\) 0 0
\(89\) −2.40944 4.17328i −0.255400 0.442367i 0.709604 0.704601i \(-0.248874\pi\)
−0.965004 + 0.262234i \(0.915541\pi\)
\(90\) 0 0
\(91\) 11.5108 1.78445i 1.20666 0.187061i
\(92\) 0 0
\(93\) 19.3294 + 5.17929i 2.00436 + 0.537068i
\(94\) 0 0
\(95\) −12.7774 7.37703i −1.31093 0.756867i
\(96\) 0 0
\(97\) 5.86541i 0.595542i −0.954637 0.297771i \(-0.903757\pi\)
0.954637 0.297771i \(-0.0962432\pi\)
\(98\) 0 0
\(99\) 3.71804 + 3.71804i 0.373677 + 0.373677i
\(100\) 0 0
\(101\) −0.373632 1.39442i −0.0371778 0.138749i 0.944842 0.327525i \(-0.106215\pi\)
−0.982020 + 0.188776i \(0.939548\pi\)
\(102\) 0 0
\(103\) −2.10134 + 1.21321i −0.207051 + 0.119541i −0.599940 0.800045i \(-0.704809\pi\)
0.392889 + 0.919586i \(0.371476\pi\)
\(104\) 0 0
\(105\) 17.7658 + 12.9969i 1.73376 + 1.26836i
\(106\) 0 0
\(107\) 4.34758 + 1.16493i 0.420297 + 0.112618i 0.462768 0.886480i \(-0.346856\pi\)
−0.0424712 + 0.999098i \(0.513523\pi\)
\(108\) 0 0
\(109\) −0.842750 3.14518i −0.0807208 0.301254i 0.913749 0.406280i \(-0.133174\pi\)
−0.994470 + 0.105026i \(0.966507\pi\)
\(110\) 0 0
\(111\) −2.70765 −0.256998
\(112\) 0 0
\(113\) 11.5397 1.08556 0.542781 0.839875i \(-0.317372\pi\)
0.542781 + 0.839875i \(0.317372\pi\)
\(114\) 0 0
\(115\) −1.93280 7.21331i −0.180235 0.672645i
\(116\) 0 0
\(117\) −15.3841 4.12215i −1.42226 0.381093i
\(118\) 0 0
\(119\) 5.65827 2.49701i 0.518693 0.228901i
\(120\) 0 0
\(121\) 7.69665 4.44366i 0.699695 0.403969i
\(122\) 0 0
\(123\) −1.84566 6.88811i −0.166418 0.621080i
\(124\) 0 0
\(125\) 1.05228 + 1.05228i 0.0941192 + 0.0941192i
\(126\) 0 0
\(127\) 4.49210i 0.398610i 0.979938 + 0.199305i \(0.0638684\pi\)
−0.979938 + 0.199305i \(0.936132\pi\)
\(128\) 0 0
\(129\) −22.4368 12.9539i −1.97545 1.14053i
\(130\) 0 0
\(131\) 13.3612 + 3.58012i 1.16737 + 0.312796i 0.789907 0.613227i \(-0.210129\pi\)
0.377465 + 0.926024i \(0.376796\pi\)
\(132\) 0 0
\(133\) −9.40469 + 7.56482i −0.815490 + 0.655953i
\(134\) 0 0
\(135\) −2.56889 4.44945i −0.221095 0.382947i
\(136\) 0 0
\(137\) −2.18423 1.26106i −0.186611 0.107740i 0.403784 0.914854i \(-0.367695\pi\)
−0.590395 + 0.807114i \(0.701028\pi\)
\(138\) 0 0
\(139\) −6.00381 6.00381i −0.509237 0.509237i 0.405055 0.914292i \(-0.367252\pi\)
−0.914292 + 0.405055i \(0.867252\pi\)
\(140\) 0 0
\(141\) −5.18472 + 5.18472i −0.436632 + 0.436632i
\(142\) 0 0
\(143\) 3.19964 5.54195i 0.267568 0.463441i
\(144\) 0 0
\(145\) 6.14613 3.54847i 0.510409 0.294685i
\(146\) 0 0
\(147\) 15.1661 9.70812i 1.25088 0.800713i
\(148\) 0 0
\(149\) 2.19951 8.20870i 0.180191 0.672483i −0.815418 0.578873i \(-0.803493\pi\)
0.995609 0.0936097i \(-0.0298406\pi\)
\(150\) 0 0
\(151\) 5.11927 8.86683i 0.416600 0.721572i −0.578995 0.815331i \(-0.696555\pi\)
0.995595 + 0.0937588i \(0.0298882\pi\)
\(152\) 0 0
\(153\) −8.45639 −0.683659
\(154\) 0 0
\(155\) 17.7902 17.7902i 1.42894 1.42894i
\(156\) 0 0
\(157\) −14.1817 + 3.79998i −1.13183 + 0.303272i −0.775660 0.631151i \(-0.782583\pi\)
−0.356166 + 0.934423i \(0.615916\pi\)
\(158\) 0 0
\(159\) −14.7707 25.5836i −1.17139 2.02892i
\(160\) 0 0
\(161\) −6.07342 0.658494i −0.478653 0.0518966i
\(162\) 0 0
\(163\) 5.94974 22.2047i 0.466019 1.73921i −0.187468 0.982271i \(-0.560028\pi\)
0.653488 0.756937i \(-0.273305\pi\)
\(164\) 0 0
\(165\) 11.6809 3.12989i 0.909358 0.243662i
\(166\) 0 0
\(167\) 3.82099i 0.295677i 0.989011 + 0.147839i \(0.0472316\pi\)
−0.989011 + 0.147839i \(0.952768\pi\)
\(168\) 0 0
\(169\) 6.38341i 0.491032i
\(170\) 0 0
\(171\) 15.9404 4.27121i 1.21899 0.326628i
\(172\) 0 0
\(173\) −2.15162 + 8.02996i −0.163585 + 0.610506i 0.834632 + 0.550808i \(0.185680\pi\)
−0.998216 + 0.0596981i \(0.980986\pi\)
\(174\) 0 0
\(175\) 13.2164 5.83245i 0.999067 0.440892i
\(176\) 0 0
\(177\) −5.02524 8.70397i −0.377720 0.654230i
\(178\) 0 0
\(179\) −18.6644 + 5.00112i −1.39504 + 0.373801i −0.876563 0.481288i \(-0.840169\pi\)
−0.518482 + 0.855089i \(0.673503\pi\)
\(180\) 0 0
\(181\) 6.07189 6.07189i 0.451320 0.451320i −0.444472 0.895793i \(-0.646609\pi\)
0.895793 + 0.444472i \(0.146609\pi\)
\(182\) 0 0
\(183\) 37.0306 2.73738
\(184\) 0 0
\(185\) −1.70209 + 2.94810i −0.125140 + 0.216749i
\(186\) 0 0
\(187\) 0.879398 3.28196i 0.0643080 0.240001i
\(188\) 0 0
\(189\) −4.15336 + 0.643867i −0.302112 + 0.0468344i
\(190\) 0 0
\(191\) 13.1707 7.60410i 0.952997 0.550213i 0.0589865 0.998259i \(-0.481213\pi\)
0.894011 + 0.448046i \(0.147880\pi\)
\(192\) 0 0
\(193\) −11.2397 + 19.4678i −0.809053 + 1.40132i 0.104468 + 0.994528i \(0.466686\pi\)
−0.913521 + 0.406792i \(0.866647\pi\)
\(194\) 0 0
\(195\) −25.9010 + 25.9010i −1.85481 + 1.85481i
\(196\) 0 0
\(197\) 8.31581 + 8.31581i 0.592477 + 0.592477i 0.938300 0.345823i \(-0.112400\pi\)
−0.345823 + 0.938300i \(0.612400\pi\)
\(198\) 0 0
\(199\) 8.85088 + 5.11006i 0.627422 + 0.362242i 0.779753 0.626087i \(-0.215345\pi\)
