Properties

Label 6223.2.a.k.1.5
Level $6223$
Weight $2$
Character 6223.1
Self dual yes
Analytic conductor $49.691$
Analytic rank $0$
Dimension $16$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [6223,2,Mod(1,6223)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(6223, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("6223.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 6223 = 7^{2} \cdot 127 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 6223.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,-2,4,12,9] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(49.6909051778\)
Analytic rank: \(0\)
Dimension: \(16\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 2 x^{15} - 20 x^{14} + 38 x^{13} + 155 x^{12} - 275 x^{11} - 593 x^{10} + 957 x^{9} + 1177 x^{8} + \cdots + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 889)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.5
Root \(1.33134\) of defining polynomial
Character \(\chi\) \(=\) 6223.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.33134 q^{2} +1.35454 q^{3} -0.227522 q^{4} +2.92411 q^{5} -1.80336 q^{6} +2.96560 q^{8} -1.16521 q^{9} -3.89299 q^{10} +6.16901 q^{11} -0.308188 q^{12} +0.620036 q^{13} +3.96083 q^{15} -3.49319 q^{16} -0.644462 q^{17} +1.55130 q^{18} -2.75517 q^{19} -0.665298 q^{20} -8.21308 q^{22} +4.71184 q^{23} +4.01703 q^{24} +3.55041 q^{25} -0.825482 q^{26} -5.64196 q^{27} -8.85381 q^{29} -5.27323 q^{30} -2.41753 q^{31} -1.28056 q^{32} +8.35618 q^{33} +0.858001 q^{34} +0.265112 q^{36} -6.07476 q^{37} +3.66808 q^{38} +0.839865 q^{39} +8.67173 q^{40} +2.70008 q^{41} +10.3043 q^{43} -1.40358 q^{44} -3.40721 q^{45} -6.27308 q^{46} +10.7764 q^{47} -4.73167 q^{48} -4.72681 q^{50} -0.872951 q^{51} -0.141072 q^{52} +6.17224 q^{53} +7.51139 q^{54} +18.0388 q^{55} -3.73200 q^{57} +11.7875 q^{58} +11.6075 q^{59} -0.901175 q^{60} +12.3316 q^{61} +3.21857 q^{62} +8.69124 q^{64} +1.81305 q^{65} -11.1250 q^{66} +12.3886 q^{67} +0.146629 q^{68} +6.38238 q^{69} -10.0499 q^{71} -3.45556 q^{72} -8.20886 q^{73} +8.08760 q^{74} +4.80918 q^{75} +0.626862 q^{76} -1.11815 q^{78} +2.30230 q^{79} -10.2145 q^{80} -4.14663 q^{81} -3.59473 q^{82} +1.22797 q^{83} -1.88448 q^{85} -13.7186 q^{86} -11.9929 q^{87} +18.2948 q^{88} -11.7296 q^{89} +4.53618 q^{90} -1.07205 q^{92} -3.27465 q^{93} -14.3471 q^{94} -8.05642 q^{95} -1.73457 q^{96} -1.19035 q^{97} -7.18822 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 2 q^{2} + 4 q^{3} + 12 q^{4} + 9 q^{5} + 12 q^{6} - 6 q^{8} + 14 q^{9} + 2 q^{10} - 22 q^{11} + 10 q^{12} + 4 q^{13} - 14 q^{15} + 12 q^{16} + 18 q^{17} - 5 q^{18} + 15 q^{19} + 40 q^{20} - 11 q^{22}+ \cdots - 73 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.33134 −0.941403 −0.470701 0.882293i \(-0.655999\pi\)
−0.470701 + 0.882293i \(0.655999\pi\)
\(3\) 1.35454 0.782045 0.391023 0.920381i \(-0.372121\pi\)
0.391023 + 0.920381i \(0.372121\pi\)
\(4\) −0.227522 −0.113761
\(5\) 2.92411 1.30770 0.653850 0.756624i \(-0.273153\pi\)
0.653850 + 0.756624i \(0.273153\pi\)
\(6\) −1.80336 −0.736220
\(7\) 0 0
\(8\) 2.96560 1.04850
\(9\) −1.16521 −0.388405
\(10\) −3.89299 −1.23107
\(11\) 6.16901 1.86003 0.930013 0.367526i \(-0.119795\pi\)
0.930013 + 0.367526i \(0.119795\pi\)
\(12\) −0.308188 −0.0889662
\(13\) 0.620036 0.171967 0.0859836 0.996297i \(-0.472597\pi\)
0.0859836 + 0.996297i \(0.472597\pi\)
\(14\) 0 0
\(15\) 3.96083 1.02268
\(16\) −3.49319 −0.873298
\(17\) −0.644462 −0.156305 −0.0781525 0.996941i \(-0.524902\pi\)
−0.0781525 + 0.996941i \(0.524902\pi\)
\(18\) 1.55130 0.365645
\(19\) −2.75517 −0.632080 −0.316040 0.948746i \(-0.602353\pi\)
−0.316040 + 0.948746i \(0.602353\pi\)
\(20\) −0.665298 −0.148765
\(21\) 0 0
\(22\) −8.21308 −1.75103
\(23\) 4.71184 0.982486 0.491243 0.871023i \(-0.336543\pi\)
0.491243 + 0.871023i \(0.336543\pi\)
\(24\) 4.01703 0.819973
\(25\) 3.55041 0.710081
\(26\) −0.825482 −0.161890
\(27\) −5.64196 −1.08580
\(28\) 0 0
\(29\) −8.85381 −1.64411 −0.822056 0.569407i \(-0.807173\pi\)
−0.822056 + 0.569407i \(0.807173\pi\)
\(30\) −5.27323 −0.962755
\(31\) −2.41753 −0.434202 −0.217101 0.976149i \(-0.569660\pi\)
−0.217101 + 0.976149i \(0.569660\pi\)
\(32\) −1.28056 −0.226373
\(33\) 8.35618 1.45463
\(34\) 0.858001 0.147146
\(35\) 0 0
\(36\) 0.265112 0.0441853
\(37\) −6.07476 −0.998685 −0.499343 0.866405i \(-0.666425\pi\)
−0.499343 + 0.866405i \(0.666425\pi\)
\(38\) 3.66808 0.595042
\(39\) 0.839865 0.134486
\(40\) 8.67173 1.37112
\(41\) 2.70008 0.421681 0.210840 0.977520i \(-0.432380\pi\)
0.210840 + 0.977520i \(0.432380\pi\)
\(42\) 0 0
\(43\) 10.3043 1.57140 0.785698 0.618611i \(-0.212304\pi\)
0.785698 + 0.618611i \(0.212304\pi\)
\(44\) −1.40358 −0.211598
\(45\) −3.40721 −0.507917
\(46\) −6.27308 −0.924915
\(47\) 10.7764 1.57190 0.785950 0.618290i \(-0.212174\pi\)
0.785950 + 0.618290i \(0.212174\pi\)
\(48\) −4.73167 −0.682958
\(49\) 0 0
\(50\) −4.72681 −0.668472
\(51\) −0.872951 −0.122238
