Properties

Label 784.2.j.a.195.6
Level $784$
Weight $2$
Character 784.195
Analytic conductor $6.260$
Analytic rank $0$
Dimension $56$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [784,2,Mod(195,784)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(784, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([2, 3, 2])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("784.195"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 784 = 2^{4} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 784.j (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [56] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.26027151847\)
Analytic rank: \(0\)
Dimension: \(56\)
Relative dimension: \(28\) over \(\Q(i)\)
Twist minimal: no (minimal twist has level 112)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 195.6
Character \(\chi\) \(=\) 784.195
Dual form 784.2.j.a.587.6

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.10953 + 0.876896i) q^{2} +(1.81900 + 1.81900i) q^{3} +(0.462106 - 1.94588i) q^{4} +(-2.28693 - 2.28693i) q^{5} +(-3.61331 - 0.423158i) q^{6} +(1.19362 + 2.56423i) q^{8} +3.61753i q^{9} +(4.54282 + 0.532014i) q^{10} +(1.02778 + 1.02778i) q^{11} +(4.38013 - 2.69899i) q^{12} +(3.11315 - 3.11315i) q^{13} -8.31987i q^{15} +(-3.57292 - 1.79841i) q^{16} -2.33761i q^{17} +(-3.17220 - 4.01375i) q^{18} +(3.22573 + 3.22573i) q^{19} +(-5.50691 + 3.39330i) q^{20} +(-2.04161 - 0.239095i) q^{22} +2.30899 q^{23} +(-2.49315 + 6.83553i) q^{24} +5.46013i q^{25} +(-0.724218 + 6.18404i) q^{26} +(-1.12329 + 1.12329i) q^{27} +(-1.55163 - 1.55163i) q^{29} +(7.29566 + 9.23113i) q^{30} +7.77905 q^{31} +(5.54127 - 1.13769i) q^{32} +3.73908i q^{33} +(2.04984 + 2.59365i) q^{34} +(7.03929 + 1.67168i) q^{36} +(0.744267 - 0.744267i) q^{37} +(-6.40767 - 0.750408i) q^{38} +11.3256 q^{39} +(3.13450 - 8.59395i) q^{40} +2.77210 q^{41} +(7.12142 + 7.12142i) q^{43} +(2.47489 - 1.52500i) q^{44} +(8.27305 - 8.27305i) q^{45} +(-2.56189 + 2.02475i) q^{46} +2.85031 q^{47} +(-3.22783 - 9.77044i) q^{48} +(-4.78797 - 6.05817i) q^{50} +(4.25212 - 4.25212i) q^{51} +(-4.61922 - 7.49643i) q^{52} +(-8.12024 + 8.12024i) q^{53} +(0.261313 - 2.23133i) q^{54} -4.70094i q^{55} +11.7352i q^{57} +(3.08219 + 0.360958i) q^{58} +(2.76264 - 2.76264i) q^{59} +(-16.1895 - 3.84466i) q^{60} +(10.1788 - 10.1788i) q^{61} +(-8.63107 + 6.82142i) q^{62} +(-5.15056 + 6.12142i) q^{64} -14.2391 q^{65} +(-3.27878 - 4.14861i) q^{66} +(-1.90049 + 1.90049i) q^{67} +(-4.54872 - 1.08023i) q^{68} +(4.20006 + 4.20006i) q^{69} -7.48345 q^{71} +(-9.27618 + 4.31795i) q^{72} -11.3042 q^{73} +(-0.173140 + 1.47843i) q^{74} +(-9.93198 + 9.93198i) q^{75} +(7.76752 - 4.78626i) q^{76} +(-12.5661 + 9.93142i) q^{78} +0.816047i q^{79} +(4.05818 + 12.2839i) q^{80} +6.76606 q^{81} +(-3.07572 + 2.43084i) q^{82} +(-2.65285 - 2.65285i) q^{83} +(-5.34597 + 5.34597i) q^{85} +(-14.1462 - 1.65667i) q^{86} -5.64483i q^{87} +(-1.40869 + 3.86225i) q^{88} -4.81889 q^{89} +(-1.92458 + 16.4338i) q^{90} +(1.06700 - 4.49303i) q^{92} +(14.1501 + 14.1501i) q^{93} +(-3.16250 + 2.49943i) q^{94} -14.7541i q^{95} +(12.1490 + 8.01011i) q^{96} -5.86541i q^{97} +(-3.71804 + 3.71804i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 56 q + 4 q^{2} + 8 q^{4} + 4 q^{8} - 4 q^{11} - 16 q^{16} + 60 q^{18} - 28 q^{22} + 24 q^{23} - 24 q^{29} + 36 q^{30} + 24 q^{32} + 16 q^{36} - 12 q^{37} + 8 q^{39} - 52 q^{44} - 32 q^{46} + 68 q^{51} - 12 q^{53}+ \cdots - 16 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/784\mathbb{Z}\right)^\times\).

\(n\) \(197\) \(687\) \(689\)
\(\chi(n)\) \(e\left(\frac{3}{4}\right)\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.10953 + 0.876896i −0.784555 + 0.620059i
\(3\) 1.81900 + 1.81900i 1.05020 + 1.05020i 0.998671 + 0.0515294i \(0.0164096\pi\)
0.0515294 + 0.998671i \(0.483590\pi\)
\(4\) 0.462106 1.94588i 0.231053 0.972941i
\(5\) −2.28693 2.28693i −1.02275 1.02275i −0.999735 0.0230125i \(-0.992674\pi\)
−0.0230125 0.999735i \(-0.507326\pi\)
\(6\) −3.61331 0.423158i −1.47513 0.172753i
\(7\) 0 0
\(8\) 1.19362 + 2.56423i 0.422007 + 0.906592i
\(9\) 3.61753i 1.20584i
\(10\) 4.54282 + 0.532014i 1.43657 + 0.168238i
\(11\) 1.02778 + 1.02778i 0.309888 + 0.309888i 0.844866 0.534978i \(-0.179680\pi\)
−0.534978 + 0.844866i \(0.679680\pi\)
\(12\) 4.38013 2.69899i 1.26444 0.779132i
\(13\) 3.11315 3.11315i 0.863433 0.863433i −0.128303 0.991735i \(-0.540953\pi\)
0.991735 + 0.128303i \(0.0409528\pi\)
\(14\) 0 0
\(15\) 8.31987i 2.14818i
\(16\) −3.57292 1.79841i −0.893229 0.449602i
\(17\) 2.33761i 0.566955i −0.958979 0.283477i \(-0.908512\pi\)
0.958979 0.283477i \(-0.0914881\pi\)
\(18\) −3.17220 4.01375i −0.747695 0.946051i
\(19\) 3.22573 + 3.22573i 0.740033 + 0.740033i 0.972584 0.232551i \(-0.0747073\pi\)
−0.232551 + 0.972584i \(0.574707\pi\)
\(20\) −5.50691 + 3.39330i −1.23138 + 0.758764i
\(21\) 0 0
\(22\) −2.04161 0.239095i −0.435274 0.0509753i
\(23\) 2.30899 0.481458 0.240729 0.970592i \(-0.422613\pi\)
0.240729 + 0.970592i \(0.422613\pi\)
\(24\) −2.49315 + 6.83553i −0.508911 + 1.39530i
\(25\) 5.46013i 1.09203i
\(26\) −0.724218 + 6.18404i −0.142031 + 1.21279i
\(27\) −1.12329 + 1.12329i −0.216177 + 0.216177i
\(28\) 0 0
\(29\) −1.55163 1.55163i −0.288130 0.288130i 0.548210 0.836341i \(-0.315309\pi\)
−0.836341 + 0.548210i \(0.815309\pi\)
\(30\) 7.29566 + 9.23113i 1.33200 + 1.68537i
\(31\) 7.77905 1.39716 0.698579 0.715533i \(-0.253816\pi\)
0.698579 + 0.715533i \(0.253816\pi\)
\(32\) 5.54127 1.13769i 0.979567 0.201118i
\(33\) 3.73908i 0.650890i
\(34\) 2.04984 + 2.59365i 0.351545 + 0.444807i
\(35\) 0 0
\(36\) 7.03929 + 1.67168i 1.17322 + 0.278614i
\(37\) 0.744267 0.744267i 0.122357 0.122357i −0.643277 0.765634i \(-0.722426\pi\)
0.765634 + 0.643277i \(0.222426\pi\)
\(38\) −6.40767 0.750408i −1.03946 0.121732i
\(39\) 11.3256 1.81356
\(40\) 3.13450 8.59395i 0.495608 1.35882i
\(41\) 2.77210 0.432929 0.216464 0.976290i \(-0.430547\pi\)
0.216464 + 0.976290i \(0.430547\pi\)
\(42\) 0 0
\(43\) 7.12142 + 7.12142i 1.08601 + 1.08601i 0.995935 + 0.0900717i \(0.0287096\pi\)
0.0900717 + 0.995935i \(0.471290\pi\)
\(44\) 2.47489 1.52500i 0.373104 0.229902i
\(45\) 8.27305 8.27305i 1.23327 1.23327i
\(46\) −2.56189 + 2.02475i −0.377730 + 0.298533i
\(47\) 2.85031 0.415761 0.207880 0.978154i \(-0.433344\pi\)
0.207880 + 0.978154i \(0.433344\pi\)
\(48\) −3.22783 9.77044i −0.465898 1.41024i
\(49\) 0 0
\(50\) −4.78797 6.05817i −0.677121 0.856754i
\(51\) 4.25212 4.25212i 0.595416 0.595416i
\(52\) −4.61922 7.49643i −0.640570 1.03957i
\(53\) −8.12024 + 8.12024i −1.11540 + 1.11540i −0.122993 + 0.992408i \(0.539249\pi\)
−0.992408 + 0.122993i \(0.960751\pi\)
\(54\) 0.261313 2.23133i 0.0355602 0.303646i
\(55\) 4.70094i 0.633875i
\(56\) 0 0
\(57\) 11.7352i 1.55437i
\(58\) 3.08219 + 0.360958i 0.404712 + 0.0473962i
\(59\) 2.76264 2.76264i 0.359665 0.359665i −0.504025 0.863689i \(-0.668148\pi\)
0.863689 + 0.504025i \(0.168148\pi\)