−0.152331 + 0.988330i \(0.548678\pi\)
\(200\) 0 0
\(201\) −3.45699 5.98769i −0.243837 0.422339i
\(202\) 0 0
\(203\) −0.889390 5.73713i −0.0624229 0.402668i
\(204\) 0 0
\(205\) −8.66006 2.32046i −0.604845 0.162068i
\(206\) 0 0
\(207\) 7.23378 + 4.17642i 0.502782 + 0.290282i
\(208\) 0 0
\(209\) 6.63070i 0.458655i
\(210\) 0 0
\(211\) −5.73766 5.73766i −0.394997 0.394997i 0.481467 0.876464i \(-0.340104\pi\)
−0.876464 + 0.481467i \(0.840104\pi\)
\(212\) 0 0
\(213\) −4.98248 18.5949i −0.341394 1.27410i
\(214\) 0 0
\(215\) −28.2086 + 16.2862i −1.92381 + 1.11071i
\(216\) 0 0
\(217\) −8.30949 18.8294i −0.564085 1.27822i
\(218\) 0 0
\(219\) −28.0887 7.52635i −1.89806 0.508583i
\(220\) 0 0
\(221\) 2.66369 + 9.94104i 0.179179 + 0.668706i
\(222\) 0 0
\(223\) 17.4929 1.17141 0.585705 0.810524i \(-0.300818\pi\)
0.585705 + 0.810524i \(0.300818\pi\)
\(224\) 0 0
\(225\) −19.7522 −1.31681
\(226\) 0 0
\(227\) 4.53614 + 16.9291i 0.301074 + 1.12362i 0.936272 + 0.351275i \(0.114252\pi\)
−0.635198 + 0.772349i \(0.719081\pi\)
\(228\) 0 0
\(229\) −6.75227 1.80926i −0.446202 0.119560i 0.0287195 0.999588i \(-0.490857\pi\)
−0.474922 + 0.880028i \(0.657524\pi\)
\(230\) 0 0
\(231\) 1.06634 9.83503i 0.0701597 0.647098i
\(232\) 0 0
\(233\) 25.0933 14.4876i 1.64392 0.949116i 0.664495 0.747293i \(-0.268647\pi\)
0.979422 0.201823i \(-0.0646866\pi\)
\(234\) 0 0
\(235\) 2.38593 + 8.90440i 0.155641 + 0.580859i
\(236\) 0 0
\(237\) −1.48439 1.48439i −0.0964215 0.0964215i
\(238\) 0 0
\(239\) 13.3587i 0.864105i 0.901848 + 0.432053i \(0.142211\pi\)
−0.901848 + 0.432053i \(0.857789\pi\)
\(240\) 0 0
\(241\) 10.5510 + 6.09164i 0.679651 + 0.392397i 0.799724 0.600368i \(-0.204979\pi\)
−0.120072 + 0.992765i \(0.538313\pi\)
\(242\) 0 0
\(243\) −21.4157 5.73831i −1.37381 0.368113i
\(244\) 0 0
\(245\) −1.03650 22.6157i −0.0662195 1.44487i
\(246\) 0 0
\(247\) −10.0422 17.3936i −0.638969 1.10673i
\(248\) 0 0
\(249\) −8.35808 4.82554i −0.529672 0.305806i
\(250\) 0 0
\(251\) 6.68926 + 6.68926i 0.422223 + 0.422223i 0.885968 0.463746i \(-0.153495\pi\)
−0.463746 + 0.885968i \(0.653495\pi\)
\(252\) 0 0
\(253\) −2.37314 + 2.37314i −0.149198 + 0.149198i
\(254\) 0 0
\(255\) −9.72432 + 16.8430i −0.608961 + 1.05475i
\(256\) 0 0
\(257\) 3.32837 1.92163i 0.207618 0.119868i −0.392586 0.919715i \(-0.628419\pi\)
0.600204 + 0.799847i \(0.295086\pi\)
\(258\) 0 0
\(259\) 1.74542 + 2.16993i 0.108455 + 0.134833i
\(260\) 0 0
\(261\) −2.05452 + 7.66759i −0.127172 + 0.474612i
\(262\) 0 0
\(263\) 3.15784 5.46953i 0.194720 0.337266i −0.752088 0.659062i \(-0.770953\pi\)
0.946809 + 0.321797i \(0.104287\pi\)
\(264\) 0 0
\(265\) −37.1409 −2.28155
\(266\) 0 0
\(267\) 8.76556 8.76556i 0.536444 0.536444i
\(268\) 0 0
\(269\) 23.2914 6.24090i 1.42010 0.380514i 0.534580 0.845118i \(-0.320470\pi\)
0.885519 + 0.464603i \(0.153803\pi\)
\(270\) 0 0
\(271\) −4.73315 8.19805i −0.287518 0.497996i 0.685699 0.727886i \(-0.259497\pi\)
−0.973217 + 0.229890i \(0.926163\pi\)
\(272\) 0 0
\(273\) 12.0979 + 27.4141i 0.732200 + 1.65918i
\(274\) 0 0
\(275\) 2.05407 7.66590i 0.123865 0.462271i
\(276\) 0 0
\(277\) −11.3278 + 3.03526i −0.680619 + 0.182371i −0.582533 0.812807i \(-0.697938\pi\)
−0.0980853 + 0.995178i \(0.531272\pi\)
\(278\) 0 0
\(279\) 28.1409i 1.68475i
\(280\) 0 0
\(281\) 5.59517i 0.333780i −0.985976 0.166890i \(-0.946628\pi\)
0.985976 0.166890i \(-0.0533724\pi\)
\(282\) 0 0
\(283\) −3.70559 + 0.992910i −0.220275 + 0.0590224i −0.367268 0.930115i \(-0.619707\pi\)
0.146994 + 0.989137i \(0.453040\pi\)
\(284\) 0 0
\(285\) 9.82326 36.6609i 0.581880 2.17160i
\(286\) 0 0
\(287\) −4.33042 + 5.91938i −0.255617 + 0.349410i
\(288\) 0 0
\(289\) −5.76778 9.99009i −0.339281 0.587652i
\(290\) 0 0
\(291\) 14.5744 3.90519i 0.854365 0.228927i
\(292\) 0 0
\(293\) −9.74731 + 9.74731i −0.569444 + 0.569444i −0.931973 0.362529i \(-0.881913\pi\)
0.362529 + 0.931973i \(0.381913\pi\)
\(294\) 0 0
\(295\) −12.6359 −0.735692
\(296\) 0 0
\(297\) −1.15450 + 1.99965i −0.0669908 + 0.116031i
\(298\) 0 0
\(299\) 2.63108 9.81932i 0.152159 0.567866i
\(300\) 0 0
\(301\) 4.08198 + 26.3314i 0.235282 + 1.51772i
\(302\) 0 0
\(303\) 3.21608 1.85681i 0.184759 0.106671i
\(304\) 0 0
\(305\) 23.2783 40.3192i 1.33291 2.30867i
\(306\) 0 0
\(307\) 20.5735 20.5735i 1.17419 1.17419i 0.192988 0.981201i \(-0.438182\pi\)
0.981201 0.192988i \(-0.0618178\pi\)
\(308\) 0 0
\(309\) −4.41365 4.41365i −0.251084 0.251084i
\(310\) 0 0
\(311\) 0.495271 + 0.285945i 0.0280843 + 0.0162145i 0.513976 0.857804i \(-0.328172\pi\)
−0.485892 + 0.874019i \(0.661505\pi\)
\(312\) 0 0
\(313\) 0.707287 + 1.22506i 0.0399782 + 0.0692443i 0.885322 0.464978i \(-0.153938\pi\)
−0.845344 + 0.534222i \(0.820604\pi\)
\(314\) 0 0
\(315\) −11.1880 + 28.8624i −0.630372 + 1.62621i
\(316\) 0 0