\(52\) −0.141072 −0.0195631
\(53\) 6.17224 0.847822 0.423911 0.905704i \(-0.360657\pi\)
0.423911 + 0.905704i \(0.360657\pi\)
\(54\) 7.51139 1.02217
\(55\) 18.0388 2.43236
\(56\) 0 0
\(57\) −3.73200 −0.494315
\(58\) 11.7875 1.54777
\(59\) 11.6075 1.51116 0.755581 0.655055i \(-0.227355\pi\)
0.755581 + 0.655055i \(0.227355\pi\)
\(60\) −0.901175 −0.116341
\(61\) 12.3316 1.57890 0.789448 0.613818i \(-0.210367\pi\)
0.789448 + 0.613818i \(0.210367\pi\)
\(62\) 3.21857 0.408759
\(63\) 0 0
\(64\) 8.69124 1.08641
\(65\) 1.81305 0.224882
\(66\) −11.1250 −1.36939
\(67\) 12.3886 1.51351 0.756753 0.653701i \(-0.226785\pi\)
0.756753 + 0.653701i \(0.226785\pi\)
\(68\) 0.146629 0.0177814
\(69\) 6.38238 0.768348
\(70\) 0 0
\(71\) −10.0499 −1.19270 −0.596351 0.802724i \(-0.703383\pi\)
−0.596351 + 0.802724i \(0.703383\pi\)
\(72\) −3.45556 −0.407242
\(73\) −8.20886 −0.960775 −0.480387 0.877056i \(-0.659504\pi\)
−0.480387 + 0.877056i \(0.659504\pi\)
\(74\) 8.08760 0.940165
\(75\) 4.80918 0.555316
\(76\) 0.626862 0.0719060
\(77\) 0 0
\(78\) −1.11815 −0.126606
\(79\) 2.30230 0.259029 0.129515 0.991578i \(-0.458658\pi\)
0.129515 + 0.991578i \(0.458658\pi\)
\(80\) −10.2145 −1.14201
\(81\) −4.14663 −0.460737
\(82\) −3.59473 −0.396972
\(83\) 1.22797 0.134787 0.0673936 0.997726i \(-0.478532\pi\)
0.0673936 + 0.997726i \(0.478532\pi\)
\(84\) 0 0
\(85\) −1.88448 −0.204400
\(86\) −13.7186 −1.47932
\(87\) −11.9929 −1.28577
\(88\) 18.2948 1.95023
\(89\) −11.7296 −1.24334 −0.621668 0.783281i \(-0.713544\pi\)
−0.621668 + 0.783281i \(0.713544\pi\)
\(90\) 4.53618 0.478155
\(91\) 0 0
\(92\) −1.07205 −0.111768
\(93\) −3.27465 −0.339565
\(94\) −14.3471 −1.47979
\(95\) −8.05642 −0.826571
\(96\) −1.73457 −0.177034
\(97\) −1.19035 −0.120862 −0.0604309 0.998172i \(-0.519247\pi\)
−0.0604309 + 0.998172i \(0.519247\pi\)
\(98\) 0 0
\(99\) −7.18822 −0.722443
\(100\) −0.807795 −0.0807795
\(101\) 19.3595 1.92635 0.963173 0.268882i \(-0.0866542\pi\)
0.963173 + 0.268882i \(0.0866542\pi\)
\(102\) 1.16220 0.115075
\(103\) 10.2002 1.00506 0.502528 0.864561i \(-0.332403\pi\)
0.502528 + 0.864561i \(0.332403\pi\)
\(104\) 1.83878 0.180307
\(105\) 0 0
\(106\) −8.21738 −0.798142
\(107\) −15.3876 −1.48758 −0.743788 0.668415i \(-0.766973\pi\)
−0.743788 + 0.668415i \(0.766973\pi\)
\(108\) 1.28367 0.123521
\(109\) −2.40780 −0.230626 −0.115313 0.993329i \(-0.536787\pi\)
−0.115313 + 0.993329i \(0.536787\pi\)
\(110\) −24.0159 −2.28983
\(111\) −8.22853 −0.781017
\(112\) 0 0
\(113\) −2.71096 −0.255026 −0.127513 0.991837i \(-0.540699\pi\)
−0.127513 + 0.991837i \(0.540699\pi\)
\(114\) 4.96858 0.465350
\(115\) 13.7779 1.28480
\(116\) 2.01443 0.187036
\(117\) −0.722475 −0.0667929
\(118\) −15.4535 −1.42261
\(119\) 0 0
\(120\) 11.7462 1.07228
\(121\) 27.0567 2.45970
\(122\) −16.4176 −1.48638
\(123\) 3.65737 0.329774
\(124\) 0.550041 0.0493952
\(125\) −4.23877 −0.379127
\(126\) 0 0
\(127\) −1.00000 −0.0887357
\(128\) −9.00992 −0.796372
\(129\) 13.9576 1.22890
\(130\) −2.41380 −0.211704
\(131\) 12.0134 1.04961 0.524807 0.851222i \(-0.324138\pi\)
0.524807 + 0.851222i \(0.324138\pi\)
\(132\) −1.90121 −0.165479
\(133\) 0 0
\(134\) −16.4935 −1.42482
\(135\) −16.4977 −1.41990
\(136\) −1.91122 −0.163885
\(137\) −12.6214 −1.07832 −0.539161 0.842203i \(-0.681258\pi\)
−0.539161 + 0.842203i \(0.681258\pi\)
\(138\) −8.49715 −0.723325
\(139\) 17.1553 1.45510 0.727548 0.686057i \(-0.240660\pi\)
0.727548 + 0.686057i \(0.240660\pi\)
\(140\) 0 0
\(141\) 14.5971 1.22930
\(142\) 13.3799 1.12281
\(143\) 3.82501 0.319863
\(144\) 4.07032 0.339193
\(145\) −25.8895 −2.15001
\(146\) 10.9288 0.904476
\(147\) 0 0
\(148\) 1.38214 0.113611
\(149\) 5.64770 0.462677 0.231339 0.972873i \(-0.425689\pi\)
0.231339 + 0.972873i \(0.425689\pi\)
\(150\) −6.40267 −0.522776
\(151\) 13.0571 1.06257 0.531287 0.847192i \(-0.321709\pi\)
0.531287 + 0.847192i \(0.321709\pi\)
\(152\) −8.17074 −0.662734
\(153\) 0.750937 0.0607096
\(154\) 0 0
\(155\) −7.06913 −0.567806
\(156\) −0.191088 −0.0152993
\(157\) 6.53317 0.521404 0.260702 0.965419i \(-0.416046\pi\)
0.260702 + 0.965419i \(0.416046\pi\)
\(158\) −3.06516 −0.243851
\(159\) 8.36056 0.663035
\(160\) −3.74449 −0.296028
\(161\) 0 0
\(162\) 5.52059 0.433739
\(163\) 13.2598 1.03858 0.519292 0.854597i \(-0.326196\pi\)
0.519292 + 0.854597i \(0.326196\pi\)
\(164\) −0.614326 −0.0479708
\(165\) 24.4344 1.90221
\(166\) −1.63485 −0.126889
\(167\) 2.01803 0.156160 0.0780801 0.996947i \(-0.475121\pi\)
0.0780801 + 0.996947i \(0.475121\pi\)
\(168\) 0 0
\(169\) −12.6156 −0.970427
\(170\) 2.50889 0.192423
\(171\) 3.21037 0.245503
\(172\) −2.34446 −0.178763
\(173\) −1.84088 −0.139960 −0.0699799 0.997548i \(-0.522294\pi\)
−0.0699799 + 0.997548i \(0.522294\pi\)
\(174\) 15.9666 1.21043
\(175\) 0 0
\(176\) −21.5495 −1.62436
\(177\) 15.7228 1.18180
\(178\) 15.6161 1.17048
\(179\) 18.7622 1.40235 0.701177 0.712987i \(-0.252658\pi\)
0.701177 + 0.712987i \(0.252658\pi\)
\(180\) 0.775215 0.0577811
