Properties

Label 889.2.a.c.1.5
Level $889$
Weight $2$
Character 889.1
Self dual yes
Analytic conductor $7.099$
Analytic rank $1$
Dimension $16$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [889,2,Mod(1,889)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(889, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("889.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 889 = 7 \cdot 127 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 889.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(7.09870073969\)
Analytic rank: \(1\)
Dimension: \(16\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 2 x^{15} - 20 x^{14} + 38 x^{13} + 155 x^{12} - 275 x^{11} - 593 x^{10} + 957 x^{9} + 1177 x^{8} + \cdots + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.5
Root \(1.33134\) of defining polynomial
Character \(\chi\) \(=\) 889.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.33134 q^{2} -1.35454 q^{3} -0.227522 q^{4} -2.92411 q^{5} +1.80336 q^{6} -1.00000 q^{7} +2.96560 q^{8} -1.16521 q^{9} +3.89299 q^{10} +6.16901 q^{11} +0.308188 q^{12} -0.620036 q^{13} +1.33134 q^{14} +3.96083 q^{15} -3.49319 q^{16} +0.644462 q^{17} +1.55130 q^{18} +2.75517 q^{19} +0.665298 q^{20} +1.35454 q^{21} -8.21308 q^{22} +4.71184 q^{23} -4.01703 q^{24} +3.55041 q^{25} +0.825482 q^{26} +5.64196 q^{27} +0.227522 q^{28} -8.85381 q^{29} -5.27323 q^{30} +2.41753 q^{31} -1.28056 q^{32} -8.35618 q^{33} -0.858001 q^{34} +2.92411 q^{35} +0.265112 q^{36} -6.07476 q^{37} -3.66808 q^{38} +0.839865 q^{39} -8.67173 q^{40} -2.70008 q^{41} -1.80336 q^{42} +10.3043 q^{43} -1.40358 q^{44} +3.40721 q^{45} -6.27308 q^{46} -10.7764 q^{47} +4.73167 q^{48} +1.00000 q^{49} -4.72681 q^{50} -0.872951 q^{51} +0.141072 q^{52} +6.17224 q^{53} -7.51139 q^{54} -18.0388 q^{55} -2.96560 q^{56} -3.73200 q^{57} +11.7875 q^{58} -11.6075 q^{59} -0.901175 q^{60} -12.3316 q^{61} -3.21857 q^{62} +1.16521 q^{63} +8.69124 q^{64} +1.81305 q^{65} +11.1250 q^{66} +12.3886 q^{67} -0.146629 q^{68} -6.38238 q^{69} -3.89299 q^{70} -10.0499 q^{71} -3.45556 q^{72} +8.20886 q^{73} +8.08760 q^{74} -4.80918 q^{75} -0.626862 q^{76} -6.16901 q^{77} -1.11815 q^{78} +2.30230 q^{79} +10.2145 q^{80} -4.14663 q^{81} +3.59473 q^{82} -1.22797 q^{83} -0.308188 q^{84} -1.88448 q^{85} -13.7186 q^{86} +11.9929 q^{87} +18.2948 q^{88} +11.7296 q^{89} -4.53618 q^{90} +0.620036 q^{91} -1.07205 q^{92} -3.27465 q^{93} +14.3471 q^{94} -8.05642 q^{95} +1.73457 q^{96} +1.19035 q^{97} -1.33134 q^{98} -7.18822 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 2 q^{2} - 4 q^{3} + 12 q^{4} - 9 q^{5} - 12 q^{6} - 16 q^{7} - 6 q^{8} + 14 q^{9} - 2 q^{10} - 22 q^{11} - 10 q^{12} - 4 q^{13} + 2 q^{14} - 14 q^{15} + 12 q^{16} - 18 q^{17} - 5 q^{18} - 15 q^{19}+ \cdots - 73 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.33134 −0.941403 −0.470701 0.882293i \(-0.655999\pi\)
−0.470701 + 0.882293i \(0.655999\pi\)
\(3\) −1.35454 −0.782045 −0.391023 0.920381i \(-0.627879\pi\)
−0.391023 + 0.920381i \(0.627879\pi\)
\(4\) −0.227522 −0.113761
\(5\) −2.92411 −1.30770 −0.653850 0.756624i \(-0.726847\pi\)
−0.653850 + 0.756624i \(0.726847\pi\)
\(6\) 1.80336 0.736220
\(7\) −1.00000 −0.377964
\(8\) 2.96560 1.04850
\(9\) −1.16521 −0.388405
\(10\) 3.89299 1.23107
\(11\) 6.16901 1.86003 0.930013 0.367526i \(-0.119795\pi\)
0.930013 + 0.367526i \(0.119795\pi\)
\(12\) 0.308188 0.0889662
\(13\) −0.620036 −0.171967 −0.0859836 0.996297i \(-0.527403\pi\)
−0.0859836 + 0.996297i \(0.527403\pi\)
\(14\) 1.33134 0.355817
\(15\) 3.96083 1.02268
\(16\) −3.49319 −0.873298
\(17\) 0.644462 0.156305 0.0781525 0.996941i \(-0.475098\pi\)
0.0781525 + 0.996941i \(0.475098\pi\)
\(18\) 1.55130 0.365645
\(19\) 2.75517 0.632080 0.316040 0.948746i \(-0.397647\pi\)
0.316040 + 0.948746i \(0.397647\pi\)
\(20\) 0.665298 0.148765
\(21\) 1.35454 0.295585
\(22\) −8.21308 −1.75103
\(23\) 4.71184 0.982486 0.491243 0.871023i \(-0.336543\pi\)
0.491243 + 0.871023i \(0.336543\pi\)
\(24\) −4.01703 −0.819973
\(25\) 3.55041 0.710081
\(26\) 0.825482 0.161890
\(27\) 5.64196 1.08580
\(28\) 0.227522 0.0429976
\(29\) −8.85381 −1.64411 −0.822056 0.569407i \(-0.807173\pi\)
−0.822056 + 0.569407i \(0.807173\pi\)
\(30\) −5.27323 −0.962755
\(31\) 2.41753 0.434202 0.217101 0.976149i \(-0.430340\pi\)
0.217101 + 0.976149i \(0.430340\pi\)
\(32\) −1.28056 −0.226373
\(33\) −8.35618 −1.45463
\(34\) −0.858001 −0.147146
\(35\) 2.92411 0.494264
\(36\) 0.265112 0.0441853
\(37\) −6.07476 −0.998685 −0.499343 0.866405i \(-0.666425\pi\)
−0.499343 + 0.866405i \(0.666425\pi\)
\(38\) −3.66808 −0.595042
\(39\) 0.839865 0.134486
\(40\) −8.67173 −1.37112
\(41\) −2.70008 −0.421681 −0.210840 0.977520i \(-0.567620\pi\)
−0.210840 + 0.977520i \(0.567620\pi\)
\(42\) −1.80336 −0.278265
\(43\) 10.3043 1.57140 0.785698 0.618611i \(-0.212304\pi\)
0.785698 + 0.618611i \(0.212304\pi\)
\(44\) −1.40358 −0.211598
\(45\) 3.40721 0.507917
\(46\) −6.27308 −0.924915
\(47\) −10.7764 −1.57190 −0.785950 0.618290i \(-0.787826\pi\)
−0.785950 + 0.618290i \(0.787826\pi\)
\(48\) 4.73167 0.682958
\(49\) 1.00000 0.142857
\(50\) −4.72681 −0.668472
\(51\) −0.872951 −0.122238
\(52\) 0.141072 0.0195631
\(53\) 6.17224 0.847822 0.423911 0.905704i \(-0.360657\pi\)
