Properties

Label 8001.2.a.t.1.12
Level $8001$
Weight $2$
Character 8001.1
Self dual yes
Analytic conductor $63.888$
Analytic rank $0$
Dimension $16$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [8001,2,Mod(1,8001)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(8001, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("8001.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 8001 = 3^{2} \cdot 7 \cdot 127 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 8001.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,2,0,12,9] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(63.8883066572\)
Analytic rank: \(0\)
Dimension: \(16\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 2 x^{15} - 20 x^{14} + 38 x^{13} + 155 x^{12} - 275 x^{11} - 593 x^{10} + 957 x^{9} + 1177 x^{8} + \cdots + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 889)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.12
Root \(1.33134\) of defining polynomial
Character \(\chi\) \(=\) 8001.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.33134 q^{2} -0.227522 q^{4} +2.92411 q^{5} -1.00000 q^{7} -2.96560 q^{8} +3.89299 q^{10} -6.16901 q^{11} -0.620036 q^{13} -1.33134 q^{14} -3.49319 q^{16} -0.644462 q^{17} +2.75517 q^{19} -0.665298 q^{20} -8.21308 q^{22} -4.71184 q^{23} +3.55041 q^{25} -0.825482 q^{26} +0.227522 q^{28} +8.85381 q^{29} +2.41753 q^{31} +1.28056 q^{32} -0.858001 q^{34} -2.92411 q^{35} -6.07476 q^{37} +3.66808 q^{38} -8.67173 q^{40} +2.70008 q^{41} +10.3043 q^{43} +1.40358 q^{44} -6.27308 q^{46} +10.7764 q^{47} +1.00000 q^{49} +4.72681 q^{50} +0.141072 q^{52} -6.17224 q^{53} -18.0388 q^{55} +2.96560 q^{56} +11.7875 q^{58} +11.6075 q^{59} -12.3316 q^{61} +3.21857 q^{62} +8.69124 q^{64} -1.81305 q^{65} +12.3886 q^{67} +0.146629 q^{68} -3.89299 q^{70} +10.0499 q^{71} +8.20886 q^{73} -8.08760 q^{74} -0.626862 q^{76} +6.16901 q^{77} +2.30230 q^{79} -10.2145 q^{80} +3.59473 q^{82} +1.22797 q^{83} -1.88448 q^{85} +13.7186 q^{86} +18.2948 q^{88} -11.7296 q^{89} +0.620036 q^{91} +1.07205 q^{92} +14.3471 q^{94} +8.05642 q^{95} +1.19035 q^{97} +1.33134 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 2 q^{2} + 12 q^{4} + 9 q^{5} - 16 q^{7} + 6 q^{8} - 2 q^{10} + 22 q^{11} - 4 q^{13} - 2 q^{14} + 12 q^{16} + 18 q^{17} - 15 q^{19} + 40 q^{20} - 11 q^{22} + 5 q^{23} + 15 q^{25} + 24 q^{26} - 12 q^{28}+ \cdots + 2 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.33134 0.941403 0.470701 0.882293i \(-0.344001\pi\)
0.470701 + 0.882293i \(0.344001\pi\)
\(3\) 0 0
\(4\) −0.227522 −0.113761
\(5\) 2.92411 1.30770 0.653850 0.756624i \(-0.273153\pi\)
0.653850 + 0.756624i \(0.273153\pi\)
\(6\) 0 0
\(7\) −1.00000 −0.377964
\(8\) −2.96560 −1.04850
\(9\) 0 0
\(10\) 3.89299 1.23107
\(11\) −6.16901 −1.86003 −0.930013 0.367526i \(-0.880205\pi\)
−0.930013 + 0.367526i \(0.880205\pi\)
\(12\) 0 0
\(13\) −0.620036 −0.171967 −0.0859836 0.996297i \(-0.527403\pi\)
−0.0859836 + 0.996297i \(0.527403\pi\)
\(14\) −1.33134 −0.355817
\(15\) 0 0
\(16\) −3.49319 −0.873298
\(17\) −0.644462 −0.156305 −0.0781525 0.996941i \(-0.524902\pi\)
−0.0781525 + 0.996941i \(0.524902\pi\)
\(18\) 0 0
\(19\) 2.75517 0.632080 0.316040 0.948746i \(-0.397647\pi\)
0.316040 + 0.948746i \(0.397647\pi\)
\(20\) −0.665298 −0.148765
\(21\) 0 0
\(22\) −8.21308 −1.75103
\(23\) −4.71184 −0.982486 −0.491243 0.871023i \(-0.663457\pi\)
−0.491243 + 0.871023i \(0.663457\pi\)
\(24\) 0 0
\(25\) 3.55041 0.710081
\(26\) −0.825482 −0.161890
\(27\) 0 0
\(28\) 0.227522 0.0429976
\(29\) 8.85381 1.64411 0.822056 0.569407i \(-0.192827\pi\)
0.822056 + 0.569407i \(0.192827\pi\)
\(30\) 0 0
\(31\) 2.41753 0.434202 0.217101 0.976149i \(-0.430340\pi\)
0.217101 + 0.976149i \(0.430340\pi\)
\(32\) 1.28056 0.226373
\(33\) 0 0
\(34\) −0.858001 −0.147146
\(35\) −2.92411 −0.494264
\(36\) 0 0
\(37\) −6.07476 −0.998685 −0.499343 0.866405i \(-0.666425\pi\)
−0.499343 + 0.866405i \(0.666425\pi\)
\(38\) 3.66808 0.595042
\(39\) 0 0
\(40\) −8.67173 −1.37112
\(41\) 2.70008 0.421681 0.210840 0.977520i \(-0.432380\pi\)
0.210840 + 0.977520i \(0.432380\pi\)
\(42\) 0 0
\(43\) 10.3043 1.57140 0.785698 0.618611i \(-0.212304\pi\)
0.785698 + 0.618611i \(0.212304\pi\)
\(44\) 1.40358 0.211598
\(45\) 0 0
\(46\) −6.27308 −0.924915
\(47\) 10.7764 1.57190 0.785950 0.618290i \(-0.212174\pi\)
0.785950 + 0.618290i \(0.212174\pi\)
\(48\) 0 0
\(49\) 1.00000 0.142857
\(50\) 4.72681 0.668472
\(51\) 0 0
\(52\) 0.141072 0.0195631
\(53\) −6.17224 −0.847822 −0.423911 0.905704i \(-0.639343\pi\)
−0.423911 + 0.905704i \(0.639343\pi\)
\(54\) 0 0
