Properties

Label 882.2.e.s.655.3
Level $882$
Weight $2$
Character 882.655
Analytic conductor $7.043$
Analytic rank $0$
Dimension $8$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [882,2,Mod(373,882)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("882.373"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(882, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([2, 2])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 882 = 2 \cdot 3^{2} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 882.e (of order \(3\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,8,0,8,0,0,0,8,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(9)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.04280545828\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\Q(\zeta_{24})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - x^{4} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 3^{2} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 655.3
Root \(-0.258819 + 0.965926i\) of defining polynomial
Character \(\chi\) \(=\) 882.655
Dual form 882.2.e.s.373.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000 q^{2} +(0.448288 - 1.67303i) q^{3} +1.00000 q^{4} +(0.517638 - 0.896575i) q^{5} +(0.448288 - 1.67303i) q^{6} +1.00000 q^{8} +(-2.59808 - 1.50000i) q^{9} +(0.517638 - 0.896575i) q^{10} +(0.133975 + 0.232051i) q^{11} +(0.448288 - 1.67303i) q^{12} +(-0.896575 - 1.55291i) q^{13} +(-1.26795 - 1.26795i) q^{15} +1.00000 q^{16} +(3.41542 - 5.91567i) q^{17} +(-2.59808 - 1.50000i) q^{18} +(-2.19067 - 3.79435i) q^{19} +(0.517638 - 0.896575i) q^{20} +(0.133975 + 0.232051i) q^{22} +(-2.73205 + 4.73205i) q^{23} +(0.448288 - 1.67303i) q^{24} +(1.96410 + 3.40192i) q^{25} +(-0.896575 - 1.55291i) q^{26} +(-3.67423 + 3.67423i) q^{27} +(2.00000 - 3.46410i) q^{29} +(-1.26795 - 1.26795i) q^{30} +6.69213 q^{31} +1.00000 q^{32} +(0.448288 - 0.120118i) q^{33} +(3.41542 - 5.91567i) q^{34} +(-2.59808 - 1.50000i) q^{36} +(-3.73205 - 6.46410i) q^{37} +(-2.19067 - 3.79435i) q^{38} +(-3.00000 + 0.803848i) q^{39} +(0.517638 - 0.896575i) q^{40} +(4.31199 + 7.46859i) q^{41} +(-0.133975 + 0.232051i) q^{43} +(0.133975 + 0.232051i) q^{44} +(-2.68973 + 1.55291i) q^{45} +(-2.73205 + 4.73205i) q^{46} +0.757875 q^{47} +(0.448288 - 1.67303i) q^{48} +(1.96410 + 3.40192i) q^{50} +(-8.36603 - 8.36603i) q^{51} +(-0.896575 - 1.55291i) q^{52} +(-5.46410 + 9.46410i) q^{53} +(-3.67423 + 3.67423i) q^{54} +0.277401 q^{55} +(-7.33013 + 1.96410i) q^{57} +(2.00000 - 3.46410i) q^{58} -1.27551 q^{59} +(-1.26795 - 1.26795i) q^{60} -12.6264 q^{61} +6.69213 q^{62} +1.00000 q^{64} -1.85641 q^{65} +(0.448288 - 0.120118i) q^{66} +12.4641 q^{67} +(3.41542 - 5.91567i) q^{68} +(6.69213 + 6.69213i) q^{69} +9.46410 q^{71} +(-2.59808 - 1.50000i) q^{72} +(-2.70831 + 4.69093i) q^{73} +(-3.73205 - 6.46410i) q^{74} +(6.57201 - 1.76097i) q^{75} +(-2.19067 - 3.79435i) q^{76} +(-3.00000 + 0.803848i) q^{78} +8.92820 q^{79} +(0.517638 - 0.896575i) q^{80} +(4.50000 + 7.79423i) q^{81} +(4.31199 + 7.46859i) q^{82} +(-3.29530 + 5.70762i) q^{83} +(-3.53590 - 6.12436i) q^{85} +(-0.133975 + 0.232051i) q^{86} +(-4.89898 - 4.89898i) q^{87} +(0.133975 + 0.232051i) q^{88} +(-3.53553 - 6.12372i) q^{89} +(-2.68973 + 1.55291i) q^{90} +(-2.73205 + 4.73205i) q^{92} +(3.00000 - 11.1962i) q^{93} +0.757875 q^{94} -4.53590 q^{95} +(0.448288 - 1.67303i) q^{96} +(9.07227 - 15.7136i) q^{97} -0.803848i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 8 q^{2} + 8 q^{4} + 8 q^{8} + 8 q^{11} - 24 q^{15} + 8 q^{16} + 8 q^{22} - 8 q^{23} - 12 q^{25} + 16 q^{29} - 24 q^{30} + 8 q^{32} - 16 q^{37} - 24 q^{39} - 8 q^{43} + 8 q^{44} - 8 q^{46} - 12 q^{50}+ \cdots - 64 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/882\mathbb{Z}\right)^\times\).