0.423911 + 0.905704i \(0.360657\pi\)
\(54\) −7.51139 −1.02217
\(55\) −18.0388 −2.43236
\(56\) −2.96560 −0.396295
\(57\) −3.73200 −0.494315
\(58\) 11.7875 1.54777
\(59\) −11.6075 −1.51116 −0.755581 0.655055i \(-0.772645\pi\)
−0.755581 + 0.655055i \(0.772645\pi\)
\(60\) −0.901175 −0.116341
\(61\) −12.3316 −1.57890 −0.789448 0.613818i \(-0.789633\pi\)
−0.789448 + 0.613818i \(0.789633\pi\)
\(62\) −3.21857 −0.408759
\(63\) 1.16521 0.146803
\(64\) 8.69124 1.08641
\(65\) 1.81305 0.224882
\(66\) 11.1250 1.36939
\(67\) 12.3886 1.51351 0.756753 0.653701i \(-0.226785\pi\)
0.756753 + 0.653701i \(0.226785\pi\)
\(68\) −0.146629 −0.0177814
\(69\) −6.38238 −0.768348
\(70\) −3.89299 −0.465302
\(71\) −10.0499 −1.19270 −0.596351 0.802724i \(-0.703383\pi\)
−0.596351 + 0.802724i \(0.703383\pi\)
\(72\) −3.45556 −0.407242
\(73\) 8.20886 0.960775 0.480387 0.877056i \(-0.340496\pi\)
0.480387 + 0.877056i \(0.340496\pi\)
\(74\) 8.08760 0.940165
\(75\) −4.80918 −0.555316
\(76\) −0.626862 −0.0719060
\(77\) −6.16901 −0.703024
\(78\) −1.11815 −0.126606
\(79\) 2.30230 0.259029 0.129515 0.991578i \(-0.458658\pi\)
0.129515 + 0.991578i \(0.458658\pi\)
\(80\) 10.2145 1.14201
\(81\) −4.14663 −0.460737
\(82\) 3.59473 0.396972
\(83\) −1.22797 −0.134787 −0.0673936 0.997726i \(-0.521468\pi\)
−0.0673936 + 0.997726i \(0.521468\pi\)
\(84\) −0.308188 −0.0336261
\(85\) −1.88448 −0.204400
\(86\) −13.7186 −1.47932
\(87\) 11.9929 1.28577
\(88\) 18.2948 1.95023
\(89\) 11.7296 1.24334 0.621668 0.783281i \(-0.286456\pi\)
0.621668 + 0.783281i \(0.286456\pi\)
\(90\) −4.53618 −0.478155
\(91\) 0.620036 0.0649975
\(92\) −1.07205 −0.111768
\(93\) −3.27465 −0.339565
\(94\) 14.3471 1.47979
\(95\) −8.05642 −0.826571
\(96\) 1.73457 0.177034
\(97\) 1.19035 0.120862 0.0604309 0.998172i \(-0.480753\pi\)
0.0604309 + 0.998172i \(0.480753\pi\)
\(98\) −1.33134 −0.134486
\(99\) −7.18822 −0.722443
\(100\) −0.807795 −0.0807795
\(101\) −19.3595 −1.92635 −0.963173 0.268882i \(-0.913346\pi\)
−0.963173 + 0.268882i \(0.913346\pi\)
\(102\) 1.16220 0.115075
\(103\) −10.2002 −1.00506 −0.502528 0.864561i \(-0.667597\pi\)
−0.502528 + 0.864561i \(0.667597\pi\)
\(104\) −1.83878 −0.180307
\(105\) −3.96083 −0.386537
\(106\) −8.21738 −0.798142
\(107\) −15.3876 −1.48758 −0.743788 0.668415i \(-0.766973\pi\)
−0.743788 + 0.668415i \(0.766973\pi\)
\(108\) −1.28367 −0.123521
\(109\) −2.40780 −0.230626 −0.115313 0.993329i \(-0.536787\pi\)
−0.115313 + 0.993329i \(0.536787\pi\)
\(110\) 24.0159 2.28983
\(111\) 8.22853 0.781017
\(112\) 3.49319 0.330075
\(113\) −2.71096 −0.255026 −0.127513 0.991837i \(-0.540699\pi\)
−0.127513 + 0.991837i \(0.540699\pi\)
\(114\) 4.96858 0.465350
\(115\) −13.7779 −1.28480
\(116\) 2.01443 0.187036
\(117\) 0.722475 0.0667929
\(118\) 15.4535 1.42261
\(119\) −0.644462 −0.0590777
\(120\) 11.7462 1.07228
\(121\) 27.0567 2.45970
\(122\) 16.4176 1.48638
\(123\) 3.65737 0.329774
\(124\) −0.550041 −0.0493952
\(125\) 4.23877 0.379127
\(126\) −1.55130 −0.138201
\(127\) −1.00000 −0.0887357
\(128\) −9.00992 −0.796372
\(129\) −13.9576 −1.22890
\(130\) −2.41380 −0.211704
\(131\) −12.0134 −1.04961 −0.524807 0.851222i \(-0.675862\pi\)
−0.524807 + 0.851222i \(0.675862\pi\)
\(132\) 1.90121 0.165479
\(133\) −2.75517 −0.238904
\(134\) −16.4935 −1.42482
\(135\) −16.4977 −1.41990
\(136\) 1.91122 0.163885
\(137\) −12.6214 −1.07832 −0.539161 0.842203i \(-0.681258\pi\)
−0.539161 + 0.842203i \(0.681258\pi\)
\(138\) 8.49715 0.723325
\(139\) −17.1553 −1.45510 −0.727548 0.686057i \(-0.759340\pi\)
−0.727548 + 0.686057i \(0.759340\pi\)
\(140\) −0.665298 −0.0562280
\(141\) 14.5971 1.22930
\(142\) 13.3799 1.12281
\(143\) −3.82501 −0.319863
\(144\) 4.07032 0.339193
\(145\) 25.8895 2.15001
\(146\) −10.9288 −0.904476
\(147\) −1.35454 −0.111721
\(148\) 1.38214 0.113611
\(149\) 5.64770 0.462677 0.231339 0.972873i \(-0.425689\pi\)
0.231339 + 0.972873i \(0.425689\pi\)
\(150\) 6.40267 0.522776
\(151\) 13.0571 1.06257 0.531287 0.847192i \(-0.321709\pi\)
0.531287 + 0.847192i \(0.321709\pi\)
\(152\) 8.17074 0.662734
\(153\) −0.750937 −0.0607096
\(154\) 8.21308 0.661829
\(155\) −7.06913 −0.567806
\(156\) −0.191088 −0.0152993
\(157\) −6.53317 −0.521404 −0.260702 0.965419i \(-0.583954\pi\)
−0.260702 + 0.965419i \(0.583954\pi\)
\(158\) −3.06516 −0.243851
\(159\) −8.36056 −0.663035
\(160\) 3.74449 0.296028
\(161\) −4.71184 −0.371345
\(162\) 5.52059 0.433739
\(163\) 13.2598 1.03858 0.519292 0.854597i \(-0.326196\pi\)
0.519292 + 0.854597i \(0.326196\pi\)
\(164\) 0.614326 0.0479708
\(165\) 24.4344 1.90221
\(166\) 1.63485 0.126889
\(167\) −2.01803 −0.156160 −0.0780801 0.996947i \(-0.524879\pi\)
−0.0780801 + 0.996947i \(0.524879\pi\)
\(168\) 4.01703 0.309921
\(169\) −12.6156 −0.970427
\(170\) 2.50889 0.192423
\(171\) −3.21037 −0.245503
\(172\) −2.34446 −0.178763
\(173\) 1.84088 0.139960 0.0699799 0.997548i \(-0.477706\pi\)
0.0699799 + 0.997548i \(0.477706\pi\)
\(174\) −15.9666 −1.21043
\(175\) −3.55041 −0.268385
\(176\) −21.5495 −1.62436
\(177\) 15.7228 1.18180
\(178\) −15.6161 −1.17048
\(179\) 18.7622 1.40235 0.701177 0.712987i \(-0.252658\pi\)
0.701177 + 0.712987i \(0.252658\pi\)
\(180\) −0.775215 −0.0577811
\(181\) 23.1779 1.72280 0.861399 0.507929i \(-0.169589\pi\)