\(60\) −16.1895 3.84466i −2.09005 0.496344i
\(61\) 10.1788 10.1788i 1.30326 1.30326i 0.377086 0.926178i \(-0.376926\pi\)
0.926178 0.377086i \(-0.123074\pi\)
\(62\) −8.63107 + 6.82142i −1.09615 + 0.866321i
\(63\) 0 0
\(64\) −5.15056 + 6.12142i −0.643819 + 0.765177i
\(65\) −14.2391 −1.76615
\(66\) −3.27878 4.14861i −0.403590 0.510659i
\(67\) −1.90049 + 1.90049i −0.232182 + 0.232182i −0.813603 0.581421i \(-0.802497\pi\)
0.581421 + 0.813603i \(0.302497\pi\)
\(68\) −4.54872 1.08023i −0.551614 0.130997i
\(69\) 4.20006 + 4.20006i 0.505628 + 0.505628i
\(70\) 0 0
\(71\) −7.48345 −0.888122 −0.444061 0.895997i \(-0.646463\pi\)
−0.444061 + 0.895997i \(0.646463\pi\)
\(72\) −9.27618 + 4.31795i −1.09321 + 0.508875i
\(73\) −11.3042 −1.32306 −0.661529 0.749920i \(-0.730092\pi\)
−0.661529 + 0.749920i \(0.730092\pi\)
\(74\) −0.173140 + 1.47843i −0.0201272 + 0.171864i
\(75\) −9.93198 + 9.93198i −1.14685 + 1.14685i
\(76\) 7.76752 4.78626i 0.890995 0.549022i
\(77\) 0 0
\(78\) −12.5661 + 9.93142i −1.42283 + 1.12451i
\(79\) 0.816047i 0.0918125i 0.998946 + 0.0459062i \(0.0146175\pi\)
−0.998946 + 0.0459062i \(0.985382\pi\)
\(80\) 4.05818 + 12.2839i 0.453719 + 1.37338i
\(81\) 6.76606 0.751785
\(82\) −3.07572 + 2.43084i −0.339657 + 0.268442i
\(83\) −2.65285 2.65285i −0.291188 0.291188i 0.546361 0.837550i \(-0.316013\pi\)
−0.837550 + 0.546361i \(0.816013\pi\)
\(84\) 0 0
\(85\) −5.34597 + 5.34597i −0.579852 + 0.579852i
\(86\) −14.1462 1.65667i −1.52542 0.178643i
\(87\) 5.64483i 0.605189i
\(88\) −1.40869 + 3.86225i −0.150167 + 0.411718i
\(89\) −4.81889 −0.510801 −0.255400 0.966835i \(-0.582207\pi\)
−0.255400 + 0.966835i \(0.582207\pi\)
\(90\) −1.92458 + 16.4338i −0.202868 + 1.73227i
\(91\) 0 0
\(92\) 1.06700 4.49303i 0.111242 0.468430i
\(93\) 14.1501 + 14.1501i 1.46730 + 1.46730i
\(94\) −3.16250 + 2.49943i −0.326187 + 0.257796i
\(95\) 14.7541i 1.51373i
\(96\) 12.1490 + 8.01011i 1.23996 + 0.817528i
\(97\) 5.86541i 0.595542i −0.954637 0.297771i \(-0.903757\pi\)
0.954637 0.297771i \(-0.0962432\pi\)
\(98\) 0 0
\(99\) −3.71804 + 3.71804i −0.373677 + 0.373677i
\(100\) 10.6248 + 2.52316i 1.06248 + 0.252316i
\(101\) −1.02078 1.02078i −0.101572 0.101572i 0.654495 0.756066i \(-0.272881\pi\)
−0.756066 + 0.654495i \(0.772881\pi\)
\(102\) −0.989180 + 8.44652i −0.0979434 + 0.836330i
\(103\) 2.42642i 0.239082i −0.992829 0.119541i \(-0.961858\pi\)
0.992829 0.119541i \(-0.0381423\pi\)
\(104\) 11.6987 + 4.26692i 1.14716 + 0.418406i
\(105\) 0 0
\(106\) 1.88903 16.1302i 0.183479 1.56671i
\(107\) 3.18265 + 3.18265i 0.307678 + 0.307678i 0.844008 0.536330i \(-0.180190\pi\)
−0.536330 + 0.844008i \(0.680190\pi\)
\(108\) 1.66671 + 2.70487i 0.160379 + 0.260276i
\(109\) 2.30243 + 2.30243i 0.220533 + 0.220533i 0.808723 0.588190i \(-0.200159\pi\)
−0.588190 + 0.808723i \(0.700159\pi\)
\(110\) 4.12224 + 5.21583i 0.393040 + 0.497310i
\(111\) 2.70765 0.256998
\(112\) 0 0
\(113\) 11.5397 1.08556 0.542781 0.839875i \(-0.317372\pi\)
0.542781 + 0.839875i \(0.317372\pi\)
\(114\) −10.2906 13.0205i −0.963799 1.21949i
\(115\) −5.28051 5.28051i −0.492410 0.492410i
\(116\) −3.73630 + 2.30227i −0.346907 + 0.213760i
\(117\) 11.2619 + 11.2619i 1.04116 + 1.04116i
\(118\) −0.642678 + 5.48777i −0.0591633 + 0.505190i
\(119\) 0 0
\(120\) 21.3341 9.93074i 1.94752 0.906548i
\(121\) 8.88732i 0.807938i
\(122\) −2.36792 + 20.2195i −0.214381 + 1.83058i
\(123\) 5.04245 + 5.04245i 0.454662 + 0.454662i
\(124\) 3.59474 15.1371i 0.322817 1.35935i
\(125\) 1.05228 1.05228i 0.0941192 0.0941192i
\(126\) 0 0
\(127\) 4.49210i 0.398610i −0.979938 0.199305i \(-0.936132\pi\)
0.979938 0.199305i \(-0.0638684\pi\)
\(128\) 0.346836 11.3084i 0.0306563 0.999530i
\(129\) 25.9078i 2.28105i
\(130\) 15.7987 12.4862i 1.38564 1.09512i
\(131\) −9.78107 9.78107i −0.854576 0.854576i 0.136117 0.990693i \(-0.456538\pi\)
−0.990693 + 0.136117i \(0.956538\pi\)
\(132\) 7.27581 + 1.72785i 0.633278 + 0.150390i
\(133\) 0 0
\(134\) 0.442115 3.77518i 0.0381929 0.326126i
\(135\) 5.13778 0.442190
\(136\) 5.99418 2.79022i 0.513997 0.239259i
\(137\) 2.52213i 0.215480i −0.994179 0.107740i \(-0.965639\pi\)
0.994179 0.107740i \(-0.0343614\pi\)
\(138\) −8.34310 0.977068i −0.710212 0.0831736i
\(139\) −6.00381 + 6.00381i −0.509237 + 0.509237i −0.914292 0.405055i \(-0.867252\pi\)
0.405055 + 0.914292i \(0.367252\pi\)
\(140\) 0 0
\(141\) 5.18472 + 5.18472i 0.436632 + 0.436632i
\(142\) 8.30310 6.56221i 0.696780 0.550688i
\(143\) 6.39929 0.535135
\(144\) 6.50580 12.9251i 0.542150 1.07709i
\(145\) 7.09694i 0.589369i
\(146\) 12.5423 9.91262i 1.03801 0.820374i
\(147\) 0 0
\(148\) −1.10433 1.79219i −0.0907750 0.147317i
\(149\) −6.00918 + 6.00918i −0.492291 + 0.492291i −0.909028 0.416736i \(-0.863174\pi\)
0.416736 + 0.909028i \(0.363174\pi\)
\(150\) 2.31050 19.7291i 0.188651 1.61088i
\(151\) −10.2385 −0.833200 −0.416600 0.909090i \(-0.636778\pi\)
−0.416600 + 0.909090i \(0.636778\pi\)
\(152\) −4.42123 + 12.1218i −0.358609 + 0.983208i
\(153\) 8.45639 0.683659
\(154\) 0 0
\(155\) −17.7902 17.7902i −1.42894 1.42894i
\(156\) 5.23365 22.0384i 0.419027 1.76448i
\(157\) 10.3817 10.3817i 0.828554 0.828554i −0.158763 0.987317i \(-0.550751\pi\)
0.987317 + 0.158763i \(0.0507505\pi\)
\(158\) −0.715589 0.905427i −0.0569292 0.0720319i
\(159\) −29.5415 −2.34279
\(160\) −15.2743 10.0707i −1.20754 0.796157i
\(161\) 0 0
\(162\) −7.50714 + 5.93313i −0.589816 + 0.466151i
\(163\) −16.2550 + 16.2550i −1.27319 + 1.27319i −0.328783 + 0.944406i \(0.606638\pi\)
−0.944406 + 0.328783i \(0.893362\pi\)
\(164\) 1.28100 5.39418i 0.100030 0.421214i
\(165\) 8.55102 8.55102i 0.665696 0.665696i
\(166\) 5.26969 + 0.617138i 0.409007 + 0.0478992i
\(167\) 3.82099i 0.295677i 0.989011 + 0.147839i \(0.0472316\pi\)
−0.989011 + 0.147839i \(0.952768\pi\)
\(168\) 0 0
\(169\) 6.38341i 0.491032i
\(170\) 1.24364 10.6194i 0.0953831 0.814468i
\(171\) −11.6692 + 11.6692i −0.892364 + 0.892364i
\(172\) 17.1483 10.5666i 1.30755 0.805696i
\(173\) −5.87834 + 5.87834i −0.446922 + 0.446922i −0.894330 0.447408i \(-0.852347\pi\)
0.447408 + 0.894330i \(0.352347\pi\)
\(174\) 4.94993 + 6.26310i 0.375253 + 0.474804i
\(175\) 0 0
\(176\) −1.82381 5.52056i −0.137475 0.416128i
\(177\) 10.0505 0.755440
\(178\) 5.34669 4.22566i 0.400751 0.316727i
\(179\) −13.6633 + 13.6633i −1.02124 + 1.02124i −0.0214740 + 0.999769i \(0.506836\pi\)
−0.999769 + 0.0214740i \(0.993164\pi\)
\(180\) −12.2754 19.9214i −0.914951 1.48485i
\(181\) 6.07189 + 6.07189i 0.451320 + 0.451320i 0.895793 0.444472i \(-0.146609\pi\)
−0.444472 + 0.895793i \(0.646609\pi\)
\(182\) 0 0
\(183\) 37.0306 2.73738
\(184\) 2.75605 + 5.92079i 0.203179 + 0.436486i
\(185\) −3.40418 −0.250280
\(186\) −28.1081 3.29176i −2.06099 0.241364i
\(187\) 2.40256 2.40256i 0.175693 0.175693i
\(188\) 1.31715 5.54637i 0.0960627 0.404511i
\(189\) 0 0
\(190\) 12.9378 + 16.3700i 0.938605 + 1.18761i
\(191\) 15.2082i 1.10043i −0.835024 0.550213i \(-0.814546\pi\)
0.835024 0.550213i \(-0.185454\pi\)
\(192\) −20.5037 + 1.76600i −1.47973 + 0.127450i