\(n\) \(199\) \(785\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000 0.707107
\(3\) 0.448288 1.67303i 0.258819 0.965926i
\(4\) 1.00000 0.500000
\(5\) 0.517638 0.896575i 0.231495 0.400961i −0.726753 0.686898i \(-0.758972\pi\)
0.958248 + 0.285938i \(0.0923050\pi\)
\(6\) 0.448288 1.67303i 0.183013 0.683013i
\(7\) 0 0
\(8\) 1.00000 0.353553
\(9\) −2.59808 1.50000i −0.866025 0.500000i
\(10\) 0.517638 0.896575i 0.163692 0.283522i
\(11\) 0.133975 + 0.232051i 0.0403949 + 0.0699660i 0.885516 0.464609i \(-0.153805\pi\)
−0.845121 + 0.534575i \(0.820472\pi\)
\(12\) 0.448288 1.67303i 0.129410 0.482963i
\(13\) −0.896575 1.55291i −0.248665 0.430701i 0.714490 0.699645i \(-0.246659\pi\)
−0.963156 + 0.268944i \(0.913325\pi\)
\(14\) 0 0
\(15\) −1.26795 1.26795i −0.327383 0.327383i
\(16\) 1.00000 0.250000
\(17\) 3.41542 5.91567i 0.828360 1.43476i −0.0709642 0.997479i \(-0.522608\pi\)
0.899324 0.437283i \(-0.144059\pi\)
\(18\) −2.59808 1.50000i −0.612372 0.353553i
\(19\) −2.19067 3.79435i −0.502574 0.870484i −0.999996 0.00297513i \(-0.999053\pi\)
0.497421 0.867509i \(-0.334280\pi\)
\(20\) 0.517638 0.896575i 0.115747 0.200480i
\(21\) 0 0
\(22\) 0.133975 + 0.232051i 0.0285635 + 0.0494734i
\(23\) −2.73205 + 4.73205i −0.569672 + 0.986701i 0.426926 + 0.904286i \(0.359596\pi\)
−0.996598 + 0.0824143i \(0.973737\pi\)
\(24\) 0.448288 1.67303i 0.0915064 0.341506i
\(25\) 1.96410 + 3.40192i 0.392820 + 0.680385i
\(26\) −0.896575 1.55291i −0.175833 0.304552i
\(27\) −3.67423 + 3.67423i −0.707107 + 0.707107i
\(28\) 0 0
\(29\) 2.00000 3.46410i 0.371391 0.643268i −0.618389 0.785872i \(-0.712214\pi\)
0.989780 + 0.142605i \(0.0455477\pi\)
\(30\) −1.26795 1.26795i −0.231495 0.231495i
\(31\) 6.69213 1.20194 0.600971 0.799271i \(-0.294781\pi\)
0.600971 + 0.799271i \(0.294781\pi\)
\(32\) 1.00000 0.176777
\(33\) 0.448288 0.120118i 0.0780369 0.0209099i
\(34\) 3.41542 5.91567i 0.585739 1.01453i
\(35\) 0 0
\(36\) −2.59808 1.50000i −0.433013 0.250000i
\(37\) −3.73205 6.46410i −0.613545 1.06269i −0.990638 0.136516i \(-0.956409\pi\)
0.377092 0.926176i \(-0.376924\pi\)
\(38\) −2.19067 3.79435i −0.355374 0.615525i
\(39\) −3.00000 + 0.803848i −0.480384 + 0.128719i
\(40\) 0.517638 0.896575i 0.0818458 0.141761i
\(41\) 4.31199 + 7.46859i 0.673420 + 1.16640i 0.976928 + 0.213569i \(0.0685087\pi\)
−0.303508 + 0.952829i \(0.598158\pi\)
\(42\) 0 0
\(43\) −0.133975 + 0.232051i −0.0204309 + 0.0353874i −0.876060 0.482202i \(-0.839837\pi\)
0.855629 + 0.517589i \(0.173170\pi\)
\(44\) 0.133975 + 0.232051i 0.0201974 + 0.0349830i
\(45\) −2.68973 + 1.55291i −0.400961 + 0.231495i
\(46\) −2.73205 + 4.73205i −0.402819 + 0.697703i
\(47\) 0.757875 0.110547 0.0552737 0.998471i \(-0.482397\pi\)
0.0552737 + 0.998471i \(0.482397\pi\)
\(48\) 0.448288 1.67303i 0.0647048 0.241481i
\(49\) 0 0
\(50\) 1.96410 + 3.40192i 0.277766 + 0.481105i
\(51\) −8.36603 8.36603i −1.17148 1.17148i
\(52\) −0.896575 1.55291i −0.124333 0.215350i
\(53\) −5.46410 + 9.46410i −0.750552 + 1.29999i 0.197003 + 0.980403i \(0.436879\pi\)
−0.947555 + 0.319592i \(0.896454\pi\)
\(54\) −3.67423 + 3.67423i −0.500000 + 0.500000i
\(55\) 0.277401 0.0374048
\(56\) 0 0
\(57\) −7.33013 + 1.96410i −0.970899 + 0.260152i
\(58\) 2.00000 3.46410i 0.262613 0.454859i
\(59\) −1.27551 −0.166058 −0.0830288 0.996547i \(-0.526459\pi\)
−0.0830288 + 0.996547i \(0.526459\pi\)
\(60\) −1.26795 1.26795i −0.163692 0.163692i
\(61\) −12.6264 −1.61664 −0.808322 0.588741i \(-0.799624\pi\)
−0.808322 + 0.588741i \(0.799624\pi\)
\(62\) 6.69213 0.849901
\(63\) 0 0
\(64\) 1.00000 0.125000
\(65\) −1.85641 −0.230259
\(66\) 0.448288 0.120118i 0.0551804 0.0147855i
\(67\) 12.4641 1.52273 0.761366 0.648322i \(-0.224529\pi\)