0.861399 + 0.507929i \(0.169589\pi\)
\(182\) −0.825482 −0.0611888
\(183\) 16.7036 1.23477
\(184\) 13.9734 1.03013
\(185\) 17.7633 1.30598
\(186\) 4.35969 0.319668
\(187\) 3.97569 0.290731
\(188\) 2.45187 0.178821
\(189\) −5.64196 −0.410392
\(190\) 10.7259 0.778137
\(191\) −0.0673136 −0.00487064 −0.00243532 0.999997i \(-0.500775\pi\)
−0.00243532 + 0.999997i \(0.500775\pi\)
\(192\) −11.7727 −0.849619
\(193\) −22.7803 −1.63976 −0.819879 0.572536i \(-0.805960\pi\)
−0.819879 + 0.572536i \(0.805960\pi\)
\(194\) −1.58477 −0.113780
\(195\) −2.45586 −0.175868
\(196\) −0.227522 −0.0162516
\(197\) −20.6532 −1.47148 −0.735741 0.677263i \(-0.763166\pi\)
−0.735741 + 0.677263i \(0.763166\pi\)
\(198\) 9.57000 0.680110
\(199\) 0.546917 0.0387699 0.0193850 0.999812i \(-0.493829\pi\)
0.0193850 + 0.999812i \(0.493829\pi\)
\(200\) 10.5291 0.744518
\(201\) −16.7809 −1.18363
\(202\) 25.7742 1.81347
\(203\) 8.85381 0.621416
\(204\) 0.198615 0.0139059
\(205\) 7.89531 0.551432
\(206\) 13.5800 0.946162
\(207\) −5.49030 −0.381602
\(208\) 2.16590 0.150178
\(209\) 16.9967 1.17569
\(210\) 5.27323 0.363887
\(211\) −7.86912 −0.541733 −0.270866 0.962617i \(-0.587310\pi\)
−0.270866 + 0.962617i \(0.587310\pi\)
\(212\) −1.40432 −0.0964490
\(213\) 13.6130 0.932747
\(214\) 20.4862 1.40041
\(215\) −30.1310 −2.05491
\(216\) 16.7318 1.13845
\(217\) −2.41753 −0.164113
\(218\) 3.20561 0.217112
\(219\) −11.1193 −0.751369
\(220\) 4.10423 0.276707
\(221\) −0.399590 −0.0268793
\(222\) −10.9550 −0.735252
\(223\) 0.641278 0.0429432 0.0214716 0.999769i \(-0.493165\pi\)
0.0214716 + 0.999769i \(0.493165\pi\)
\(224\) 1.28056 0.0855609
\(225\) −4.13699 −0.275799
\(226\) 3.60923 0.240082
\(227\) 25.4329 1.68804 0.844021 0.536310i \(-0.180182\pi\)
0.844021 + 0.536310i \(0.180182\pi\)
\(228\) 0.849111 0.0562337
\(229\) −17.2560 −1.14031 −0.570156 0.821537i \(-0.693117\pi\)
−0.570156 + 0.821537i \(0.693117\pi\)
\(230\) 18.3432 1.20951
\(231\) 8.35618 0.549797
\(232\) −26.2568 −1.72385
\(233\) 17.2249 1.12844 0.564219 0.825625i \(-0.309177\pi\)
0.564219 + 0.825625i \(0.309177\pi\)
\(234\) −0.961864 −0.0628790
\(235\) 31.5114 2.05557
\(236\) 2.64095 0.171911
\(237\) −3.11856 −0.202573
\(238\) 0.858001 0.0556159
\(239\) −5.48952 −0.355088 −0.177544 0.984113i \(-0.556815\pi\)
−0.177544 + 0.984113i \(0.556815\pi\)
\(240\) −13.8359 −0.893105
\(241\) −26.9366 −1.73514 −0.867571 0.497314i \(-0.834320\pi\)
−0.867571 + 0.497314i \(0.834320\pi\)
\(242\) −36.0218 −2.31557
\(243\) −11.3091 −0.725479
\(244\) 2.80570 0.179617
\(245\) −2.92411 −0.186814
\(246\) −4.86921 −0.310450
\(247\) −1.70831 −0.108697
\(248\) 7.16943 0.455259
\(249\) 1.66334 0.105410
\(250\) −5.64326 −0.356911
\(251\) 0.302222 0.0190761 0.00953804 0.999955i \(-0.496964\pi\)
0.00953804 + 0.999955i \(0.496964\pi\)
\(252\) −0.265112 −0.0167005
\(253\) 29.0674 1.82745
\(254\) 1.33134 0.0835360
\(255\) 2.55260 0.159850
\(256\) −5.38718 −0.336698
\(257\) −18.7785 −1.17137 −0.585685 0.810539i \(-0.699174\pi\)
−0.585685 + 0.810539i \(0.699174\pi\)
\(258\) 18.5824 1.15689
\(259\) 6.07476 0.377467
\(260\) −0.412509 −0.0255827
\(261\) 10.3166 0.638581
\(262\) 15.9939 0.988109
\(263\) −4.41926 −0.272503 −0.136251 0.990674i \(-0.543506\pi\)
−0.136251 + 0.990674i \(0.543506\pi\)
\(264\) −24.7811 −1.52517
\(265\) −18.0483 −1.10870
\(266\) 3.66808 0.224905
\(267\) −15.8882 −0.972344
\(268\) −2.81867 −0.172178
\(269\) −2.13768 −0.130337 −0.0651683 0.997874i \(-0.520758\pi\)
−0.0651683 + 0.997874i \(0.520758\pi\)
\(270\) 21.9641 1.33669
\(271\) −3.17538 −0.192891 −0.0964454 0.995338i \(-0.530747\pi\)
−0.0964454 + 0.995338i \(0.530747\pi\)
\(272\) −2.25123 −0.136501
\(273\) −0.839865 −0.0508310
\(274\) 16.8035 1.01513
\(275\) 21.9025 1.32077
\(276\) 1.45213 0.0874080
\(277\) 20.5642 1.23559 0.617793 0.786341i \(-0.288027\pi\)
0.617793 + 0.786341i \(0.288027\pi\)
\(278\) 22.8396 1.36983
\(279\) −2.81695 −0.168646
\(280\) 8.67173 0.518235
\(281\) −18.9073 −1.12791 −0.563956 0.825805i \(-0.690721\pi\)
−0.563956 + 0.825805i \(0.690721\pi\)
\(282\) −19.4338 −1.15726
\(283\) −15.0480 −0.894513 −0.447256 0.894406i \(-0.647599\pi\)
−0.447256 + 0.894406i \(0.647599\pi\)
\(284\) 2.28657 0.135683
\(285\) 10.9128 0.646416
\(286\) 5.09241 0.301120
\(287\) 2.70008 0.159380
\(288\) 1.49213 0.0879243
\(289\) −16.5847 −0.975569
\(290\) −34.4678 −2.02402
\(291\) −1.61238 −0.0945195
\(292\) −1.86770 −0.109299
\(293\) 12.4842 0.729334 0.364667 0.931138i \(-0.381183\pi\)
0.364667 + 0.931138i \(0.381183\pi\)
\(294\) 1.80336 0.105174
\(295\) 33.9414 1.97615
\(296\) −18.0153 −1.04712
\(297\) 34.8053 2.01961
\(298\) −7.51903 −0.435566
\(299\) −2.92151 −0.168955
\(300\) 1.09419 0.0631732
\(301\) −10.3043 −0.593932
\(302\) −17.3835 −1.00031
\(303\) 26.2233 1.50649
\(304\) −9.62434 −0.551994
\(305\) 36.0588 2.06472
\(306\) 0.999756 0.0571522
\(307\) 27.4111 1.56443 0.782216 0.623007i \(-0.214089\pi\)
0.782216 + 0.623007i \(0.214089\pi\)
\(308\) 1.40358 0.0799766
\(309\) 13.8166 0.785999
\(310\) 9.41144 0.534534
\(311\) −25.1878 −1.42827 −0.714135 0.700008i \(-0.753180\pi\)
−0.714135 + 0.700008i \(0.753180\pi\)
\(312\) 2.49070 0.141008
\(313\) −11.7164 −0.662251 −0.331125 0.943587i \(-0.607428\pi\)
−0.331125 + 0.943587i \(0.607428\pi\)