\(181\) −23.1779 −1.72280 −0.861399 0.507929i \(-0.830411\pi\)
−0.861399 + 0.507929i \(0.830411\pi\)
\(182\) 0 0
\(183\) 16.7036 1.23477
\(184\) 13.9734 1.03013
\(185\) −17.7633 −1.30598
\(186\) 4.35969 0.319668
\(187\) −3.97569 −0.290731
\(188\) −2.45187 −0.178821
\(189\) 0 0
\(190\) 10.7259 0.778137
\(191\) −0.0673136 −0.00487064 −0.00243532 0.999997i \(-0.500775\pi\)
−0.00243532 + 0.999997i \(0.500775\pi\)
\(192\) 11.7727 0.849619
\(193\) −22.7803 −1.63976 −0.819879 0.572536i \(-0.805960\pi\)
−0.819879 + 0.572536i \(0.805960\pi\)
\(194\) 1.58477 0.113780
\(195\) 2.45586 0.175868
\(196\) 0 0
\(197\) −20.6532 −1.47148 −0.735741 0.677263i \(-0.763166\pi\)
−0.735741 + 0.677263i \(0.763166\pi\)
\(198\) 9.57000 0.680110
\(199\) −0.546917 −0.0387699 −0.0193850 0.999812i \(-0.506171\pi\)
−0.0193850 + 0.999812i \(0.506171\pi\)
\(200\) 10.5291 0.744518
\(201\) 16.7809 1.18363
\(202\) −25.7742 −1.81347
\(203\) 0 0
\(204\) 0.198615 0.0139059
\(205\) 7.89531 0.551432
\(206\) −13.5800 −0.946162
\(207\) −5.49030 −0.381602
\(208\) −2.16590 −0.150178
\(209\) −16.9967 −1.17569
\(210\) 0 0
\(211\) −7.86912 −0.541733 −0.270866 0.962617i \(-0.587310\pi\)
−0.270866 + 0.962617i \(0.587310\pi\)
\(212\) −1.40432 −0.0964490
\(213\) −13.6130 −0.932747
\(214\) 20.4862 1.40041
\(215\) 30.1310 2.05491
\(216\) −16.7318 −1.13845
\(217\) 0 0
\(218\) 3.20561 0.217112
\(219\) −11.1193 −0.751369
\(220\) −4.10423 −0.276707
\(221\) −0.399590 −0.0268793
\(222\) 10.9550 0.735252
\(223\) −0.641278 −0.0429432 −0.0214716 0.999769i \(-0.506835\pi\)
−0.0214716 + 0.999769i \(0.506835\pi\)
\(224\) 0 0
\(225\) −4.13699 −0.275799
\(226\) 3.60923 0.240082
\(227\) −25.4329 −1.68804 −0.844021 0.536310i \(-0.819818\pi\)
−0.844021 + 0.536310i \(0.819818\pi\)
\(228\) 0.849111 0.0562337
\(229\) 17.2560 1.14031 0.570156 0.821537i \(-0.306883\pi\)
0.570156 + 0.821537i \(0.306883\pi\)
\(230\) −18.3432 −1.20951
\(231\) 0 0
\(232\) −26.2568 −1.72385
\(233\) 17.2249 1.12844 0.564219 0.825625i \(-0.309177\pi\)
0.564219 + 0.825625i \(0.309177\pi\)
\(234\) 0.961864 0.0628790
\(235\) 31.5114 2.05557
\(236\) −2.64095 −0.171911
\(237\) 3.11856 0.202573
\(238\) 0 0
\(239\) −5.48952 −0.355088 −0.177544 0.984113i \(-0.556815\pi\)
−0.177544 + 0.984113i \(0.556815\pi\)
\(240\) −13.8359 −0.893105
\(241\) 26.9366 1.73514 0.867571 0.497314i \(-0.165680\pi\)
0.867571 + 0.497314i \(0.165680\pi\)
\(242\) −36.0218 −2.31557
\(243\) 11.3091 0.725479
\(244\) −2.80570 −0.179617
\(245\) 0 0
\(246\) −4.86921 −0.310450
\(247\) −1.70831 −0.108697
\(248\) −7.16943 −0.455259
\(249\) 1.66334 0.105410
\(250\) 5.64326 0.356911
\(251\) −0.302222 −0.0190761 −0.00953804 0.999955i \(-0.503036\pi\)
−0.00953804 + 0.999955i \(0.503036\pi\)
\(252\) 0 0
\(253\) 29.0674 1.82745
\(254\) 1.33134 0.0835360
\(255\) −2.55260 −0.159850
\(256\) −5.38718 −0.336698
\(257\) 18.7785 1.17137 0.585685 0.810539i \(-0.300826\pi\)
0.585685 + 0.810539i \(0.300826\pi\)
\(258\) −18.5824 −1.15689
\(259\) 0 0
\(260\) −0.412509 −0.0255827
\(261\) 10.3166 0.638581
\(262\) −15.9939 −0.988109
\(263\) −4.41926 −0.272503 −0.136251 0.990674i \(-0.543506\pi\)
−0.136251 + 0.990674i \(0.543506\pi\)
\(264\) 24.7811 1.52517
\(265\) 18.0483 1.10870
\(266\) 0 0
\(267\) −15.8882 −0.972344
\(268\) −2.81867 −0.172178
\(269\) 2.13768 0.130337 0.0651683 0.997874i \(-0.479242\pi\)
0.0651683 + 0.997874i \(0.479242\pi\)
\(270\) 21.9641 1.33669
\(271\) 3.17538 0.192891 0.0964454 0.995338i \(-0.469253\pi\)
0.0964454 + 0.995338i \(0.469253\pi\)
\(272\) 2.25123 0.136501
\(273\) 0 0
\(274\) 16.8035 1.01513
\(275\) 21.9025 1.32077
\(276\) −1.45213 −0.0874080
\(277\) 20.5642 1.23559 0.617793 0.786341i \(-0.288027\pi\)
0.617793 + 0.786341i \(0.288027\pi\)
\(278\) −22.8396 −1.36983
\(279\) 2.81695 0.168646
\(280\) 0 0
\(281\) −18.9073 −1.12791 −0.563956 0.825805i \(-0.690721\pi\)
−0.563956 + 0.825805i \(0.690721\pi\)
\(282\) −19.4338 −1.15726
\(283\) 15.0480 0.894513 0.447256 0.894406i \(-0.352401\pi\)
0.447256 + 0.894406i \(0.352401\pi\)
\(284\) 2.28657 0.135683
\(285\) −10.9128 −0.646416
\(286\) −5.09241 −0.301120
\(287\) 0 0
\(288\) 1.49213 0.0879243
\(289\) −16.5847 −0.975569
\(290\) 34.4678 2.02402
\(291\) −1.61238 −0.0945195
\(292\) 1.86770 0.109299
\(293\) −12.4842 −0.729334 −0.364667 0.931138i \(-0.618817\pi\)
−0.364667 + 0.931138i \(0.618817\pi\)
\(294\) 0 0
\(295\) 33.9414 1.97615
\(296\) −18.0153 −1.04712
\(297\) −34.8053 −2.01961
\(298\) −7.51903 −0.435566
\(299\) 2.92151 0.168955
\(300\) −1.09419 −0.0631732
\(301\) 0 0
\(302\) −17.3835 −1.00031
\(303\) 26.2233 1.50649
\(304\) 9.62434 0.551994
\(305\) 36.0588 2.06472
\(306\) −0.999756 −0.0571522
\(307\) −27.4111 −1.56443 −0.782216 0.623007i \(-0.785911\pi\)
−0.782216 + 0.623007i \(0.785911\pi\)
\(308\) 0 0
\(309\) 13.8166 0.785999
\(310\) 9.41144 0.534534
\(311\) 25.1878 1.42827 0.714135 0.700008i \(-0.246820\pi\)
0.714135 + 0.700008i \(0.246820\pi\)
\(312\) 2.49070 0.141008