0.761366 + 0.648322i \(0.224529\pi\)
\(68\) 3.41542 5.91567i 0.414180 0.717381i
\(69\) 6.69213 + 6.69213i 0.805638 + 0.805638i
\(70\) 0 0
\(71\) 9.46410 1.12318 0.561591 0.827415i \(-0.310189\pi\)
0.561591 + 0.827415i \(0.310189\pi\)
\(72\) −2.59808 1.50000i −0.306186 0.176777i
\(73\) −2.70831 + 4.69093i −0.316984 + 0.549032i −0.979857 0.199700i \(-0.936003\pi\)
0.662874 + 0.748731i \(0.269337\pi\)
\(74\) −3.73205 6.46410i −0.433842 0.751437i
\(75\) 6.57201 1.76097i 0.758871 0.203339i
\(76\) −2.19067 3.79435i −0.251287 0.435242i
\(77\) 0 0
\(78\) −3.00000 + 0.803848i −0.339683 + 0.0910178i
\(79\) 8.92820 1.00450 0.502251 0.864722i \(-0.332505\pi\)
0.502251 + 0.864722i \(0.332505\pi\)
\(80\) 0.517638 0.896575i 0.0578737 0.100240i
\(81\) 4.50000 + 7.79423i 0.500000 + 0.866025i
\(82\) 4.31199 + 7.46859i 0.476180 + 0.824768i
\(83\) −3.29530 + 5.70762i −0.361706 + 0.626493i −0.988242 0.152900i \(-0.951139\pi\)
0.626536 + 0.779393i \(0.284472\pi\)
\(84\) 0 0
\(85\) −3.53590 6.12436i −0.383522 0.664280i
\(86\) −0.133975 + 0.232051i −0.0144469 + 0.0250227i
\(87\) −4.89898 4.89898i −0.525226 0.525226i
\(88\) 0.133975 + 0.232051i 0.0142817 + 0.0247367i
\(89\) −3.53553 6.12372i −0.374766 0.649113i 0.615526 0.788116i \(-0.288944\pi\)
−0.990292 + 0.139003i \(0.955610\pi\)
\(90\) −2.68973 + 1.55291i −0.283522 + 0.163692i
\(91\) 0 0
\(92\) −2.73205 + 4.73205i −0.284836 + 0.493350i
\(93\) 3.00000 11.1962i 0.311086 1.16099i
\(94\) 0.757875 0.0781688
\(95\) −4.53590 −0.465373
\(96\) 0.448288 1.67303i 0.0457532 0.170753i
\(97\) 9.07227 15.7136i 0.921149 1.59548i 0.123510 0.992343i \(-0.460585\pi\)
0.797640 0.603134i \(-0.206082\pi\)
\(98\) 0 0
\(99\) 0.803848i 0.0807897i
\(100\) 1.96410 + 3.40192i 0.196410 + 0.340192i
\(101\) 2.44949 + 4.24264i 0.243733 + 0.422159i 0.961775 0.273842i \(-0.0882945\pi\)
−0.718041 + 0.696000i \(0.754961\pi\)
\(102\) −8.36603 8.36603i −0.828360 0.828360i
\(103\) −6.17449 + 10.6945i −0.608391 + 1.05376i 0.383115 + 0.923701i \(0.374851\pi\)
−0.991506 + 0.130063i \(0.958482\pi\)
\(104\) −0.896575 1.55291i −0.0879165 0.152276i
\(105\) 0 0
\(106\) −5.46410 + 9.46410i −0.530720 + 0.919235i
\(107\) 8.69615 + 15.0622i 0.840689 + 1.45612i 0.889313 + 0.457299i \(0.151183\pi\)
−0.0486244 + 0.998817i \(0.515484\pi\)
\(108\) −3.67423 + 3.67423i −0.353553 + 0.353553i
\(109\) −2.46410 + 4.26795i −0.236018 + 0.408795i −0.959568 0.281477i \(-0.909176\pi\)
0.723550 + 0.690272i \(0.242509\pi\)
\(110\) 0.277401 0.0264492
\(111\) −12.4877 + 3.34607i −1.18528 + 0.317594i
\(112\) 0 0
\(113\) 3.46410 + 6.00000i 0.325875 + 0.564433i 0.981689 0.190490i \(-0.0610077\pi\)
−0.655814 + 0.754923i \(0.727674\pi\)
\(114\) −7.33013 + 1.96410i −0.686529 + 0.183955i
\(115\) 2.82843 + 4.89898i 0.263752 + 0.456832i
\(116\) 2.00000 3.46410i 0.185695 0.321634i
\(117\) 5.37945i 0.497331i
\(118\) −1.27551 −0.117420
\(119\) 0 0
\(120\) −1.26795 1.26795i −0.115747 0.115747i
\(121\) 5.46410 9.46410i 0.496737 0.860373i
\(122\) −12.6264 −1.14314
\(123\) 14.4282 3.86603i 1.30095 0.348588i
\(124\) 6.69213 0.600971
\(125\) 9.24316 0.826733
\(126\) 0 0
\(127\) 13.4641 1.19475 0.597373 0.801964i \(-0.296211\pi\)
0.597373 + 0.801964i \(0.296211\pi\)
\(128\) 1.00000 0.0883883
\(129\) 0.328169 + 0.328169i 0.0288937 + 0.0288937i
\(130\) −1.85641 −0.162818
\(131\) −5.46739 + 9.46979i −0.477688 + 0.827379i −0.999673 0.0255752i \(-0.991858\pi\)
0.521985 + 0.852955i \(0.325192\pi\)
\(132\) 0.448288 0.120118i 0.0390184 0.0104550i
\(133\) 0 0
\(134\) 12.4641 1.07673
\(135\) 1.39230 + 5.19615i 0.119831 + 0.447214i
\(136\) 3.41542 5.91567i 0.292869 0.507265i
\(137\) −4.33013 7.50000i −0.369948 0.640768i 0.619609 0.784910i \(-0.287291\pi\)
−0.989557 + 0.144142i \(0.953958\pi\)