\(55\) −18.0388 −2.43236
\(56\) 2.96560 0.396295
\(57\) 0 0
\(58\) 11.7875 1.54777
\(59\) 11.6075 1.51116 0.755581 0.655055i \(-0.227355\pi\)
0.755581 + 0.655055i \(0.227355\pi\)
\(60\) 0 0
\(61\) −12.3316 −1.57890 −0.789448 0.613818i \(-0.789633\pi\)
−0.789448 + 0.613818i \(0.789633\pi\)
\(62\) 3.21857 0.408759
\(63\) 0 0
\(64\) 8.69124 1.08641
\(65\) −1.81305 −0.224882
\(66\) 0 0
\(67\) 12.3886 1.51351 0.756753 0.653701i \(-0.226785\pi\)
0.756753 + 0.653701i \(0.226785\pi\)
\(68\) 0.146629 0.0177814
\(69\) 0 0
\(70\) −3.89299 −0.465302
\(71\) 10.0499 1.19270 0.596351 0.802724i \(-0.296617\pi\)
0.596351 + 0.802724i \(0.296617\pi\)
\(72\) 0 0
\(73\) 8.20886 0.960775 0.480387 0.877056i \(-0.340496\pi\)
0.480387 + 0.877056i \(0.340496\pi\)
\(74\) −8.08760 −0.940165
\(75\) 0 0
\(76\) −0.626862 −0.0719060
\(77\) 6.16901 0.703024
\(78\) 0 0
\(79\) 2.30230 0.259029 0.129515 0.991578i \(-0.458658\pi\)
0.129515 + 0.991578i \(0.458658\pi\)
\(80\) −10.2145 −1.14201
\(81\) 0 0
\(82\) 3.59473 0.396972
\(83\) 1.22797 0.134787 0.0673936 0.997726i \(-0.478532\pi\)
0.0673936 + 0.997726i \(0.478532\pi\)
\(84\) 0 0
\(85\) −1.88448 −0.204400
\(86\) 13.7186 1.47932
\(87\) 0 0
\(88\) 18.2948 1.95023
\(89\) −11.7296 −1.24334 −0.621668 0.783281i \(-0.713544\pi\)
−0.621668 + 0.783281i \(0.713544\pi\)
\(90\) 0 0
\(91\) 0.620036 0.0649975
\(92\) 1.07205 0.111768
\(93\) 0 0
\(94\) 14.3471 1.47979
\(95\) 8.05642 0.826571
\(96\) 0 0
\(97\) 1.19035 0.120862 0.0604309 0.998172i \(-0.480753\pi\)
0.0604309 + 0.998172i \(0.480753\pi\)
\(98\) 1.33134 0.134486
\(99\) 0 0
\(100\) −0.807795 −0.0807795
\(101\) 19.3595 1.92635 0.963173 0.268882i \(-0.0866542\pi\)
0.963173 + 0.268882i \(0.0866542\pi\)
\(102\) 0 0
\(103\) −10.2002 −1.00506 −0.502528 0.864561i \(-0.667597\pi\)
−0.502528 + 0.864561i \(0.667597\pi\)
\(104\) 1.83878 0.180307
\(105\) 0 0
\(106\) −8.21738 −0.798142
\(107\) 15.3876 1.48758 0.743788 0.668415i \(-0.233027\pi\)
0.743788 + 0.668415i \(0.233027\pi\)
\(108\) 0 0
\(109\) −2.40780 −0.230626 −0.115313 0.993329i \(-0.536787\pi\)
−0.115313 + 0.993329i \(0.536787\pi\)
\(110\) −24.0159 −2.28983
\(111\) 0 0
\(112\) 3.49319 0.330075
\(113\) 2.71096 0.255026 0.127513 0.991837i \(-0.459301\pi\)
0.127513 + 0.991837i \(0.459301\pi\)
\(114\) 0 0
\(115\) −13.7779 −1.28480
\(116\) −2.01443 −0.187036
\(117\) 0 0
\(118\) 15.4535 1.42261
\(119\) 0.644462 0.0590777
\(120\) 0 0
\(121\) 27.0567 2.45970
\(122\) −16.4176 −1.48638
\(123\) 0 0
\(124\) −0.550041 −0.0493952
\(125\) −4.23877 −0.379127
\(126\) 0 0
\(127\) −1.00000 −0.0887357
\(128\) 9.00992 0.796372
\(129\) 0 0
\(130\) −2.41380 −0.211704
\(131\) 12.0134 1.04961 0.524807 0.851222i \(-0.324138\pi\)
0.524807 + 0.851222i \(0.324138\pi\)
\(132\) 0 0
\(133\) −2.75517 −0.238904
\(134\) 16.4935 1.42482
\(135\) 0 0
\(136\) 1.91122 0.163885
\(137\) 12.6214 1.07832 0.539161 0.842203i \(-0.318742\pi\)
0.539161 + 0.842203i \(0.318742\pi\)
\(138\) 0 0
\(139\) −17.1553 −1.45510 −0.727548 0.686057i \(-0.759340\pi\)
−0.727548 + 0.686057i \(0.759340\pi\)
\(140\) 0.665298 0.0562280
\(141\) 0 0
\(142\) 13.3799 1.12281
\(143\) 3.82501 0.319863
\(144\) 0 0
\(145\) 25.8895 2.15001
\(146\) 10.9288 0.904476
\(147\) 0 0
\(148\) 1.38214 0.113611
\(149\) −5.64770 −0.462677 −0.231339 0.972873i \(-0.574311\pi\)
−0.231339 + 0.972873i \(0.574311\pi\)
\(150\) 0 0
\(151\) 13.0571 1.06257 0.531287 0.847192i \(-0.321709\pi\)
0.531287 + 0.847192i \(0.321709\pi\)
\(152\) −8.17074 −0.662734
\(153\) 0 0
\(154\) 8.21308 0.661829
\(155\) 7.06913 0.567806
\(156\) 0 0
\(157\) −6.53317 −0.521404 −0.260702 0.965419i \(-0.583954\pi\)
−0.260702 + 0.965419i \(0.583954\pi\)
\(158\) 3.06516 0.243851
\(159\) 0 0
\(160\) 3.74449 0.296028
\(161\) 4.71184 0.371345
\(162\) 0 0
\(163\) 13.2598 1.03858 0.519292 0.854597i \(-0.326196\pi\)
0.519292 + 0.854597i \(0.326196\pi\)
\(164\) −0.614326 −0.0479708
\(165\) 0 0
\(166\) 1.63485 0.126889
\(167\) 2.01803 0.156160 0.0780801 0.996947i \(-0.475121\pi\)
0.0780801 + 0.996947i \(0.475121\pi\)
\(168\) 0 0
\(169\) −12.6156 −0.970427
\(170\) −2.50889 −0.192423
\(171\) 0 0
\(172\) −2.34446 −0.178763
\(173\) −1.84088 −0.139960 −0.0699799 0.997548i \(-0.522294\pi\)
−0.0699799 + 0.997548i \(0.522294\pi\)
\(174\) 0 0
\(175\) −3.55041 −0.268385
\(176\) 21.5495 1.62436
\(177\) 0 0
\(178\) −15.6161 −1.17048
\(179\) −18.7622 −1.40235 −0.701177 0.712987i \(-0.747342\pi\)
−0.701177 + 0.712987i \(0.747342\pi\)
\(180\) 0 0
\(181\) 23.1779 1.72280 0.861399 0.507929i \(-0.169589\pi\)
0.861399 + 0.507929i \(0.169589\pi\)
\(182\) 0.825482 0.0611888