\(313\) 11.7164 0.662251 0.331125 0.943587i \(-0.392572\pi\)
0.331125 + 0.943587i \(0.392572\pi\)
\(314\) −8.69790 −0.490851
\(315\) 0 0
\(316\) −0.523824 −0.0294674
\(317\) 18.0033 1.01117 0.505584 0.862777i \(-0.331277\pi\)
0.505584 + 0.862777i \(0.331277\pi\)
\(318\) −11.1308 −0.624183
\(319\) −54.6192 −3.05809
\(320\) 25.4141 1.42069
\(321\) −20.8432 −1.16335
\(322\) 0 0
\(323\) 1.77560 0.0987973
\(324\) 0.943449 0.0524138
\(325\) 2.20138 0.122111
\(326\) −17.6533 −0.977726
\(327\) −3.26147 −0.180360
\(328\) 8.00734 0.442131
\(329\) 0 0
\(330\) −32.5306 −1.79075
\(331\) −14.0863 −0.774254 −0.387127 0.922026i \(-0.626533\pi\)
−0.387127 + 0.922026i \(0.626533\pi\)
\(332\) −0.279390 −0.0153335
\(333\) 7.07841 0.387894
\(334\) −2.68670 −0.147010
\(335\) 36.2255 1.97921
\(336\) 0 0
\(337\) 6.85642 0.373493 0.186747 0.982408i \(-0.440206\pi\)
0.186747 + 0.982408i \(0.440206\pi\)
\(338\) 16.7957 0.913563
\(339\) −3.67212 −0.199442
\(340\) 0.428759 0.0232527
\(341\) −14.9138 −0.807627
\(342\) −4.27411 −0.231117
\(343\) 0 0
\(344\) 30.5585 1.64760
\(345\) 18.6628 1.00477
\(346\) 2.45085 0.131759
\(347\) 15.2537 0.818860 0.409430 0.912342i \(-0.365728\pi\)
0.409430 + 0.912342i \(0.365728\pi\)
\(348\) 2.72864 0.146270
\(349\) −7.20325 −0.385581 −0.192791 0.981240i \(-0.561754\pi\)
−0.192791 + 0.981240i \(0.561754\pi\)
\(350\) 0 0
\(351\) −3.49822 −0.186721
\(352\) −7.89977 −0.421059
\(353\) 4.26996 0.227267 0.113633 0.993523i \(-0.463751\pi\)
0.113633 + 0.993523i \(0.463751\pi\)
\(354\) −20.9324 −1.11255
\(355\) −29.3869 −1.55970
\(356\) 2.66874 0.141443
\(357\) 0 0
\(358\) −24.9790 −1.32018
\(359\) −31.0817 −1.64043 −0.820214 0.572057i \(-0.806146\pi\)
−0.820214 + 0.572057i \(0.806146\pi\)
\(360\) −10.1044 −0.532550
\(361\) −11.4090 −0.600475
\(362\) 30.8577 1.62185
\(363\) 36.6494 1.92360
\(364\) 0 0
\(365\) −24.0036 −1.25641
\(366\) −22.2383 −1.16241
\(367\) 18.3623 0.958503 0.479251 0.877678i \(-0.340908\pi\)
0.479251 + 0.877678i \(0.340908\pi\)
\(368\) −16.4593 −0.858002
\(369\) −3.14617 −0.163783
\(370\) 23.6490 1.22945
\(371\) 0 0
\(372\) 0.745054 0.0386293
\(373\) −20.8539 −1.07977 −0.539886 0.841738i \(-0.681533\pi\)
−0.539886 + 0.841738i \(0.681533\pi\)
\(374\) 5.29302 0.273695
\(375\) −5.74159 −0.296495
\(376\) 31.9585 1.64813
\(377\) −5.48968 −0.282733
\(378\) 0 0
\(379\) 6.97802 0.358437 0.179218 0.983809i \(-0.442643\pi\)
0.179218 + 0.983809i \(0.442643\pi\)
\(380\) 1.83301 0.0940315
\(381\) −1.35454 −0.0693953
\(382\) 0.0896176 0.00458524
\(383\) 0.0360913 0.00184418 0.000922089 1.00000i \(-0.499706\pi\)
0.000922089 1.00000i \(0.499706\pi\)
\(384\) −12.2043 −0.622799
\(385\) 0 0
\(386\) 30.3284 1.54367
\(387\) −12.0068 −0.610338
\(388\) 0.270831 0.0137494
\(389\) −19.6007 −0.993793 −0.496897 0.867810i \(-0.665527\pi\)
−0.496897 + 0.867810i \(0.665527\pi\)
\(390\) −3.26959 −0.165562
\(391\) −3.03660 −0.153567
\(392\) 0 0
\(393\) 16.2726 0.820845
\(394\) 27.4966 1.38526
\(395\) 6.73218 0.338733
\(396\) 1.63548 0.0821858
\(397\) −20.6792 −1.03786 −0.518930 0.854817i \(-0.673669\pi\)
−0.518930 + 0.854817i \(0.673669\pi\)
\(398\) 0.728135 0.0364981
\(399\) 0 0
\(400\) −12.4022 −0.620112
\(401\) −24.7687 −1.23689 −0.618444 0.785829i \(-0.712237\pi\)
−0.618444 + 0.785829i \(0.712237\pi\)
\(402\) −22.3411 −1.11427
\(403\) −1.49896 −0.0746684
\(404\) −4.40472 −0.219143
\(405\) −12.1252 −0.602506
\(406\) 0 0
\(407\) −37.4753 −1.85758
\(408\) −2.58882 −0.128166
\(409\) 37.2721 1.84299 0.921494 0.388392i \(-0.126969\pi\)
0.921494 + 0.388392i \(0.126969\pi\)
\(410\) −10.5114 −0.519120
\(411\) −17.0963 −0.843296
\(412\) −2.32077 −0.114336
\(413\) 0 0
\(414\) 7.30948 0.359241
\(415\) 3.59071 0.176261
\(416\) −0.793992 −0.0389287
\(417\) 23.2376 1.13795
\(418\) 22.6284 1.10679
\(419\) 25.0016 1.22141 0.610705 0.791858i \(-0.290886\pi\)
0.610705 + 0.791858i \(0.290886\pi\)
\(420\) 0 0
\(421\) 10.6102 0.517108 0.258554 0.965997i \(-0.416754\pi\)
0.258554 + 0.965997i \(0.416754\pi\)
\(422\) 10.4765 0.509989
\(423\) −12.5568 −0.610534
\(424\) 18.3044 0.888940
\(425\) −2.28810 −0.110989
\(426\) 18.1236 0.878091
\(427\) 0 0
\(428\) 3.50102 0.169228
\(429\) 5.18114 0.250148
\(430\) −40.1147 −1.93450
\(431\) −33.4302 −1.61028 −0.805138 0.593088i \(-0.797909\pi\)
−0.805138 + 0.593088i \(0.797909\pi\)
\(432\) 19.7084 0.948223
\(433\) −4.82890 −0.232062 −0.116031 0.993246i \(-0.537017\pi\)
−0.116031 + 0.993246i \(0.537017\pi\)
\(434\) 0 0
\(435\) −35.0684 −1.68140
\(436\) 0.547827 0.0262362
\(437\) −12.9819 −0.621009
\(438\) 14.8036 0.707341
\(439\) −5.44232 −0.259748 −0.129874 0.991531i \(-0.541457\pi\)
−0.129874 + 0.991531i \(0.541457\pi\)
\(440\) 53.4960 2.55032
\(441\) 0 0
\(442\) 0.531992 0.0253043
\(443\) −23.6814 −1.12514 −0.562568 0.826751i \(-0.690187\pi\)
−0.562568 + 0.826751i \(0.690187\pi\)
\(444\) 1.87217 0.0888492
\(445\) −34.2986 −1.62591
\(446\) 0.853762 0.0404268
\(447\) 7.65004 0.361835
\(448\) 0 0
\(449\) −7.30490 −0.344740 −0.172370 0.985032i \(-0.555142\pi\)