\(138\) 6.69213 + 6.69213i 0.569672 + 0.569672i
\(139\) −0.397520 0.688524i −0.0337172 0.0583999i 0.848674 0.528916i \(-0.177401\pi\)
−0.882392 + 0.470516i \(0.844068\pi\)
\(140\) 0 0
\(141\) 0.339746 1.26795i 0.0286118 0.106781i
\(142\) 9.46410 0.794210
\(143\) 0.240237 0.416102i 0.0200896 0.0347962i
\(144\) −2.59808 1.50000i −0.216506 0.125000i
\(145\) −2.07055 3.58630i −0.171950 0.297826i
\(146\) −2.70831 + 4.69093i −0.224141 + 0.388224i
\(147\) 0 0
\(148\) −3.73205 6.46410i −0.306773 0.531346i
\(149\) −11.4641 + 19.8564i −0.939176 + 1.62670i −0.172163 + 0.985068i \(0.555076\pi\)
−0.767013 + 0.641632i \(0.778258\pi\)
\(150\) 6.57201 1.76097i 0.536603 0.143782i
\(151\) −9.19615 15.9282i −0.748372 1.29622i −0.948603 0.316470i \(-0.897502\pi\)
0.200230 0.979749i \(-0.435831\pi\)
\(152\) −2.19067 3.79435i −0.177687 0.307763i
\(153\) −17.7470 + 10.2462i −1.43476 + 0.828360i
\(154\) 0 0
\(155\) 3.46410 6.00000i 0.278243 0.481932i
\(156\) −3.00000 + 0.803848i −0.240192 + 0.0643593i
\(157\) 9.52056 0.759823 0.379912 0.925023i \(-0.375954\pi\)
0.379912 + 0.925023i \(0.375954\pi\)
\(158\) 8.92820 0.710290
\(159\) 13.3843 + 13.3843i 1.06144 + 1.06144i
\(160\) 0.517638 0.896575i 0.0409229 0.0708805i
\(161\) 0 0
\(162\) 4.50000 + 7.79423i 0.353553 + 0.612372i
\(163\) 6.66025 + 11.5359i 0.521671 + 0.903561i 0.999682 + 0.0252074i \(0.00802461\pi\)
−0.478011 + 0.878354i \(0.658642\pi\)
\(164\) 4.31199 + 7.46859i 0.336710 + 0.583199i
\(165\) 0.124356 0.464102i 0.00968107 0.0361303i
\(166\) −3.29530 + 5.70762i −0.255765 + 0.442997i
\(167\) −0.757875 1.31268i −0.0586461 0.101578i 0.835212 0.549928i \(-0.185345\pi\)
−0.893858 + 0.448350i \(0.852012\pi\)
\(168\) 0 0
\(169\) 4.89230 8.47372i 0.376331 0.651825i
\(170\) −3.53590 6.12436i −0.271191 0.469717i
\(171\) 13.1440i 1.00515i
\(172\) −0.133975 + 0.232051i −0.0102155 + 0.0176937i
\(173\) 6.69213 0.508793 0.254397 0.967100i \(-0.418123\pi\)
0.254397 + 0.967100i \(0.418123\pi\)
\(174\) −4.89898 4.89898i −0.371391 0.371391i
\(175\) 0 0
\(176\) 0.133975 + 0.232051i 0.0100987 + 0.0174915i
\(177\) −0.571797 + 2.13397i −0.0429789 + 0.160399i
\(178\) −3.53553 6.12372i −0.264999 0.458993i
\(179\) −2.53590 + 4.39230i −0.189542 + 0.328296i −0.945098 0.326788i \(-0.894034\pi\)
0.755556 + 0.655084i \(0.227367\pi\)
\(180\) −2.68973 + 1.55291i −0.200480 + 0.115747i
\(181\) −16.9706 −1.26141 −0.630706 0.776022i \(-0.717235\pi\)
−0.630706 + 0.776022i \(0.717235\pi\)
\(182\) 0 0
\(183\) −5.66025 + 21.1244i −0.418418 + 1.56156i
\(184\) −2.73205 + 4.73205i −0.201409 + 0.348851i
\(185\) −7.72741 −0.568130
\(186\) 3.00000 11.1962i 0.219971 0.820942i
\(187\) 1.83032 0.133846
\(188\) 0.757875 0.0552737
\(189\) 0 0
\(190\) −4.53590 −0.329069
\(191\) 14.9282 1.08017 0.540083 0.841611i \(-0.318393\pi\)
0.540083 + 0.841611i \(0.318393\pi\)
\(192\) 0.448288 1.67303i 0.0323524 0.120741i
\(193\) 15.0526 1.08351 0.541753 0.840537i \(-0.317761\pi\)
0.541753 + 0.840537i \(0.317761\pi\)
\(194\) 9.07227 15.7136i 0.651351 1.12817i
\(195\) −0.832204 + 3.10583i −0.0595954 + 0.222413i
\(196\) 0 0
\(197\) −16.9282 −1.20608 −0.603042 0.797709i \(-0.706045\pi\)
−0.603042 + 0.797709i \(0.706045\pi\)
\(198\) 0.803848i 0.0571270i
\(199\) −13.1440 + 22.7661i −0.931755 + 1.61385i −0.151435 + 0.988467i \(0.548389\pi\)
−0.780320 + 0.625380i \(0.784944\pi\)
\(200\) 1.96410 + 3.40192i 0.138883 + 0.240552i
\(201\) 5.58750 20.8528i 0.394112 1.47085i
\(202\) 2.44949 + 4.24264i 0.172345 + 0.298511i
\(203\) 0 0
\(204\) −8.36603 8.36603i −0.585739 0.585739i
\(205\) 8.92820 0.623573
\(206\) −6.17449 + 10.6945i −0.430197 + 0.745124i
\(207\) 14.1962 8.19615i 0.986701 0.569672i
\(208\) −0.896575 1.55291i −0.0621663 0.107675i