\(193\) 22.4794 1.61811 0.809053 0.587736i \(-0.199981\pi\)
0.809053 + 0.587736i \(0.199981\pi\)
\(194\) 5.14336 + 6.50784i 0.369271 + 0.467236i
\(195\) −25.9010 25.9010i −1.85481 1.85481i
\(196\) 0 0
\(197\) −8.31581 + 8.31581i −0.592477 + 0.592477i −0.938300 0.345823i \(-0.887600\pi\)
0.345823 + 0.938300i \(0.387600\pi\)
\(198\) 0.864935 7.38560i 0.0614682 0.524872i
\(199\) 10.2201i 0.724484i −0.932084 0.362242i \(-0.882011\pi\)
0.932084 0.362242i \(-0.117989\pi\)
\(200\) −14.0010 + 6.51730i −0.990022 + 0.460843i
\(201\) −6.91399 −0.487675
\(202\) 2.02771 + 0.237467i 0.142669 + 0.0167081i
\(203\) 0 0
\(204\) −6.30920 10.2391i −0.441732 0.716878i
\(205\) −6.33960 6.33960i −0.442777 0.442777i
\(206\) 2.12771 + 2.69218i 0.148245 + 0.187573i
\(207\) 8.35285i 0.580563i
\(208\) −16.7217 + 5.52431i −1.15944 + 0.383042i
\(209\) 6.63070i 0.458655i
\(210\) 0 0
\(211\) 5.73766 5.73766i 0.394997 0.394997i −0.481467 0.876464i \(-0.659896\pi\)
0.876464 + 0.481467i \(0.159896\pi\)
\(212\) 12.0486 + 19.5534i 0.827503 + 1.34294i
\(213\) −13.6124 13.6124i −0.932706 0.932706i
\(214\) −6.32210 0.740386i −0.432170 0.0506118i
\(215\) 32.5724i 2.22142i
\(216\) −4.22115 1.53960i −0.287213 0.104756i
\(217\) 0 0
\(218\) −4.57361 0.535620i −0.309764 0.0362768i
\(219\) −20.5624 20.5624i −1.38948 1.38948i
\(220\) −9.14748 2.17233i −0.616723 0.146459i
\(221\) −7.27734 7.27734i −0.489527 0.489527i
\(222\) −3.00421 + 2.37432i −0.201629 + 0.159354i
\(223\) −17.4929 −1.17141 −0.585705 0.810524i \(-0.699182\pi\)
−0.585705 + 0.810524i \(0.699182\pi\)
\(224\) 0 0
\(225\) −19.7522 −1.31681
\(226\) −12.8036 + 10.1191i −0.851682 + 0.673112i
\(227\) 12.3930 + 12.3930i 0.822550 + 0.822550i 0.986473 0.163923i \(-0.0524148\pi\)
−0.163923 + 0.986473i \(0.552415\pi\)
\(228\) 22.8353 + 5.42291i 1.51231 + 0.359141i
\(229\) 4.94300 + 4.94300i 0.326643 + 0.326643i 0.851308 0.524666i \(-0.175810\pi\)
−0.524666 + 0.851308i \(0.675810\pi\)
\(230\) 10.4893 + 1.22842i 0.691646 + 0.0809993i
\(231\) 0 0
\(232\) 2.12668 5.83078i 0.139624 0.382810i
\(233\) 28.9752i 1.89823i −0.314927 0.949116i \(-0.601980\pi\)
0.314927 0.949116i \(-0.398020\pi\)
\(234\) −22.3710 2.61988i −1.46243 0.171267i
\(235\) −6.51847 6.51847i −0.425218 0.425218i
\(236\) −4.09914 6.65240i −0.266831 0.433034i
\(237\) −1.48439 + 1.48439i −0.0964215 + 0.0964215i
\(238\) 0 0
\(239\) 13.3587i 0.864105i −0.901848 0.432053i \(-0.857789\pi\)
0.901848 0.432053i \(-0.142211\pi\)
\(240\) −14.9625 + 29.7262i −0.965826 + 1.91882i
\(241\) 12.1833i 0.784794i −0.919796 0.392397i \(-0.871646\pi\)
0.919796 0.392397i \(-0.128354\pi\)
\(242\) 7.79326 + 9.86074i 0.500970 + 0.633872i
\(243\) 15.6773 + 15.6773i 1.00570 + 1.00570i
\(244\) −15.1031 24.5105i −0.966877 1.56912i
\(245\) 0 0
\(246\) −10.0164 1.17304i −0.638625 0.0747900i
\(247\) 20.0844 1.27794
\(248\) 9.28520 + 19.9473i 0.589611 + 1.26665i
\(249\) 9.65108i 0.611612i
\(250\) −0.244795 + 2.09028i −0.0154822 + 0.132201i
\(251\) 6.68926 6.68926i 0.422223 0.422223i −0.463746 0.885968i \(-0.653495\pi\)
0.885968 + 0.463746i \(0.153495\pi\)
\(252\) 0 0
\(253\) 2.37314 + 2.37314i 0.149198 + 0.149198i
\(254\) 3.93911 + 4.98412i 0.247162 + 0.312731i
\(255\) −19.4486 −1.21792
\(256\) 9.53146 + 12.8511i 0.595716 + 0.803195i
\(257\) 3.84327i 0.239736i 0.992790 + 0.119868i \(0.0382472\pi\)
−0.992790 + 0.119868i \(0.961753\pi\)
\(258\) −22.7184 28.7454i −1.41439 1.78961i
\(259\) 0 0
\(260\) −6.57999 + 27.7077i −0.408074 + 1.71836i
\(261\) 5.61306 5.61306i 0.347440 0.347440i
\(262\) 19.4293 + 2.27539i 1.20035 + 0.140574i
\(263\) −6.31567 −0.389441 −0.194720 0.980859i \(-0.562380\pi\)
−0.194720 + 0.980859i \(0.562380\pi\)
\(264\) −9.58786 + 4.46303i −0.590092 + 0.274680i
\(265\) 37.1409 2.28155
\(266\) 0 0
\(267\) −8.76556 8.76556i −0.536444 0.536444i
\(268\) 2.81990 + 4.57636i 0.172253 + 0.279545i
\(269\) −17.0505 + 17.0505i −1.03958 + 1.03958i −0.0404010 + 0.999184i \(0.512864\pi\)
−0.999184 + 0.0404010i \(0.987136\pi\)
\(270\) −5.70051 + 4.50530i −0.346922 + 0.274184i
\(271\) −9.46629 −0.575036 −0.287518 0.957775i \(-0.592830\pi\)
−0.287518 + 0.957775i \(0.592830\pi\)
\(272\) −4.20398 + 8.35210i −0.254904 + 0.506420i
\(273\) 0 0
\(274\) 2.21165 + 2.79837i 0.133610 + 0.169056i
\(275\) −5.61183 + 5.61183i −0.338406 + 0.338406i
\(276\) 10.1137 6.23195i 0.608773 0.375119i
\(277\) −8.29249 + 8.29249i −0.498247 + 0.498247i −0.910892 0.412645i \(-0.864605\pi\)
0.412645 + 0.910892i \(0.364605\pi\)
\(278\) 1.39668 11.9261i 0.0837672 0.715281i
\(279\) 28.1409i 1.68475i
\(280\) 0 0
\(281\) 5.59517i 0.333780i 0.985976 + 0.166890i \(0.0533724\pi\)
−0.985976 + 0.166890i \(0.946628\pi\)
\(282\) −10.2991 1.20613i −0.613300 0.0718241i
\(283\) 2.71268 2.71268i 0.161252 0.161252i −0.621869 0.783121i \(-0.713626\pi\)
0.783121 + 0.621869i \(0.213626\pi\)
\(284\) −3.45815 + 14.5619i −0.205203 + 0.864090i
\(285\) 26.8376 26.8376i 1.58972 1.58972i
\(286\) −7.10019 + 5.61151i −0.419843 + 0.331816i
\(287\) 0 0
\(288\) 4.11564 + 20.0457i 0.242516 + 1.18120i
\(289\) 11.5356 0.678562
\(290\) −6.22328 7.87426i −0.365444 0.462392i
\(291\) 10.6692 10.6692i 0.625439 0.625439i
\(292\) −5.22374 + 21.9967i −0.305696 + 1.28726i
\(293\) −9.74731 9.74731i −0.569444 0.569444i 0.362529 0.931973i \(-0.381913\pi\)
−0.931973 + 0.362529i \(0.881913\pi\)
\(294\) 0 0
\(295\) −12.6359 −0.735692
\(296\) 2.79684 + 1.02010i 0.162563 + 0.0592922i
\(297\) −2.30900 −0.133982
\(298\) 1.39793 11.9368i 0.0809798 0.691480i
\(299\) 7.18824 7.18824i 0.415707 0.415707i
\(300\) 14.7368 + 23.9161i 0.850832 + 1.38080i
\(301\) 0 0
\(302\) 11.3599 8.97813i 0.653691 0.516633i
\(303\) 3.71361i 0.213341i
\(304\) −5.72408 17.3264i −0.328299 0.993739i
\(305\) −46.5566 −2.66582
\(306\) −9.38260 + 7.41538i −0.536368 + 0.423909i
\(307\) 20.5735 + 20.5735i 1.17419 + 1.17419i 0.981201 + 0.192988i \(0.0618178\pi\)
0.192988 + 0.981201i \(0.438182\pi\)
\(308\) 0 0
\(309\) 4.41365 4.41365i 0.251084 0.251084i
\(310\) 35.3388 + 4.13856i 2.00711 + 0.235054i
\(311\) 0.571890i 0.0324289i −0.999869 0.0162145i \(-0.994839\pi\)
0.999869 0.0162145i \(-0.00516145\pi\)
\(312\) 13.5185 + 29.0416i 0.765334 + 1.64416i
\(313\) 1.41457 0.0799564 0.0399782 0.999201i \(-0.487271\pi\)
0.0399782 + 0.999201i \(0.487271\pi\)
\(314\) −2.41513 + 20.6226i −0.136294 + 1.16380i
\(315\) 0 0
\(316\) 1.58793 + 0.377100i 0.0893281 + 0.0212135i
\(317\) 18.5146 + 18.5146i 1.03988 + 1.03988i 0.999171 + 0.0407118i \(0.0129626\pi\)
0.0407118 + 0.999171i \(0.487037\pi\)
\(318\) 32.7771 25.9048i 1.83805 1.45267i
\(319\) 3.18948i 0.178576i
\(320\) 25.7783 2.22030i 1.44105 0.124119i
\(321\) 11.5785i 0.646248i
\(322\) 0 0
\(323\) 7.54051 7.54051i 0.419565 0.419565i
\(324\) 3.12664 13.1660i 0.173702 0.731442i
\(325\) 16.9982 + 16.9982i 0.942891 + 0.942891i
\(326\) 3.78143 32.2893i 0.209434 1.78834i
\(327\) 8.37626i 0.463208i
\(328\) 3.30882 + 7.10830i 0.182699 + 0.392490i
\(329\) 0 0
\(330\) −1.98924 + 16.9860i −0.109504 + 0.935046i