−0.172370 + 0.985032i \(0.555142\pi\)
\(450\) 5.50775 0.259638
\(451\) 16.6568 0.784338
\(452\) 0.616803 0.0290120
\(453\) 17.6864 0.830981
\(454\) 33.8600 1.58913
\(455\) 0 0
\(456\) −11.0676 −0.518288
\(457\) 4.66805 0.218362 0.109181 0.994022i \(-0.465177\pi\)
0.109181 + 0.994022i \(0.465177\pi\)
\(458\) −22.9737 −1.07349
\(459\) 3.63603 0.169715
\(460\) −3.13478 −0.146160
\(461\) −26.9450 −1.25495 −0.627477 0.778635i \(-0.715912\pi\)
−0.627477 + 0.778635i \(0.715912\pi\)
\(462\) 0 0
\(463\) 9.98472 0.464029 0.232015 0.972712i \(-0.425468\pi\)
0.232015 + 0.972712i \(0.425468\pi\)
\(464\) 30.9280 1.43580
\(465\) −9.57543 −0.444050
\(466\) −22.9322 −1.06231
\(467\) 37.0776 1.71575 0.857873 0.513861i \(-0.171785\pi\)
0.857873 + 0.513861i \(0.171785\pi\)
\(468\) 0.164379 0.00759842
\(469\) 0 0
\(470\) −41.9525 −1.93512
\(471\) 8.84946 0.407761
\(472\) 34.4231 1.58445
\(473\) 63.5675 2.92284
\(474\) −4.15188 −0.190702
\(475\) −9.78198 −0.448828
\(476\) 0 0
\(477\) −7.19198 −0.329298
\(478\) 7.30845 0.334281
\(479\) 18.8165 0.859748 0.429874 0.902889i \(-0.358558\pi\)
0.429874 + 0.902889i \(0.358558\pi\)
\(480\) −5.07207 −0.231507
\(481\) −3.76657 −0.171741
\(482\) −35.8619 −1.63347
\(483\) 0 0
\(484\) −6.15598 −0.279817
\(485\) −3.48072 −0.158051
\(486\) −15.0563 −0.682968
\(487\) −26.1973 −1.18711 −0.593556 0.804793i \(-0.702276\pi\)
−0.593556 + 0.804793i \(0.702276\pi\)
\(488\) 36.5705 1.65547
\(489\) 17.9609 0.812220
\(490\) 0 0
\(491\) 18.9523 0.855306 0.427653 0.903943i \(-0.359340\pi\)
0.427653 + 0.903943i \(0.359340\pi\)
\(492\) −0.832131 −0.0375153
\(493\) 5.70594 0.256983
\(494\) 2.27434 0.102328
\(495\) −21.0191 −0.944740
\(496\) 8.44490 0.379187
\(497\) 0 0
\(498\) −2.21447 −0.0992329
\(499\) 23.2998 1.04304 0.521520 0.853239i \(-0.325365\pi\)
0.521520 + 0.853239i \(0.325365\pi\)
\(500\) 0.964412 0.0431298
\(501\) 2.73351 0.122124
\(502\) 0.402361 0.0179583
\(503\) −6.11772 −0.272775 −0.136388 0.990656i \(-0.543549\pi\)
−0.136388 + 0.990656i \(0.543549\pi\)
\(504\) 0 0
\(505\) 56.6094 2.51908
\(506\) −38.6987 −1.72037
\(507\) −17.0883 −0.758918
\(508\) 0.227522 0.0100946
\(509\) 3.73713 0.165646 0.0828228 0.996564i \(-0.473606\pi\)
0.0828228 + 0.996564i \(0.473606\pi\)
\(510\) 3.39839 0.150483
\(511\) 0 0
\(512\) 25.1920 1.11334
\(513\) 15.5446 0.686310
\(514\) −25.0006 −1.10273
\(515\) 29.8265 1.31431
\(516\) −3.17567 −0.139801
\(517\) 66.4797 2.92378
\(518\) 0 0
\(519\) −2.49356 −0.109455
\(520\) 5.37679 0.235788
\(521\) 21.0747 0.923299 0.461649 0.887062i \(-0.347258\pi\)
0.461649 + 0.887062i \(0.347258\pi\)
\(522\) −13.7349 −0.601162
\(523\) 7.26739 0.317781 0.158890 0.987296i \(-0.449208\pi\)
0.158890 + 0.987296i \(0.449208\pi\)
\(524\) −2.73330 −0.119405
\(525\) 0 0
\(526\) 5.88355 0.256535
\(527\) 1.55801 0.0678679
\(528\) −29.1897 −1.27032
\(529\) −0.798603 −0.0347219
\(530\) −24.0285 −1.04373
\(531\) −13.5252 −0.586943
\(532\) 0 0
\(533\) 1.67414 0.0725152
\(534\) 21.1527 0.915368
\(535\) −44.9950 −1.94531
\(536\) 36.7396 1.58691
\(537\) 25.4142 1.09671
\(538\) −2.84599 −0.122699
\(539\) 0 0
\(540\) 3.75359 0.161529
\(541\) 9.77573 0.420291 0.210146 0.977670i \(-0.432606\pi\)
0.210146 + 0.977670i \(0.432606\pi\)
\(542\) −4.22753 −0.181588
\(543\) −31.3954 −1.34731
\(544\) 0.825271 0.0353832
\(545\) −7.04067 −0.301589
\(546\) 0 0
\(547\) 19.6478 0.840078 0.420039 0.907506i \(-0.362016\pi\)
0.420039 + 0.907506i \(0.362016\pi\)
\(548\) 2.87165 0.122671
\(549\) −14.3689 −0.613251
\(550\) −29.1598 −1.24338
\(551\) 24.3938 1.03921
\(552\) 18.9276 0.805611
\(553\) 0 0
\(554\) −27.3781 −1.16318
\(555\) −24.0611 −1.02134
\(556\) −3.90321 −0.165533
\(557\) 23.3748 0.990423 0.495211 0.868773i \(-0.335091\pi\)
0.495211 + 0.868773i \(0.335091\pi\)
\(558\) −3.75032 −0.158764
\(559\) 6.38906 0.270228
\(560\) 0 0
\(561\) −5.38524 −0.227365
\(562\) 25.1721 1.06182
\(563\) 2.16432 0.0912152 0.0456076 0.998959i \(-0.485478\pi\)
0.0456076 + 0.998959i \(0.485478\pi\)
\(564\) −3.32116 −0.139846
\(565\) −7.92715 −0.333498
\(566\) −20.0341 −0.842097
\(567\) 0 0
\(568\) −29.8039 −1.25054
\(569\) 4.40419 0.184633 0.0923165 0.995730i \(-0.470573\pi\)
0.0923165 + 0.995730i \(0.470573\pi\)
\(570\) 14.5286 0.608538
\(571\) −2.17029 −0.0908239 −0.0454120 0.998968i \(-0.514460\pi\)
−0.0454120 + 0.998968i \(0.514460\pi\)
\(572\) −0.870273 −0.0363879
\(573\) −0.0911791 −0.00380906
\(574\) 0 0
\(575\) 16.7289 0.697645
\(576\) −10.1272 −0.421965
\(577\) 18.3420 0.763587 0.381794 0.924248i \(-0.375306\pi\)
0.381794 + 0.924248i \(0.375306\pi\)
\(578\) 22.0799 0.918403
\(579\) −30.8568 −1.28237
\(580\) 5.89042 0.244586
\(581\) 0 0
\(582\) 2.14664 0.0889809
\(583\) 38.0766 1.57697
\(584\) −24.3442 −1.00737
\(585\) −2.11260 −0.0873451
\(586\) 16.6208 0.686597
\(587\) 4.64632 0.191774 0.0958871 0.995392i \(-0.469431\pi\)
0.0958871 + 0.995392i \(0.469431\pi\)
\(588\) 0 0
\(589\) 6.66072 0.274450