\(314\) 8.69790 0.490851
\(315\) −3.40721 −0.191975
\(316\) −0.523824 −0.0294674
\(317\) 18.0033 1.01117 0.505584 0.862777i \(-0.331277\pi\)
0.505584 + 0.862777i \(0.331277\pi\)
\(318\) 11.1308 0.624183
\(319\) −54.6192 −3.05809
\(320\) −25.4141 −1.42069
\(321\) 20.8432 1.16335
\(322\) 6.27308 0.349585
\(323\) 1.77560 0.0987973
\(324\) 0.943449 0.0524138
\(325\) −2.20138 −0.122111
\(326\) −17.6533 −0.977726
\(327\) 3.26147 0.180360
\(328\) −8.00734 −0.442131
\(329\) 10.7764 0.594122
\(330\) −32.5306 −1.79075
\(331\) −14.0863 −0.774254 −0.387127 0.922026i \(-0.626533\pi\)
−0.387127 + 0.922026i \(0.626533\pi\)
\(332\) 0.279390 0.0153335
\(333\) 7.07841 0.387894
\(334\) 2.68670 0.147010
\(335\) −36.2255 −1.97921
\(336\) −4.73167 −0.258134
\(337\) 6.85642 0.373493 0.186747 0.982408i \(-0.440206\pi\)
0.186747 + 0.982408i \(0.440206\pi\)
\(338\) 16.7957 0.913563
\(339\) 3.67212 0.199442
\(340\) 0.428759 0.0232527
\(341\) 14.9138 0.807627
\(342\) 4.27411 0.231117
\(343\) −1.00000 −0.0539949
\(344\) 30.5585 1.64760
\(345\) 18.6628 1.00477
\(346\) −2.45085 −0.131759
\(347\) 15.2537 0.818860 0.409430 0.912342i \(-0.365728\pi\)
0.409430 + 0.912342i \(0.365728\pi\)
\(348\) −2.72864 −0.146270
\(349\) 7.20325 0.385581 0.192791 0.981240i \(-0.438246\pi\)
0.192791 + 0.981240i \(0.438246\pi\)
\(350\) 4.72681 0.252659
\(351\) −3.49822 −0.186721
\(352\) −7.89977 −0.421059
\(353\) −4.26996 −0.227267 −0.113633 0.993523i \(-0.536249\pi\)
−0.113633 + 0.993523i \(0.536249\pi\)
\(354\) −20.9324 −1.11255
\(355\) 29.3869 1.55970
\(356\) −2.66874 −0.141443
\(357\) 0.872951 0.0462015
\(358\) −24.9790 −1.32018
\(359\) −31.0817 −1.64043 −0.820214 0.572057i \(-0.806146\pi\)
−0.820214 + 0.572057i \(0.806146\pi\)
\(360\) 10.1044 0.532550
\(361\) −11.4090 −0.600475
\(362\) −30.8577 −1.62185
\(363\) −36.6494 −1.92360
\(364\) −0.141072 −0.00739417
\(365\) −24.0036 −1.25641
\(366\) −22.2383 −1.16241
\(367\) −18.3623 −0.958503 −0.479251 0.877678i \(-0.659092\pi\)
−0.479251 + 0.877678i \(0.659092\pi\)
\(368\) −16.4593 −0.858002
\(369\) 3.14617 0.163783
\(370\) −23.6490 −1.22945
\(371\) −6.17224 −0.320447
\(372\) 0.745054 0.0386293
\(373\) −20.8539 −1.07977 −0.539886 0.841738i \(-0.681533\pi\)
−0.539886 + 0.841738i \(0.681533\pi\)
\(374\) −5.29302 −0.273695
\(375\) −5.74159 −0.296495
\(376\) −31.9585 −1.64813
\(377\) 5.48968 0.282733
\(378\) 7.51139 0.386344
\(379\) 6.97802 0.358437 0.179218 0.983809i \(-0.442643\pi\)
0.179218 + 0.983809i \(0.442643\pi\)
\(380\) 1.83301 0.0940315
\(381\) 1.35454 0.0693953
\(382\) 0.0896176 0.00458524
\(383\) −0.0360913 −0.00184418 −0.000922089 1.00000i \(-0.500294\pi\)
−0.000922089 1.00000i \(0.500294\pi\)
\(384\) 12.2043 0.622799
\(385\) 18.0388 0.919345
\(386\) 30.3284 1.54367
\(387\) −12.0068 −0.610338
\(388\) −0.270831 −0.0137494
\(389\) −19.6007 −0.993793 −0.496897 0.867810i \(-0.665527\pi\)
−0.496897 + 0.867810i \(0.665527\pi\)
\(390\) 3.26959 0.165562
\(391\) 3.03660 0.153567
\(392\) 2.96560 0.149785
\(393\) 16.2726 0.820845
\(394\) 27.4966 1.38526
\(395\) −6.73218 −0.338733
\(396\) 1.63548 0.0821858
\(397\) 20.6792 1.03786 0.518930 0.854817i \(-0.326331\pi\)
0.518930 + 0.854817i \(0.326331\pi\)
\(398\) −0.728135 −0.0364981
\(399\) 3.73200 0.186834
\(400\) −12.4022 −0.620112
\(401\) −24.7687 −1.23689 −0.618444 0.785829i \(-0.712237\pi\)
−0.618444 + 0.785829i \(0.712237\pi\)
\(402\) 22.3411 1.11427
\(403\) −1.49896 −0.0746684
\(404\) 4.40472 0.219143
\(405\) 12.1252 0.602506
\(406\) −11.7875 −0.585002
\(407\) −37.4753 −1.85758
\(408\) −2.58882 −0.128166
\(409\) −37.2721 −1.84299 −0.921494 0.388392i \(-0.873031\pi\)
−0.921494 + 0.388392i \(0.873031\pi\)
\(410\) −10.5114 −0.519120
\(411\) 17.0963 0.843296
\(412\) 2.32077 0.114336
\(413\) 11.6075 0.571165
\(414\) 7.30948 0.359241
\(415\) 3.59071 0.176261
\(416\) 0.793992 0.0389287
\(417\) 23.2376 1.13795
\(418\) −22.6284 −1.10679
\(419\) −25.0016 −1.22141 −0.610705 0.791858i \(-0.709114\pi\)
−0.610705 + 0.791858i \(0.709114\pi\)
\(420\) 0.901175 0.0439728
\(421\) 10.6102 0.517108 0.258554 0.965997i \(-0.416754\pi\)
0.258554 + 0.965997i \(0.416754\pi\)
\(422\) 10.4765 0.509989
\(423\) 12.5568 0.610534
\(424\) 18.3044 0.888940
\(425\) 2.28810 0.110989
\(426\) −18.1236 −0.878091
\(427\) 12.3316 0.596766
\(428\) 3.50102 0.169228
\(429\) 5.18114 0.250148
\(430\) 40.1147 1.93450
\(431\) −33.4302 −1.61028 −0.805138 0.593088i \(-0.797909\pi\)
−0.805138 + 0.593088i \(0.797909\pi\)
\(432\) −19.7084 −0.948223
\(433\) 4.82890 0.232062 0.116031 0.993246i \(-0.462983\pi\)
0.116031 + 0.993246i \(0.462983\pi\)
\(434\) 3.21857 0.154496
\(435\) −35.0684 −1.68140
\(436\) 0.547827 0.0262362
\(437\) 12.9819 0.621009
\(438\) 14.8036 0.707341
\(439\) 5.44232 0.259748 0.129874 0.991531i \(-0.458543\pi\)
0.129874 + 0.991531i \(0.458543\pi\)
\(440\) −53.4960 −2.55032
\(441\) −1.16521 −0.0554864
\(442\) 0.531992 0.0253043
\(443\) −23.6814 −1.12514 −0.562568 0.826751i \(-0.690187\pi\)
−0.562568 + 0.826751i \(0.690187\pi\)
\(444\) −1.87217 −0.0888492
\(445\) −34.2986 −1.62591
\(446\) −0.853762 −0.0404268
\(447\) −7.65004 −0.361835
\(448\) −8.69124 −0.410623
\(449\) −7.30490 −0.344740 −0.172370 0.985032i \(-0.555142\pi\)