\(331\) −1.98663 1.98663i −0.109195 0.109195i 0.650398 0.759593i \(-0.274602\pi\)
−0.759593 + 0.650398i \(0.774602\pi\)
\(332\) −6.38803 + 3.93624i −0.350589 + 0.216029i
\(333\) 2.69241 + 2.69241i 0.147543 + 0.147543i
\(334\) −3.35062 4.23950i −0.183337 0.231975i
\(335\) 8.69259 0.474927
\(336\) 0 0
\(337\) −23.9205 −1.30303 −0.651517 0.758634i \(-0.725867\pi\)
−0.651517 + 0.758634i \(0.725867\pi\)
\(338\) 5.59759 + 7.08257i 0.304469 + 0.385241i
\(339\) 20.9907 + 20.9907i 1.14006 + 1.14006i
\(340\) 7.93222 + 12.8730i 0.430185 + 0.698138i
\(341\) 7.99517 + 7.99517i 0.432963 + 0.432963i
\(342\) 2.71462 23.1799i 0.146790 1.25343i
\(343\) 0 0
\(344\) −9.76072 + 26.7612i −0.526263 + 1.44287i
\(345\) 19.2105i 1.03426i
\(346\) 1.36749 11.6769i 0.0735167 0.627753i
\(347\) −8.84419 8.84419i −0.474781 0.474781i 0.428677 0.903458i \(-0.358980\pi\)
−0.903458 + 0.428677i \(0.858980\pi\)
\(348\) −10.9842 2.60851i −0.588813 0.139831i
\(349\) −21.9157 + 21.9157i −1.17312 + 1.17312i −0.191662 + 0.981461i \(0.561388\pi\)
−0.981461 + 0.191662i \(0.938612\pi\)
\(350\) 0 0
\(351\) 6.99394i 0.373309i
\(352\) 6.86452 + 4.52592i 0.365880 + 0.241232i
\(353\) 21.0137i 1.11845i 0.829017 + 0.559224i \(0.188901\pi\)
−0.829017 + 0.559224i \(0.811099\pi\)
\(354\) −11.1513 + 8.81323i −0.592684 + 0.468418i
\(355\) 17.1141 + 17.1141i 0.908325 + 0.908325i
\(356\) −2.22684 + 9.37699i −0.118022 + 0.496979i
\(357\) 0 0
\(358\) 3.17852 27.1411i 0.167990 1.43445i
\(359\) −9.56621 −0.504885 −0.252443 0.967612i \(-0.581234\pi\)
−0.252443 + 0.967612i \(0.581234\pi\)
\(360\) 31.0889 + 11.3392i 1.63853 + 0.597626i
\(361\) 1.81066i 0.0952976i
\(362\) −12.0614 1.41252i −0.633931 0.0742402i
\(363\) 16.1661 16.1661i 0.848498 0.848498i
\(364\) 0 0
\(365\) 25.8520 + 25.8520i 1.35315 + 1.35315i
\(366\) −41.0865 + 32.4720i −2.14762 + 1.69734i
\(367\) −6.12610 −0.319780 −0.159890 0.987135i \(-0.551114\pi\)
−0.159890 + 0.987135i \(0.551114\pi\)
\(368\) −8.24983 4.15251i −0.430052 0.216464i
\(369\) 10.0282i 0.522045i
\(370\) 3.77703 2.98511i 0.196359 0.155189i
\(371\) 0 0
\(372\) 34.0733 20.9956i 1.76662 1.08857i
\(373\) −11.6156 + 11.6156i −0.601435 + 0.601435i −0.940693 0.339258i \(-0.889824\pi\)
0.339258 + 0.940693i \(0.389824\pi\)
\(374\) −0.558912 + 4.77250i −0.0289007 + 0.246780i
\(375\) 3.82821 0.197688
\(376\) 3.40218 + 7.30886i 0.175454 + 0.376925i
\(377\) −9.66091 −0.497562
\(378\) 0 0
\(379\) 6.05253 + 6.05253i 0.310897 + 0.310897i 0.845257 0.534360i \(-0.179447\pi\)
−0.534360 + 0.845257i \(0.679447\pi\)
\(380\) −28.7097 6.81794i −1.47277 0.349753i
\(381\) 8.17114 8.17114i 0.418620 0.418620i
\(382\) 13.3360 + 16.8739i 0.682330 + 0.863345i
\(383\) 19.2806 0.985193 0.492596 0.870258i \(-0.336048\pi\)
0.492596 + 0.870258i \(0.336048\pi\)
\(384\) 21.2009 19.9391i 1.08190 1.01751i
\(385\) 0 0
\(386\) −24.9416 + 19.7121i −1.26949 + 1.00332i
\(387\) −25.7620 + 25.7620i −1.30955 + 1.30955i
\(388\) −11.4134 2.71044i −0.579428 0.137602i
\(389\) 20.2394 20.2394i 1.02618 1.02618i 0.0265310 0.999648i \(-0.491554\pi\)
0.999648 0.0265310i \(-0.00844607\pi\)
\(390\) 51.4504 + 6.02540i 2.60529 + 0.305108i
\(391\) 5.39753i 0.272965i
\(392\) 0 0
\(393\) 35.5835i 1.79495i
\(394\) 1.93452 16.5187i 0.0974599 0.832202i
\(395\) 1.86625 1.86625i 0.0939010 0.0939010i
\(396\) 5.51674 + 8.95299i 0.277226 + 0.449905i
\(397\) 6.55770 6.55770i 0.329122 0.329122i −0.523131 0.852252i \(-0.675236\pi\)
0.852252 + 0.523131i \(0.175236\pi\)
\(398\) 8.96198 + 11.3395i 0.449223 + 0.568398i
\(399\) 0 0
\(400\) 9.81954 19.5086i 0.490977 0.975429i
\(401\) −35.0562 −1.75062 −0.875312 0.483558i \(-0.839344\pi\)
−0.875312 + 0.483558i \(0.839344\pi\)
\(402\) 7.67126 6.06285i 0.382608 0.302387i
\(403\) 24.2173 24.2173i 1.20635 1.20635i
\(404\) −2.45803 + 1.51461i −0.122292 + 0.0753548i
\(405\) −15.4735 15.4735i −0.768886 0.768886i
\(406\) 0 0
\(407\) 1.52989 0.0758338
\(408\) 15.9788 + 5.82801i 0.791070 + 0.288530i
\(409\) −34.8784 −1.72463 −0.862314 0.506374i \(-0.830985\pi\)
−0.862314 + 0.506374i \(0.830985\pi\)
\(410\) 12.5931 + 1.47479i 0.621931 + 0.0728349i
\(411\) 4.58776 4.58776i 0.226297 0.226297i
\(412\) −4.72152 1.12126i −0.232613 0.0552406i
\(413\) 0 0
\(414\) −7.32458 9.26772i −0.359984 0.455484i
\(415\) 12.1338i 0.595624i
\(416\) 13.7090 20.7926i 0.672139 1.01944i
\(417\) −21.8419 −1.06960
\(418\) −5.81444 7.35695i −0.284393 0.359840i
\(419\) −8.57828 8.57828i −0.419076 0.419076i 0.465809 0.884885i \(-0.345763\pi\)
−0.884885 + 0.465809i \(0.845763\pi\)
\(420\) 0 0
\(421\) −7.41183 + 7.41183i −0.361230 + 0.361230i −0.864266 0.503035i \(-0.832217\pi\)
0.503035 + 0.864266i \(0.332217\pi\)
\(422\) −1.33476 + 11.3974i −0.0649753 + 0.554819i
\(423\) 10.3111i 0.501342i
\(424\) −30.5146 11.1297i −1.48192 0.540506i
\(425\) 12.7637 0.619129
\(426\) 27.0400 + 3.16668i 1.31009 + 0.153426i
\(427\) 0 0
\(428\) 7.66379 4.72234i 0.370443 0.228263i
\(429\) 11.6403 + 11.6403i 0.562000 + 0.562000i
\(430\) 28.5627 + 36.1400i 1.37741 + 1.74283i
\(431\) 1.61239i 0.0776661i −0.999246 0.0388331i \(-0.987636\pi\)
0.999246 0.0388331i \(-0.0123641\pi\)
\(432\) 6.03355 1.99329i 0.290290 0.0959021i
\(433\) 13.0869i 0.628917i −0.949271 0.314458i \(-0.898177\pi\)
0.949271 0.314458i \(-0.101823\pi\)
\(434\) 0 0
\(435\) −12.9093 + 12.9093i −0.618956 + 0.618956i
\(436\) 5.54424 3.41630i 0.265521 0.163611i
\(437\) 7.44818 + 7.44818i 0.356295 + 0.356295i
\(438\) 40.8456 + 4.78346i 1.95168 + 0.228563i
\(439\) 1.97867i 0.0944367i 0.998885 + 0.0472184i \(0.0150357\pi\)
−0.998885 + 0.0472184i \(0.984964\pi\)
\(440\) 12.0543 5.61113i 0.574666 0.267500i
\(441\) 0 0
\(442\) 14.4559 + 1.69294i 0.687597 + 0.0805251i
\(443\) 24.5351 + 24.5351i 1.16570 + 1.16570i 0.983208 + 0.182491i \(0.0584161\pi\)
0.182491 + 0.983208i \(0.441584\pi\)
\(444\) 1.25122 5.26876i 0.0593802 0.250044i
\(445\) 11.0205 + 11.0205i 0.522420 + 0.522420i
\(446\) 19.4089 15.3394i 0.919036 0.726344i
\(447\) −21.8614 −1.03401
\(448\) 0 0
\(449\) 20.0460 0.946031 0.473015 0.881054i \(-0.343166\pi\)
0.473015 + 0.881054i \(0.343166\pi\)
\(450\) 21.9156 17.3206i 1.03311 0.816502i
\(451\) 2.84912 + 2.84912i 0.134160 + 0.134160i
\(452\) 5.33255 22.4548i 0.250822 1.05619i
\(453\) −18.6239 18.6239i −0.875027 0.875027i
\(454\) −24.6177 2.88300i −1.15537 0.135306i
\(455\) 0 0
\(456\) −30.0918 + 14.0074i −1.40918 + 0.655954i
\(457\) 30.0060i 1.40362i 0.712364 + 0.701810i \(0.247625\pi\)
−0.712364 + 0.701810i \(0.752375\pi\)
\(458\) −9.81890 1.14990i −0.458807 0.0537313i
\(459\) 2.62582 + 2.62582i 0.122563 + 0.122563i
\(460\) −12.7154 + 7.83510i −0.592859 + 0.365313i
\(461\) −18.2334 + 18.2334i −0.849213 + 0.849213i −0.990035 0.140822i \(-0.955026\pi\)
0.140822 + 0.990035i \(0.455026\pi\)
\(462\) 0 0
\(463\) 31.3804i 1.45837i 0.684316 + 0.729186i \(0.260101\pi\)
−0.684316 + 0.729186i \(0.739899\pi\)
\(464\) 2.75338 + 8.33430i 0.127822 + 0.386910i
\(465\) 64.7206i 3.00135i