\(317\) 25.2914 + 6.77681i 1.42051 + 0.380624i 0.885663 0.464328i \(-0.153704\pi\)
0.534843 + 0.844951i \(0.320371\pi\)
\(318\) 0 0
\(319\) −2.76217 1.59474i −0.154652 0.0892882i
\(320\) 0 0
\(321\) 11.5785i 0.646248i
\(322\) 0 0
\(323\) −7.54051 7.54051i −0.419565 0.419565i
\(324\) 0 0
\(325\) 6.22177 + 23.2200i 0.345122 + 1.28801i
\(326\) 0 0
\(327\) 7.25406 4.18813i 0.401150 0.231604i
\(328\) 0 0
\(329\) 7.49728 + 0.812871i 0.413338 + 0.0448150i
\(330\) 0 0
\(331\) −2.71378 0.727156i −0.149163 0.0399681i 0.183465 0.983026i \(-0.441269\pi\)
−0.332628 + 0.943058i \(0.607935\pi\)
\(332\) 0 0
\(333\) −0.985490 3.67790i −0.0540045 0.201548i
\(334\) 0 0
\(335\) −8.69259 −0.474927
\(336\) 0 0
\(337\) −23.9205 −1.30303 −0.651517 0.758634i \(-0.725867\pi\)
−0.651517 + 0.758634i \(0.725867\pi\)
\(338\) 0 0
\(339\) 7.68312 + 28.6738i 0.417290 + 1.55735i
\(340\) 0 0
\(341\) −10.9216 2.92644i −0.591438 0.158475i
\(342\) 0 0
\(343\) −17.5566 5.89614i −0.947969 0.318362i
\(344\) 0 0
\(345\) 16.6368 9.60525i 0.895695 0.517130i
\(346\) 0 0
\(347\) 3.23720 + 12.0814i 0.173782 + 0.648563i 0.996756 + 0.0804837i \(0.0256465\pi\)
−0.822974 + 0.568079i \(0.807687\pi\)
\(348\) 0 0
\(349\) −21.9157 21.9157i −1.17312 1.17312i −0.981461 0.191662i \(-0.938612\pi\)
−0.191662 0.981461i \(-0.561388\pi\)
\(350\) 0 0
\(351\) 6.99394i 0.373309i
\(352\) 0 0
\(353\) −18.1984 10.5069i −0.968604 0.559224i −0.0697939 0.997561i \(-0.522234\pi\)
−0.898810 + 0.438337i \(0.855567\pi\)
\(354\) 0 0
\(355\) −23.3784 6.26421i −1.24079 0.332470i
\(356\) 0 0
\(357\) 9.97186 + 12.3972i 0.527767 + 0.656127i
\(358\) 0 0
\(359\) 4.78310 + 8.28458i 0.252443 + 0.437243i 0.964198 0.265184i \(-0.0854328\pi\)
−0.711755 + 0.702428i \(0.752099\pi\)
\(360\) 0 0
\(361\) 1.56807 + 0.905328i 0.0825302 + 0.0476488i
\(362\) 0 0
\(363\) 16.1661 + 16.1661i 0.848498 + 0.848498i
\(364\) 0 0
\(365\) −25.8520 + 25.8520i −1.35315 + 1.35315i
\(366\) 0 0
\(367\) −3.06305 + 5.30536i −0.159890 + 0.276938i −0.934829 0.355099i \(-0.884447\pi\)
0.774939 + 0.632036i \(0.217781\pi\)
\(368\) 0 0
\(369\) 8.68463 5.01408i 0.452104 0.261022i
\(370\) 0 0
\(371\) −10.9813 + 28.3292i −0.570123 + 1.47078i
\(372\) 0 0
\(373\) 4.25162 15.8673i 0.220140 0.821575i −0.764153 0.645035i \(-0.776843\pi\)
0.984293 0.176540i \(-0.0564906\pi\)
\(374\) 0 0
\(375\) −1.91411 + 3.31533i −0.0988440 + 0.171203i
\(376\) 0 0
\(377\) 9.66091 0.497562
\(378\) 0 0
\(379\) −6.05253 + 6.05253i −0.310897 + 0.310897i −0.845257 0.534360i \(-0.820553\pi\)
0.534360 + 0.845257i \(0.320553\pi\)
\(380\) 0 0
\(381\) −11.1620 + 2.99085i −0.571846 + 0.153226i
\(382\) 0 0
\(383\) 9.64030 + 16.6975i 0.492596 + 0.853202i 0.999964 0.00852805i \(-0.00271459\pi\)
−0.507367 + 0.861730i \(0.669381\pi\)
\(384\) 0 0
\(385\) −10.0381 7.34357i −0.511591 0.374263i
\(386\) 0 0
\(387\) 9.42954 35.1915i 0.479330 1.78889i
\(388\) 0 0
\(389\) 27.6476 7.40814i 1.40179 0.375608i 0.522801 0.852455i \(-0.324887\pi\)
0.878986 + 0.476847i \(0.158221\pi\)
\(390\) 0 0
\(391\) 5.39753i 0.272965i
\(392\) 0 0
\(393\) 35.5835i 1.79495i
\(394\) 0 0
\(395\) −2.54934 + 0.683093i −0.128271 + 0.0343701i
\(396\) 0 0
\(397\) 2.40028 8.95799i 0.120467 0.449588i −0.879171 0.476507i \(-0.841903\pi\)
0.999638 + 0.0269184i \(0.00856943\pi\)
\(398\) 0 0
\(399\) −25.0587 18.3321i −1.25451 0.917754i
\(400\) 0 0
\(401\) 17.5281 + 30.3596i 0.875312 + 1.51609i 0.856430 + 0.516264i \(0.172678\pi\)
0.0188827 + 0.999822i \(0.493989\pi\)
\(402\) 0 0
\(403\) 33.0815 8.86416i 1.64791 0.441555i
\(404\) 0 0
\(405\) −15.4735 + 15.4735i −0.768886 + 0.768886i
\(406\) 0 0
\(407\) 1.52989 0.0758338
\(408\) 0 0
\(409\) −17.4392 + 30.2056i −0.862314 + 1.49357i 0.00737621 + 0.999973i \(0.497652\pi\)
−0.869690 + 0.493598i \(0.835681\pi\)
\(410\) 0 0
\(411\) 1.67923 6.26699i 0.0828306 0.309128i
\(412\) 0 0
\(413\) −3.73603 + 9.63807i −0.183838 + 0.474258i
\(414\) 0 0
\(415\) −10.5082 + 6.06689i −0.515826 + 0.297812i
\(416\) 0 0
\(417\) 10.9209 18.9156i 0.534801 0.926302i
\(418\) 0 0
\(419\) −8.57828 + 8.57828i −0.419076 + 0.419076i −0.884885 0.465809i \(-0.845763\pi\)
0.465809 + 0.884885i \(0.345763\pi\)
\(420\) 0 0
\(421\) 7.41183 + 7.41183i 0.361230 + 0.361230i 0.864266 0.503035i \(-0.167783\pi\)
−0.503035 + 0.864266i \(0.667783\pi\)
\(422\) 0 0
\(423\) −8.92967 5.15555i −0.434175 0.250671i
\(424\) 0 0
\(425\) 6.38184 + 11.0537i 0.309565 + 0.536182i
\(426\) 0 0
\(427\) −23.8709 29.6766i −1.15519 1.43615i
\(428\) 0 0
\(429\) 15.9010 + 4.26065i 0.767706 + 0.205706i
\(430\) 0 0
\(431\) −1.39637 0.806195i −0.0672608 0.0388331i 0.465992 0.884789i \(-0.345697\pi\)
−0.533253 + 0.845956i \(0.679031\pi\)
\(432\) 0 0
\(433\) 13.0869i 0.628917i −0.949271 0.314458i \(-0.898177\pi\)
0.949271 0.314458i \(-0.101823\pi\)
\(434\) 0 0
\(435\) 12.9093 + 12.9093i 0.618956 + 0.618956i
\(436\) 0 0