−0.172370 + 0.985032i \(0.555142\pi\)
\(450\) 5.50775 0.259638
\(451\) −16.6568 −0.784338
\(452\) 0.616803 0.0290120
\(453\) −17.6864 −0.830981
\(454\) −33.8600 −1.58913
\(455\) −1.81305 −0.0849972
\(456\) −11.0676 −0.518288
\(457\) 4.66805 0.218362 0.109181 0.994022i \(-0.465177\pi\)
0.109181 + 0.994022i \(0.465177\pi\)
\(458\) 22.9737 1.07349
\(459\) 3.63603 0.169715
\(460\) 3.13478 0.146160
\(461\) 26.9450 1.25495 0.627477 0.778635i \(-0.284088\pi\)
0.627477 + 0.778635i \(0.284088\pi\)
\(462\) −11.1250 −0.517580
\(463\) 9.98472 0.464029 0.232015 0.972712i \(-0.425468\pi\)
0.232015 + 0.972712i \(0.425468\pi\)
\(464\) 30.9280 1.43580
\(465\) 9.57543 0.444050
\(466\) −22.9322 −1.06231
\(467\) −37.0776 −1.71575 −0.857873 0.513861i \(-0.828215\pi\)
−0.857873 + 0.513861i \(0.828215\pi\)
\(468\) −0.164379 −0.00759842
\(469\) −12.3886 −0.572052
\(470\) −41.9525 −1.93512
\(471\) 8.84946 0.407761
\(472\) −34.4231 −1.58445
\(473\) 63.5675 2.92284
\(474\) 4.15188 0.190702
\(475\) 9.78198 0.448828
\(476\) 0.146629 0.00672074
\(477\) −7.19198 −0.329298
\(478\) 7.30845 0.334281
\(479\) −18.8165 −0.859748 −0.429874 0.902889i \(-0.641442\pi\)
−0.429874 + 0.902889i \(0.641442\pi\)
\(480\) −5.07207 −0.231507
\(481\) 3.76657 0.171741
\(482\) 35.8619 1.63347
\(483\) 6.38238 0.290408
\(484\) −6.15598 −0.279817
\(485\) −3.48072 −0.158051
\(486\) 15.0563 0.682968
\(487\) −26.1973 −1.18711 −0.593556 0.804793i \(-0.702276\pi\)
−0.593556 + 0.804793i \(0.702276\pi\)
\(488\) −36.5705 −1.65547
\(489\) −17.9609 −0.812220
\(490\) 3.89299 0.175868
\(491\) 18.9523 0.855306 0.427653 0.903943i \(-0.359340\pi\)
0.427653 + 0.903943i \(0.359340\pi\)
\(492\) −0.832131 −0.0375153
\(493\) −5.70594 −0.256983
\(494\) 2.27434 0.102328
\(495\) 21.0191 0.944740
\(496\) −8.44490 −0.379187
\(497\) 10.0499 0.450799
\(498\) −2.21447 −0.0992329
\(499\) 23.2998 1.04304 0.521520 0.853239i \(-0.325365\pi\)
0.521520 + 0.853239i \(0.325365\pi\)
\(500\) −0.964412 −0.0431298
\(501\) 2.73351 0.122124
\(502\) −0.402361 −0.0179583
\(503\) 6.11772 0.272775 0.136388 0.990656i \(-0.456451\pi\)
0.136388 + 0.990656i \(0.456451\pi\)
\(504\) 3.45556 0.153923
\(505\) 56.6094 2.51908
\(506\) −38.6987 −1.72037
\(507\) 17.0883 0.758918
\(508\) 0.227522 0.0100946
\(509\) −3.73713 −0.165646 −0.0828228 0.996564i \(-0.526394\pi\)
−0.0828228 + 0.996564i \(0.526394\pi\)
\(510\) −3.39839 −0.150483
\(511\) −8.20886 −0.363139
\(512\) 25.1920 1.11334
\(513\) 15.5446 0.686310
\(514\) 25.0006 1.10273
\(515\) 29.8265 1.31431
\(516\) 3.17567 0.139801
\(517\) −66.4797 −2.92378
\(518\) −8.08760 −0.355349
\(519\) −2.49356 −0.109455
\(520\) 5.37679 0.235788
\(521\) −21.0747 −0.923299 −0.461649 0.887062i \(-0.652742\pi\)
−0.461649 + 0.887062i \(0.652742\pi\)
\(522\) −13.7349 −0.601162
\(523\) −7.26739 −0.317781 −0.158890 0.987296i \(-0.550792\pi\)
−0.158890 + 0.987296i \(0.550792\pi\)
\(524\) 2.73330 0.119405
\(525\) 4.80918 0.209890
\(526\) 5.88355 0.256535
\(527\) 1.55801 0.0678679
\(528\) 29.1897 1.27032
\(529\) −0.798603 −0.0347219
\(530\) 24.0285 1.04373
\(531\) 13.5252 0.586943
\(532\) 0.626862 0.0271779
\(533\) 1.67414 0.0725152
\(534\) 21.1527 0.915368
\(535\) 44.9950 1.94531
\(536\) 36.7396 1.58691
\(537\) −25.4142 −1.09671
\(538\) 2.84599 0.122699
\(539\) 6.16901 0.265718
\(540\) 3.75359 0.161529
\(541\) 9.77573 0.420291 0.210146 0.977670i \(-0.432606\pi\)
0.210146 + 0.977670i \(0.432606\pi\)
\(542\) 4.22753 0.181588
\(543\) −31.3954 −1.34731
\(544\) −0.825271 −0.0353832
\(545\) 7.04067 0.301589
\(546\) 1.11815 0.0478524
\(547\) 19.6478 0.840078 0.420039 0.907506i \(-0.362016\pi\)
0.420039 + 0.907506i \(0.362016\pi\)
\(548\) 2.87165 0.122671
\(549\) 14.3689 0.613251
\(550\) −29.1598 −1.24338
\(551\) −24.3938 −1.03921
\(552\) −18.9276 −0.805611
\(553\) −2.30230 −0.0979038
\(554\) −27.3781 −1.16318
\(555\) −24.0611 −1.02134
\(556\) 3.90321 0.165533
\(557\) 23.3748 0.990423 0.495211 0.868773i \(-0.335091\pi\)
0.495211 + 0.868773i \(0.335091\pi\)
\(558\) 3.75032 0.158764
\(559\) −6.38906 −0.270228
\(560\) −10.2145 −0.431640
\(561\) −5.38524 −0.227365
\(562\) 25.1721 1.06182
\(563\) −2.16432 −0.0912152 −0.0456076 0.998959i \(-0.514522\pi\)
−0.0456076 + 0.998959i \(0.514522\pi\)
\(564\) −3.32116 −0.139846
\(565\) 7.92715 0.333498
\(566\) 20.0341 0.842097
\(567\) 4.14663 0.174142
\(568\) −29.8039 −1.25054
\(569\) 4.40419 0.184633 0.0923165 0.995730i \(-0.470573\pi\)
0.0923165 + 0.995730i \(0.470573\pi\)
\(570\) −14.5286 −0.608538
\(571\) −2.17029 −0.0908239 −0.0454120 0.998968i \(-0.514460\pi\)
−0.0454120 + 0.998968i \(0.514460\pi\)
\(572\) 0.870273 0.0363879
\(573\) 0.0911791 0.00380906
\(574\) −3.59473 −0.150041
\(575\) 16.7289 0.697645
\(576\) −10.1272 −0.421965
\(577\) −18.3420 −0.763587 −0.381794 0.924248i \(-0.624694\pi\)
−0.381794 + 0.924248i \(0.624694\pi\)
\(578\) 22.0799 0.918403
\(579\) 30.8568 1.28237
\(580\) −5.89042 −0.244586
\(581\) 1.22797 0.0509447
\(582\) 2.14664 0.0889809
\(583\) 38.0766 1.57697
\(584\) 24.3442 1.00737
\(585\) −2.11260 −0.0873451
\(586\) −16.6208 −0.686597
\(587\) −4.64632 −0.191774 −0.0958871 0.995392i \(-0.530569\pi\)
−0.0958871 + 0.995392i \(0.530569\pi\)
\(588\) 0.308188 0.0127095
\(589\) 6.66072 0.274450