\(466\) 25.4083 + 32.1489i 1.17702 + 1.48927i
\(467\) −16.8599 16.8599i −0.780183 0.780183i 0.199679 0.979861i \(-0.436010\pi\)
−0.979861 + 0.199679i \(0.936010\pi\)
\(468\) 27.1186 16.7102i 1.25356 0.772428i
\(469\) 0 0
\(470\) 12.9485 + 1.51641i 0.597268 + 0.0699466i
\(471\) 37.7688 1.74030
\(472\) 10.3816 + 3.78651i 0.477850 + 0.174288i
\(473\) 14.6386i 0.673082i
\(474\) 0.345317 2.94863i 0.0158609 0.135435i
\(475\) −17.6129 + 17.6129i −0.808135 + 0.808135i
\(476\) 0 0
\(477\) −29.3752 29.3752i −1.34500 1.34500i
\(478\) 11.7142 + 14.8219i 0.535796 + 0.677938i
\(479\) −35.3568 −1.61549 −0.807747 0.589530i \(-0.799313\pi\)
−0.807747 + 0.589530i \(0.799313\pi\)
\(480\) −9.46546 46.1026i −0.432037 2.10429i
\(481\) 4.63403i 0.211294i
\(482\) 10.6835 + 13.5177i 0.486619 + 0.615714i
\(483\) 0 0
\(484\) −17.2937 4.10688i −0.786077 0.186677i
\(485\) −13.4138 + 13.4138i −0.609089 + 0.609089i
\(486\) −31.1419 3.64705i −1.41262 0.165434i
\(487\) −10.6231 −0.481377 −0.240688 0.970602i \(-0.577373\pi\)
−0.240688 + 0.970602i \(0.577373\pi\)
\(488\) 38.2505 + 13.9512i 1.73152 + 0.631542i
\(489\) −59.1357 −2.67421
\(490\) 0 0
\(491\) 26.9088 + 26.9088i 1.21438 + 1.21438i 0.969572 + 0.244806i \(0.0787243\pi\)
0.244806 + 0.969572i \(0.421276\pi\)
\(492\) 12.1422 7.48187i 0.547411 0.337309i
\(493\) −3.62711 + 3.62711i −0.163357 + 0.163357i
\(494\) −22.2842 + 17.6119i −1.00261 + 0.792397i
\(495\) 17.0058 0.764354
\(496\) −27.7939 13.9899i −1.24798 0.628165i
\(497\) 0 0
\(498\) 8.46299 + 10.7081i 0.379236 + 0.479843i
\(499\) 8.96334 8.96334i 0.401254 0.401254i −0.477421 0.878675i \(-0.658428\pi\)
0.878675 + 0.477421i \(0.158428\pi\)
\(500\) −1.56135 2.53389i −0.0698259 0.113319i
\(501\) −6.95039 + 6.95039i −0.310521 + 0.310521i
\(502\) −1.55614 + 13.2877i −0.0694538 + 0.593060i
\(503\) 13.7074i 0.611183i 0.952163 + 0.305591i \(0.0988542\pi\)
−0.952163 + 0.305591i \(0.901146\pi\)
\(504\) 0 0
\(505\) 4.66892i 0.207764i
\(506\) −4.71407 0.552069i −0.209566 0.0245425i
\(507\) 11.6114 11.6114i 0.515682 0.515682i
\(508\) −8.74111 2.07583i −0.387824 0.0921000i
\(509\) −16.8495 + 16.8495i −0.746841 + 0.746841i −0.973885 0.227044i \(-0.927094\pi\)
0.227044 + 0.973885i \(0.427094\pi\)
\(510\) 21.5788 17.0544i 0.955526 0.755183i
\(511\) 0 0
\(512\) −21.8445 5.90058i −0.965401 0.260771i
\(513\) −7.24686 −0.319957
\(514\) −3.37015 4.26421i −0.148651 0.188086i
\(515\) −5.54905 + 5.54905i −0.244520 + 0.244520i
\(516\) 50.4135 + 11.9721i 2.21933 + 0.527044i
\(517\) 2.92950 + 2.92950i 0.128839 + 0.128839i
\(518\) 0 0
\(519\) −21.3854 −0.938715
\(520\) −16.9961 36.5124i −0.745327 1.60118i
\(521\) 23.7178 1.03910 0.519548 0.854441i \(-0.326100\pi\)
0.519548 + 0.854441i \(0.326100\pi\)
\(522\) −1.30578 + 11.1499i −0.0571524 + 0.488019i
\(523\) −13.2772 + 13.2772i −0.580570 + 0.580570i −0.935060 0.354490i \(-0.884654\pi\)
0.354490 + 0.935060i \(0.384654\pi\)
\(524\) −23.5527 + 14.5129i −1.02890 + 0.634000i
\(525\) 0 0
\(526\) 7.00742 5.53819i 0.305538 0.241476i
\(527\) 18.1844i 0.792125i
\(528\) 6.72439 13.3594i 0.292641 0.581394i
\(529\) −17.6686 −0.768198
\(530\) −41.2089 + 32.5687i −1.79000 + 1.41469i
\(531\) 9.99392 + 9.99392i 0.433699 + 0.433699i
\(532\) 0 0
\(533\) 8.62996 8.62996i 0.373805 0.373805i
\(534\) 17.4121 + 2.03915i 0.753496 + 0.0882426i
\(535\) 14.5570i 0.629355i
\(536\) −7.14175 2.60484i −0.308477 0.112512i
\(537\) −49.7071 −2.14502
\(538\) 3.96648 33.8694i 0.171007 1.46022i
\(539\) 0 0
\(540\) 2.37420 9.99751i 0.102169 0.430224i
\(541\) −18.4840 18.4840i −0.794689 0.794689i 0.187564 0.982252i \(-0.439941\pi\)
−0.982252 + 0.187564i \(0.939941\pi\)
\(542\) 10.5031 8.30096i 0.451148 0.356557i
\(543\) 22.0896i 0.947953i
\(544\) −2.65949 12.9533i −0.114025 0.555370i
\(545\) 10.5310i 0.451100i
\(546\) 0 0
\(547\) −23.8532 + 23.8532i −1.01989 + 1.01989i −0.0200929 + 0.999798i \(0.506396\pi\)
−0.999798 + 0.0200929i \(0.993604\pi\)
\(548\) −4.90777 1.16549i −0.209649 0.0497873i
\(549\) 36.8222 + 36.8222i 1.57153 + 1.57153i
\(550\) 1.30549 11.1475i 0.0556663 0.475330i
\(551\) 10.0103i 0.426452i
\(552\) −5.75665 + 15.7832i −0.245020 + 0.671777i
\(553\) 0 0
\(554\) 1.92910 16.4724i 0.0819595 0.699845i
\(555\) −6.19220 6.19220i −0.262844 0.262844i
\(556\) 8.90832 + 14.4571i 0.377797 + 0.613118i
\(557\) 30.4684 + 30.4684i 1.29099 + 1.29099i 0.934178 + 0.356809i \(0.116135\pi\)
0.356809 + 0.934178i \(0.383865\pi\)
\(558\) −24.6767 31.2232i −1.04465 1.32178i
\(559\) 44.3401 1.87539
\(560\) 0 0
\(561\) 8.74052 0.369025
\(562\) −4.90638 6.20800i −0.206963 0.261869i
\(563\) 6.30834 + 6.30834i 0.265865 + 0.265865i 0.827431 0.561567i \(-0.189801\pi\)
−0.561567 + 0.827431i \(0.689801\pi\)
\(564\) 12.4847 7.69297i 0.525703 0.323932i
\(565\) −26.3905 26.3905i −1.11026 1.11026i
\(566\) −0.631056 + 5.38854i −0.0265253 + 0.226497i
\(567\) 0 0
\(568\) −8.93237 19.1893i −0.374794 0.805164i
\(569\) 6.34568i 0.266025i 0.991114 + 0.133012i \(0.0424650\pi\)
−0.991114 + 0.133012i \(0.957535\pi\)
\(570\) −6.24329 + 53.3110i −0.261503 + 2.23295i
\(571\) −26.5416 26.5416i −1.11073 1.11073i −0.993052 0.117680i \(-0.962454\pi\)
−0.117680 0.993052i \(-0.537546\pi\)
\(572\) 2.95715 12.4523i 0.123645 0.520655i
\(573\) 27.6637 27.6637i 1.15567 1.15567i
\(574\) 0 0
\(575\) 12.6074i 0.525765i
\(576\) −22.1444 18.6323i −0.922684 0.776346i
\(577\) 1.89263i 0.0787913i 0.999224 + 0.0393957i \(0.0125433\pi\)
−0.999224 + 0.0393957i \(0.987457\pi\)
\(578\) −12.7990 + 10.1155i −0.532370 + 0.420749i
\(579\) 40.8901 + 40.8901i 1.69934 + 1.69934i
\(580\) 13.8098 + 3.27954i 0.573421 + 0.136175i
\(581\) 0 0
\(582\) −2.48199 + 21.1935i −0.102882 + 0.878500i
\(583\) −16.6917 −0.691299
\(584\) −13.4929 28.9866i −0.558340 1.19947i
\(585\) 51.5105i 2.12970i
\(586\) 19.3623 + 2.26754i 0.799849 + 0.0936711i
\(587\) −26.8519 + 26.8519i −1.10830 + 1.10830i −0.114923 + 0.993374i \(0.536662\pi\)
−0.993374 + 0.114923i \(0.963338\pi\)
\(588\) 0 0
\(589\) 25.0931 + 25.0931i 1.03394 + 1.03394i
\(590\) 14.0199 11.0804i 0.577191 0.456173i
\(591\) −30.2529 −1.24444
\(592\) −3.99770 + 1.32071i −0.164304 + 0.0542808i
\(593\) 27.5841i 1.13274i −0.824150 0.566372i \(-0.808347\pi\)
0.824150 0.566372i \(-0.191653\pi\)
\(594\) 2.56190 2.02475i 0.105116 0.0830765i
\(595\) 0 0
\(596\) 8.91628 + 14.4700i 0.365225 + 0.592716i
\(597\) 18.5904 18.5904i 0.760854 0.760854i
\(598\) −1.67221 + 14.2789i −0.0683819 + 0.583907i
\(599\) 23.6202 0.965095 0.482548 0.875870i \(-0.339712\pi\)
0.482548 + 0.875870i \(0.339712\pi\)
\(600\) −37.3229 13.6129i −1.52370 0.555744i
\(601\) −5.61717 −0.229129 −0.114565 0.993416i \(-0.536547\pi\)
−0.114565 + 0.993416i \(0.536547\pi\)
\(602\) 0 0
\(603\) −6.87508 6.87508i −0.279975 0.279975i
\(604\) −4.73129 + 19.9230i −0.192513 + 0.810655i
\(605\) −20.3247 + 20.3247i −0.826317 + 0.826317i
\(606\) 3.25645 + 4.12036i 0.132284 + 0.167378i
\(607\) −4.86562 −0.197489 −0.0987446 0.995113i \(-0.531483\pi\)
−0.0987446 + 0.995113i \(0.531483\pi\)