\(209\) 0.586988 1.01669i 0.0406028 0.0703262i
\(210\) 0 0
\(211\) −9.46410 16.3923i −0.651536 1.12849i −0.982750 0.184937i \(-0.940792\pi\)
0.331215 0.943555i \(-0.392542\pi\)
\(212\) −5.46410 + 9.46410i −0.375276 + 0.649997i
\(213\) 4.24264 15.8338i 0.290701 1.08491i
\(214\) 8.69615 + 15.0622i 0.594457 + 1.02963i
\(215\) 0.138701 + 0.240237i 0.00945931 + 0.0163840i
\(216\) −3.67423 + 3.67423i −0.250000 + 0.250000i
\(217\) 0 0
\(218\) −2.46410 + 4.26795i −0.166890 + 0.289062i
\(219\) 6.63397 + 6.63397i 0.448282 + 0.448282i
\(220\) 0.277401 0.0187024
\(221\) −12.2487 −0.823937
\(222\) −12.4877 + 3.34607i −0.838119 + 0.224573i
\(223\) 3.58630 6.21166i 0.240157 0.415963i −0.720602 0.693349i \(-0.756135\pi\)
0.960759 + 0.277385i \(0.0894679\pi\)
\(224\) 0 0
\(225\) 11.7846i 0.785641i
\(226\) 3.46410 + 6.00000i 0.230429 + 0.399114i
\(227\) 13.8325 + 23.9587i 0.918098 + 1.59019i 0.802300 + 0.596920i \(0.203609\pi\)
0.115798 + 0.993273i \(0.463057\pi\)
\(228\) −7.33013 + 1.96410i −0.485450 + 0.130076i
\(229\) −0.240237 + 0.416102i −0.0158753 + 0.0274968i −0.873854 0.486189i \(-0.838387\pi\)
0.857979 + 0.513685i \(0.171720\pi\)
\(230\) 2.82843 + 4.89898i 0.186501 + 0.323029i
\(231\) 0 0
\(232\) 2.00000 3.46410i 0.131306 0.227429i
\(233\) −0.0621778 0.107695i −0.00407340 0.00705534i 0.863982 0.503524i \(-0.167963\pi\)
−0.868055 + 0.496468i \(0.834630\pi\)
\(234\) 5.37945i 0.351666i
\(235\) 0.392305 0.679492i 0.0255911 0.0443252i
\(236\) −1.27551 −0.0830288
\(237\) 4.00240 14.9372i 0.259984 0.970274i
\(238\) 0 0
\(239\) −0.464102 0.803848i −0.0300202 0.0519966i 0.850625 0.525773i \(-0.176224\pi\)
−0.880645 + 0.473776i \(0.842891\pi\)
\(240\) −1.26795 1.26795i −0.0818458 0.0818458i
\(241\) −3.13801 5.43520i −0.202137 0.350112i 0.747080 0.664735i \(-0.231455\pi\)
−0.949217 + 0.314623i \(0.898122\pi\)
\(242\) 5.46410 9.46410i 0.351246 0.608375i
\(243\) 15.0573 4.03459i 0.965926 0.258819i
\(244\) −12.6264 −0.808322
\(245\) 0 0
\(246\) 14.4282 3.86603i 0.919909 0.246489i
\(247\) −3.92820 + 6.80385i −0.249946 + 0.432918i
\(248\) 6.69213 0.424951
\(249\) 8.07180 + 8.07180i 0.511529 + 0.511529i
\(250\) 9.24316 0.584589
\(251\) 0.795040 0.0501824 0.0250912 0.999685i \(-0.492012\pi\)
0.0250912 + 0.999685i \(0.492012\pi\)
\(252\) 0 0
\(253\) −1.46410 −0.0920473
\(254\) 13.4641 0.844813
\(255\) −11.8313 + 3.17020i −0.740908 + 0.198526i
\(256\) 1.00000 0.0625000
\(257\) −5.01910 + 8.69333i −0.313083 + 0.542275i −0.979028 0.203725i \(-0.934695\pi\)
0.665945 + 0.746001i \(0.268028\pi\)
\(258\) 0.328169 + 0.328169i 0.0204309 + 0.0204309i
\(259\) 0 0
\(260\) −1.85641 −0.115129
\(261\) −10.3923 + 6.00000i −0.643268 + 0.371391i
\(262\) −5.46739 + 9.46979i −0.337776 + 0.585046i
\(263\) 4.26795 + 7.39230i 0.263173 + 0.455829i 0.967083 0.254460i \(-0.0818977\pi\)
−0.703910 + 0.710289i \(0.748564\pi\)
\(264\) 0.448288 0.120118i 0.0275902 0.00739277i
\(265\) 5.65685 + 9.79796i 0.347498 + 0.601884i
\(266\) 0 0
\(267\) −11.8301 + 3.16987i −0.723992 + 0.193993i
\(268\) 12.4641 0.761366
\(269\) 2.82843 4.89898i 0.172452 0.298696i −0.766824 0.641857i \(-0.778164\pi\)
0.939277 + 0.343161i \(0.111498\pi\)
\(270\) 1.39230 + 5.19615i 0.0847330 + 0.316228i
\(271\) −6.55343 11.3509i −0.398093 0.689516i 0.595398 0.803431i \(-0.296994\pi\)
−0.993491 + 0.113914i \(0.963661\pi\)
\(272\) 3.41542 5.91567i 0.207090 0.358690i
\(273\) 0 0
\(274\) −4.33013 7.50000i −0.261593 0.453092i
\(275\) −0.526279 + 0.911543i −0.0317358 + 0.0549681i
\(276\) 6.69213 + 6.69213i 0.402819 + 0.402819i
\(277\) −15.7321 27.2487i −0.945247 1.63722i −0.755255 0.655431i \(-0.772487\pi\)
−0.189992 0.981786i \(-0.560846\pi\)