\(590\) −45.1878 −1.86035
\(591\) 27.9757 1.15077
\(592\) 21.2203 0.872149
\(593\) 35.2665 1.44822 0.724110 0.689684i \(-0.242251\pi\)
0.724110 + 0.689684i \(0.242251\pi\)
\(594\) −46.3379 −1.90127
\(595\) 1.88448 0.0772560
\(596\) −1.28497 −0.0526346
\(597\) −0.740823 −0.0303199
\(598\) 3.88953 0.159055
\(599\) −11.1046 −0.453720 −0.226860 0.973927i \(-0.572846\pi\)
−0.226860 + 0.973927i \(0.572846\pi\)
\(600\) −14.2621 −0.582247
\(601\) 27.6727 1.12879 0.564397 0.825504i \(-0.309109\pi\)
0.564397 + 0.825504i \(0.309109\pi\)
\(602\) 13.7186 0.559129
\(603\) −14.4354 −0.587853
\(604\) −2.97078 −0.120879
\(605\) −79.1166 −3.21655
\(606\) −34.9123 −1.41821
\(607\) 39.8271 1.61653 0.808266 0.588818i \(-0.200406\pi\)
0.808266 + 0.588818i \(0.200406\pi\)
\(608\) −3.52816 −0.143086
\(609\) −11.9929 −0.485975
\(610\) −48.0067 −1.94374
\(611\) 6.68176 0.270315
\(612\) 0.170854 0.00690638
\(613\) −11.1909 −0.451997 −0.225999 0.974128i \(-0.572564\pi\)
−0.225999 + 0.974128i \(0.572564\pi\)
\(614\) −36.4936 −1.47276
\(615\) −10.6945 −0.431245
\(616\) −18.2948 −0.737119
\(617\) −21.1289 −0.850617 −0.425308 0.905049i \(-0.639834\pi\)
−0.425308 + 0.905049i \(0.639834\pi\)
\(618\) −18.3947 −0.739942
\(619\) 6.30389 0.253375 0.126687 0.991943i \(-0.459566\pi\)
0.126687 + 0.991943i \(0.459566\pi\)
\(620\) 1.60838 0.0645941
\(621\) 26.5840 1.06678
\(622\) 33.5337 1.34458
\(623\) −11.7296 −0.469936
\(624\) −2.93381 −0.117446
\(625\) −30.1466 −1.20587
\(626\) 15.5986 0.623445
\(627\) −23.0227 −0.919439
\(628\) 1.48644 0.0593153
\(629\) −3.91496 −0.156099
\(630\) 4.53618 0.180726
\(631\) 36.4561 1.45130 0.725648 0.688066i \(-0.241540\pi\)
0.725648 + 0.688066i \(0.241540\pi\)
\(632\) 6.82770 0.271591
\(633\) 10.6591 0.423660
\(634\) −23.9687 −0.951917
\(635\) 2.92411 0.116040
\(636\) 1.90221 0.0754275
\(637\) −0.620036 −0.0245667
\(638\) 72.7170 2.87889
\(639\) 11.7103 0.463251
\(640\) 26.3460 1.04142
\(641\) 23.4463 0.926073 0.463037 0.886339i \(-0.346760\pi\)
0.463037 + 0.886339i \(0.346760\pi\)
\(642\) −27.7494 −1.09518
\(643\) −12.6228 −0.497796 −0.248898 0.968530i \(-0.580068\pi\)
−0.248898 + 0.968530i \(0.580068\pi\)
\(644\) 1.07205 0.0422445
\(645\) 40.8137 1.60704
\(646\) −2.36394 −0.0930080
\(647\) 25.2402 0.992294 0.496147 0.868238i \(-0.334748\pi\)
0.496147 + 0.868238i \(0.334748\pi\)
\(648\) −12.2972 −0.483081
\(649\) −71.6065 −2.81080
\(650\) 2.93080 0.114955
\(651\) 3.27465 0.128344
\(652\) −3.01688 −0.118150
\(653\) −3.66022 −0.143236 −0.0716178 0.997432i \(-0.522816\pi\)
−0.0716178 + 0.997432i \(0.522816\pi\)
\(654\) −4.34214 −0.169791
\(655\) 35.1284 1.37258
\(656\) 9.43188 0.368253
\(657\) −9.56509 −0.373170
\(658\) −14.3471 −0.559308
\(659\) 9.14308 0.356164 0.178082 0.984016i \(-0.443011\pi\)
0.178082 + 0.984016i \(0.443011\pi\)
\(660\) −5.55935 −0.216398
\(661\) 16.9706 0.660078 0.330039 0.943967i \(-0.392938\pi\)
0.330039 + 0.943967i \(0.392938\pi\)
\(662\) 18.7537 0.728885
\(663\) 0.541261 0.0210209
\(664\) −3.64166 −0.141324
\(665\) 8.05642 0.312415
\(666\) −9.42380 −0.365165
\(667\) −41.7177 −1.61532
\(668\) 0.459147 0.0177649
\(669\) −0.868639 −0.0335835
\(670\) 48.2287 1.86324
\(671\) −76.0736 −2.93679
\(672\) −1.73457 −0.0669125
\(673\) 2.01062 0.0775038 0.0387519 0.999249i \(-0.487662\pi\)
0.0387519 + 0.999249i \(0.487662\pi\)
\(674\) −9.12826 −0.351607
\(675\) 20.0312 0.771003
\(676\) 2.87031 0.110397
\(677\) 7.34704 0.282370 0.141185 0.989983i \(-0.454909\pi\)
0.141185 + 0.989983i \(0.454909\pi\)
\(678\) −4.88885 −0.187755
\(679\) −1.19035 −0.0456815
\(680\) −5.58860 −0.214313
\(681\) −34.4500 −1.32013
\(682\) −19.8554 −0.760302
\(683\) −30.7252 −1.17567 −0.587833 0.808982i \(-0.700019\pi\)
−0.587833 + 0.808982i \(0.700019\pi\)
\(684\) 0.730429 0.0279286
\(685\) 36.9064 1.41012
\(686\) 1.33134 0.0508310
\(687\) 23.3740 0.891775
\(688\) −35.9950 −1.37230
\(689\) −3.82701 −0.145798
\(690\) −24.8466 −0.945893
\(691\) 41.4079 1.57523 0.787616 0.616166i \(-0.211315\pi\)
0.787616 + 0.616166i \(0.211315\pi\)
\(692\) −0.418841 −0.0159220
\(693\) 7.18822 0.273058
\(694\) −20.3079 −0.770877
\(695\) 50.1640 1.90283
\(696\) 35.5660 1.34813
\(697\) −1.74010 −0.0659108
\(698\) −9.59001 −0.362987
\(699\) −23.3318 −0.882490
\(700\) 0.807795 0.0305318
\(701\) 5.45833 0.206158 0.103079 0.994673i \(-0.467131\pi\)
0.103079 + 0.994673i \(0.467131\pi\)
\(702\) 4.65734 0.175780
\(703\) −16.7370 −0.631249
\(704\) 53.6164 2.02074
\(705\) −42.6835 −1.60755
\(706\) 5.68479 0.213950
\(707\) 19.3595 0.728090
\(708\) −3.57728 −0.134442
\(709\) 4.69396 0.176285 0.0881427 0.996108i \(-0.471907\pi\)
0.0881427 + 0.996108i \(0.471907\pi\)
\(710\) −39.1241 −1.46830
\(711\) −2.68268 −0.100608
\(712\) 34.7853 1.30363
\(713\) 11.3910 0.426597
\(714\) −1.16220 −0.0434942
\(715\) 11.1847 0.418286
\(716\) −4.26882 −0.159533
\(717\) 7.43579 0.277695
\(718\) 41.3804 1.54430
\(719\) −32.7760 −1.22234 −0.611170 0.791499i \(-0.709301\pi\)
−0.611170 + 0.791499i \(0.709301\pi\)
\(720\) −11.9020 −0.443563
\(721\) 10.2002 0.379875
\(722\) 15.1893 0.565289
\(723\) 36.4868 1.35696
\(724\) −5.27347 −0.195987
\(725\) −31.4346 −1.16745
\(726\) 48.7930 1.81088
\(727\) −16.3785 −0.607445 −0.303723 0.952760i \(-0.598230\pi\)