\(437\) 2.72622 + 10.1744i 0.130413 + 0.486708i
\(438\) 0 0
\(439\) 1.71358 0.989334i 0.0817846 0.0472184i −0.458550 0.888669i \(-0.651631\pi\)
0.540335 + 0.841450i \(0.318298\pi\)
\(440\) 0 0
\(441\) 18.7069 + 17.0673i 0.890803 + 0.812729i
\(442\) 0 0
\(443\) 33.5156 + 8.98048i 1.59237 + 0.426675i 0.942728 0.333562i \(-0.108251\pi\)
0.649646 + 0.760237i \(0.274917\pi\)
\(444\) 0 0
\(445\) −4.03377 15.0542i −0.191219 0.713640i
\(446\) 0 0
\(447\) 21.8614 1.03401
\(448\) 0 0
\(449\) 20.0460 0.946031 0.473015 0.881054i \(-0.343166\pi\)
0.473015 + 0.881054i \(0.343166\pi\)
\(450\) 0 0
\(451\) 1.04285 + 3.89196i 0.0491058 + 0.183265i
\(452\) 0 0
\(453\) 25.4407 + 6.81682i 1.19531 + 0.320282i
\(454\) 0 0
\(455\) 37.4537 + 4.06081i 1.75586 + 0.190374i
\(456\) 0 0
\(457\) −25.9859 + 15.0030i −1.21557 + 0.701810i −0.963967 0.266020i \(-0.914291\pi\)
−0.251603 + 0.967830i \(0.580958\pi\)
\(458\) 0 0
\(459\) −0.961116 3.58693i −0.0448611 0.167424i
\(460\) 0 0
\(461\) −18.2334 18.2334i −0.849213 0.849213i 0.140822 0.990035i \(-0.455026\pi\)
−0.990035 + 0.140822i \(0.955026\pi\)
\(462\) 0 0
\(463\) 31.3804i 1.45837i −0.684316 0.729186i \(-0.739899\pi\)
0.684316 0.729186i \(-0.260101\pi\)
\(464\) 0 0
\(465\) 56.0497 + 32.3603i 2.59924 + 1.50067i
\(466\) 0 0
\(467\) 23.0310 + 6.17115i 1.06575 + 0.285567i 0.748745 0.662858i \(-0.230657\pi\)
0.317004 + 0.948424i \(0.397323\pi\)
\(468\) 0 0
\(469\) −2.57011 + 6.63028i −0.118677 + 0.306158i
\(470\) 0 0
\(471\) −18.8844 32.7088i −0.870148 1.50714i
\(472\) 0 0
\(473\) 12.6774 + 7.31928i 0.582906 + 0.336541i
\(474\) 0 0
\(475\) −17.6129 17.6129i −0.808135 0.808135i
\(476\) 0 0
\(477\) 29.3752 29.3752i 1.34500 1.34500i
\(478\) 0 0
\(479\) −17.6784 + 30.6199i −0.807747 + 1.39906i 0.106674 + 0.994294i \(0.465980\pi\)
−0.914421 + 0.404764i \(0.867354\pi\)
\(480\) 0 0
\(481\) −4.01319 + 2.31701i −0.182986 + 0.105647i
\(482\) 0 0
\(483\) −2.40746 15.5297i −0.109543 0.706625i
\(484\) 0 0
\(485\) 4.90979 18.3236i 0.222942 0.832032i
\(486\) 0 0
\(487\) 5.31153 9.19984i 0.240688 0.416884i −0.720222 0.693743i \(-0.755960\pi\)
0.960911 + 0.276859i \(0.0892935\pi\)
\(488\) 0 0
\(489\) 59.1357 2.67421
\(490\) 0 0
\(491\) −26.9088 + 26.9088i −1.21438 + 1.21438i −0.244806 + 0.969572i \(0.578724\pi\)
−0.969572 + 0.244806i \(0.921276\pi\)
\(492\) 0 0
\(493\) 4.95472 1.32761i 0.223149 0.0597927i
\(494\) 0 0
\(495\) 8.50291 + 14.7275i 0.382177 + 0.661950i
\(496\) 0 0
\(497\) −11.6902 + 15.9797i −0.524379 + 0.716789i
\(498\) 0 0
\(499\) −3.28081 + 12.2441i −0.146869 + 0.548123i 0.852796 + 0.522244i \(0.174905\pi\)
−0.999665 + 0.0258790i \(0.991762\pi\)
\(500\) 0 0
\(501\) −9.49441 + 2.54402i −0.424179 + 0.113658i
\(502\) 0 0
\(503\) 13.7074i 0.611183i 0.952163 + 0.305591i \(0.0988542\pi\)
−0.952163 + 0.305591i \(0.901146\pi\)
\(504\) 0 0
\(505\) 4.66892i 0.207764i
\(506\) 0 0
\(507\) −15.8615 + 4.25008i −0.704434 + 0.188753i
\(508\) 0 0
\(509\) −6.16734 + 23.0168i −0.273363 + 1.02020i 0.683568 + 0.729887i \(0.260427\pi\)
−0.956931 + 0.290317i \(0.906239\pi\)
\(510\) 0 0
\(511\) 12.0750 + 27.3622i 0.534168 + 1.21043i
\(512\) 0 0
\(513\) 3.62343 + 6.27596i 0.159978 + 0.277091i
\(514\) 0 0
\(515\) −7.58014 + 2.03109i −0.334021 + 0.0895007i
\(516\) 0 0
\(517\) 2.92950 2.92950i 0.128839 0.128839i
\(518\) 0 0
\(519\) −21.3854 −0.938715
\(520\) 0 0
\(521\) 11.8589 20.5402i 0.519548 0.899884i −0.480194 0.877163i \(-0.659434\pi\)
0.999742 0.0227214i \(-0.00723308\pi\)
\(522\) 0 0
\(523\) −4.85978 + 18.1369i −0.212503 + 0.793073i 0.774527 + 0.632540i \(0.217988\pi\)
−0.987031 + 0.160532i \(0.948679\pi\)
\(524\) 0 0
\(525\) 23.2920 + 28.9569i 1.01655 + 1.26378i
\(526\) 0 0
\(527\) 15.7482 9.09220i 0.686000 0.396063i
\(528\) 0 0
\(529\) 8.83428 15.3014i 0.384099 0.665279i
\(530\) 0 0
\(531\) 9.99392 9.99392i 0.433699 0.433699i
\(532\) 0 0
\(533\) −8.62996 8.62996i −0.373805 0.373805i
\(534\) 0 0
\(535\) 12.6067 + 7.27851i 0.545037 + 0.314677i
\(536\) 0 0
\(537\) −24.8536 43.0476i −1.07251 1.85764i
\(538\) 0 0
\(539\) −8.56926 + 5.48534i −0.369104 + 0.236271i
\(540\) 0 0
\(541\) −25.2496 6.76561i −1.08556 0.290876i −0.328691 0.944437i \(-0.606608\pi\)
−0.756874 + 0.653561i \(0.773274\pi\)
\(542\) 0 0
\(543\) 19.1301 + 11.0448i 0.820952 + 0.473977i
\(544\) 0 0
\(545\) 10.5310i 0.451100i
\(546\) 0 0
\(547\) 23.8532 + 23.8532i 1.01989 + 1.01989i 0.999798 + 0.0200929i \(0.00639620\pi\)
0.0200929 + 0.999798i \(0.493604\pi\)
\(548\) 0 0
\(549\) 13.4779 + 50.3001i 0.575221 + 2.14675i
\(550\) 0 0
\(551\) −8.66915 + 5.00513i −0.369318 + 0.213226i
\(552\) 0 0
\(553\) −0.232726 + 2.14648i −0.00989651 + 0.0912775i
\(554\) 0 0
\(555\) −8.45871 2.26650i −0.359052 0.0962077i
\(556\) 0 0
\(557\) −11.1522 41.6206i −0.472534 1.76352i −0.630617 0.776094i \(-0.717198\pi\)