\(590\) −45.1878 −1.86035
\(591\) −27.9757 −1.15077
\(592\) 21.2203 0.872149
\(593\) −35.2665 −1.44822 −0.724110 0.689684i \(-0.757749\pi\)
−0.724110 + 0.689684i \(0.757749\pi\)
\(594\) 46.3379 1.90127
\(595\) 0 0
\(596\) −1.28497 −0.0526346
\(597\) −0.740823 −0.0303199
\(598\) −3.88953 −0.159055
\(599\) −11.1046 −0.453720 −0.226860 0.973927i \(-0.572846\pi\)
−0.226860 + 0.973927i \(0.572846\pi\)
\(600\) 14.2621 0.582247
\(601\) −27.6727 −1.12879 −0.564397 0.825504i \(-0.690891\pi\)
−0.564397 + 0.825504i \(0.690891\pi\)
\(602\) 0 0
\(603\) −14.4354 −0.587853
\(604\) −2.97078 −0.120879
\(605\) 79.1166 3.21655
\(606\) −34.9123 −1.41821
\(607\) −39.8271 −1.61653 −0.808266 0.588818i \(-0.799594\pi\)
−0.808266 + 0.588818i \(0.799594\pi\)
\(608\) 3.52816 0.143086
\(609\) 0 0
\(610\) −48.0067 −1.94374
\(611\) 6.68176 0.270315
\(612\) −0.170854 −0.00690638
\(613\) −11.1909 −0.451997 −0.225999 0.974128i \(-0.572564\pi\)
−0.225999 + 0.974128i \(0.572564\pi\)
\(614\) 36.4936 1.47276
\(615\) 10.6945 0.431245
\(616\) 0 0
\(617\) −21.1289 −0.850617 −0.425308 0.905049i \(-0.639834\pi\)
−0.425308 + 0.905049i \(0.639834\pi\)
\(618\) −18.3947 −0.739942
\(619\) −6.30389 −0.253375 −0.126687 0.991943i \(-0.540434\pi\)
−0.126687 + 0.991943i \(0.540434\pi\)
\(620\) 1.60838 0.0645941
\(621\) −26.5840 −1.06678
\(622\) −33.5337 −1.34458
\(623\) 0 0
\(624\) −2.93381 −0.117446
\(625\) −30.1466 −1.20587
\(626\) −15.5986 −0.623445
\(627\) −23.0227 −0.919439
\(628\) −1.48644 −0.0593153
\(629\) 3.91496 0.156099
\(630\) 0 0
\(631\) 36.4561 1.45130 0.725648 0.688066i \(-0.241540\pi\)
0.725648 + 0.688066i \(0.241540\pi\)
\(632\) 6.82770 0.271591
\(633\) −10.6591 −0.423660
\(634\) −23.9687 −0.951917
\(635\) −2.92411 −0.116040
\(636\) −1.90221 −0.0754275
\(637\) 0 0
\(638\) 72.7170 2.87889
\(639\) 11.7103 0.463251
\(640\) −26.3460 −1.04142
\(641\) 23.4463 0.926073 0.463037 0.886339i \(-0.346760\pi\)
0.463037 + 0.886339i \(0.346760\pi\)
\(642\) 27.7494 1.09518
\(643\) 12.6228 0.497796 0.248898 0.968530i \(-0.419932\pi\)
0.248898 + 0.968530i \(0.419932\pi\)
\(644\) 0 0
\(645\) 40.8137 1.60704
\(646\) −2.36394 −0.0930080
\(647\) −25.2402 −0.992294 −0.496147 0.868238i \(-0.665252\pi\)
−0.496147 + 0.868238i \(0.665252\pi\)
\(648\) −12.2972 −0.483081
\(649\) 71.6065 2.81080
\(650\) −2.93080 −0.114955
\(651\) 0 0
\(652\) −3.01688 −0.118150
\(653\) −3.66022 −0.143236 −0.0716178 0.997432i \(-0.522816\pi\)
−0.0716178 + 0.997432i \(0.522816\pi\)
\(654\) 4.34214 0.169791
\(655\) 35.1284 1.37258
\(656\) −9.43188 −0.368253
\(657\) 9.56509 0.373170
\(658\) 0 0
\(659\) 9.14308 0.356164 0.178082 0.984016i \(-0.443011\pi\)
0.178082 + 0.984016i \(0.443011\pi\)
\(660\) −5.55935 −0.216398
\(661\) −16.9706 −0.660078 −0.330039 0.943967i \(-0.607062\pi\)
−0.330039 + 0.943967i \(0.607062\pi\)
\(662\) 18.7537 0.728885
\(663\) −0.541261 −0.0210209
\(664\) 3.64166 0.141324
\(665\) 0 0
\(666\) −9.42380 −0.365165
\(667\) −41.7177 −1.61532
\(668\) −0.459147 −0.0177649
\(669\) −0.868639 −0.0335835
\(670\) −48.2287 −1.86324
\(671\) 76.0736 2.93679
\(672\) 0 0
\(673\) 2.01062 0.0775038 0.0387519 0.999249i \(-0.487662\pi\)
0.0387519 + 0.999249i \(0.487662\pi\)
\(674\) −9.12826 −0.351607
\(675\) −20.0312 −0.771003
\(676\) 2.87031 0.110397
\(677\) −7.34704 −0.282370 −0.141185 0.989983i \(-0.545091\pi\)
−0.141185 + 0.989983i \(0.545091\pi\)
\(678\) 4.88885 0.187755
\(679\) 0 0
\(680\) −5.58860 −0.214313
\(681\) −34.4500 −1.32013
\(682\) 19.8554 0.760302
\(683\) −30.7252 −1.17567 −0.587833 0.808982i \(-0.700019\pi\)
−0.587833 + 0.808982i \(0.700019\pi\)
\(684\) −0.730429 −0.0279286
\(685\) −36.9064 −1.41012
\(686\) 0 0
\(687\) 23.3740 0.891775
\(688\) −35.9950 −1.37230
\(689\) 3.82701 0.145798
\(690\) −24.8466 −0.945893
\(691\) −41.4079 −1.57523 −0.787616 0.616166i \(-0.788685\pi\)
−0.787616 + 0.616166i \(0.788685\pi\)
\(692\) 0.418841 0.0159220
\(693\) 0 0
\(694\) −20.3079 −0.770877
\(695\) 50.1640 1.90283
\(696\) −35.5660 −1.34813
\(697\) −1.74010 −0.0659108
\(698\) 9.59001 0.362987
\(699\) 23.3318 0.882490
\(700\) 0 0
\(701\) 5.45833 0.206158 0.103079 0.994673i \(-0.467131\pi\)
0.103079 + 0.994673i \(0.467131\pi\)
\(702\) 4.65734 0.175780
\(703\) 16.7370 0.631249
\(704\) 53.6164 2.02074
\(705\) 42.6835 1.60755
\(706\) −5.68479 −0.213950
\(707\) 0 0
\(708\) −3.57728 −0.134442
\(709\) 4.69396 0.176285 0.0881427 0.996108i \(-0.471907\pi\)
0.0881427 + 0.996108i \(0.471907\pi\)
\(710\) 39.1241 1.46830
\(711\) −2.68268 −0.100608
\(712\) −34.7853 −1.30363
\(713\) −11.3910 −0.426597
\(714\) 0 0
\(715\) 11.1847 0.418286
\(716\) −4.26882 −0.159533
\(717\) −7.43579 −0.277695
\(718\) 41.3804 1.54430
\(719\) 32.7760 1.22234 0.611170 0.791499i \(-0.290699\pi\)
0.611170 + 0.791499i \(0.290699\pi\)
\(720\) 11.9020 0.443563
\(721\) 0 0
\(722\) 15.1893 0.565289
\(723\) 36.4868 1.35696
\(724\) 5.27347 0.195987
\(725\) −31.4346 −1.16745
\(726\) −48.7930 −1.81088
\(727\) 16.3785 0.607445 0.303723 0.952760i \(-0.401770\pi\)