\(183\) 0 0
\(184\) 13.9734 1.03013
\(185\) −17.7633 −1.30598
\(186\) 0 0
\(187\) 3.97569 0.290731
\(188\) −2.45187 −0.178821
\(189\) 0 0
\(190\) 10.7259 0.778137
\(191\) 0.0673136 0.00487064 0.00243532 0.999997i \(-0.499225\pi\)
0.00243532 + 0.999997i \(0.499225\pi\)
\(192\) 0 0
\(193\) −22.7803 −1.63976 −0.819879 0.572536i \(-0.805960\pi\)
−0.819879 + 0.572536i \(0.805960\pi\)
\(194\) 1.58477 0.113780
\(195\) 0 0
\(196\) −0.227522 −0.0162516
\(197\) 20.6532 1.47148 0.735741 0.677263i \(-0.236834\pi\)
0.735741 + 0.677263i \(0.236834\pi\)
\(198\) 0 0
\(199\) 0.546917 0.0387699 0.0193850 0.999812i \(-0.493829\pi\)
0.0193850 + 0.999812i \(0.493829\pi\)
\(200\) −10.5291 −0.744518
\(201\) 0 0
\(202\) 25.7742 1.81347
\(203\) −8.85381 −0.621416
\(204\) 0 0
\(205\) 7.89531 0.551432
\(206\) −13.5800 −0.946162
\(207\) 0 0
\(208\) 2.16590 0.150178
\(209\) −16.9967 −1.17569
\(210\) 0 0
\(211\) −7.86912 −0.541733 −0.270866 0.962617i \(-0.587310\pi\)
−0.270866 + 0.962617i \(0.587310\pi\)
\(212\) 1.40432 0.0964490
\(213\) 0 0
\(214\) 20.4862 1.40041
\(215\) 30.1310 2.05491
\(216\) 0 0
\(217\) −2.41753 −0.164113
\(218\) −3.20561 −0.217112
\(219\) 0 0
\(220\) 4.10423 0.276707
\(221\) 0.399590 0.0268793
\(222\) 0 0
\(223\) 0.641278 0.0429432 0.0214716 0.999769i \(-0.493165\pi\)
0.0214716 + 0.999769i \(0.493165\pi\)
\(224\) −1.28056 −0.0855609
\(225\) 0 0
\(226\) 3.60923 0.240082
\(227\) −25.4329 −1.68804 −0.844021 0.536310i \(-0.819818\pi\)
−0.844021 + 0.536310i \(0.819818\pi\)
\(228\) 0 0
\(229\) −17.2560 −1.14031 −0.570156 0.821537i \(-0.693117\pi\)
−0.570156 + 0.821537i \(0.693117\pi\)
\(230\) −18.3432 −1.20951
\(231\) 0 0
\(232\) −26.2568 −1.72385
\(233\) −17.2249 −1.12844 −0.564219 0.825625i \(-0.690823\pi\)
−0.564219 + 0.825625i \(0.690823\pi\)
\(234\) 0 0
\(235\) 31.5114 2.05557
\(236\) −2.64095 −0.171911
\(237\) 0 0
\(238\) 0.858001 0.0556159
\(239\) 5.48952 0.355088 0.177544 0.984113i \(-0.443185\pi\)
0.177544 + 0.984113i \(0.443185\pi\)
\(240\) 0 0
\(241\) −26.9366 −1.73514 −0.867571 0.497314i \(-0.834320\pi\)
−0.867571 + 0.497314i \(0.834320\pi\)
\(242\) 36.0218 2.31557
\(243\) 0 0
\(244\) 2.80570 0.179617
\(245\) 2.92411 0.186814
\(246\) 0 0
\(247\) −1.70831 −0.108697
\(248\) −7.16943 −0.455259
\(249\) 0 0
\(250\) −5.64326 −0.356911
\(251\) −0.302222 −0.0190761 −0.00953804 0.999955i \(-0.503036\pi\)
−0.00953804 + 0.999955i \(0.503036\pi\)
\(252\) 0 0
\(253\) 29.0674 1.82745
\(254\) −1.33134 −0.0835360
\(255\) 0 0
\(256\) −5.38718 −0.336698
\(257\) 18.7785 1.17137 0.585685 0.810539i \(-0.300826\pi\)
0.585685 + 0.810539i \(0.300826\pi\)
\(258\) 0 0
\(259\) 6.07476 0.377467
\(260\) 0.412509 0.0255827
\(261\) 0 0
\(262\) 15.9939 0.988109
\(263\) 4.41926 0.272503 0.136251 0.990674i \(-0.456494\pi\)
0.136251 + 0.990674i \(0.456494\pi\)
\(264\) 0 0
\(265\) −18.0483 −1.10870
\(266\) −3.66808 −0.224905
\(267\) 0 0
\(268\) −2.81867 −0.172178
\(269\) 2.13768 0.130337 0.0651683 0.997874i \(-0.479242\pi\)
0.0651683 + 0.997874i \(0.479242\pi\)
\(270\) 0 0
\(271\) −3.17538 −0.192891 −0.0964454 0.995338i \(-0.530747\pi\)
−0.0964454 + 0.995338i \(0.530747\pi\)
\(272\) 2.25123 0.136501
\(273\) 0 0
\(274\) 16.8035 1.01513
\(275\) −21.9025 −1.32077
\(276\) 0 0
\(277\) 20.5642 1.23559 0.617793 0.786341i \(-0.288027\pi\)
0.617793 + 0.786341i \(0.288027\pi\)
\(278\) −22.8396 −1.36983
\(279\) 0 0
\(280\) 8.67173 0.518235
\(281\) 18.9073 1.12791 0.563956 0.825805i \(-0.309279\pi\)
0.563956 + 0.825805i \(0.309279\pi\)
\(282\) 0 0
\(283\) −15.0480 −0.894513 −0.447256 0.894406i \(-0.647599\pi\)
−0.447256 + 0.894406i \(0.647599\pi\)
\(284\) −2.28657 −0.135683
\(285\) 0 0
\(286\) 5.09241 0.301120
\(287\) −2.70008 −0.159380
\(288\) 0 0
\(289\) −16.5847 −0.975569
\(290\) 34.4678 2.02402
\(291\) 0 0
\(292\) −1.86770 −0.109299
\(293\) −12.4842 −0.729334 −0.364667 0.931138i \(-0.618817\pi\)
−0.364667 + 0.931138i \(0.618817\pi\)
\(294\) 0 0
\(295\) 33.9414 1.97615
\(296\) 18.0153 1.04712
\(297\) 0 0
\(298\) −7.51903 −0.435566
\(299\) 2.92151 0.168955
\(300\) 0 0
\(301\) −10.3043 −0.593932
\(302\) 17.3835 1.00031
\(303\) 0 0
\(304\) −9.62434 −0.551994
\(305\) −36.0588 −2.06472
\(306\) 0 0
\(307\) 27.4111 1.56443 0.782216 0.623007i \(-0.214089\pi\)
0.782216 + 0.623007i \(0.214089\pi\)
\(308\) −1.40358 −0.0799766
\(309\) 0 0
\(310\) 9.41144 0.534534
\(311\) 25.1878 1.42827 0.714135 0.700008i \(-0.246820\pi\)
0.714135 + 0.700008i \(0.246820\pi\)
\(312\) 0 0
\(313\) −11.7164 −0.662251 −0.331125 0.943587i \(-0.607428\pi\)
−0.331125 + 0.943587i \(0.607428\pi\)