\(278\) −0.397520 0.688524i −0.0238417 0.0412949i
\(279\) −17.3867 10.0382i −1.04091 0.600971i
\(280\) 0 0
\(281\) −8.92820 + 15.4641i −0.532612 + 0.922511i 0.466663 + 0.884435i \(0.345456\pi\)
−0.999275 + 0.0380757i \(0.987877\pi\)
\(282\) 0.339746 1.26795i 0.0202316 0.0755053i
\(283\) −15.0759 −0.896168 −0.448084 0.893992i \(-0.647893\pi\)
−0.448084 + 0.893992i \(0.647893\pi\)
\(284\) 9.46410 0.561591
\(285\) −2.03339 + 7.58871i −0.120447 + 0.449516i
\(286\) 0.240237 0.416102i 0.0142055 0.0246046i
\(287\) 0 0
\(288\) −2.59808 1.50000i −0.153093 0.0883883i
\(289\) −14.8301 25.6865i −0.872360 1.51097i
\(290\) −2.07055 3.58630i −0.121587 0.210595i
\(291\) −22.2224 22.2224i −1.30270 1.30270i
\(292\) −2.70831 + 4.69093i −0.158492 + 0.274516i
\(293\) 4.62158 + 8.00481i 0.269995 + 0.467646i 0.968860 0.247608i \(-0.0796445\pi\)
−0.698865 + 0.715254i \(0.746311\pi\)
\(294\) 0 0
\(295\) −0.660254 + 1.14359i −0.0384415 + 0.0665826i
\(296\) −3.73205 6.46410i −0.216921 0.375718i
\(297\) −1.34486 0.360355i −0.0780369 0.0209099i
\(298\) −11.4641 + 19.8564i −0.664098 + 1.15025i
\(299\) 9.79796 0.566631
\(300\) 6.57201 1.76097i 0.379435 0.101669i
\(301\) 0 0
\(302\) −9.19615 15.9282i −0.529179 0.916565i
\(303\) 8.19615 2.19615i 0.470857 0.126166i
\(304\) −2.19067 3.79435i −0.125644 0.217621i
\(305\) −6.53590 + 11.3205i −0.374244 + 0.648210i
\(306\) −17.7470 + 10.2462i −1.01453 + 0.585739i
\(307\) 1.17398 0.0670024 0.0335012 0.999439i \(-0.489334\pi\)
0.0335012 + 0.999439i \(0.489334\pi\)
\(308\) 0 0
\(309\) 15.1244 + 15.1244i 0.860395 + 0.860395i
\(310\) 3.46410 6.00000i 0.196748 0.340777i
\(311\) −7.45001 −0.422451 −0.211226 0.977437i \(-0.567745\pi\)
−0.211226 + 0.977437i \(0.567745\pi\)
\(312\) −3.00000 + 0.803848i −0.169842 + 0.0455089i
\(313\) 6.27603 0.354742 0.177371 0.984144i \(-0.443241\pi\)
0.177371 + 0.984144i \(0.443241\pi\)
\(314\) 9.52056 0.537276
\(315\) 0 0
\(316\) 8.92820 0.502251
\(317\) −26.0000 −1.46031 −0.730153 0.683284i \(-0.760551\pi\)
−0.730153 + 0.683284i \(0.760551\pi\)
\(318\) 13.3843 + 13.3843i 0.750552 + 0.750552i
\(319\) 1.07180 0.0600091
\(320\) 0.517638 0.896575i 0.0289368 0.0501201i
\(321\) 29.0979 7.79676i 1.62409 0.435173i
\(322\) 0 0
\(323\) −29.9282 −1.66525
\(324\) 4.50000 + 7.79423i 0.250000 + 0.433013i
\(325\) 3.52193 6.10016i 0.195362 0.338376i
\(326\) 6.66025 + 11.5359i 0.368877 + 0.638914i
\(327\) 6.03579 + 6.03579i 0.333780 + 0.333780i
\(328\) 4.31199 + 7.46859i 0.238090 + 0.412384i
\(329\) 0 0
\(330\) 0.124356 0.464102i 0.00684555 0.0255480i
\(331\) −11.4641 −0.630124 −0.315062 0.949071i \(-0.602025\pi\)
−0.315062 + 0.949071i \(0.602025\pi\)
\(332\) −3.29530 + 5.70762i −0.180853 + 0.313246i
\(333\) 22.3923i 1.22709i
\(334\) −0.757875 1.31268i −0.0414691 0.0718265i
\(335\) 6.45189 11.1750i 0.352505 0.610556i
\(336\) 0 0
\(337\) 3.50000 + 6.06218i 0.190657 + 0.330228i 0.945468 0.325714i \(-0.105605\pi\)
−0.754811 + 0.655942i \(0.772271\pi\)
\(338\) 4.89230 8.47372i 0.266106 0.460910i
\(339\) 11.5911 3.10583i 0.629543 0.168685i
\(340\) −3.53590 6.12436i −0.191761 0.332140i
\(341\) 0.896575 + 1.55291i 0.0485523 + 0.0840950i
\(342\) 13.1440i 0.710747i
\(343\) 0 0
\(344\) −0.133975 + 0.232051i −0.00722343 + 0.0125113i
\(345\) 9.46410 2.53590i 0.509530 0.136528i
\(346\) 6.69213 0.359771
\(347\) −9.58846 −0.514735 −0.257368 0.966314i \(-0.582855\pi\)
−0.257368 + 0.966314i \(0.582855\pi\)
\(348\) −4.89898 4.89898i −0.262613 0.262613i
\(349\) 4.00240 6.93237i 0.214244 0.371081i −0.738795 0.673931i \(-0.764605\pi\)
0.953038 + 0.302850i \(0.0979380\pi\)
\(350\) 0 0
\(351\) 9.00000 + 2.41154i 0.480384 + 0.128719i
\(352\) 0.133975 + 0.232051i 0.00714087 + 0.0123683i