0.303723 + 0.952760i \(0.401770\pi\)
\(728\) 0 0
\(729\) 27.7585 1.02809
\(730\) 31.9571 1.18278
\(731\) −6.64075 −0.245617
\(732\) −3.80044 −0.140468
\(733\) −10.7267 −0.396199 −0.198100 0.980182i \(-0.563477\pi\)
−0.198100 + 0.980182i \(0.563477\pi\)
\(734\) −24.4465 −0.902337
\(735\) 0 0
\(736\) −6.03378 −0.222408
\(737\) 76.4253 2.81516
\(738\) 4.18863 0.154186
\(739\) 11.9344 0.439014 0.219507 0.975611i \(-0.429555\pi\)
0.219507 + 0.975611i \(0.429555\pi\)
\(740\) 4.04153 0.148570
\(741\) −2.31397 −0.0850060
\(742\) 0 0
\(743\) 3.45152 0.126624 0.0633119 0.997994i \(-0.479834\pi\)
0.0633119 + 0.997994i \(0.479834\pi\)
\(744\) −9.71130 −0.356034
\(745\) 16.5145 0.605043
\(746\) 27.7637 1.01650
\(747\) −1.43085 −0.0523520
\(748\) 0.904557 0.0330739
\(749\) 0 0
\(750\) 7.64404 0.279121
\(751\) −0.508332 −0.0185493 −0.00927465 0.999957i \(-0.502952\pi\)
−0.00927465 + 0.999957i \(0.502952\pi\)
\(752\) −37.6440 −1.37274
\(753\) −0.409372 −0.0149184
\(754\) 7.30866 0.266166
\(755\) 38.1804 1.38953
\(756\) 0 0
\(757\) 11.2937 0.410477 0.205238 0.978712i \(-0.434203\pi\)
0.205238 + 0.978712i \(0.434203\pi\)
\(758\) −9.29014 −0.337433
\(759\) 39.3730 1.42915
\(760\) −23.8921 −0.866658
\(761\) −27.6722 −1.00312 −0.501558 0.865124i \(-0.667240\pi\)
−0.501558 + 0.865124i \(0.667240\pi\)
\(762\) 1.80336 0.0653289
\(763\) 0 0
\(764\) 0.0153153 0.000554089 0
\(765\) 2.19582 0.0793900
\(766\) −0.0480499 −0.00173611
\(767\) 7.19704 0.259870
\(768\) −7.29716 −0.263313
\(769\) −29.1720 −1.05197 −0.525984 0.850495i \(-0.676303\pi\)
−0.525984 + 0.850495i \(0.676303\pi\)
\(770\) 0 0
\(771\) 25.4362 0.916064
\(772\) 5.18300 0.186540
\(773\) 19.2965 0.694046 0.347023 0.937857i \(-0.387193\pi\)
0.347023 + 0.937857i \(0.387193\pi\)
\(774\) 15.9851 0.574574
\(775\) −8.58322 −0.308318
\(776\) −3.53010 −0.126723
\(777\) 0 0
\(778\) 26.0952 0.935560
\(779\) −7.43917 −0.266536
\(780\) −0.558761 −0.0200069
\(781\) −61.9978 −2.21846
\(782\) 4.04276 0.144569
\(783\) 49.9528 1.78517
\(784\) 0 0
\(785\) 19.1037 0.681840
\(786\) −21.6645 −0.772746
\(787\) 18.6400 0.664446 0.332223 0.943201i \(-0.392201\pi\)
0.332223 + 0.943201i \(0.392201\pi\)
\(788\) 4.69906 0.167397
\(789\) −5.98607 −0.213110
\(790\) −8.96285 −0.318884
\(791\) 0 0
\(792\) −21.3174 −0.757480
\(793\) 7.64602 0.271518
\(794\) 27.5311 0.977044
\(795\) 24.4472 0.867052
\(796\) 0.124436 0.00441050
\(797\) 12.4612 0.441399 0.220699 0.975342i \(-0.429166\pi\)
0.220699 + 0.975342i \(0.429166\pi\)
\(798\) 0 0
\(799\) −6.94498 −0.245696
\(800\) −4.54650 −0.160743
\(801\) 13.6675 0.482917
\(802\) 32.9756 1.16441
\(803\) −50.6405 −1.78707
\(804\) −3.81801 −0.134651
\(805\) 0 0
\(806\) 1.99563 0.0702930
\(807\) 2.89558 0.101929
\(808\) 57.4126 2.01977
\(809\) −27.8109 −0.977779 −0.488890 0.872346i \(-0.662598\pi\)
−0.488890 + 0.872346i \(0.662598\pi\)
\(810\) 16.1428 0.567200
\(811\) 27.0417 0.949561 0.474781 0.880104i \(-0.342527\pi\)
0.474781 + 0.880104i \(0.342527\pi\)
\(812\) 0 0
\(813\) 4.30119 0.150849
\(814\) 49.8925 1.74873
\(815\) 38.7730 1.35816
\(816\) 3.04938 0.106750
\(817\) −28.3902 −0.993247
\(818\) −49.6221 −1.73499
\(819\) 0 0
\(820\) −1.79636 −0.0627314
\(821\) −0.578331 −0.0201839 −0.0100920 0.999949i \(-0.503212\pi\)
−0.0100920 + 0.999949i \(0.503212\pi\)
\(822\) 22.7610 0.793881
\(823\) 9.69777 0.338043 0.169022 0.985612i \(-0.445939\pi\)
0.169022 + 0.985612i \(0.445939\pi\)
\(824\) 30.2497 1.05380
\(825\) 29.6678 1.03290
\(826\) 0 0
\(827\) 27.9922 0.973384 0.486692 0.873574i \(-0.338203\pi\)
0.486692 + 0.873574i \(0.338203\pi\)
\(828\) 1.24916 0.0434114
\(829\) −26.5981 −0.923791 −0.461895 0.886934i \(-0.652830\pi\)
−0.461895 + 0.886934i \(0.652830\pi\)
\(830\) −4.78048 −0.165933
\(831\) 27.8551 0.966284
\(832\) 5.38889 0.186826
\(833\) 0 0
\(834\) −30.9373 −1.07127
\(835\) 5.90095 0.204211
\(836\) 3.86712 0.133747
\(837\) 13.6396 0.471454
\(838\) −33.2858 −1.14984
\(839\) −4.90573 −0.169365 −0.0846823 0.996408i \(-0.526988\pi\)
−0.0846823 + 0.996408i \(0.526988\pi\)
\(840\) 0 0
\(841\) 49.3899 1.70310
\(842\) −14.1258 −0.486807
\(843\) −25.6107 −0.882079
\(844\) 1.79040 0.0616280
\(845\) −36.8892 −1.26903
\(846\) 16.7175 0.574758
\(847\) 0 0
\(848\) −21.5608 −0.740401
\(849\) 20.3832 0.699550
\(850\) 3.04625 0.104486
\(851\) −28.6233 −0.981194
\(852\) 3.09725 0.106110
\(853\) −44.0800 −1.50927 −0.754635 0.656145i \(-0.772186\pi\)
−0.754635 + 0.656145i \(0.772186\pi\)
\(854\) 0 0
\(855\) 9.38746 0.321044
\(856\) −45.6335 −1.55972
\(857\) −10.7388 −0.366829 −0.183415 0.983036i \(-0.558715\pi\)
−0.183415 + 0.983036i \(0.558715\pi\)
\(858\) −6.89788 −0.235490
\(859\) −51.5763 −1.75976 −0.879880 0.475197i \(-0.842377\pi\)
−0.879880 + 0.475197i \(0.842377\pi\)
\(860\) −6.85545 −0.233769
\(861\) 0 0
\(862\) 44.5071 1.51592
\(863\) −33.0290 −1.12432 −0.562160 0.827029i \(-0.690029\pi\)
−0.562160 + 0.827029i \(0.690029\pi\)
\(864\) 7.22486 0.245795