0.158083 0.987426i \(-0.449468\pi\)
\(558\) 0 0
\(559\) −44.3401 −1.87539
\(560\) 0 0
\(561\) 8.74052 0.369025
\(562\) 0 0
\(563\) 2.30901 + 8.61735i 0.0973133 + 0.363178i 0.997360 0.0726153i \(-0.0231345\pi\)
−0.900047 + 0.435793i \(0.856468\pi\)
\(564\) 0 0
\(565\) 36.0500 + 9.65958i 1.51664 + 0.406382i
\(566\) 0 0
\(567\) 7.22743 + 16.3775i 0.303524 + 0.687789i
\(568\) 0 0
\(569\) −5.49552 + 3.17284i −0.230384 + 0.133012i −0.610749 0.791824i \(-0.709132\pi\)
0.380365 + 0.924836i \(0.375798\pi\)
\(570\) 0 0
\(571\) 9.71490 + 36.2565i 0.406556 + 1.51729i 0.801168 + 0.598439i \(0.204212\pi\)
−0.394612 + 0.918848i \(0.629121\pi\)
\(572\) 0 0
\(573\) 27.6637 + 27.6637i 1.15567 + 1.15567i
\(574\) 0 0
\(575\) 12.6074i 0.525765i
\(576\) 0 0
\(577\) −1.63907 0.946316i −0.0682353 0.0393957i 0.465494 0.885051i \(-0.345877\pi\)
−0.533729 + 0.845655i \(0.679210\pi\)
\(578\) 0 0
\(579\) −55.8569 14.9668i −2.32134 0.622000i
\(580\) 0 0
\(581\) 1.52061 + 9.80889i 0.0630854 + 0.406941i
\(582\) 0 0
\(583\) 8.34585 + 14.4554i 0.345650 + 0.598683i
\(584\) 0 0
\(585\) −44.6094 25.7553i −1.84437 1.06485i
\(586\) 0 0
\(587\) −26.8519 26.8519i −1.10830 1.10830i −0.993374 0.114923i \(-0.963338\pi\)
−0.114923 0.993374i \(-0.536662\pi\)
\(588\) 0 0
\(589\) −25.0931 + 25.0931i −1.03394 + 1.03394i
\(590\) 0 0
\(591\) −15.1265 + 26.1998i −0.622220 + 1.07772i
\(592\) 0 0
\(593\) −23.8885 + 13.7920i −0.980984 + 0.566372i −0.902567 0.430549i \(-0.858320\pi\)
−0.0784171 + 0.996921i \(0.524987\pi\)
\(594\) 0 0
\(595\) 19.7667 3.06430i 0.810354 0.125624i
\(596\) 0 0
\(597\) −6.80456 + 25.3950i −0.278492 + 1.03935i
\(598\) 0 0
\(599\) −11.8101 + 20.4557i −0.482548 + 0.835797i −0.999799 0.0200365i \(-0.993622\pi\)
0.517252 + 0.855833i \(0.326955\pi\)
\(600\) 0 0
\(601\) 5.61717 0.229129 0.114565 0.993416i \(-0.463453\pi\)
0.114565 + 0.993416i \(0.463453\pi\)
\(602\) 0 0
\(603\) 6.87508 6.87508i 0.279975 0.279975i
\(604\) 0 0
\(605\) 27.7641 7.43936i 1.12877 0.302453i
\(606\) 0 0
\(607\) −2.43281 4.21375i −0.0987446 0.171031i 0.812421 0.583072i \(-0.198149\pi\)
−0.911165 + 0.412041i \(0.864816\pi\)
\(608\) 0 0
\(609\) 13.6635 6.02975i 0.553672 0.244338i
\(610\) 0 0
\(611\) −3.24791 + 12.1214i −0.131396 + 0.490378i
\(612\) 0 0
\(613\) −3.99109 + 1.06941i −0.161199 + 0.0431931i −0.338516 0.940961i \(-0.609925\pi\)
0.177317 + 0.984154i \(0.443258\pi\)
\(614\) 0 0
\(615\) 23.0635i 0.930010i
\(616\) 0 0
\(617\) 25.3025i 1.01864i 0.860578 + 0.509319i \(0.170103\pi\)
−0.860578 + 0.509319i \(0.829897\pi\)
\(618\) 0 0
\(619\) 17.7405 4.75356i 0.713051 0.191062i 0.115982 0.993251i \(-0.462998\pi\)
0.597069 + 0.802190i \(0.296332\pi\)
\(620\) 0 0
\(621\) −0.949348 + 3.54302i −0.0380960 + 0.142176i
\(622\) 0 0
\(623\) −12.6753 1.37428i −0.507825 0.0550595i
\(624\) 0 0
\(625\) −11.2438 19.4749i −0.449753 0.778995i
\(626\) 0 0
\(627\) −16.4760 + 4.41472i −0.657987 + 0.176307i
\(628\) 0 0
\(629\) −1.73981 + 1.73981i −0.0693707 + 0.0693707i
\(630\) 0 0
\(631\) −41.4293 −1.64928 −0.824638 0.565661i \(-0.808621\pi\)
−0.824638 + 0.565661i \(0.808621\pi\)
\(632\) 0 0
\(633\) 10.4368 18.0771i 0.414826 0.718500i
\(634\) 0 0
\(635\) −3.76023 + 14.0334i −0.149220 + 0.556897i
\(636\) 0 0
\(637\) 14.1712 27.3672i 0.561484 1.08433i
\(638\) 0 0
\(639\) 23.4447 13.5358i 0.927458 0.535468i
\(640\) 0 0
\(641\) −17.0933 + 29.6065i −0.675146 + 1.16939i 0.301280 + 0.953536i \(0.402586\pi\)
−0.976426 + 0.215852i \(0.930747\pi\)
\(642\) 0 0
\(643\) 3.46526 3.46526i 0.136657 0.136657i −0.635469 0.772126i \(-0.719193\pi\)
0.772126 + 0.635469i \(0.219193\pi\)
\(644\) 0 0
\(645\) −59.2493 59.2493i −2.33294 2.33294i
\(646\) 0 0
\(647\) 27.2890 + 15.7553i 1.07284 + 0.619406i 0.928957 0.370188i \(-0.120707\pi\)
0.143886 + 0.989594i \(0.454040\pi\)
\(648\) 0 0
\(649\) 2.83939 + 4.91797i 0.111456 + 0.193047i
\(650\) 0 0
\(651\) 41.2549 33.1841i 1.61691 1.30059i
\(652\) 0 0
\(653\) −19.3649 5.18880i −0.757805 0.203053i −0.140828 0.990034i \(-0.544976\pi\)
−0.616977 + 0.786981i \(0.711643\pi\)
\(654\) 0 0
\(655\) 38.7436 + 22.3686i 1.51384 + 0.874015i
\(656\) 0 0
\(657\) 40.8933i 1.59540i
\(658\) 0 0
\(659\) −29.3969 29.3969i −1.14514 1.14514i −0.987496 0.157643i \(-0.949610\pi\)
−0.157643 0.987496i \(-0.550390\pi\)
\(660\) 0 0
\(661\) −12.5518 46.8440i −0.488208 1.82202i −0.565157 0.824984i \(-0.691184\pi\)
0.0769483 0.997035i \(-0.475482\pi\)
\(662\) 0 0
\(663\) −22.9280 + 13.2375i −0.890450 + 0.514102i
\(664\) 0 0
\(665\) −35.7127 + 15.7601i −1.38488 + 0.611151i
\(666\) 0 0
\(667\) −4.89406 1.31136i −0.189499 0.0507760i
\(668\) 0 0
\(669\) 11.6468 + 43.4664i 0.450290 + 1.68051i
\(670\) 0 0
\(671\) −20.9232 −0.807733
\(672\) 0 0
\(673\) 11.6457 0.448909 0.224454 0.974485i \(-0.427940\pi\)
0.224454 + 0.974485i \(0.427940\pi\)
\(674\) 0 0