\(353\) −12.5063 21.6615i −0.665641 1.15292i −0.979111 0.203327i \(-0.934825\pi\)
0.313470 0.949598i \(-0.398509\pi\)
\(354\) −0.571797 + 2.13397i −0.0303907 + 0.113419i
\(355\) 4.89898 8.48528i 0.260011 0.450352i
\(356\) −3.53553 6.12372i −0.187383 0.324557i
\(357\) 0 0
\(358\) −2.53590 + 4.39230i −0.134026 + 0.232141i
\(359\) −3.73205 6.46410i −0.196970 0.341162i 0.750574 0.660786i \(-0.229777\pi\)
−0.947545 + 0.319624i \(0.896444\pi\)
\(360\) −2.68973 + 1.55291i −0.141761 + 0.0818458i
\(361\) −0.0980762 + 0.169873i −0.00516191 + 0.00894068i
\(362\) −16.9706 −0.891953
\(363\) −13.3843 13.3843i −0.702492 0.702492i
\(364\) 0 0
\(365\) 2.80385 + 4.85641i 0.146760 + 0.254196i
\(366\) −5.66025 + 21.1244i −0.295866 + 1.10419i
\(367\) −9.28032 16.0740i −0.484429 0.839055i 0.515411 0.856943i \(-0.327639\pi\)
−0.999840 + 0.0178877i \(0.994306\pi\)
\(368\) −2.73205 + 4.73205i −0.142418 + 0.246675i
\(369\) 25.8719i 1.34684i
\(370\) −7.72741 −0.401729
\(371\) 0 0
\(372\) 3.00000 11.1962i 0.155543 0.580493i
\(373\) 5.39230 9.33975i 0.279203 0.483594i −0.691984 0.721913i \(-0.743263\pi\)
0.971187 + 0.238319i \(0.0765964\pi\)
\(374\) 1.83032 0.0946434
\(375\) 4.14359 15.4641i 0.213974 0.798563i
\(376\) 0.757875 0.0390844
\(377\) −7.17260 −0.369408
\(378\) 0 0
\(379\) 13.5885 0.697992 0.348996 0.937124i \(-0.386523\pi\)
0.348996 + 0.937124i \(0.386523\pi\)
\(380\) −4.53590 −0.232687
\(381\) 6.03579 22.5259i 0.309223 1.15404i
\(382\) 14.9282 0.763793
\(383\) −13.6617 + 23.6627i −0.698078 + 1.20911i 0.271054 + 0.962564i \(0.412628\pi\)
−0.969132 + 0.246543i \(0.920705\pi\)
\(384\) 0.448288 1.67303i 0.0228766 0.0853766i
\(385\) 0 0
\(386\) 15.0526 0.766155
\(387\) 0.696152 0.401924i 0.0353874 0.0204309i
\(388\) 9.07227 15.7136i 0.460575 0.797739i
\(389\) −4.00000 6.92820i −0.202808 0.351274i 0.746624 0.665246i \(-0.231673\pi\)
−0.949432 + 0.313972i \(0.898340\pi\)
\(390\) −0.832204 + 3.10583i −0.0421403 + 0.157270i
\(391\) 18.6622 + 32.3238i 0.943787 + 1.63469i
\(392\) 0 0
\(393\) 13.3923 + 13.3923i 0.675552 + 0.675552i
\(394\) −16.9282 −0.852831
\(395\) 4.62158 8.00481i 0.232537 0.402766i
\(396\) 0.803848i 0.0403949i
\(397\) −6.55343 11.3509i −0.328907 0.569684i 0.653388 0.757023i \(-0.273347\pi\)
−0.982295 + 0.187339i \(0.940014\pi\)
\(398\) −13.1440 + 22.7661i −0.658850 + 1.14116i
\(399\) 0 0
\(400\) 1.96410 + 3.40192i 0.0982051 + 0.170096i
\(401\) 11.8923 20.5981i 0.593873 1.02862i −0.399831 0.916589i \(-0.630931\pi\)
0.993705 0.112030i \(-0.0357353\pi\)
\(402\) 5.58750 20.8528i 0.278679 1.04005i
\(403\) −6.00000 10.3923i −0.298881 0.517678i
\(404\) 2.44949 + 4.24264i 0.121867 + 0.211079i
\(405\) 9.31749 0.462990
\(406\) 0 0
\(407\) 1.00000 1.73205i 0.0495682 0.0858546i
\(408\) −8.36603 8.36603i −0.414180 0.414180i
\(409\) 4.48288 0.221664 0.110832 0.993839i \(-0.464648\pi\)
0.110832 + 0.993839i \(0.464648\pi\)
\(410\) 8.92820 0.440933
\(411\) −14.4889 + 3.88229i −0.714684 + 0.191499i
\(412\) −6.17449 + 10.6945i −0.304195 + 0.526882i
\(413\) 0 0
\(414\) 14.1962 8.19615i 0.697703 0.402819i
\(415\) 3.41154 + 5.90897i 0.167466 + 0.290060i
\(416\) −0.896575 1.55291i −0.0439582 0.0761379i
\(417\) −1.33013 + 0.356406i −0.0651366 + 0.0174533i
\(418\) 0.586988 1.01669i 0.0287105 0.0497281i
\(419\) −18.0938 31.3393i −0.883939 1.53103i −0.846925 0.531712i \(-0.821549\pi\)
−0.0370132 0.999315i \(-0.511784\pi\)
\(420\) 0 0
\(421\) −3.80385 + 6.58846i −0.185388 + 0.321102i −0.943707 0.330782i \(-0.892688\pi\)
0.758319 + 0.651884i \(0.226021\pi\)
\(422\) −9.46410 16.3923i −0.460705 0.797965i
\(423\) −1.96902 1.13681i −0.0957369 0.0552737i
\(424\) −5.46410 + 9.46410i −0.265360 + 0.459617i
\(425\) 26.8329 1.30159
\(426\) 4.24264 15.8338i 0.205557 0.767148i