−0.303723 + 0.952760i \(0.598230\pi\)
\(728\) 1.83878 0.0681497
\(729\) 27.7585 1.02809
\(730\) 31.9571 1.18278
\(731\) 6.64075 0.245617
\(732\) −3.80044 −0.140468
\(733\) 10.7267 0.396199 0.198100 0.980182i \(-0.436523\pi\)
0.198100 + 0.980182i \(0.436523\pi\)
\(734\) 24.4465 0.902337
\(735\) 3.96083 0.146097
\(736\) −6.03378 −0.222408
\(737\) 76.4253 2.81516
\(738\) −4.18863 −0.154186
\(739\) 11.9344 0.439014 0.219507 0.975611i \(-0.429555\pi\)
0.219507 + 0.975611i \(0.429555\pi\)
\(740\) −4.04153 −0.148570
\(741\) 2.31397 0.0850060
\(742\) 8.21738 0.301669
\(743\) 3.45152 0.126624 0.0633119 0.997994i \(-0.479834\pi\)
0.0633119 + 0.997994i \(0.479834\pi\)
\(744\) −9.71130 −0.356034
\(745\) −16.5145 −0.605043
\(746\) 27.7637 1.01650
\(747\) 1.43085 0.0523520
\(748\) −0.904557 −0.0330739
\(749\) 15.3876 0.562251
\(750\) 7.64404 0.279121
\(751\) −0.508332 −0.0185493 −0.00927465 0.999957i \(-0.502952\pi\)
−0.00927465 + 0.999957i \(0.502952\pi\)
\(752\) 37.6440 1.37274
\(753\) −0.409372 −0.0149184
\(754\) −7.30866 −0.266166
\(755\) −38.1804 −1.38953
\(756\) 1.28367 0.0466866
\(757\) 11.2937 0.410477 0.205238 0.978712i \(-0.434203\pi\)
0.205238 + 0.978712i \(0.434203\pi\)
\(758\) −9.29014 −0.337433
\(759\) −39.3730 −1.42915
\(760\) −23.8921 −0.866658
\(761\) 27.6722 1.00312 0.501558 0.865124i \(-0.332760\pi\)
0.501558 + 0.865124i \(0.332760\pi\)
\(762\) −1.80336 −0.0653289
\(763\) 2.40780 0.0871683
\(764\) 0.0153153 0.000554089 0
\(765\) 2.19582 0.0793900
\(766\) 0.0480499 0.00173611
\(767\) 7.19704 0.259870
\(768\) 7.29716 0.263313
\(769\) 29.1720 1.05197 0.525984 0.850495i \(-0.323697\pi\)
0.525984 + 0.850495i \(0.323697\pi\)
\(770\) −24.0159 −0.865474
\(771\) 25.4362 0.916064
\(772\) 5.18300 0.186540
\(773\) −19.2965 −0.694046 −0.347023 0.937857i \(-0.612807\pi\)
−0.347023 + 0.937857i \(0.612807\pi\)
\(774\) 15.9851 0.574574
\(775\) 8.58322 0.308318
\(776\) 3.53010 0.126723
\(777\) −8.22853 −0.295197
\(778\) 26.0952 0.935560
\(779\) −7.43917 −0.266536
\(780\) 0.558761 0.0200069
\(781\) −61.9978 −2.21846
\(782\) −4.04276 −0.144569
\(783\) −49.9528 −1.78517
\(784\) −3.49319 −0.124757
\(785\) 19.1037 0.681840
\(786\) −21.6645 −0.772746
\(787\) −18.6400 −0.664446 −0.332223 0.943201i \(-0.607799\pi\)
−0.332223 + 0.943201i \(0.607799\pi\)
\(788\) 4.69906 0.167397
\(789\) 5.98607 0.213110
\(790\) 8.96285 0.318884
\(791\) 2.71096 0.0963908
\(792\) −21.3174 −0.757480
\(793\) 7.64602 0.271518
\(794\) −27.5311 −0.977044
\(795\) 24.4472 0.867052
\(796\) −0.124436 −0.00441050
\(797\) −12.4612 −0.441399 −0.220699 0.975342i \(-0.570834\pi\)
−0.220699 + 0.975342i \(0.570834\pi\)
\(798\) −4.96858 −0.175886
\(799\) −6.94498 −0.245696
\(800\) −4.54650 −0.160743
\(801\) −13.6675 −0.482917
\(802\) 32.9756 1.16441
\(803\) 50.6405 1.78707
\(804\) 3.81801 0.134651
\(805\) 13.7779 0.485608
\(806\) 1.99563 0.0702930
\(807\) 2.89558 0.101929
\(808\) −57.4126 −2.01977
\(809\) −27.8109 −0.977779 −0.488890 0.872346i \(-0.662598\pi\)
−0.488890 + 0.872346i \(0.662598\pi\)
\(810\) −16.1428 −0.567200
\(811\) −27.0417 −0.949561 −0.474781 0.880104i \(-0.657473\pi\)
−0.474781 + 0.880104i \(0.657473\pi\)
\(812\) −2.01443 −0.0706928
\(813\) 4.30119 0.150849
\(814\) 49.8925 1.74873
\(815\) −38.7730 −1.35816
\(816\) 3.04938 0.106750
\(817\) 28.3902 0.993247
\(818\) 49.6221 1.73499
\(819\) −0.722475 −0.0252453
\(820\) −1.79636 −0.0627314
\(821\) −0.578331 −0.0201839 −0.0100920 0.999949i \(-0.503212\pi\)
−0.0100920 + 0.999949i \(0.503212\pi\)
\(822\) −22.7610 −0.793881
\(823\) 9.69777 0.338043 0.169022 0.985612i \(-0.445939\pi\)
0.169022 + 0.985612i \(0.445939\pi\)
\(824\) −30.2497 −1.05380
\(825\) −29.6678 −1.03290
\(826\) −15.4535 −0.537697
\(827\) 27.9922 0.973384 0.486692 0.873574i \(-0.338203\pi\)
0.486692 + 0.873574i \(0.338203\pi\)
\(828\) 1.24916 0.0434114
\(829\) 26.5981 0.923791 0.461895 0.886934i \(-0.347170\pi\)
0.461895 + 0.886934i \(0.347170\pi\)
\(830\) −4.78048 −0.165933
\(831\) −27.8551 −0.966284
\(832\) −5.38889 −0.186826
\(833\) 0.644462 0.0223293
\(834\) −30.9373 −1.07127
\(835\) 5.90095 0.204211
\(836\) −3.86712 −0.133747
\(837\) 13.6396 0.471454
\(838\) 33.2858 1.14984
\(839\) 4.90573 0.169365 0.0846823 0.996408i \(-0.473012\pi\)
0.0846823 + 0.996408i \(0.473012\pi\)
\(840\) −11.7462 −0.405283
\(841\) 49.3899 1.70310
\(842\) −14.1258 −0.486807
\(843\) 25.6107 0.882079
\(844\) 1.79040 0.0616280
\(845\) 36.8892 1.26903
\(846\) −16.7175 −0.574758
\(847\) −27.0567 −0.929678
\(848\) −21.5608 −0.740401
\(849\) 20.3832 0.699550
\(850\) −3.04625 −0.104486
\(851\) −28.6233 −0.981194
\(852\) −3.09725 −0.106110
\(853\) 44.0800 1.50927 0.754635 0.656145i \(-0.227814\pi\)
0.754635 + 0.656145i \(0.227814\pi\)
\(854\) −16.4176 −0.561798
\(855\) 9.38746 0.321044
\(856\) −45.6335 −1.55972
\(857\) 10.7388 0.366829 0.183415 0.983036i \(-0.441285\pi\)
0.183415 + 0.983036i \(0.441285\pi\)
\(858\) −6.89788 −0.235490
\(859\) 51.5763 1.75976 0.879880 0.475197i \(-0.157623\pi\)
0.879880 + 0.475197i \(0.157623\pi\)
\(860\) 6.85545 0.233769
\(861\) −3.65737 −0.124643
\(862\) 44.5071 1.51592
\(863\) −33.0290 −1.12432 −0.562160 0.827029i \(-0.690029\pi\)
−0.562160 + 0.827029i \(0.690029\pi\)