\(608\) 21.5445 + 14.2047i 0.873746 + 0.576078i
\(609\) 0 0
\(610\) 51.6558 40.8253i 2.09148 1.65297i
\(611\) 8.87345 8.87345i 0.358981 0.358981i
\(612\) 3.90775 16.4551i 0.157961 0.665160i
\(613\) −2.92168 + 2.92168i −0.118006 + 0.118006i −0.763644 0.645638i \(-0.776592\pi\)
0.645638 + 0.763644i \(0.276592\pi\)
\(614\) −40.8676 4.78604i −1.64928 0.193149i
\(615\) 23.0635i 0.930010i
\(616\) 0 0
\(617\) 25.3025i 1.01864i −0.860578 0.509319i \(-0.829897\pi\)
0.860578 0.509319i \(-0.170103\pi\)
\(618\) −1.02676 + 8.76739i −0.0413022 + 0.352676i
\(619\) −12.9870 + 12.9870i −0.521990 + 0.521990i −0.918172 0.396182i \(-0.870335\pi\)
0.396182 + 0.918172i \(0.370335\pi\)
\(620\) −42.8385 + 26.3966i −1.72044 + 1.06011i
\(621\) −2.59367 + 2.59367i −0.104080 + 0.104080i
\(622\) 0.501488 + 0.634528i 0.0201078 + 0.0254423i
\(623\) 0 0
\(624\) −40.4656 20.3681i −1.61992 0.815378i
\(625\) 22.4876 0.899505
\(626\) −1.56951 + 1.24043i −0.0627302 + 0.0495777i
\(627\) −12.0613 + 12.0613i −0.481680 + 0.481680i
\(628\) −15.4042 24.9991i −0.614694 0.997574i
\(629\) −1.73981 1.73981i −0.0693707 0.0693707i
\(630\) 0 0
\(631\) −41.4293 −1.64928 −0.824638 0.565661i \(-0.808621\pi\)
−0.824638 + 0.565661i \(0.808621\pi\)
\(632\) −2.09253 + 0.974048i −0.0832365 + 0.0387455i
\(633\) 20.8736 0.829653
\(634\) −36.7778 4.30709i −1.46063 0.171056i
\(635\) −10.2731 + 10.2731i −0.407677 + 0.407677i
\(636\) −13.6513 + 57.4842i −0.541308 + 2.27940i
\(637\) 0 0
\(638\) 2.79684 + 3.53881i 0.110728 + 0.140103i
\(639\) 27.0716i 1.07094i
\(640\) −26.6547 + 25.0683i −1.05362 + 0.990913i
\(641\) 34.1867 1.35029 0.675146 0.737684i \(-0.264080\pi\)
0.675146 + 0.737684i \(0.264080\pi\)
\(642\) −10.1531 12.8467i −0.400712 0.507017i
\(643\) 3.46526 + 3.46526i 0.136657 + 0.136657i 0.772126 0.635469i \(-0.219193\pi\)
−0.635469 + 0.772126i \(0.719193\pi\)
\(644\) 0 0
\(645\) 59.2493 59.2493i 2.33294 2.33294i
\(646\) −1.75416 + 14.9787i −0.0690166 + 0.589327i
\(647\) 31.5107i 1.23881i −0.785071 0.619406i \(-0.787373\pi\)
0.785071 0.619406i \(-0.212627\pi\)
\(648\) 8.07609 + 17.3497i 0.317259 + 0.681562i
\(649\) 5.67878 0.222912
\(650\) −33.7656 3.95433i −1.32440 0.155101i
\(651\) 0 0
\(652\) 24.1188 + 39.1418i 0.944563 + 1.53291i
\(653\) −14.1761 14.1761i −0.554752 0.554752i 0.373057 0.927809i \(-0.378310\pi\)
−0.927809 + 0.373057i \(0.878310\pi\)
\(654\) −7.34511 9.29370i −0.287217 0.363412i
\(655\) 44.7373i 1.74803i
\(656\) −9.90447 4.98536i −0.386705 0.194646i
\(657\) 40.8933i 1.59540i
\(658\) 0 0
\(659\) 29.3969 29.3969i 1.14514 1.14514i 0.157643 0.987496i \(-0.449610\pi\)
0.987496 0.157643i \(-0.0503896\pi\)
\(660\) −12.6878 20.5908i −0.493872 0.801494i
\(661\) −34.2922 34.2922i −1.33381 1.33381i −0.901932 0.431878i \(-0.857851\pi\)
−0.431878 0.901932i \(-0.642149\pi\)
\(662\) 3.94629 + 0.462153i 0.153377 + 0.0179621i
\(663\) 26.4750i 1.02820i
\(664\) 3.63603 9.96901i 0.141105 0.386873i
\(665\) 0 0
\(666\) −5.34827 0.626340i −0.207241 0.0242702i
\(667\) −3.58270 3.58270i −0.138723 0.138723i
\(668\) 7.43520 + 1.76570i 0.287677 + 0.0683171i
\(669\) −31.8196 31.8196i −1.23022 1.23022i
\(670\) −9.64467 + 7.62250i −0.372606 + 0.294483i
\(671\) 20.9232 0.807733
\(672\) 0 0
\(673\) 11.6457 0.448909 0.224454 0.974485i \(-0.427940\pi\)
0.224454 + 0.974485i \(0.427940\pi\)
\(674\) 26.5405 20.9758i 1.02230 0.807959i
\(675\) −6.13331 6.13331i −0.236071 0.236071i
\(676\) −12.4214 2.94981i −0.477745 0.113454i
\(677\) 23.8819 + 23.8819i 0.917856 + 0.917856i 0.996873 0.0790174i \(-0.0251783\pi\)
−0.0790174 + 0.996873i \(0.525178\pi\)
\(678\) −41.6964 4.88310i −1.60134 0.187534i
\(679\) 0 0
\(680\) −20.0893 7.32725i −0.770391 0.280987i
\(681\) 45.0857i 1.72769i
\(682\) −15.8818 1.85993i −0.608146 0.0712205i
\(683\) 4.81294 + 4.81294i 0.184162 + 0.184162i 0.793167 0.609005i \(-0.208431\pi\)
−0.609005 + 0.793167i \(0.708431\pi\)
\(684\) 17.3144 + 28.0992i 0.662034 + 1.07440i
\(685\) −5.76794 + 5.76794i −0.220382 + 0.220382i
\(686\) 0 0
\(687\) 17.9827i 0.686081i
\(688\) −12.6370 38.2515i −0.481782 1.45832i
\(689\) 50.5591i 1.92615i
\(690\) 16.8456 + 21.3146i 0.641302 + 0.811433i
\(691\) 21.7818 + 21.7818i 0.828617 + 0.828617i 0.987325 0.158709i \(-0.0507330\pi\)
−0.158709 + 0.987325i \(0.550733\pi\)
\(692\) 8.72214 + 14.1550i 0.331566 + 0.538091i
\(693\) 0 0
\(694\) 17.5683 + 2.05744i 0.666884 + 0.0780994i
\(695\) 27.4606 1.04164
\(696\) 14.4746 6.73777i 0.548660 0.255394i
\(697\) 6.48009i 0.245451i
\(698\) 5.09830 43.5340i 0.192974 1.64779i
\(699\) 52.7060 52.7060i 1.99352 1.99352i
\(700\) 0 0
\(701\) −28.2191 28.2191i −1.06582 1.06582i −0.997675 0.0681440i \(-0.978292\pi\)
−0.0681440 0.997675i \(-0.521708\pi\)
\(702\) −6.13296 7.75998i −0.231474 0.292881i
\(703\) 4.80161 0.181096
\(704\) −11.5851 + 0.997839i −0.436632 + 0.0376075i
\(705\) 23.7142i 0.893129i
\(706\) −18.4269 23.3153i −0.693504 0.877484i
\(707\) 0 0
\(708\) 4.64439 19.5571i 0.174547 0.734999i
\(709\) −13.6018 + 13.6018i −0.510828 + 0.510828i −0.914780 0.403952i \(-0.867636\pi\)
0.403952 + 0.914780i \(0.367636\pi\)
\(710\) −33.9960 3.98130i −1.27585 0.149415i
\(711\) −2.95208 −0.110711
\(712\) −5.75191 12.3567i −0.215562 0.463088i
\(713\) 17.9618 0.672673
\(714\) 0 0
\(715\) −14.6347 14.6347i −0.547308 0.547308i
\(716\) 20.2733 + 32.9011i 0.757648 + 1.22957i
\(717\) 24.2996 24.2996i 0.907484 0.907484i
\(718\) 10.6140 8.38857i 0.396110 0.313059i
\(719\) 23.8578 0.889746 0.444873 0.895594i \(-0.353249\pi\)
0.444873 + 0.895594i \(0.353249\pi\)
\(720\) −44.4372 + 14.6806i −1.65608 + 0.547114i
\(721\) 0 0
\(722\) −1.58776 2.00897i −0.0590902 0.0747662i
\(723\) 22.1614 22.1614i 0.824191 0.824191i
\(724\) 14.6210 9.00933i 0.543387 0.334829i
\(725\) 8.47209 8.47209i 0.314646 0.314646i
\(726\) −3.76074 + 32.1126i −0.139574 + 1.19181i
\(727\) 28.5645i 1.05940i −0.848185 0.529700i \(-0.822305\pi\)
0.848185 0.529700i \(-0.177695\pi\)
\(728\) 0 0
\(729\) 36.7360i 1.36059i
\(730\) −51.3530 6.01399i −1.90066 0.222588i
\(731\) 16.6471 16.6471i 0.615717 0.615717i
\(732\) 17.1120 72.0571i 0.632480 2.66331i
\(733\) −16.5137 + 16.5137i −0.609949 + 0.609949i −0.942933 0.332984i \(-0.891945\pi\)
0.332984 + 0.942933i \(0.391945\pi\)
\(734\) 6.79708 5.37196i 0.250885 0.198283i
\(735\) 0 0
\(736\) 12.7947 2.62692i 0.471620 0.0968297i
\(737\) −3.90658 −0.143901
\(738\) −8.79365 11.1265i −0.323699 0.409573i
\(739\) −1.25933 + 1.25933i −0.0463252 + 0.0463252i −0.729890 0.683565i \(-0.760429\pi\)
0.683565 + 0.729890i \(0.260429\pi\)
\(740\) −1.57309 + 6.62413i −0.0578280 + 0.243508i
\(741\) 36.5335 + 36.5335i 1.34209 + 1.34209i
\(742\) 0 0
\(743\) 16.7041 0.612815 0.306407 0.951900i \(-0.400873\pi\)
0.306407 + 0.951900i \(0.400873\pi\)
\(744\) −19.3943 + 53.1739i −0.711030 + 1.94945i
\(745\) 27.4852 1.00698
\(746\) 2.70217 23.0736i 0.0989334 0.844784i
\(747\) 9.59677 9.59677i 0.351127 0.351127i
\(748\) −3.56486 5.78534i −0.130344 0.211533i
\(749\) 0 0