\(675\) −2.24495 8.37826i −0.0864080 0.322479i
\(676\) 0 0
\(677\) −32.6233 8.74138i −1.25381 0.335959i −0.430006 0.902826i \(-0.641488\pi\)
−0.823809 + 0.566868i \(0.808155\pi\)
\(678\) 0 0
\(679\) −12.5247 9.16263i −0.480653 0.351630i
\(680\) 0 0
\(681\) −39.0453 + 22.5428i −1.49622 + 0.863843i
\(682\) 0 0
\(683\) −1.76166 6.57460i −0.0674080 0.251570i 0.923997 0.382400i \(-0.124902\pi\)
−0.991405 + 0.130830i \(0.958236\pi\)
\(684\) 0 0
\(685\) −5.76794 5.76794i −0.220382 0.220382i
\(686\) 0 0
\(687\) 17.9827i 0.686081i
\(688\) 0 0
\(689\) −43.7854 25.2795i −1.66809 0.963073i
\(690\) 0 0
\(691\) −29.7544 7.97267i −1.13191 0.303295i −0.356217 0.934403i \(-0.615934\pi\)
−0.775695 + 0.631108i \(0.782600\pi\)
\(692\) 0 0
\(693\) 13.7474 2.13117i 0.522221 0.0809565i
\(694\) 0 0
\(695\) −13.7303 23.7816i −0.520821 0.902088i
\(696\) 0 0
\(697\) −5.61193 3.24005i −0.212567 0.122726i
\(698\) 0 0
\(699\) 52.7060 + 52.7060i 1.99352 + 1.99352i
\(700\) 0 0
\(701\) 28.2191 28.2191i 1.06582 1.06582i 0.0681440 0.997675i \(-0.478292\pi\)
0.997675 0.0681440i \(-0.0217077\pi\)
\(702\) 0 0
\(703\) 2.40080 4.15831i 0.0905480 0.156834i
\(704\) 0 0
\(705\) −20.5371 + 11.8571i −0.773473 + 0.446565i
\(706\) 0 0
\(707\) −3.56123 1.38045i −0.133934 0.0519171i
\(708\) 0 0
\(709\) 4.97862 18.5805i 0.186976 0.697804i −0.807223 0.590247i \(-0.799030\pi\)
0.994199 0.107557i \(-0.0343028\pi\)
\(710\) 0 0
\(711\) 1.47604 2.55657i 0.0553557 0.0958790i
\(712\) 0 0
\(713\) −17.9618 −0.672673
\(714\) 0 0
\(715\) 14.6347 14.6347i 0.547308 0.547308i
\(716\) 0 0
\(717\) −33.1938 + 8.89426i −1.23965 + 0.332162i
\(718\) 0 0
\(719\) 11.9289 + 20.6615i 0.444873 + 0.770543i 0.998043 0.0625253i \(-0.0199154\pi\)
−0.553170 + 0.833068i \(0.686582\pi\)
\(720\) 0 0
\(721\) −0.691981 + 6.38229i −0.0257707 + 0.237689i
\(722\) 0 0
\(723\) −8.11163 + 30.2730i −0.301675 + 1.12587i
\(724\) 0 0
\(725\) 11.5731 3.10100i 0.429814 0.115168i
\(726\) 0 0
\(727\) 28.5645i 1.05940i −0.848185 0.529700i \(-0.822305\pi\)
0.848185 0.529700i \(-0.177695\pi\)
\(728\) 0 0
\(729\) 36.7360i 1.36059i
\(730\) 0 0
\(731\) −22.7404 + 6.09328i −0.841085 + 0.225368i
\(732\) 0 0
\(733\) −6.04445 + 22.5582i −0.223257 + 0.833206i 0.759839 + 0.650112i \(0.225278\pi\)
−0.983095 + 0.183094i \(0.941389\pi\)
\(734\) 0 0
\(735\) 55.5055 17.6331i 2.04735 0.650406i
\(736\) 0 0
\(737\) 1.95329 + 3.38320i 0.0719504 + 0.124622i
\(738\) 0 0
\(739\) −1.72028 + 0.460947i −0.0632814 + 0.0169562i −0.290321 0.956929i \(-0.593762\pi\)
0.227039 + 0.973886i \(0.427095\pi\)
\(740\) 0 0
\(741\) 36.5335 36.5335i 1.34209 1.34209i
\(742\) 0 0
\(743\) 16.7041 0.612815 0.306407 0.951900i \(-0.400873\pi\)
0.306407 + 0.951900i \(0.400873\pi\)
\(744\) 0 0
\(745\) 13.7426 23.8029i 0.503490 0.872070i
\(746\) 0 0
\(747\) 3.51266 13.1094i 0.128522 0.479649i
\(748\) 0 0
\(749\) 9.27909 7.46379i 0.339051 0.272721i
\(750\) 0 0
\(751\) 1.51512 0.874754i 0.0552874 0.0319202i −0.472101 0.881544i \(-0.656504\pi\)
0.527389 + 0.849624i \(0.323171\pi\)
\(752\) 0 0
\(753\) −12.1678 + 21.0752i −0.443419 + 0.768024i
\(754\) 0 0
\(755\) 23.4148 23.4148i 0.852153 0.852153i
\(756\) 0 0
\(757\) 15.6771 + 15.6771i 0.569792 + 0.569792i 0.932070 0.362278i \(-0.118001\pi\)
−0.362278 + 0.932070i \(0.618001\pi\)
\(758\) 0 0
\(759\) −7.47683 4.31675i −0.271392 0.156688i
\(760\) 0 0
\(761\) −25.9814 45.0012i −0.941826 1.63129i −0.761984 0.647596i \(-0.775775\pi\)
−0.179842 0.983695i \(-0.557559\pi\)
\(762\) 0 0
\(763\) −8.03255 3.11368i −0.290798 0.112723i
\(764\) 0 0
\(765\) −26.4178 7.07864i −0.955139 0.255929i
\(766\) 0 0
\(767\) −14.8965 8.60050i −0.537882 0.310546i
\(768\) 0 0
\(769\) 34.9699i 1.26105i 0.776170 + 0.630524i \(0.217160\pi\)
−0.776170 + 0.630524i \(0.782840\pi\)
\(770\) 0 0
\(771\) 6.99090 + 6.99090i 0.251771 + 0.251771i
\(772\) 0 0
\(773\) 3.55817 + 13.2793i 0.127978 + 0.477622i 0.999928 0.0119731i \(-0.00381124\pi\)
−0.871950 + 0.489595i \(0.837145\pi\)
\(774\) 0 0
\(775\) 36.7841 21.2373i 1.32132 0.762866i
\(776\) 0 0
\(777\) −4.22974 + 5.78176i −0.151741 + 0.207419i
\(778\) 0 0
\(779\) 12.2150 + 3.27301i 0.437650 + 0.117268i
\(780\) 0 0
\(781\) 2.81523 + 10.5066i 0.100737 + 0.375956i
\(782\) 0 0
\(783\) −3.48586 −0.124574
\(784\) 0 0
\(785\) −47.4847 −1.69480
\(786\) 0 0
\(787\) −6.42575 23.9812i −0.229053 0.854838i −0.980740 0.195318i \(-0.937426\pi\)
0.751687 0.659520i \(-0.229240\pi\)
\(788\) 0 0
\(789\) 15.6932 + 4.20498i 0.558692 + 0.149701i
\(790\) 0 0
\(791\) 18.0267 24.6412i 0.640954 0.876139i
\(792\) 0 0
\(793\) 54.8856 31.6882i 1.94904 1.12528i
\(794\) 0 0
\(795\) −24.7284 92.2878i −0.877027 3.27311i
\(796\) 0 0
\(797\) 13.3302 + 13.3302i 0.472179 + 0.472179i 0.902619 0.430440i \(-0.141642\pi\)
−0.430440 + 0.902619i \(0.641642\pi\)
\(798\) 0 0
\(799\) 6.66293i 0.235717i
\(800\) 0 0