\(314\) −8.69790 −0.490851
\(315\) 0 0
\(316\) −0.523824 −0.0294674
\(317\) −18.0033 −1.01117 −0.505584 0.862777i \(-0.668723\pi\)
−0.505584 + 0.862777i \(0.668723\pi\)
\(318\) 0 0
\(319\) −54.6192 −3.05809
\(320\) 25.4141 1.42069
\(321\) 0 0
\(322\) 6.27308 0.349585
\(323\) −1.77560 −0.0987973
\(324\) 0 0
\(325\) −2.20138 −0.122111
\(326\) 17.6533 0.977726
\(327\) 0 0
\(328\) −8.00734 −0.442131
\(329\) −10.7764 −0.594122
\(330\) 0 0
\(331\) −14.0863 −0.774254 −0.387127 0.922026i \(-0.626533\pi\)
−0.387127 + 0.922026i \(0.626533\pi\)
\(332\) −0.279390 −0.0153335
\(333\) 0 0
\(334\) 2.68670 0.147010
\(335\) 36.2255 1.97921
\(336\) 0 0
\(337\) 6.85642 0.373493 0.186747 0.982408i \(-0.440206\pi\)
0.186747 + 0.982408i \(0.440206\pi\)
\(338\) −16.7957 −0.913563
\(339\) 0 0
\(340\) 0.428759 0.0232527
\(341\) −14.9138 −0.807627
\(342\) 0 0
\(343\) −1.00000 −0.0539949
\(344\) −30.5585 −1.64760
\(345\) 0 0
\(346\) −2.45085 −0.131759
\(347\) −15.2537 −0.818860 −0.409430 0.912342i \(-0.634272\pi\)
−0.409430 + 0.912342i \(0.634272\pi\)
\(348\) 0 0
\(349\) 7.20325 0.385581 0.192791 0.981240i \(-0.438246\pi\)
0.192791 + 0.981240i \(0.438246\pi\)
\(350\) −4.72681 −0.252659
\(351\) 0 0
\(352\) −7.89977 −0.421059
\(353\) 4.26996 0.227267 0.113633 0.993523i \(-0.463751\pi\)
0.113633 + 0.993523i \(0.463751\pi\)
\(354\) 0 0
\(355\) 29.3869 1.55970
\(356\) 2.66874 0.141443
\(357\) 0 0
\(358\) −24.9790 −1.32018
\(359\) 31.0817 1.64043 0.820214 0.572057i \(-0.193854\pi\)
0.820214 + 0.572057i \(0.193854\pi\)
\(360\) 0 0
\(361\) −11.4090 −0.600475
\(362\) 30.8577 1.62185
\(363\) 0 0
\(364\) −0.141072 −0.00739417
\(365\) 24.0036 1.25641
\(366\) 0 0
\(367\) −18.3623 −0.958503 −0.479251 0.877678i \(-0.659092\pi\)
−0.479251 + 0.877678i \(0.659092\pi\)
\(368\) 16.4593 0.858002
\(369\) 0 0
\(370\) −23.6490 −1.22945
\(371\) 6.17224 0.320447
\(372\) 0 0
\(373\) −20.8539 −1.07977 −0.539886 0.841738i \(-0.681533\pi\)
−0.539886 + 0.841738i \(0.681533\pi\)
\(374\) 5.29302 0.273695
\(375\) 0 0
\(376\) −31.9585 −1.64813
\(377\) −5.48968 −0.282733
\(378\) 0 0
\(379\) 6.97802 0.358437 0.179218 0.983809i \(-0.442643\pi\)
0.179218 + 0.983809i \(0.442643\pi\)
\(380\) −1.83301 −0.0940315
\(381\) 0 0
\(382\) 0.0896176 0.00458524
\(383\) 0.0360913 0.00184418 0.000922089 1.00000i \(-0.499706\pi\)
0.000922089 1.00000i \(0.499706\pi\)
\(384\) 0 0
\(385\) 18.0388 0.919345
\(386\) −30.3284 −1.54367
\(387\) 0 0
\(388\) −0.270831 −0.0137494
\(389\) 19.6007 0.993793 0.496897 0.867810i \(-0.334473\pi\)
0.496897 + 0.867810i \(0.334473\pi\)
\(390\) 0 0
\(391\) 3.03660 0.153567
\(392\) −2.96560 −0.149785
\(393\) 0 0
\(394\) 27.4966 1.38526
\(395\) 6.73218 0.338733
\(396\) 0 0
\(397\) 20.6792 1.03786 0.518930 0.854817i \(-0.326331\pi\)
0.518930 + 0.854817i \(0.326331\pi\)
\(398\) 0.728135 0.0364981
\(399\) 0 0
\(400\) −12.4022 −0.620112
\(401\) 24.7687 1.23689 0.618444 0.785829i \(-0.287763\pi\)
0.618444 + 0.785829i \(0.287763\pi\)
\(402\) 0 0
\(403\) −1.49896 −0.0746684
\(404\) −4.40472 −0.219143
\(405\) 0 0
\(406\) −11.7875 −0.585002
\(407\) 37.4753 1.85758
\(408\) 0 0
\(409\) −37.2721 −1.84299 −0.921494 0.388392i \(-0.873031\pi\)
−0.921494 + 0.388392i \(0.873031\pi\)
\(410\) 10.5114 0.519120
\(411\) 0 0
\(412\) 2.32077 0.114336
\(413\) −11.6075 −0.571165
\(414\) 0 0
\(415\) 3.59071 0.176261
\(416\) −0.793992 −0.0389287
\(417\) 0 0
\(418\) −22.6284 −1.10679
\(419\) 25.0016 1.22141 0.610705 0.791858i \(-0.290886\pi\)
0.610705 + 0.791858i \(0.290886\pi\)
\(420\) 0 0
\(421\) 10.6102 0.517108 0.258554 0.965997i \(-0.416754\pi\)
0.258554 + 0.965997i \(0.416754\pi\)
\(422\) −10.4765 −0.509989
\(423\) 0 0
\(424\) 18.3044 0.888940
\(425\) −2.28810 −0.110989
\(426\) 0 0
\(427\) 12.3316 0.596766
\(428\) −3.50102 −0.169228
\(429\) 0 0
\(430\) 40.1147 1.93450
\(431\) 33.4302 1.61028 0.805138 0.593088i \(-0.202091\pi\)
0.805138 + 0.593088i \(0.202091\pi\)
\(432\) 0 0
\(433\) 4.82890 0.232062 0.116031 0.993246i \(-0.462983\pi\)
0.116031 + 0.993246i \(0.462983\pi\)
\(434\) −3.21857 −0.154496
\(435\) 0 0
\(436\) 0.547827 0.0262362
\(437\) −12.9819 −0.621009
\(438\) 0 0
\(439\) 5.44232 0.259748 0.129874 0.991531i \(-0.458543\pi\)
0.129874 + 0.991531i \(0.458543\pi\)
\(440\) 53.4960 2.55032
\(441\) 0 0
\(442\) 0.531992 0.0253043
\(443\) 23.6814 1.12514 0.562568 0.826751i \(-0.309813\pi\)
0.562568 + 0.826751i \(0.309813\pi\)
\(444\) 0 0
\(445\) −34.2986 −1.62591
\(446\) 0.853762 0.0404268
\(447\) 0 0
\(448\) −8.69124 −0.410623
\(449\) 7.30490 0.344740 0.172370 0.985032i \(-0.444858\pi\)
0.172370 + 0.985032i \(0.444858\pi\)