\(750\) −4.24751 + 3.35695i −0.155097 + 0.122578i
\(751\) 1.74951i 0.0638404i −0.999490 0.0319202i \(-0.989838\pi\)
0.999490 0.0319202i \(-0.0101622\pi\)
\(752\) −10.1839 5.12602i −0.371370 0.186927i
\(753\) 24.3356 0.886837
\(754\) 10.7190 8.47161i 0.390365 0.308518i
\(755\) 23.4148 + 23.4148i 0.852153 + 0.852153i
\(756\) 0 0
\(757\) −15.6771 + 15.6771i −0.569792 + 0.569792i −0.932070 0.362278i \(-0.881999\pi\)
0.362278 + 0.932070i \(0.381999\pi\)
\(758\) −12.0229 1.40801i −0.436691 0.0511413i
\(759\) 8.63350i 0.313376i
\(760\) 37.8328 17.6107i 1.37234 0.638807i
\(761\) −51.9629 −1.88365 −0.941826 0.336100i \(-0.890892\pi\)
−0.941826 + 0.336100i \(0.890892\pi\)
\(762\) −1.90087 + 16.2314i −0.0688612 + 0.588000i
\(763\) 0 0
\(764\) −29.5934 7.02780i −1.07065 0.254257i
\(765\) −19.3392 19.3392i −0.699210 0.699210i
\(766\) −21.3924 + 16.9071i −0.772938 + 0.610878i
\(767\) 17.2010i 0.621092i
\(768\) −6.03846 + 40.7139i −0.217894 + 1.46914i
\(769\) 34.9699i 1.26105i 0.776170 + 0.630524i \(0.217160\pi\)
−0.776170 + 0.630524i \(0.782840\pi\)
\(770\) 0 0
\(771\) −6.99090 + 6.99090i −0.251771 + 0.251771i
\(772\) 10.3879 43.7423i 0.373868 1.57432i
\(773\) 9.72110 + 9.72110i 0.349644 + 0.349644i 0.859977 0.510333i \(-0.170478\pi\)
−0.510333 + 0.859977i \(0.670478\pi\)
\(774\) 5.99306 51.1742i 0.215416 1.83942i
\(775\) 42.4746i 1.52573i
\(776\) 15.0403 7.00106i 0.539914 0.251323i
\(777\) 0 0
\(778\) −4.70834 + 40.2041i −0.168802 + 1.44139i
\(779\) 8.94204 + 8.94204i 0.320382 + 0.320382i
\(780\) −62.3693 + 38.4313i −2.23318 + 1.37606i
\(781\) −7.69136 7.69136i −0.275219 0.275219i
\(782\) 4.73307 + 5.98871i 0.169254 + 0.214156i
\(783\) 3.48586 0.124574
\(784\) 0 0
\(785\) −47.4847 −1.69480
\(786\) 31.2031 + 39.4809i 1.11298 + 1.40824i
\(787\) −17.5555 17.5555i −0.625785 0.625785i 0.321220 0.947005i \(-0.395907\pi\)
−0.947005 + 0.321220i \(0.895907\pi\)
\(788\) 12.3388 + 20.0244i 0.439552 + 0.713339i
\(789\) −11.4882 11.4882i −0.408991 0.408991i
\(790\) −0.434148 + 3.70716i −0.0154463 + 0.131895i
\(791\) 0 0
\(792\) −13.9718 5.09599i −0.496467 0.181078i
\(793\) 63.3764i 2.25056i
\(794\) −1.52553 + 13.0264i −0.0541391 + 0.462289i
\(795\) 67.5593 + 67.5593i 2.39608 + 2.39608i
\(796\) −19.8871 4.72277i −0.704881 0.167394i
\(797\) 13.3302 13.3302i 0.472179 0.472179i −0.430440 0.902619i \(-0.641642\pi\)
0.902619 + 0.430440i \(0.141642\pi\)
\(798\) 0 0
\(799\) 6.66293i 0.235717i
\(800\) 6.21195 + 30.2560i 0.219626 + 1.06971i
\(801\) 17.4325i 0.615946i
\(802\) 38.8959 30.7407i 1.37346 1.08549i
\(803\) −11.6183 11.6183i −0.410000 0.410000i
\(804\) −3.19499 + 13.4538i −0.112679 + 0.474479i
\(805\) 0 0
\(806\) −5.63373 + 48.1059i −0.198440 + 1.69446i
\(807\) −62.0296 −2.18355
\(808\) 1.39910 3.83595i 0.0492201 0.134948i
\(809\) 21.6623i 0.761605i 0.924656 + 0.380803i \(0.124352\pi\)
−0.924656 + 0.380803i \(0.875648\pi\)
\(810\) 30.7370 + 3.59964i 1.07999 + 0.126478i
\(811\) 1.51326 1.51326i 0.0531379 0.0531379i −0.680039 0.733176i \(-0.738037\pi\)
0.733176 + 0.680039i \(0.238037\pi\)
\(812\) 0 0
\(813\) −17.2192 17.2192i −0.603904 0.603904i
\(814\) −1.69746 + 1.34156i −0.0594958 + 0.0470215i
\(815\) 74.3481 2.60430
\(816\) −22.8395 + 7.54543i −0.799543 + 0.264143i
\(817\) 45.9436i 1.60736i
\(818\) 38.6986 30.5848i 1.35307 1.06937i
\(819\) 0 0
\(820\) −15.2657 + 9.40655i −0.533101 + 0.328491i
\(821\) 33.9360 33.9360i 1.18437 1.18437i 0.205774 0.978599i \(-0.434029\pi\)
0.978599 0.205774i \(-0.0659713\pi\)
\(822\) −1.06726 + 9.11323i −0.0372249 + 0.317860i
\(823\) 30.0816 1.04858 0.524290 0.851540i \(-0.324331\pi\)
0.524290 + 0.851540i \(0.324331\pi\)
\(824\) 6.22189 2.89621i 0.216750 0.100894i
\(825\) −20.4158 −0.710789
\(826\) 0 0
\(827\) 22.5866 + 22.5866i 0.785414 + 0.785414i 0.980739 0.195325i \(-0.0625760\pi\)
−0.195325 + 0.980739i \(0.562576\pi\)
\(828\) 16.2537 + 3.85990i 0.564854 + 0.134141i
\(829\) 23.4068 23.4068i 0.812951 0.812951i −0.172125 0.985075i \(-0.555063\pi\)
0.985075 + 0.172125i \(0.0550632\pi\)
\(830\) −10.6401 13.4628i −0.369322 0.467300i
\(831\) −30.1681 −1.04652
\(832\) 3.02245 + 35.0914i 0.104785 + 1.21657i
\(833\) 0 0
\(834\) 24.2342 19.1531i 0.839161 0.663216i
\(835\) 8.73836 8.73836i 0.302403 0.302403i
\(836\) 12.9026 + 3.06409i 0.446244 + 0.105974i
\(837\) −8.73812 + 8.73812i −0.302034 + 0.302034i
\(838\) 17.0401 + 1.99558i 0.588640 + 0.0689362i
\(839\) 35.7894i 1.23559i −0.786340 0.617794i \(-0.788027\pi\)
0.786340 0.617794i \(-0.211973\pi\)
\(840\) 0 0
\(841\) 24.1849i 0.833962i
\(842\) 1.72423 14.7230i 0.0594208 0.507389i
\(843\) −10.1776 + 10.1776i −0.350536 + 0.350536i
\(844\) −8.51341 13.8162i −0.293044 0.475574i
\(845\) −14.5984 + 14.5984i −0.502201 + 0.502201i
\(846\) −9.04176 11.4404i −0.310862 0.393331i
\(847\) 0 0
\(848\) 43.6164 14.4094i 1.49779 0.494822i
\(849\) 9.86874 0.338694
\(850\) −14.1617 + 11.1924i −0.485741 + 0.383897i
\(851\) 1.71851 1.71851i 0.0589096 0.0589096i
\(852\) −32.7785 + 20.1978i −1.12297 + 0.691964i
\(853\) −1.27195 1.27195i −0.0435507 0.0435507i 0.684996 0.728547i \(-0.259804\pi\)
−0.728547 + 0.684996i \(0.759804\pi\)
\(854\) 0 0
\(855\) 53.3733 1.82533
\(856\) −4.36218 + 11.9599i −0.149096 + 0.408782i
\(857\) −34.2754 −1.17082 −0.585412 0.810736i \(-0.699067\pi\)
−0.585412 + 0.810736i \(0.699067\pi\)
\(858\) −23.1226 2.70791i −0.789393 0.0924465i
\(859\) 31.6036 31.6036i 1.07830 1.07830i 0.0816404 0.996662i \(-0.473984\pi\)
0.996662 0.0816404i \(-0.0260159\pi\)
\(860\) −63.3821 15.0519i −2.16131 0.513266i
\(861\) 0 0
\(862\) 1.41390 + 1.78899i 0.0481576 + 0.0609333i
\(863\) 37.6268i 1.28083i 0.768028 + 0.640416i \(0.221238\pi\)
−0.768028 + 0.640416i \(0.778762\pi\)
\(864\) −4.94649 + 7.50241i −0.168283 + 0.255237i
\(865\) 26.8867 0.914176
\(866\) 11.4759 + 14.5203i 0.389966 + 0.493420i
\(867\) 20.9832 + 20.9832i 0.712627 + 0.712627i
\(868\) 0 0
\(869\) −0.838719 + 0.838719i −0.0284516 + 0.0284516i
\(870\) 3.00313 25.6434i 0.101816 0.869394i
\(871\) 11.8330i 0.400947i
\(872\) −3.15575 + 8.65220i −0.106867 + 0.293000i
\(873\) 21.2183 0.718131
\(874\) −14.7952 1.73269i −0.500457 0.0586090i
\(875\) 0 0
\(876\) −49.5139 + 30.5100i −1.67292 + 1.03084i
\(877\) 15.0158 + 15.0158i 0.507047 + 0.507047i 0.913619 0.406572i \(-0.133276\pi\)
−0.406572 + 0.913619i \(0.633276\pi\)
\(878\) −1.73509 2.19539i −0.0585564 0.0740908i
\(879\) 35.4607i 1.19606i
\(880\) −8.45421 + 16.7961i −0.284991 + 0.566196i
\(881\) 3.13017i 0.105458i 0.998609 + 0.0527291i \(0.0167920\pi\)
−0.998609 + 0.0527291i \(0.983208\pi\)
\(882\) 0 0
\(883\) 5.90657 5.90657i 0.198772 0.198772i −0.600702 0.799473i \(-0.705112\pi\)
0.799473 + 0.600702i \(0.205112\pi\)
\(884\) −17.5238 + 10.7980i −0.589388 + 0.363174i
\(885\) −22.9848 22.9848i −0.772625 0.772625i
\(886\) −48.7372 5.70765i −1.63736 0.191752i
\(887\) 48.4630i 1.62723i 0.581405 + 0.813615i \(0.302503\pi\)
−0.581405 + 0.813615i \(0.697497\pi\)
\(888\) 3.23189 + 6.94303i 0.108455 + 0.232993i