\(801\) 15.0970 + 8.71624i 0.533425 + 0.307973i
\(802\) 0 0
\(803\) 15.8709 + 4.25258i 0.560070 + 0.150070i
\(804\) 0 0
\(805\) −18.4222 7.14106i −0.649298 0.251689i
\(806\) 0 0
\(807\) 31.0148 + 53.7192i 1.09177 + 1.89101i
\(808\) 0 0
\(809\) 18.7601 + 10.8311i 0.659569 + 0.380803i 0.792113 0.610375i \(-0.208981\pi\)
−0.132544 + 0.991177i \(0.542314\pi\)
\(810\) 0 0
\(811\) 1.51326 + 1.51326i 0.0531379 + 0.0531379i 0.733176 0.680039i \(-0.238037\pi\)
−0.680039 + 0.733176i \(0.738037\pi\)
\(812\) 0 0
\(813\) 17.2192 17.2192i 0.603904 0.603904i
\(814\) 0 0
\(815\) 37.1741 64.3874i 1.30215 2.25539i
\(816\) 0 0
\(817\) 39.7883 22.9718i 1.39202 0.803681i
\(818\) 0 0
\(819\) −32.8344 + 26.4109i −1.14733 + 0.922871i
\(820\) 0 0
\(821\) −12.4214 + 46.3574i −0.433511 + 1.61788i 0.311094 + 0.950379i \(0.399305\pi\)
−0.744605 + 0.667506i \(0.767362\pi\)
\(822\) 0 0
\(823\) −15.0408 + 26.0514i −0.524290 + 0.908096i 0.475310 + 0.879818i \(0.342336\pi\)
−0.999600 + 0.0282782i \(0.990998\pi\)
\(824\) 0 0
\(825\) 20.4158 0.710789
\(826\) 0 0
\(827\) −22.5866 + 22.5866i −0.785414 + 0.785414i −0.980739 0.195325i \(-0.937424\pi\)
0.195325 + 0.980739i \(0.437424\pi\)
\(828\) 0 0
\(829\) −31.9742 + 8.56747i −1.11051 + 0.297561i −0.767038 0.641602i \(-0.778270\pi\)
−0.343473 + 0.939162i \(0.611603\pi\)
\(830\) 0 0
\(831\) −15.0840 26.1263i −0.523260 0.906313i
\(832\) 0 0
\(833\) 3.50706 15.9831i 0.121512 0.553780i
\(834\) 0 0
\(835\) −3.19846 + 11.9368i −0.110687 + 0.413091i
\(836\) 0 0
\(837\) −11.9365 + 3.19838i −0.412586 + 0.110552i
\(838\) 0 0
\(839\) 35.7894i 1.23559i −0.786340 0.617794i \(-0.788027\pi\)
0.786340 0.617794i \(-0.211973\pi\)
\(840\) 0 0
\(841\) 24.1849i 0.833962i
\(842\) 0 0
\(843\) 13.9029 3.72527i 0.478841 0.128305i
\(844\) 0 0
\(845\) −5.34340 + 19.9418i −0.183818 + 0.686020i
\(846\) 0 0
\(847\) 2.53455 23.3766i 0.0870880 0.803231i
\(848\) 0 0
\(849\) −4.93437 8.54658i −0.169347 0.293318i
\(850\) 0 0
\(851\) 2.34752 0.629017i 0.0804721 0.0215624i
\(852\) 0 0
\(853\) −1.27195 + 1.27195i −0.0435507 + 0.0435507i −0.728547 0.684996i \(-0.759804\pi\)
0.684996 + 0.728547i \(0.259804\pi\)
\(854\) 0 0
\(855\) 53.3733 1.82533
\(856\) 0 0
\(857\) −17.1377 + 29.6834i −0.585412 + 1.01396i 0.409411 + 0.912350i \(0.365734\pi\)
−0.994824 + 0.101614i \(0.967599\pi\)
\(858\) 0 0
\(859\) 11.5677 43.1714i 0.394686 1.47299i −0.427628 0.903955i \(-0.640651\pi\)
0.822314 0.569034i \(-0.192683\pi\)
\(860\) 0 0
\(861\) −17.5917 6.81912i −0.599523 0.232395i
\(862\) 0 0
\(863\) −32.5858 + 18.8134i −1.10923 + 0.640416i −0.938631 0.344924i \(-0.887905\pi\)
−0.170602 + 0.985340i \(0.554571\pi\)
\(864\) 0 0
\(865\) −13.4434 + 23.2846i −0.457088 + 0.791700i
\(866\) 0 0
\(867\) 20.9832 20.9832i 0.712627 0.712627i
\(868\) 0 0
\(869\) 0.838719 + 0.838719i 0.0284516 + 0.0284516i
\(870\) 0 0
\(871\) −10.2477 5.91651i −0.347230 0.200473i
\(872\) 0 0
\(873\) 10.6092 + 18.3756i 0.359065 + 0.621920i
\(874\) 0 0
\(875\) 3.89081 0.603167i 0.131533 0.0203908i
\(876\) 0 0
\(877\) 20.5119 + 5.49616i 0.692639 + 0.185592i 0.587931 0.808911i \(-0.299943\pi\)
0.104708 + 0.994503i \(0.466609\pi\)
\(878\) 0 0
\(879\) −30.7099 17.7304i −1.03582 0.598031i
\(880\) 0 0
\(881\) 3.13017i 0.105458i 0.998609 + 0.0527291i \(0.0167920\pi\)
−0.998609 + 0.0527291i \(0.983208\pi\)
\(882\) 0 0
\(883\) −5.90657 5.90657i −0.198772 0.198772i 0.600702 0.799473i \(-0.294888\pi\)
−0.799473 + 0.600702i \(0.794888\pi\)
\(884\) 0 0
\(885\) −8.41301 31.3978i −0.282800 1.05543i
\(886\) 0 0
\(887\) 41.9702 24.2315i 1.40922 0.813615i 0.413908 0.910318i \(-0.364163\pi\)
0.995313 + 0.0967040i \(0.0308300\pi\)
\(888\) 0 0
\(889\) 9.59219 + 7.01733i 0.321712 + 0.235354i
\(890\) 0 0
\(891\) 9.49940 + 2.54536i 0.318242 + 0.0852727i
\(892\) 0 0
\(893\) −3.36536 12.5597i −0.112617 0.420294i
\(894\) 0 0
\(895\) −62.4941 −2.08895
\(896\) 0 0
\(897\) 26.1508 0.873151
\(898\) 0 0
\(899\) −4.41800 16.4882i −0.147348 0.549912i
\(900\) 0 0
\(901\) −25.9299 6.94789i −0.863849 0.231468i
\(902\) 0 0
\(903\) −62.7105 + 27.6744i −2.08688 + 0.920946i
\(904\) 0 0
\(905\) 24.0513 13.8860i 0.799491 0.461587i
\(906\) 0 0
\(907\) 9.69974 + 36.1999i 0.322075 + 1.20200i 0.917220 + 0.398381i \(0.130428\pi\)
−0.595146 + 0.803618i \(0.702906\pi\)
\(908\) 0 0
\(909\) 3.69271 + 3.69271i 0.122480 + 0.122480i
\(910\) 0 0
\(911\) 12.0871i 0.400463i 0.979749 + 0.200231i \(0.0641694\pi\)
−0.979749 + 0.200231i \(0.935831\pi\)
\(912\) 0 0
\(913\) 4.72253 + 2.72656i 0.156293 + 0.0902358i
\(914\) 0 0
\(915\) 115.684 + 30.9974i 3.82439 + 1.02474i
\(916\) 0 0
\(917\) 28.5169 22.9381i 0.941712 0.757481i
\(918\) 0 0
\(919\) 27.6308 + 47.8579i 0.911455 + 1.57869i 0.812010 + 0.583643i \(0.198373\pi\)
0.0994447 + 0.995043i \(0.468293\pi\)
\(920\) 0 0
\(921\) 64.8188 + 37.4231i 2.13585 + 1.23313i