\(450\) 0 0
\(451\) −16.6568 −0.784338
\(452\) −0.616803 −0.0290120
\(453\) 0 0
\(454\) −33.8600 −1.58913
\(455\) 1.81305 0.0849972
\(456\) 0 0
\(457\) 4.66805 0.218362 0.109181 0.994022i \(-0.465177\pi\)
0.109181 + 0.994022i \(0.465177\pi\)
\(458\) −22.9737 −1.07349
\(459\) 0 0
\(460\) 3.13478 0.146160
\(461\) −26.9450 −1.25495 −0.627477 0.778635i \(-0.715912\pi\)
−0.627477 + 0.778635i \(0.715912\pi\)
\(462\) 0 0
\(463\) 9.98472 0.464029 0.232015 0.972712i \(-0.425468\pi\)
0.232015 + 0.972712i \(0.425468\pi\)
\(464\) −30.9280 −1.43580
\(465\) 0 0
\(466\) −22.9322 −1.06231
\(467\) 37.0776 1.71575 0.857873 0.513861i \(-0.171785\pi\)
0.857873 + 0.513861i \(0.171785\pi\)
\(468\) 0 0
\(469\) −12.3886 −0.572052
\(470\) 41.9525 1.93512
\(471\) 0 0
\(472\) −34.4231 −1.58445
\(473\) −63.5675 −2.92284
\(474\) 0 0
\(475\) 9.78198 0.448828
\(476\) −0.146629 −0.00672074
\(477\) 0 0
\(478\) 7.30845 0.334281
\(479\) 18.8165 0.859748 0.429874 0.902889i \(-0.358558\pi\)
0.429874 + 0.902889i \(0.358558\pi\)
\(480\) 0 0
\(481\) 3.76657 0.171741
\(482\) −35.8619 −1.63347
\(483\) 0 0
\(484\) −6.15598 −0.279817
\(485\) 3.48072 0.158051
\(486\) 0 0
\(487\) −26.1973 −1.18711 −0.593556 0.804793i \(-0.702276\pi\)
−0.593556 + 0.804793i \(0.702276\pi\)
\(488\) 36.5705 1.65547
\(489\) 0 0
\(490\) 3.89299 0.175868
\(491\) −18.9523 −0.855306 −0.427653 0.903943i \(-0.640660\pi\)
−0.427653 + 0.903943i \(0.640660\pi\)
\(492\) 0 0
\(493\) −5.70594 −0.256983
\(494\) −2.27434 −0.102328
\(495\) 0 0
\(496\) −8.44490 −0.379187
\(497\) −10.0499 −0.450799
\(498\) 0 0
\(499\) 23.2998 1.04304 0.521520 0.853239i \(-0.325365\pi\)
0.521520 + 0.853239i \(0.325365\pi\)
\(500\) 0.964412 0.0431298
\(501\) 0 0
\(502\) −0.402361 −0.0179583
\(503\) −6.11772 −0.272775 −0.136388 0.990656i \(-0.543549\pi\)
−0.136388 + 0.990656i \(0.543549\pi\)
\(504\) 0 0
\(505\) 56.6094 2.51908
\(506\) 38.6987 1.72037
\(507\) 0 0
\(508\) 0.227522 0.0100946
\(509\) 3.73713 0.165646 0.0828228 0.996564i \(-0.473606\pi\)
0.0828228 + 0.996564i \(0.473606\pi\)
\(510\) 0 0
\(511\) −8.20886 −0.363139
\(512\) −25.1920 −1.11334
\(513\) 0 0
\(514\) 25.0006 1.10273
\(515\) −29.8265 −1.31431
\(516\) 0 0
\(517\) −66.4797 −2.92378
\(518\) 8.08760 0.355349
\(519\) 0 0
\(520\) 5.37679 0.235788
\(521\) 21.0747 0.923299 0.461649 0.887062i \(-0.347258\pi\)
0.461649 + 0.887062i \(0.347258\pi\)
\(522\) 0 0
\(523\) −7.26739 −0.317781 −0.158890 0.987296i \(-0.550792\pi\)
−0.158890 + 0.987296i \(0.550792\pi\)
\(524\) −2.73330 −0.119405
\(525\) 0 0
\(526\) 5.88355 0.256535
\(527\) −1.55801 −0.0678679
\(528\) 0 0
\(529\) −0.798603 −0.0347219
\(530\) −24.0285 −1.04373
\(531\) 0 0
\(532\) 0.626862 0.0271779
\(533\) −1.67414 −0.0725152
\(534\) 0 0
\(535\) 44.9950 1.94531
\(536\) −36.7396 −1.58691
\(537\) 0 0
\(538\) 2.84599 0.122699
\(539\) −6.16901 −0.265718
\(540\) 0 0
\(541\) 9.77573 0.420291 0.210146 0.977670i \(-0.432606\pi\)
0.210146 + 0.977670i \(0.432606\pi\)
\(542\) −4.22753 −0.181588
\(543\) 0 0
\(544\) −0.825271 −0.0353832
\(545\) −7.04067 −0.301589
\(546\) 0 0
\(547\) 19.6478 0.840078 0.420039 0.907506i \(-0.362016\pi\)
0.420039 + 0.907506i \(0.362016\pi\)
\(548\) −2.87165 −0.122671
\(549\) 0 0
\(550\) −29.1598 −1.24338
\(551\) 24.3938 1.03921
\(552\) 0 0
\(553\) −2.30230 −0.0979038
\(554\) 27.3781 1.16318
\(555\) 0 0
\(556\) 3.90321 0.165533
\(557\) −23.3748 −0.990423 −0.495211 0.868773i \(-0.664909\pi\)
−0.495211 + 0.868773i \(0.664909\pi\)
\(558\) 0 0
\(559\) −6.38906 −0.270228
\(560\) 10.2145 0.431640
\(561\) 0 0
\(562\) 25.1721 1.06182
\(563\) 2.16432 0.0912152 0.0456076 0.998959i \(-0.485478\pi\)
0.0456076 + 0.998959i \(0.485478\pi\)
\(564\) 0 0
\(565\) 7.92715 0.333498
\(566\) −20.0341 −0.842097
\(567\) 0 0
\(568\) −29.8039 −1.25054
\(569\) −4.40419 −0.184633 −0.0923165 0.995730i \(-0.529427\pi\)
−0.0923165 + 0.995730i \(0.529427\pi\)
\(570\) 0 0
\(571\) −2.17029 −0.0908239 −0.0454120 0.998968i \(-0.514460\pi\)
−0.0454120 + 0.998968i \(0.514460\pi\)
\(572\) −0.870273 −0.0363879
\(573\) 0 0
\(574\) −3.59473 −0.150041
\(575\) −16.7289 −0.697645
\(576\) 0 0
\(577\) −18.3420 −0.763587 −0.381794 0.924248i \(-0.624694\pi\)
−0.381794 + 0.924248i \(0.624694\pi\)
\(578\) −22.0799 −0.918403
\(579\) 0 0
\(580\) −5.89042 −0.244586
\(581\) −1.22797 −0.0509447
\(582\) 0 0
\(583\) 38.0766 1.57697
\(584\) −24.3442 −1.00737
\(585\) 0 0
\(586\) −16.6208 −0.686597
\(587\) 4.64632 0.191774 0.0958871 0.995392i \(-0.469431\pi\)
0.0958871 + 0.995392i \(0.469431\pi\)
\(588\) 0 0
\(589\) 6.66072 0.274450