\(865\) −5.38294 −0.183026
\(866\) 6.42894 0.218464
\(867\) −22.4646 −0.762939
\(868\) 0 0
\(869\) 14.2029 0.481801
\(870\) 46.6881 1.58288
\(871\) 7.68137 0.260273
\(872\) −7.14058 −0.241810
\(873\) 1.38702 0.0469434
\(874\) 17.2834 0.584620
\(875\) 0 0
\(876\) 2.52987 0.0854765
\(877\) 30.4104 1.02689 0.513443 0.858124i \(-0.328370\pi\)
0.513443 + 0.858124i \(0.328370\pi\)
\(878\) 7.24560 0.244527
\(879\) −16.9104 −0.570372
\(880\) −63.0131 −2.12417
\(881\) 2.70216 0.0910381 0.0455190 0.998963i \(-0.485506\pi\)
0.0455190 + 0.998963i \(0.485506\pi\)
\(882\) 0 0
\(883\) 57.0235 1.91899 0.959497 0.281719i \(-0.0909045\pi\)
0.959497 + 0.281719i \(0.0909045\pi\)
\(884\) 0.0909154 0.00305782
\(885\) 45.9751 1.54544
\(886\) 31.5281 1.05921
\(887\) −19.5634 −0.656876 −0.328438 0.944525i \(-0.606522\pi\)
−0.328438 + 0.944525i \(0.606522\pi\)
\(888\) −24.4025 −0.818895
\(889\) 0 0
\(890\) 45.6633 1.53064
\(891\) −25.5806 −0.856982
\(892\) 0.145905 0.00488525
\(893\) −29.6909 −0.993566
\(894\) −10.1848 −0.340632
\(895\) 54.8628 1.83386
\(896\) 0 0
\(897\) 3.95731 0.132131
\(898\) 9.72534 0.324539
\(899\) 21.4044 0.713876
\(900\) 0.941254 0.0313751
\(901\) −3.97777 −0.132519
\(902\) −22.1759 −0.738378
\(903\) 0 0
\(904\) −8.03963 −0.267394
\(905\) −67.7746 −2.25290
\(906\) −23.5467 −0.782288
\(907\) −38.9478 −1.29324 −0.646620 0.762812i \(-0.723818\pi\)
−0.646620 + 0.762812i \(0.723818\pi\)
\(908\) 5.78654 0.192033
\(909\) −22.5580 −0.748202
\(910\) 0 0
\(911\) 49.6820 1.64604 0.823020 0.568013i \(-0.192288\pi\)
0.823020 + 0.568013i \(0.192288\pi\)
\(912\) 13.0366 0.431684
\(913\) 7.57535 0.250708
\(914\) −6.21479 −0.205567
\(915\) 48.8432 1.61471
\(916\) −3.92613 −0.129723
\(917\) 0 0
\(918\) −4.84081 −0.159770
\(919\) −17.4080 −0.574238 −0.287119 0.957895i \(-0.592698\pi\)
−0.287119 + 0.957895i \(0.592698\pi\)
\(920\) 40.8598 1.34711
\(921\) −37.1295 −1.22346
\(922\) 35.8731 1.18142
\(923\) −6.23129 −0.205105
\(924\) 0 0
\(925\) −21.5679 −0.709148
\(926\) −13.2931 −0.436838
\(927\) −11.8854 −0.390369
\(928\) 11.3378 0.372182
\(929\) 13.5172 0.443486 0.221743 0.975105i \(-0.428825\pi\)
0.221743 + 0.975105i \(0.428825\pi\)
\(930\) 12.7482 0.418030
\(931\) 0 0
\(932\) −3.91903 −0.128372
\(933\) 34.1180 1.11697
\(934\) −49.3631 −1.61521
\(935\) −11.6254 −0.380190
\(936\) −2.14257 −0.0700322
\(937\) −19.8645 −0.648944 −0.324472 0.945895i \(-0.605187\pi\)
−0.324472 + 0.945895i \(0.605187\pi\)
\(938\) 0 0
\(939\) 15.8704 0.517910
\(940\) −7.16952 −0.233844
\(941\) −2.52477 −0.0823051 −0.0411525 0.999153i \(-0.513103\pi\)
−0.0411525 + 0.999153i \(0.513103\pi\)
\(942\) −11.7817 −0.383868
\(943\) 12.7223 0.414295
\(944\) −40.5470 −1.31969
\(945\) 0 0
\(946\) −84.6302 −2.75157
\(947\) −13.3429 −0.433586 −0.216793 0.976218i \(-0.569560\pi\)
−0.216793 + 0.976218i \(0.569560\pi\)
\(948\) −0.709541 −0.0230448
\(949\) −5.08979 −0.165222
\(950\) 13.0232 0.422528
\(951\) 24.3863 0.790780
\(952\) 0 0
\(953\) −19.1650 −0.620816 −0.310408 0.950603i \(-0.600466\pi\)
−0.310408 + 0.950603i \(0.600466\pi\)
\(954\) 9.57501 0.310002
\(955\) −0.196832 −0.00636934
\(956\) 1.24899 0.0403951
\(957\) −73.9841 −2.39157
\(958\) −25.0513 −0.809369
\(959\) 0 0
\(960\) 34.4245 1.11105
\(961\) −25.1555 −0.811469
\(962\) 5.01461 0.161677
\(963\) 17.9299 0.577782
\(964\) −6.12867 −0.197391
\(965\) −66.6119 −2.14431
\(966\) 0 0
\(967\) −41.8133 −1.34463 −0.672313 0.740267i \(-0.734699\pi\)
−0.672313 + 0.740267i \(0.734699\pi\)
\(968\) 80.2392 2.57899
\(969\) 2.40513 0.0772639
\(970\) 4.63403 0.148790
\(971\) −4.23069 −0.135769 −0.0678846 0.997693i \(-0.521625\pi\)
−0.0678846 + 0.997693i \(0.521625\pi\)
\(972\) −2.57307 −0.0825311
\(973\) 0 0
\(974\) 34.8776 1.11755
\(975\) 2.98186 0.0954960
\(976\) −43.0765 −1.37885
\(977\) −2.61078 −0.0835263 −0.0417631 0.999128i \(-0.513297\pi\)
−0.0417631 + 0.999128i \(0.513297\pi\)
\(978\) −23.9122 −0.764626
\(979\) −72.3600 −2.31264
\(980\) 0 0
\(981\) 2.80561 0.0895761
\(982\) −25.2321 −0.805188
\(983\) −41.6466 −1.32832 −0.664159 0.747591i \(-0.731210\pi\)
−0.664159 + 0.747591i \(0.731210\pi\)
\(984\) 10.8463 0.345767
\(985\) −60.3923 −1.92426
\(986\) −7.59658 −0.241924
\(987\) 0 0
\(988\) 0.388677 0.0123655
\(989\) 48.5523 1.54387
\(990\) 27.9837 0.889381
\(991\) 0.195803 0.00621990 0.00310995 0.999995i \(-0.499010\pi\)
0.00310995 + 0.999995i \(0.499010\pi\)
\(992\) 3.09579 0.0982915
\(993\) −19.0805 −0.605502
\(994\) 0 0
\(995\) −1.59925 −0.0506995
\(996\) −0.378445 −0.0119915
\(997\) 0.840968 0.0266337 0.0133169 0.999911i \(-0.495761\pi\)
0.0133169 + 0.999911i \(0.495761\pi\)
\(998\) −31.0200 −0.981921
\(999\) 34.2736 1.08437
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 6223.2.a.k.1.5 16
7.6 odd 2 889.2.a.c.1.5 16
21.20 even 2 8001.2.a.t.1.12 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
889.2.a.c.1.5 16 7.6 odd 2
6223.2.a.k.1.5 16 1.1 even 1 trivial
8001.2.a.t.1.12 16 21.20 even 2