Properties

Label 889.2.a
Level $889$
Weight $2$
Character orbit 889.a
Rep. character $\chi_{889}(1,\cdot)$
Character field $\Q$
Dimension $63$
Newform subspaces $4$
Sturm bound $170$
Trace bound $1$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 889 = 7 \cdot 127 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 889.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 4 \)
Sturm bound: \(170\)
Trace bound: \(1\)
Distinguishing \(T_p\): \(2\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(889))\).

Total New Old
Modular forms 86 63 23
Cusp forms 83 63 20
Eisenstein series 3 0 3

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(7\)\(127\)FrickeTotalCuspEisenstein
AllNewOldAllNewOldAllNewOld
\(+\)\(+\)\(+\)\(19\)\(16\)\(3\)\(19\)\(16\)\(3\)\(0\)\(0\)\(0\)
\(+\)\(-\)\(-\)\(23\)\(15\)\(8\)\(22\)\(15\)\(7\)\(1\)\(0\)\(1\)
\(-\)\(+\)\(-\)\(24\)\(20\)\(4\)\(23\)\(20\)\(3\)\(1\)\(0\)\(1\)
\(-\)\(-\)\(+\)\(20\)\(12\)\(8\)\(19\)\(12\)\(7\)\(1\)\(0\)\(1\)
Plus space\(+\)\(39\)\(28\)\(11\)\(38\)\(28\)\(10\)\(1\)\(0\)\(1\)
Minus space\(-\)\(47\)\(35\)\(12\)\(45\)\(35\)\(10\)\(2\)\(0\)\(2\)

Trace form

\( 63 q - q^{2} - 4 q^{3} + 59 q^{4} - 6 q^{5} + q^{7} + 3 q^{8} + 51 q^{9} - 2 q^{10} - 4 q^{11} - 2 q^{13} + 3 q^{14} - 8 q^{15} + 63 q^{16} - 10 q^{17} - 9 q^{18} - 8 q^{19} - 42 q^{20} - 4 q^{21} - 8 q^{22}+ \cdots - 32 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(889))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 7 127
889.2.a.a 889.a 1.a $12$ $7.099$ \(\mathbb{Q}[x]/(x^{12} - \cdots)\) None 889.2.a.a \(-7\) \(-4\) \(-7\) \(12\) $-$ $-$ $\mathrm{SU}(2)$ \(q+(-1+\beta _{1})q^{2}-\beta _{10}q^{3}+(1-\beta _{1}+\cdots)q^{4}+\cdots\)
889.2.a.b 889.a 1.a $15$ $7.099$ \(\mathbb{Q}[x]/(x^{15} - \cdots)\) None 889.2.a.b \(0\) \(4\) \(7\) \(-15\) $+$ $-$ $\mathrm{SU}(2)$ \(q-\beta _{1}q^{2}+\beta _{9}q^{3}+(1+\beta _{2})q^{4}+\beta _{8}q^{5}+\cdots\)
889.2.a.c 889.a 1.a $16$ $7.099$ \(\mathbb{Q}[x]/(x^{16} - \cdots)\) None 889.2.a.c \(-2\) \(-4\) \(-9\) \(-16\) $+$ $+$ $\mathrm{SU}(2)$ \(q-\beta _{1}q^{2}+\beta _{10}q^{3}+(1+\beta _{2})q^{4}+(-1+\cdots)q^{5}+\cdots\)
889.2.a.d 889.a 1.a $20$ $7.099$ \(\mathbb{Q}[x]/(x^{20} - \cdots)\) None 889.2.a.d \(8\) \(0\) \(3\) \(20\) $-$ $+$ $\mathrm{SU}(2)$ \(q+\beta _{1}q^{2}+\beta _{9}q^{3}+(1+\beta _{2})q^{4}-\beta _{16}q^{5}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(889))\) into lower level spaces

\( S_{2}^{\mathrm{old}}(\Gamma_0(889)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(127))\)\(^{\oplus 2}\)