\(590\) 45.1878 1.86035
\(591\) 0 0
\(592\) 21.2203 0.872149
\(593\) −35.2665 −1.44822 −0.724110 0.689684i \(-0.757749\pi\)
−0.724110 + 0.689684i \(0.757749\pi\)
\(594\) 0 0
\(595\) 1.88448 0.0772560
\(596\) 1.28497 0.0526346
\(597\) 0 0
\(598\) 3.88953 0.159055
\(599\) 11.1046 0.453720 0.226860 0.973927i \(-0.427154\pi\)
0.226860 + 0.973927i \(0.427154\pi\)
\(600\) 0 0
\(601\) 27.6727 1.12879 0.564397 0.825504i \(-0.309109\pi\)
0.564397 + 0.825504i \(0.309109\pi\)
\(602\) −13.7186 −0.559129
\(603\) 0 0
\(604\) −2.97078 −0.120879
\(605\) 79.1166 3.21655
\(606\) 0 0
\(607\) 39.8271 1.61653 0.808266 0.588818i \(-0.200406\pi\)
0.808266 + 0.588818i \(0.200406\pi\)
\(608\) 3.52816 0.143086
\(609\) 0 0
\(610\) −48.0067 −1.94374
\(611\) −6.68176 −0.270315
\(612\) 0 0
\(613\) −11.1909 −0.451997 −0.225999 0.974128i \(-0.572564\pi\)
−0.225999 + 0.974128i \(0.572564\pi\)
\(614\) 36.4936 1.47276
\(615\) 0 0
\(616\) −18.2948 −0.737119
\(617\) 21.1289 0.850617 0.425308 0.905049i \(-0.360166\pi\)
0.425308 + 0.905049i \(0.360166\pi\)
\(618\) 0 0
\(619\) 6.30389 0.253375 0.126687 0.991943i \(-0.459566\pi\)
0.126687 + 0.991943i \(0.459566\pi\)
\(620\) −1.60838 −0.0645941
\(621\) 0 0
\(622\) 33.5337 1.34458
\(623\) 11.7296 0.469936
\(624\) 0 0
\(625\) −30.1466 −1.20587
\(626\) −15.5986 −0.623445
\(627\) 0 0
\(628\) 1.48644 0.0593153
\(629\) 3.91496 0.156099
\(630\) 0 0
\(631\) 36.4561 1.45130 0.725648 0.688066i \(-0.241540\pi\)
0.725648 + 0.688066i \(0.241540\pi\)
\(632\) −6.82770 −0.271591
\(633\) 0 0
\(634\) −23.9687 −0.951917
\(635\) −2.92411 −0.116040
\(636\) 0 0
\(637\) −0.620036 −0.0245667
\(638\) −72.7170 −2.87889
\(639\) 0 0
\(640\) 26.3460 1.04142
\(641\) −23.4463 −0.926073 −0.463037 0.886339i \(-0.653240\pi\)
−0.463037 + 0.886339i \(0.653240\pi\)
\(642\) 0 0
\(643\) −12.6228 −0.497796 −0.248898 0.968530i \(-0.580068\pi\)
−0.248898 + 0.968530i \(0.580068\pi\)
\(644\) −1.07205 −0.0422445
\(645\) 0 0
\(646\) −2.36394 −0.0930080
\(647\) −25.2402 −0.992294 −0.496147 0.868238i \(-0.665252\pi\)
−0.496147 + 0.868238i \(0.665252\pi\)
\(648\) 0 0
\(649\) −71.6065 −2.81080
\(650\) −2.93080 −0.114955
\(651\) 0 0
\(652\) −3.01688 −0.118150
\(653\) 3.66022 0.143236 0.0716178 0.997432i \(-0.477184\pi\)
0.0716178 + 0.997432i \(0.477184\pi\)
\(654\) 0 0
\(655\) 35.1284 1.37258
\(656\) −9.43188 −0.368253
\(657\) 0 0
\(658\) −14.3471 −0.559308
\(659\) −9.14308 −0.356164 −0.178082 0.984016i \(-0.556989\pi\)
−0.178082 + 0.984016i \(0.556989\pi\)
\(660\) 0 0
\(661\) 16.9706 0.660078 0.330039 0.943967i \(-0.392938\pi\)
0.330039 + 0.943967i \(0.392938\pi\)
\(662\) −18.7537 −0.728885
\(663\) 0 0
\(664\) −3.64166 −0.141324
\(665\) −8.05642 −0.312415
\(666\) 0 0
\(667\) −41.7177 −1.61532
\(668\) −0.459147 −0.0177649
\(669\) 0 0
\(670\) 48.2287 1.86324
\(671\) 76.0736 2.93679
\(672\) 0 0
\(673\) 2.01062 0.0775038 0.0387519 0.999249i \(-0.487662\pi\)
0.0387519 + 0.999249i \(0.487662\pi\)
\(674\) 9.12826 0.351607
\(675\) 0 0
\(676\) 2.87031 0.110397
\(677\) −7.34704 −0.282370 −0.141185 0.989983i \(-0.545091\pi\)
−0.141185 + 0.989983i \(0.545091\pi\)
\(678\) 0 0
\(679\) −1.19035 −0.0456815
\(680\) 5.58860 0.214313
\(681\) 0 0
\(682\) −19.8554 −0.760302
\(683\) 30.7252 1.17567 0.587833 0.808982i \(-0.299981\pi\)
0.587833 + 0.808982i \(0.299981\pi\)
\(684\) 0 0
\(685\) 36.9064 1.41012
\(686\) −1.33134 −0.0508310
\(687\) 0 0
\(688\) −35.9950 −1.37230
\(689\) 3.82701 0.145798
\(690\) 0 0
\(691\) 41.4079 1.57523 0.787616 0.616166i \(-0.211315\pi\)
0.787616 + 0.616166i \(0.211315\pi\)
\(692\) 0.418841 0.0159220
\(693\) 0 0
\(694\) −20.3079 −0.770877
\(695\) −50.1640 −1.90283
\(696\) 0 0
\(697\) −1.74010 −0.0659108
\(698\) 9.59001 0.362987
\(699\) 0 0
\(700\) 0.807795 0.0305318
\(701\) −5.45833 −0.206158 −0.103079 0.994673i \(-0.532869\pi\)
−0.103079 + 0.994673i \(0.532869\pi\)
\(702\) 0 0
\(703\) −16.7370 −0.631249
\(704\) −53.6164 −2.02074
\(705\) 0 0
\(706\) 5.68479 0.213950
\(707\) −19.3595 −0.728090
\(708\) 0 0
\(709\) 4.69396 0.176285 0.0881427 0.996108i \(-0.471907\pi\)
0.0881427 + 0.996108i \(0.471907\pi\)
\(710\) 39.1241 1.46830
\(711\) 0 0
\(712\) 34.7853 1.30363
\(713\) −11.3910 −0.426597
\(714\) 0 0
\(715\) 11.1847 0.418286
\(716\) 4.26882 0.159533
\(717\) 0 0
\(718\) 41.3804 1.54430
\(719\) 32.7760 1.22234 0.611170 0.791499i \(-0.290699\pi\)
0.611170 + 0.791499i \(0.290699\pi\)
\(720\) 0 0
\(721\) 10.2002 0.379875
\(722\) −15.1893 −0.565289
\(723\) 0 0
\(724\) −5.27347 −0.195987
\(725\) 31.4346 1.16745
\(726\) 0 0
\(727\) −16.3785 −0.607445 −0.303723 0.952760i \(-0.598230\pi\)