\(922\) 0 0
\(923\) −23.2971 23.2971i −0.766833 0.766833i
\(924\) 0 0
\(925\) −4.06379 + 4.06379i −0.133617 + 0.133617i
\(926\) 0 0
\(927\) 4.38882 7.60165i 0.144148 0.249671i
\(928\) 0 0
\(929\) 8.64695 4.99232i 0.283697 0.163793i −0.351399 0.936226i \(-0.614294\pi\)
0.635096 + 0.772433i \(0.280961\pi\)
\(930\) 0 0
\(931\) 1.46199 + 31.8996i 0.0479147 + 1.04547i
\(932\) 0 0
\(933\) −0.380765 + 1.42103i −0.0124657 + 0.0465226i
\(934\) 0 0
\(935\) 5.49450 9.51675i 0.179689 0.311231i
\(936\) 0 0
\(937\) −7.92416 −0.258871 −0.129436 0.991588i \(-0.541317\pi\)
−0.129436 + 0.991588i \(0.541317\pi\)
\(938\) 0 0
\(939\) −2.57311 + 2.57311i −0.0839703 + 0.0839703i
\(940\) 0 0
\(941\) −6.10702 + 1.63637i −0.199083 + 0.0533441i −0.356983 0.934111i \(-0.616194\pi\)
0.157900 + 0.987455i \(0.449528\pi\)
\(942\) 0 0
\(943\) 3.20038 + 5.54321i 0.104219 + 0.180512i
\(944\) 0 0
\(945\) −13.5141 1.46523i −0.439613 0.0476638i
\(946\) 0 0
\(947\) 2.94453 10.9891i 0.0956843 0.357098i −0.901438 0.432908i \(-0.857487\pi\)
0.997122 + 0.0758096i \(0.0241541\pi\)
\(948\) 0 0
\(949\) −48.0727 + 12.8811i −1.56051 + 0.418137i
\(950\) 0 0
\(951\) 67.3561i 2.18417i
\(952\) 0 0
\(953\) 12.7329i 0.412460i 0.978504 + 0.206230i \(0.0661195\pi\)
−0.978504 + 0.206230i \(0.933880\pi\)
\(954\) 0 0
\(955\) 47.5105 12.7304i 1.53741 0.411946i
\(956\) 0 0
\(957\) 2.12356 7.92522i 0.0686448 0.256186i
\(958\) 0 0
\(959\) −6.10489 + 2.69411i −0.197137 + 0.0869974i
\(960\) 0 0
\(961\) −14.7568 25.5595i −0.476025 0.824500i
\(962\) 0 0
\(963\) −15.7275 + 4.21417i −0.506812 + 0.135800i
\(964\) 0 0
\(965\) −51.4090 + 51.4090i −1.65491 + 1.65491i
\(966\) 0 0
\(967\) −10.6644 −0.342944 −0.171472 0.985189i \(-0.554852\pi\)
−0.171472 + 0.985189i \(0.554852\pi\)
\(968\) 0 0
\(969\) 13.7162 23.7571i 0.440628 0.763190i
\(970\) 0 0
\(971\) −0.596517 + 2.22623i −0.0191431 + 0.0714431i −0.974837 0.222920i \(-0.928441\pi\)
0.955694 + 0.294364i \(0.0951077\pi\)
\(972\) 0 0
\(973\) −22.1990 + 3.44137i −0.711669 + 0.110325i
\(974\) 0 0
\(975\) −53.5546 + 30.9198i −1.71512 + 0.990225i
\(976\) 0 0
\(977\) 7.66274 13.2723i 0.245153 0.424617i −0.717022 0.697051i \(-0.754495\pi\)
0.962175 + 0.272434i \(0.0878286\pi\)
\(978\) 0 0
\(979\) −4.95277 + 4.95277i −0.158291 + 0.158291i
\(980\) 0 0
\(981\) 8.32913 + 8.32913i 0.265929 + 0.265929i
\(982\) 0 0
\(983\) 16.1184 + 9.30595i 0.514097 + 0.296814i 0.734516 0.678591i \(-0.237409\pi\)
−0.220419 + 0.975405i \(0.570743\pi\)
\(984\) 0 0
\(985\) 19.0177 + 32.9396i 0.605954 + 1.04954i
\(986\) 0 0
\(987\) 2.97187 + 19.1705i 0.0945956 + 0.610202i
\(988\) 0 0
\(989\) 22.4620 + 6.01867i 0.714249 + 0.191383i
\(990\) 0 0
\(991\) 23.7555 + 13.7153i 0.754619 + 0.435680i 0.827361 0.561671i \(-0.189841\pi\)
−0.0727413 + 0.997351i \(0.523175\pi\)
\(992\) 0 0
\(993\) 7.22736i 0.229353i
\(994\) 0 0
\(995\) 23.3727 + 23.3727i 0.740965 + 0.740965i
\(996\) 0 0
\(997\) −5.02660 18.7595i −0.159194 0.594120i −0.998710 0.0507843i \(-0.983828\pi\)
0.839516 0.543335i \(-0.182839\pi\)
\(998\) 0 0
\(999\) 1.44804 0.836028i 0.0458140 0.0264507i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 896.2.z.b.31.12 56
4.3 odd 2 896.2.z.a.31.3 56
7.5 odd 6 inner 896.2.z.b.159.12 56
8.3 odd 2 448.2.z.a.143.12 56
8.5 even 2 112.2.v.a.59.7 yes 56
16.3 odd 4 inner 896.2.z.b.479.12 56
16.5 even 4 448.2.z.a.367.12 56
16.11 odd 4 112.2.v.a.3.13 56
16.13 even 4 896.2.z.a.479.3 56
28.19 even 6 896.2.z.a.159.3 56
56.5 odd 6 112.2.v.a.75.13 yes 56
56.13 odd 2 784.2.w.f.619.7 56
56.19 even 6 448.2.z.a.271.12 56
56.37 even 6 784.2.w.f.411.13 56
56.45 odd 6 784.2.j.a.587.6 56
56.53 even 6 784.2.j.a.587.5 56
112.5 odd 12 448.2.z.a.47.12 56
112.11 odd 12 784.2.j.a.195.6 56
112.19 even 12 inner 896.2.z.b.607.12 56
112.27 even 4 784.2.w.f.227.13 56
112.59 even 12 784.2.j.a.195.5 56
112.61 odd 12 896.2.z.a.607.3 56
112.75 even 12 112.2.v.a.19.7 yes 56
112.107 odd 12 784.2.w.f.19.7 56
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
112.2.v.a.3.13 56 16.11 odd 4
112.2.v.a.19.7 yes 56 112.75 even 12
112.2.v.a.59.7 yes 56 8.5 even 2
112.2.v.a.75.13 yes 56 56.5 odd 6
448.2.z.a.47.12 56 112.5 odd 12
448.2.z.a.143.12 56 8.3 odd 2
448.2.z.a.271.12 56 56.19 even 6
448.2.z.a.367.12 56 16.5 even 4
784.2.j.a.195.5 56 112.59 even 12
784.2.j.a.195.6 56 112.11 odd 12
784.2.j.a.587.5 56 56.53 even 6
784.2.j.a.587.6 56 56.45 odd 6
784.2.w.f.19.7 56 112.107 odd 12
784.2.w.f.227.13 56 112.27 even 4
784.2.w.f.411.13 56 56.37 even 6
784.2.w.f.619.7 56 56.13 odd 2
896.2.z.a.31.3 56 4.3 odd 2
896.2.z.a.159.3 56 28.19 even 6
896.2.z.a.479.3 56 16.13 even 4
896.2.z.a.607.3 56 112.61 odd 12
896.2.z.b.31.12 56 1.1 even 1 trivial
896.2.z.b.159.12 56 7.5 odd 6 inner
896.2.z.b.479.12 56 16.3 odd 4 inner
896.2.z.b.607.12 56 112.19 even 12 inner