Defining parameters
Level: | \( N \) | \(=\) | \( 889 = 7 \cdot 127 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 889.a (trivial) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 4 \) | ||
Sturm bound: | \(170\) | ||
Trace bound: | \(1\) | ||
Distinguishing \(T_p\): | \(2\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(889))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 86 | 63 | 23 |
Cusp forms | 83 | 63 | 20 |
Eisenstein series | 3 | 0 | 3 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
\(7\) | \(127\) | Fricke | Dim. |
---|---|---|---|
\(+\) | \(+\) | \(+\) | \(16\) |
\(+\) | \(-\) | \(-\) | \(15\) |
\(-\) | \(+\) | \(-\) | \(20\) |
\(-\) | \(-\) | \(+\) | \(12\) |
Plus space | \(+\) | \(28\) | |
Minus space | \(-\) | \(35\) |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(889))\) into newform subspaces
Label | Dim. | \(A\) | Field | CM | Traces | A-L signs | $q$-expansion | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
\(a_2\) | \(a_3\) | \(a_5\) | \(a_7\) | 7 | 127 | |||||||
889.2.a.a | \(12\) | \(7.099\) | \(\mathbb{Q}[x]/(x^{12} - \cdots)\) | None | \(-7\) | \(-4\) | \(-7\) | \(12\) | \(-\) | \(-\) | \(q+(-1+\beta _{1})q^{2}-\beta _{10}q^{3}+(1-\beta _{1}+\cdots)q^{4}+\cdots\) | |
889.2.a.b | \(15\) | \(7.099\) | \(\mathbb{Q}[x]/(x^{15} - \cdots)\) | None | \(0\) | \(4\) | \(7\) | \(-15\) | \(+\) | \(-\) | \(q-\beta _{1}q^{2}+\beta _{9}q^{3}+(1+\beta _{2})q^{4}+\beta _{8}q^{5}+\cdots\) | |
889.2.a.c | \(16\) | \(7.099\) | \(\mathbb{Q}[x]/(x^{16} - \cdots)\) | None | \(-2\) | \(-4\) | \(-9\) | \(-16\) | \(+\) | \(+\) | \(q-\beta _{1}q^{2}+\beta _{10}q^{3}+(1+\beta _{2})q^{4}+(-1+\cdots)q^{5}+\cdots\) | |
889.2.a.d | \(20\) | \(7.099\) | \(\mathbb{Q}[x]/(x^{20} - \cdots)\) | None | \(8\) | \(0\) | \(3\) | \(20\) | \(-\) | \(+\) | \(q+\beta _{1}q^{2}+\beta _{9}q^{3}+(1+\beta _{2})q^{4}-\beta _{16}q^{5}+\cdots\) |
Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(889))\) into lower level spaces
\( S_{2}^{\mathrm{old}}(\Gamma_0(889)) \cong \) \(S_{2}^{\mathrm{new}}(\Gamma_0(127))\)\(^{\oplus 2}\)