−0.303723 + 0.952760i \(0.598230\pi\)
\(728\) −1.83878 −0.0681497
\(729\) 0 0
\(730\) 31.9571 1.18278
\(731\) −6.64075 −0.245617
\(732\) 0 0
\(733\) 10.7267 0.396199 0.198100 0.980182i \(-0.436523\pi\)
0.198100 + 0.980182i \(0.436523\pi\)
\(734\) −24.4465 −0.902337
\(735\) 0 0
\(736\) −6.03378 −0.222408
\(737\) −76.4253 −2.81516
\(738\) 0 0
\(739\) 11.9344 0.439014 0.219507 0.975611i \(-0.429555\pi\)
0.219507 + 0.975611i \(0.429555\pi\)
\(740\) 4.04153 0.148570
\(741\) 0 0
\(742\) 8.21738 0.301669
\(743\) −3.45152 −0.126624 −0.0633119 0.997994i \(-0.520166\pi\)
−0.0633119 + 0.997994i \(0.520166\pi\)
\(744\) 0 0
\(745\) −16.5145 −0.605043
\(746\) −27.7637 −1.01650
\(747\) 0 0
\(748\) −0.904557 −0.0330739
\(749\) −15.3876 −0.562251
\(750\) 0 0
\(751\) −0.508332 −0.0185493 −0.00927465 0.999957i \(-0.502952\pi\)
−0.00927465 + 0.999957i \(0.502952\pi\)
\(752\) −37.6440 −1.37274
\(753\) 0 0
\(754\) −7.30866 −0.266166
\(755\) 38.1804 1.38953
\(756\) 0 0
\(757\) 11.2937 0.410477 0.205238 0.978712i \(-0.434203\pi\)
0.205238 + 0.978712i \(0.434203\pi\)
\(758\) 9.29014 0.337433
\(759\) 0 0
\(760\) −23.8921 −0.866658
\(761\) −27.6722 −1.00312 −0.501558 0.865124i \(-0.667240\pi\)
−0.501558 + 0.865124i \(0.667240\pi\)
\(762\) 0 0
\(763\) 2.40780 0.0871683
\(764\) −0.0153153 −0.000554089 0
\(765\) 0 0
\(766\) 0.0480499 0.00173611
\(767\) −7.19704 −0.259870
\(768\) 0 0
\(769\) 29.1720 1.05197 0.525984 0.850495i \(-0.323697\pi\)
0.525984 + 0.850495i \(0.323697\pi\)
\(770\) 24.0159 0.865474
\(771\) 0 0
\(772\) 5.18300 0.186540
\(773\) 19.2965 0.694046 0.347023 0.937857i \(-0.387193\pi\)
0.347023 + 0.937857i \(0.387193\pi\)
\(774\) 0 0
\(775\) 8.58322 0.308318
\(776\) −3.53010 −0.126723
\(777\) 0 0
\(778\) 26.0952 0.935560
\(779\) 7.43917 0.266536
\(780\) 0 0
\(781\) −61.9978 −2.21846
\(782\) 4.04276 0.144569
\(783\) 0 0
\(784\) −3.49319 −0.124757
\(785\) −19.1037 −0.681840
\(786\) 0 0
\(787\) −18.6400 −0.664446 −0.332223 0.943201i \(-0.607799\pi\)
−0.332223 + 0.943201i \(0.607799\pi\)
\(788\) −4.69906 −0.167397
\(789\) 0 0
\(790\) 8.96285 0.318884
\(791\) −2.71096 −0.0963908
\(792\) 0 0
\(793\) 7.64602 0.271518
\(794\) 27.5311 0.977044
\(795\) 0 0
\(796\) −0.124436 −0.00441050
\(797\) 12.4612 0.441399 0.220699 0.975342i \(-0.429166\pi\)
0.220699 + 0.975342i \(0.429166\pi\)
\(798\) 0 0
\(799\) −6.94498 −0.245696
\(800\) 4.54650 0.160743
\(801\) 0 0
\(802\) 32.9756 1.16441
\(803\) −50.6405 −1.78707
\(804\) 0 0
\(805\) 13.7779 0.485608
\(806\) −1.99563 −0.0702930
\(807\) 0 0
\(808\) −57.4126 −2.01977
\(809\) 27.8109 0.977779 0.488890 0.872346i \(-0.337402\pi\)
0.488890 + 0.872346i \(0.337402\pi\)
\(810\) 0 0
\(811\) −27.0417 −0.949561 −0.474781 0.880104i \(-0.657473\pi\)
−0.474781 + 0.880104i \(0.657473\pi\)
\(812\) 2.01443 0.0706928
\(813\) 0 0
\(814\) 49.8925 1.74873
\(815\) 38.7730 1.35816
\(816\) 0 0
\(817\) 28.3902 0.993247
\(818\) −49.6221 −1.73499
\(819\) 0 0
\(820\) −1.79636 −0.0627314
\(821\) 0.578331 0.0201839 0.0100920 0.999949i \(-0.496788\pi\)
0.0100920 + 0.999949i \(0.496788\pi\)
\(822\) 0 0
\(823\) 9.69777 0.338043 0.169022 0.985612i \(-0.445939\pi\)
0.169022 + 0.985612i \(0.445939\pi\)
\(824\) 30.2497 1.05380
\(825\) 0 0
\(826\) −15.4535 −0.537697
\(827\) −27.9922 −0.973384 −0.486692 0.873574i \(-0.661797\pi\)
−0.486692 + 0.873574i \(0.661797\pi\)
\(828\) 0 0
\(829\) 26.5981 0.923791 0.461895 0.886934i \(-0.347170\pi\)
0.461895 + 0.886934i \(0.347170\pi\)
\(830\) 4.78048 0.165933
\(831\) 0 0
\(832\) −5.38889 −0.186826
\(833\) −0.644462 −0.0223293
\(834\) 0 0
\(835\) 5.90095 0.204211
\(836\) 3.86712 0.133747
\(837\) 0 0
\(838\) 33.2858 1.14984
\(839\) −4.90573 −0.169365 −0.0846823 0.996408i \(-0.526988\pi\)
−0.0846823 + 0.996408i \(0.526988\pi\)
\(840\) 0 0
\(841\) 49.3899 1.70310
\(842\) 14.1258 0.486807
\(843\) 0 0
\(844\) 1.79040 0.0616280
\(845\) −36.8892 −1.26903
\(846\) 0 0
\(847\) −27.0567 −0.929678
\(848\) 21.5608 0.740401
\(849\) 0 0
\(850\) −3.04625 −0.104486
\(851\) 28.6233 0.981194
\(852\) 0 0
\(853\) 44.0800 1.50927 0.754635 0.656145i \(-0.227814\pi\)
0.754635 + 0.656145i \(0.227814\pi\)
\(854\) 16.4176 0.561798
\(855\) 0 0
\(856\) −45.6335 −1.55972
\(857\) −10.7388 −0.366829 −0.183415 0.983036i \(-0.558715\pi\)
−0.183415 + 0.983036i \(0.558715\pi\)
\(858\) 0 0
\(859\) 51.5763 1.75976 0.879880 0.475197i \(-0.157623\pi\)
0.879880 + 0.475197i \(0.157623\pi\)
\(860\) −6.85545 −0.233769
\(861\) 0 0
\(862\) 44.5071 1.51592
\(863\) 33.0290 1.12432 0.562160 0.827029i \(-0.309971\pi\)
0.562160 + 0.827029i \(0.309971\pi\)