\(864\) −7.22486 −0.245795
\(865\) −5.38294 −0.183026
\(866\) −6.42894 −0.218464
\(867\) 22.4646 0.762939
\(868\) 0.550041 0.0186696
\(869\) 14.2029 0.481801
\(870\) 46.6881 1.58288
\(871\) −7.68137 −0.260273
\(872\) −7.14058 −0.241810
\(873\) −1.38702 −0.0469434
\(874\) −17.2834 −0.584620
\(875\) −4.23877 −0.143297
\(876\) 2.52987 0.0854765
\(877\) 30.4104 1.02689 0.513443 0.858124i \(-0.328370\pi\)
0.513443 + 0.858124i \(0.328370\pi\)
\(878\) −7.24560 −0.244527
\(879\) −16.9104 −0.570372
\(880\) 63.0131 2.12417
\(881\) −2.70216 −0.0910381 −0.0455190 0.998963i \(-0.514494\pi\)
−0.0455190 + 0.998963i \(0.514494\pi\)
\(882\) 1.55130 0.0522351
\(883\) 57.0235 1.91899 0.959497 0.281719i \(-0.0909045\pi\)
0.959497 + 0.281719i \(0.0909045\pi\)
\(884\) 0.0909154 0.00305782
\(885\) −45.9751 −1.54544
\(886\) 31.5281 1.05921
\(887\) 19.5634 0.656876 0.328438 0.944525i \(-0.393478\pi\)
0.328438 + 0.944525i \(0.393478\pi\)
\(888\) 24.4025 0.818895
\(889\) 1.00000 0.0335389
\(890\) 45.6633 1.53064
\(891\) −25.5806 −0.856982
\(892\) −0.145905 −0.00488525
\(893\) −29.6909 −0.993566
\(894\) 10.1848 0.340632
\(895\) −54.8628 −1.83386
\(896\) 9.00992 0.301000
\(897\) 3.95731 0.132131
\(898\) 9.72534 0.324539
\(899\) −21.4044 −0.713876
\(900\) 0.941254 0.0313751
\(901\) 3.97777 0.132519
\(902\) 22.1759 0.738378
\(903\) 13.9576 0.464481
\(904\) −8.03963 −0.267394
\(905\) −67.7746 −2.25290
\(906\) 23.5467 0.782288
\(907\) −38.9478 −1.29324 −0.646620 0.762812i \(-0.723818\pi\)
−0.646620 + 0.762812i \(0.723818\pi\)
\(908\) −5.78654 −0.192033
\(909\) 22.5580 0.748202
\(910\) 2.41380 0.0800166
\(911\) 49.6820 1.64604 0.823020 0.568013i \(-0.192288\pi\)
0.823020 + 0.568013i \(0.192288\pi\)
\(912\) 13.0366 0.431684
\(913\) −7.57535 −0.250708
\(914\) −6.21479 −0.205567
\(915\) −48.8432 −1.61471
\(916\) 3.92613 0.129723
\(917\) 12.0134 0.396716
\(918\) −4.84081 −0.159770
\(919\) −17.4080 −0.574238 −0.287119 0.957895i \(-0.592698\pi\)
−0.287119 + 0.957895i \(0.592698\pi\)
\(920\) −40.8598 −1.34711
\(921\) −37.1295 −1.22346
\(922\) −35.8731 −1.18142
\(923\) 6.23129 0.205105
\(924\) −1.90121 −0.0625453
\(925\) −21.5679 −0.709148
\(926\) −13.2931 −0.436838
\(927\) 11.8854 0.390369
\(928\) 11.3378 0.372182
\(929\) −13.5172 −0.443486 −0.221743 0.975105i \(-0.571175\pi\)
−0.221743 + 0.975105i \(0.571175\pi\)
\(930\) −12.7482 −0.418030
\(931\) 2.75517 0.0902971
\(932\) −3.91903 −0.128372
\(933\) 34.1180 1.11697
\(934\) 49.3631 1.61521
\(935\) −11.6254 −0.380190
\(936\) 2.14257 0.0700322
\(937\) 19.8645 0.648944 0.324472 0.945895i \(-0.394813\pi\)
0.324472 + 0.945895i \(0.394813\pi\)
\(938\) 16.4935 0.538531
\(939\) 15.8704 0.517910
\(940\) −7.16952 −0.233844
\(941\) 2.52477 0.0823051 0.0411525 0.999153i \(-0.486897\pi\)
0.0411525 + 0.999153i \(0.486897\pi\)
\(942\) −11.7817 −0.383868
\(943\) −12.7223 −0.414295
\(944\) 40.5470 1.31969
\(945\) 16.4977 0.536670
\(946\) −84.6302 −2.75157
\(947\) −13.3429 −0.433586 −0.216793 0.976218i \(-0.569560\pi\)
−0.216793 + 0.976218i \(0.569560\pi\)
\(948\) 0.709541 0.0230448
\(949\) −5.08979 −0.165222
\(950\) −13.0232 −0.422528
\(951\) −24.3863 −0.790780
\(952\) −1.91122 −0.0619429
\(953\) −19.1650 −0.620816 −0.310408 0.950603i \(-0.600466\pi\)
−0.310408 + 0.950603i \(0.600466\pi\)
\(954\) 9.57501 0.310002
\(955\) 0.196832 0.00636934
\(956\) 1.24899 0.0403951
\(957\) 73.9841 2.39157
\(958\) 25.0513 0.809369
\(959\) 12.6214 0.407567
\(960\) 34.4245 1.11105
\(961\) −25.1555 −0.811469
\(962\) −5.01461 −0.161677
\(963\) 17.9299 0.577782
\(964\) 6.12867 0.197391
\(965\) 66.6119 2.14431
\(966\) −8.49715 −0.273391
\(967\) −41.8133 −1.34463 −0.672313 0.740267i \(-0.734699\pi\)
−0.672313 + 0.740267i \(0.734699\pi\)
\(968\) 80.2392 2.57899
\(969\) −2.40513 −0.0772639
\(970\) 4.63403 0.148790
\(971\) 4.23069 0.135769 0.0678846 0.997693i \(-0.478375\pi\)
0.0678846 + 0.997693i \(0.478375\pi\)
\(972\) 2.57307 0.0825311
\(973\) 17.1553 0.549974
\(974\) 34.8776 1.11755
\(975\) 2.98186 0.0954960
\(976\) 43.0765 1.37885
\(977\) −2.61078 −0.0835263 −0.0417631 0.999128i \(-0.513297\pi\)
−0.0417631 + 0.999128i \(0.513297\pi\)
\(978\) 23.9122 0.764626
\(979\) 72.3600 2.31264
\(980\) 0.665298 0.0212522
\(981\) 2.80561 0.0895761
\(982\) −25.2321 −0.805188
\(983\) 41.6466 1.32832 0.664159 0.747591i \(-0.268790\pi\)
0.664159 + 0.747591i \(0.268790\pi\)
\(984\) 10.8463 0.345767
\(985\) 60.3923 1.92426
\(986\) 7.59658 0.241924
\(987\) −14.5971 −0.464631
\(988\) 0.388677 0.0123655
\(989\) 48.5523 1.54387
\(990\) −27.9837 −0.889381
\(991\) 0.195803 0.00621990 0.00310995 0.999995i \(-0.499010\pi\)
0.00310995 + 0.999995i \(0.499010\pi\)
\(992\) −3.09579 −0.0982915
\(993\) 19.0805 0.605502
\(994\) −13.3799 −0.424383
\(995\) −1.59925 −0.0506995
\(996\) −0.378445 −0.0119915
\(997\) −0.840968 −0.0266337 −0.0133169 0.999911i \(-0.504239\pi\)
−0.0133169 + 0.999911i \(0.504239\pi\)
\(998\) −31.0200 −0.981921
\(999\) −34.2736 −1.08437
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 889.2.a.c.1.5 16
3.2 odd 2 8001.2.a.t.1.12 16
7.6 odd 2 6223.2.a.k.1.5 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
889.2.a.c.1.5 16 1.1 even 1 trivial
6223.2.a.k.1.5 16 7.6 odd 2
8001.2.a.t.1.12 16 3.2 odd 2