\(889\) 0 0
\(890\) −21.8913 2.56371i −0.733799 0.0859359i
\(891\) 6.95404 + 6.95404i 0.232969 + 0.232969i
\(892\) −8.08357 + 34.0391i −0.270658 + 1.13971i
\(893\) 9.19433 + 9.19433i 0.307677 + 0.307677i
\(894\) 24.2559 19.1702i 0.811238 0.641147i
\(895\) 62.4941 2.08895
\(896\) 0 0
\(897\) 26.1508 0.873151
\(898\) −22.2416 + 17.5783i −0.742213 + 0.586595i
\(899\) −12.0702 12.0702i −0.402563 0.402563i
\(900\) −9.12760 + 38.4354i −0.304253 + 1.28118i
\(901\) 18.9820 + 18.9820i 0.632382 + 0.632382i
\(902\) −5.65955 0.662796i −0.188443 0.0220687i
\(903\) 0 0
\(904\) 13.7740 + 29.5904i 0.458115 + 0.984161i
\(905\) 27.7720i 0.923173i
\(906\) 36.9950 + 4.33252i 1.22908 + 0.143938i
\(907\) −26.5002 26.5002i −0.879924 0.879924i 0.113602 0.993526i \(-0.463761\pi\)
−0.993526 + 0.113602i \(0.963761\pi\)
\(908\) 29.8421 18.3884i 0.990346 0.610240i
\(909\) 3.69271 3.69271i 0.122480 0.122480i
\(910\) 0 0
\(911\) 12.0871i 0.400463i −0.979749 0.200231i \(-0.935831\pi\)
0.979749 0.200231i \(-0.0641694\pi\)
\(912\) 21.1047 41.9289i 0.698846 1.38841i
\(913\) 5.45311i 0.180472i
\(914\) −26.3121 33.2925i −0.870328 1.10122i
\(915\) −84.6865 84.6865i −2.79965 2.79965i
\(916\) 11.9027 7.33431i 0.393276 0.242332i
\(917\) 0 0
\(918\) −5.21599 0.610849i −0.172153 0.0201610i
\(919\) −55.2615 −1.82291 −0.911455 0.411400i \(-0.865040\pi\)
−0.911455 + 0.411400i \(0.865040\pi\)
\(920\) 7.23754 19.8434i 0.238614 0.654216i
\(921\) 74.8463i 2.46627i
\(922\) 4.24167 36.2192i 0.139692 1.19282i
\(923\) −23.2971 + 23.2971i −0.766833 + 0.766833i
\(924\) 0 0
\(925\) 4.06379 + 4.06379i 0.133617 + 0.133617i
\(926\) −27.5174 34.8174i −0.904277 1.14417i
\(927\) 8.77763 0.288295
\(928\) −10.3633 6.83271i −0.340191 0.224295i
\(929\) 9.98464i 0.327585i 0.986495 + 0.163793i \(0.0523728\pi\)
−0.986495 + 0.163793i \(0.947627\pi\)
\(930\) 56.7533 + 71.8094i 1.86101 + 2.35472i
\(931\) 0 0
\(932\) −56.3824 13.3896i −1.84687 0.438592i
\(933\) 1.04027 1.04027i 0.0340569 0.0340569i
\(934\) 33.4909 + 3.92215i 1.09586 + 0.128337i
\(935\) −10.9890 −0.359378
\(936\) −15.4357 + 42.3206i −0.504533 + 1.38329i
\(937\) 7.92416 0.258871 0.129436 0.991588i \(-0.458683\pi\)
0.129436 + 0.991588i \(0.458683\pi\)
\(938\) 0 0
\(939\) 2.57311 + 2.57311i 0.0839703 + 0.0839703i
\(940\) −15.6964 + 9.67196i −0.511960 + 0.315464i
\(941\) 4.47065 4.47065i 0.145739 0.145739i −0.630473 0.776212i \(-0.717139\pi\)
0.776212 + 0.630473i \(0.217139\pi\)
\(942\) −41.9056 + 33.1193i −1.36536 + 1.07909i
\(943\) 6.40075 0.208437
\(944\) −14.8390 + 4.90232i −0.482969 + 0.159557i
\(945\) 0 0
\(946\) −12.8365 16.2419i −0.417351 0.528070i
\(947\) −8.04460 + 8.04460i −0.261414 + 0.261414i −0.825628 0.564214i \(-0.809179\pi\)
0.564214 + 0.825628i \(0.309179\pi\)
\(948\) 2.20250 + 3.57439i 0.0715340 + 0.116091i
\(949\) −35.1917 + 35.1917i −1.14237 + 1.14237i
\(950\) 4.09732 34.9867i 0.132935 1.13512i
\(951\) 67.3561i 2.18417i
\(952\) 0 0
\(953\) 12.7329i 0.412460i −0.978504 0.206230i \(-0.933880\pi\)
0.978504 0.206230i \(-0.0661195\pi\)
\(954\) 58.3517 + 6.83362i 1.88920 + 0.221246i
\(955\) −34.7801 + 34.7801i −1.12546 + 1.12546i
\(956\) −25.9945 6.17315i −0.840723 0.199654i
\(957\) 5.80166 5.80166i 0.187541 0.187541i
\(958\) 39.2294 31.0042i 1.26744 1.00170i
\(959\) 0 0
\(960\) 50.9294 + 42.8519i 1.64374 + 1.38304i
\(961\) 29.5136 0.952050
\(962\) 4.06356 + 5.14159i 0.131015 + 0.165771i
\(963\) −11.5133 + 11.5133i −0.371012 + 0.371012i
\(964\) −23.7072 5.62996i −0.763558 0.181329i
\(965\) −51.4090 51.4090i −1.65491 1.65491i
\(966\) 0 0
\(967\) −10.6644 −0.342944 −0.171472 0.985189i \(-0.554852\pi\)
−0.171472 + 0.985189i \(0.554852\pi\)
\(968\) 22.7891 10.6081i 0.732471 0.340956i
\(969\) 27.4324 0.881255
\(970\) 3.12048 26.6455i 0.100193 0.855536i
\(971\) −1.62971 + 1.62971i −0.0523000 + 0.0523000i −0.732773 0.680473i \(-0.761774\pi\)
0.680473 + 0.732773i \(0.261774\pi\)
\(972\) 37.7509 23.2617i 1.21086 0.746119i
\(973\) 0 0
\(974\) 11.7866 9.31532i 0.377666 0.298482i
\(975\) 61.8395i 1.98045i
\(976\) −54.6737 + 18.0624i −1.75006 + 0.578164i
\(977\) −15.3255 −0.490305 −0.245153 0.969484i \(-0.578838\pi\)
−0.245153 + 0.969484i \(0.578838\pi\)
\(978\) 65.6127 51.8558i 2.09806 1.65817i
\(979\) −4.95277 4.95277i −0.158291 0.158291i
\(980\) 0 0
\(981\) −8.32913 + 8.32913i −0.265929 + 0.265929i
\(982\) −53.4523 6.25985i −1.70573 0.199760i
\(983\) 18.6119i 0.593628i −0.954935 0.296814i \(-0.904076\pi\)
0.954935 0.296814i \(-0.0959241\pi\)
\(984\) −6.91125 + 18.9488i −0.220323 + 0.604064i
\(985\) 38.0354 1.21191
\(986\) 0.843782 7.20498i 0.0268715 0.229453i
\(987\) 0 0
\(988\) 9.28110 39.0818i 0.295271 1.24336i
\(989\) 16.4433 + 16.4433i 0.522867 + 0.522867i
\(990\) −18.8684 + 14.9123i −0.599678 + 0.473945i
\(991\) 27.4305i 0.871359i 0.900102 + 0.435680i \(0.143492\pi\)
−0.900102 + 0.435680i \(0.856508\pi\)
\(992\) 43.1058 8.85017i 1.36861 0.280993i
\(993\) 7.22736i 0.229353i
\(994\) 0 0
\(995\) −23.3727 + 23.3727i −0.740965 + 0.740965i
\(996\) −18.7799 4.45982i −0.595063 0.141315i
\(997\) −13.7329 13.7329i −0.434926 0.434926i 0.455374 0.890300i \(-0.349505\pi\)
−0.890300 + 0.455374i \(0.849505\pi\)
\(998\) −2.08516 + 17.8050i −0.0660046 + 0.563607i
\(999\) 1.67206i 0.0529015i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 784.2.j.a.195.6 56
7.2 even 3 112.2.v.a.3.13 56
7.3 odd 6 112.2.v.a.19.7 yes 56
7.4 even 3 784.2.w.f.19.7 56
7.5 odd 6 784.2.w.f.227.13 56
7.6 odd 2 inner 784.2.j.a.195.5 56
16.11 odd 4 inner 784.2.j.a.587.5 56
28.3 even 6 448.2.z.a.47.12 56
28.23 odd 6 448.2.z.a.367.12 56
56.3 even 6 896.2.z.a.607.3 56
56.37 even 6 896.2.z.b.479.12 56
56.45 odd 6 896.2.z.b.607.12 56
56.51 odd 6 896.2.z.a.479.3 56
112.3 even 12 896.2.z.b.159.12 56
112.11 odd 12 784.2.w.f.411.13 56
112.27 even 4 inner 784.2.j.a.587.6 56
112.37 even 12 448.2.z.a.143.12 56
112.45 odd 12 896.2.z.a.159.3 56
112.51 odd 12 896.2.z.b.31.12 56
112.59 even 12 112.2.v.a.75.13 yes 56
112.75 even 12 784.2.w.f.619.7 56
112.93 even 12 896.2.z.a.31.3 56
112.101 odd 12 448.2.z.a.271.12 56
112.107 odd 12 112.2.v.a.59.7 yes 56
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
112.2.v.a.3.13 56 7.2 even 3
112.2.v.a.19.7 yes 56 7.3 odd 6
112.2.v.a.59.7 yes 56 112.107 odd 12
112.2.v.a.75.13 yes 56 112.59 even 12
448.2.z.a.47.12 56 28.3 even 6
448.2.z.a.143.12 56 112.37 even 12
448.2.z.a.271.12 56 112.101 odd 12
448.2.z.a.367.12 56 28.23 odd 6
784.2.j.a.195.5 56 7.6 odd 2 inner
784.2.j.a.195.6 56 1.1 even 1 trivial
784.2.j.a.587.5 56 16.11 odd 4 inner
784.2.j.a.587.6 56 112.27 even 4 inner
784.2.w.f.19.7 56 7.4 even 3
784.2.w.f.227.13 56 7.5 odd 6
784.2.w.f.411.13 56 112.11 odd 12
784.2.w.f.619.7 56 112.75 even 12
896.2.z.a.31.3 56 112.93 even 12
896.2.z.a.159.3 56 112.45 odd 12
896.2.z.a.479.3 56 56.51 odd 6
896.2.z.a.607.3 56 56.3 even 6
896.2.z.b.31.12 56 112.51 odd 12
896.2.z.b.159.12 56 112.3 even 12
896.2.z.b.479.12 56 56.37 even 6
896.2.z.b.607.12 56 56.45 odd 6