\(864\) 0 0
\(865\) −5.38294 −0.183026
\(866\) 6.42894 0.218464
\(867\) 0 0
\(868\) 0.550041 0.0186696
\(869\) −14.2029 −0.481801
\(870\) 0 0
\(871\) −7.68137 −0.260273
\(872\) 7.14058 0.241810
\(873\) 0 0
\(874\) −17.2834 −0.584620
\(875\) 4.23877 0.143297
\(876\) 0 0
\(877\) 30.4104 1.02689 0.513443 0.858124i \(-0.328370\pi\)
0.513443 + 0.858124i \(0.328370\pi\)
\(878\) 7.24560 0.244527
\(879\) 0 0
\(880\) 63.0131 2.12417
\(881\) 2.70216 0.0910381 0.0455190 0.998963i \(-0.485506\pi\)
0.0455190 + 0.998963i \(0.485506\pi\)
\(882\) 0 0
\(883\) 57.0235 1.91899 0.959497 0.281719i \(-0.0909045\pi\)
0.959497 + 0.281719i \(0.0909045\pi\)
\(884\) −0.0909154 −0.00305782
\(885\) 0 0
\(886\) 31.5281 1.05921
\(887\) −19.5634 −0.656876 −0.328438 0.944525i \(-0.606522\pi\)
−0.328438 + 0.944525i \(0.606522\pi\)
\(888\) 0 0
\(889\) 1.00000 0.0335389
\(890\) −45.6633 −1.53064
\(891\) 0 0
\(892\) −0.145905 −0.00488525
\(893\) 29.6909 0.993566
\(894\) 0 0
\(895\) −54.8628 −1.83386
\(896\) −9.00992 −0.301000
\(897\) 0 0
\(898\) 9.72534 0.324539
\(899\) 21.4044 0.713876
\(900\) 0 0
\(901\) 3.97777 0.132519
\(902\) −22.1759 −0.738378
\(903\) 0 0
\(904\) −8.03963 −0.267394
\(905\) 67.7746 2.25290
\(906\) 0 0
\(907\) −38.9478 −1.29324 −0.646620 0.762812i \(-0.723818\pi\)
−0.646620 + 0.762812i \(0.723818\pi\)
\(908\) 5.78654 0.192033
\(909\) 0 0
\(910\) 2.41380 0.0800166
\(911\) −49.6820 −1.64604 −0.823020 0.568013i \(-0.807712\pi\)
−0.823020 + 0.568013i \(0.807712\pi\)
\(912\) 0 0
\(913\) −7.57535 −0.250708
\(914\) 6.21479 0.205567
\(915\) 0 0
\(916\) 3.92613 0.129723
\(917\) −12.0134 −0.396716
\(918\) 0 0
\(919\) −17.4080 −0.574238 −0.287119 0.957895i \(-0.592698\pi\)
−0.287119 + 0.957895i \(0.592698\pi\)
\(920\) 40.8598 1.34711
\(921\) 0 0
\(922\) −35.8731 −1.18142
\(923\) −6.23129 −0.205105
\(924\) 0 0
\(925\) −21.5679 −0.709148
\(926\) 13.2931 0.436838
\(927\) 0 0
\(928\) 11.3378 0.372182
\(929\) 13.5172 0.443486 0.221743 0.975105i \(-0.428825\pi\)
0.221743 + 0.975105i \(0.428825\pi\)
\(930\) 0 0
\(931\) 2.75517 0.0902971
\(932\) 3.91903 0.128372
\(933\) 0 0
\(934\) 49.3631 1.61521
\(935\) 11.6254 0.380190
\(936\) 0 0
\(937\) 19.8645 0.648944 0.324472 0.945895i \(-0.394813\pi\)
0.324472 + 0.945895i \(0.394813\pi\)
\(938\) −16.4935 −0.538531
\(939\) 0 0
\(940\) −7.16952 −0.233844
\(941\) −2.52477 −0.0823051 −0.0411525 0.999153i \(-0.513103\pi\)
−0.0411525 + 0.999153i \(0.513103\pi\)
\(942\) 0 0
\(943\) −12.7223 −0.414295
\(944\) −40.5470 −1.31969
\(945\) 0 0
\(946\) −84.6302 −2.75157
\(947\) 13.3429 0.433586 0.216793 0.976218i \(-0.430440\pi\)
0.216793 + 0.976218i \(0.430440\pi\)
\(948\) 0 0
\(949\) −5.08979 −0.165222
\(950\) 13.0232 0.422528
\(951\) 0 0
\(952\) −1.91122 −0.0619429
\(953\) 19.1650 0.620816 0.310408 0.950603i \(-0.399534\pi\)
0.310408 + 0.950603i \(0.399534\pi\)
\(954\) 0 0
\(955\) 0.196832 0.00636934
\(956\) −1.24899 −0.0403951
\(957\) 0 0
\(958\) 25.0513 0.809369
\(959\) −12.6214 −0.407567
\(960\) 0 0
\(961\) −25.1555 −0.811469
\(962\) 5.01461 0.161677
\(963\) 0 0
\(964\) 6.12867 0.197391
\(965\) −66.6119 −2.14431
\(966\) 0 0
\(967\) −41.8133 −1.34463 −0.672313 0.740267i \(-0.734699\pi\)
−0.672313 + 0.740267i \(0.734699\pi\)
\(968\) −80.2392 −2.57899
\(969\) 0 0
\(970\) 4.63403 0.148790
\(971\) −4.23069 −0.135769 −0.0678846 0.997693i \(-0.521625\pi\)
−0.0678846 + 0.997693i \(0.521625\pi\)
\(972\) 0 0
\(973\) 17.1553 0.549974
\(974\) −34.8776 −1.11755
\(975\) 0 0
\(976\) 43.0765 1.37885
\(977\) 2.61078 0.0835263 0.0417631 0.999128i \(-0.486703\pi\)
0.0417631 + 0.999128i \(0.486703\pi\)
\(978\) 0 0
\(979\) 72.3600 2.31264
\(980\) −0.665298 −0.0212522
\(981\) 0 0
\(982\) −25.2321 −0.805188
\(983\) −41.6466 −1.32832 −0.664159 0.747591i \(-0.731210\pi\)
−0.664159 + 0.747591i \(0.731210\pi\)
\(984\) 0 0
\(985\) 60.3923 1.92426
\(986\) −7.59658 −0.241924
\(987\) 0 0
\(988\) 0.388677 0.0123655
\(989\) −48.5523 −1.54387
\(990\) 0 0
\(991\) 0.195803 0.00621990 0.00310995 0.999995i \(-0.499010\pi\)
0.00310995 + 0.999995i \(0.499010\pi\)
\(992\) 3.09579 0.0982915
\(993\) 0 0
\(994\) −13.3799 −0.424383
\(995\) 1.59925 0.0506995
\(996\) 0 0
\(997\) −0.840968 −0.0266337 −0.0133169 0.999911i \(-0.504239\pi\)
−0.0133169 + 0.999911i \(0.504239\pi\)
\(998\) 31.0200 0.981921
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 8001.2.a.t.1.12 16
3.2 odd 2 889.2.a.c.1.5 16
21.20 even 2 6223.2.a.k.1.5 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
889.2.a.c.1.5 16 3.2 odd 2
6223.2.a.k.1.5 16 21.20 even 2
8001.2.a.t.1.12 16 1.1 even 1 trivial