\(427\) 0 0
\(428\) 8.69615 + 15.0622i 0.420344 + 0.728058i
\(429\) −0.588457 0.588457i −0.0284110 0.0284110i
\(430\) 0.138701 + 0.240237i 0.00668874 + 0.0115852i
\(431\) 5.07180 8.78461i 0.244300 0.423140i −0.717635 0.696420i \(-0.754775\pi\)
0.961935 + 0.273280i \(0.0881085\pi\)
\(432\) −3.67423 + 3.67423i −0.176777 + 0.176777i
\(433\) −19.8362 −0.953265 −0.476632 0.879103i \(-0.658143\pi\)
−0.476632 + 0.879103i \(0.658143\pi\)
\(434\) 0 0
\(435\) −6.92820 + 1.85641i −0.332182 + 0.0890079i
\(436\) −2.46410 + 4.26795i −0.118009 + 0.204398i
\(437\) 23.9401 1.14521
\(438\) 6.63397 + 6.63397i 0.316984 + 0.316984i
\(439\) 19.5959 0.935262 0.467631 0.883924i \(-0.345108\pi\)
0.467631 + 0.883924i \(0.345108\pi\)
\(440\) 0.277401 0.0132246
\(441\) 0 0
\(442\) −12.2487 −0.582612
\(443\) 16.3205 0.775411 0.387705 0.921783i \(-0.373268\pi\)
0.387705 + 0.921783i \(0.373268\pi\)
\(444\) −12.4877 + 3.34607i −0.592639 + 0.158797i
\(445\) −7.32051 −0.347025
\(446\) 3.58630 6.21166i 0.169816 0.294130i
\(447\) 28.0812 + 28.0812i 1.32820 + 1.32820i
\(448\) 0 0
\(449\) 23.7846 1.12247 0.561233 0.827658i \(-0.310327\pi\)
0.561233 + 0.827658i \(0.310327\pi\)
\(450\) 11.7846i 0.555532i
\(451\) −1.15539 + 2.00120i −0.0544054 + 0.0942329i
\(452\) 3.46410 + 6.00000i 0.162938 + 0.282216i
\(453\) −30.7709 + 8.24504i −1.44574 + 0.387386i
\(454\) 13.8325 + 23.9587i 0.649194 + 1.12444i
\(455\) 0 0
\(456\) −7.33013 + 1.96410i −0.343265 + 0.0919775i
\(457\) −31.0526 −1.45258 −0.726289 0.687390i \(-0.758756\pi\)
−0.726289 + 0.687390i \(0.758756\pi\)
\(458\) −0.240237 + 0.416102i −0.0112255 + 0.0194432i
\(459\) 9.18653 + 34.2846i 0.428791 + 1.60027i
\(460\) 2.82843 + 4.89898i 0.131876 + 0.228416i
\(461\) 5.51815 9.55772i 0.257006 0.445148i −0.708432 0.705779i \(-0.750597\pi\)
0.965438 + 0.260631i \(0.0839306\pi\)
\(462\) 0 0
\(463\) 15.3205 + 26.5359i 0.712004 + 1.23323i 0.964104 + 0.265526i \(0.0855457\pi\)
−0.252099 + 0.967701i \(0.581121\pi\)
\(464\) 2.00000 3.46410i 0.0928477 0.160817i
\(465\) −8.48528 8.48528i −0.393496 0.393496i
\(466\) −0.0621778 0.107695i −0.00288033 0.00498888i
\(467\) −4.58939 7.94906i −0.212372 0.367839i 0.740085 0.672514i \(-0.234785\pi\)
−0.952456 + 0.304675i \(0.901452\pi\)
\(468\) 5.37945i 0.248665i
\(469\) 0 0
\(470\) 0.392305 0.679492i 0.0180957 0.0313426i
\(471\) 4.26795 15.9282i 0.196657 0.733933i
\(472\) −1.27551 −0.0587102
\(473\) −0.0717968 −0.00330122
\(474\) 4.00240 14.9372i 0.183837 0.686087i
\(475\) 8.60540 14.9050i 0.394843 0.683888i
\(476\) 0 0
\(477\) 28.3923 16.3923i 1.29999 0.750552i
\(478\) −0.464102 0.803848i −0.0212275 0.0367671i
\(479\) 2.07055 + 3.58630i 0.0946060 + 0.163862i 0.909444 0.415826i \(-0.136508\pi\)
−0.814838 + 0.579689i \(0.803174\pi\)
\(480\) −1.26795 1.26795i −0.0578737 0.0578737i
\(481\) −6.69213 + 11.5911i −0.305135 + 0.528509i
\(482\) −3.13801 5.43520i −0.142933 0.247567i
\(483\) 0 0
\(484\) 5.46410 9.46410i 0.248368 0.430186i
\(485\) −9.39230 16.2679i −0.426483 0.738690i
\(486\) 15.0573 4.03459i 0.683013 0.183013i
\(487\) 1.39230 2.41154i 0.0630914 0.109277i −0.832754 0.553643i \(-0.813237\pi\)
0.895846 + 0.444365i \(0.146571\pi\)
\(488\) −12.6264 −0.571570
\(489\) 22.2856 5.97142i 1.00779 0.270037i
\(490\) 0 0
\(491\) −9.69615 16.7942i −0.437581 0.757913i 0.559921 0.828546i \(-0.310831\pi\)
−0.997502 + 0.0706330i \(0.977498\pi\)
\(492\) 14.4282 3.86603i 0.650474 0.174294i
\(493\) −13.6617 23.6627i −0.615290 1.06571i
\(494\) −3.92820 + 6.80385i −0.176738 + 0.306120i
\(495\) −0.720710 0.416102i −0.0323935 0.0187024i
\(496\) 6.69213 0.300486
\(497\) 0 0
\(498\) 8.07180 + 8.07180i 0.361706 + 0.361706i
\(499\) −16.6962 + 28.9186i −0.747422 + 1.29457i 0.201632 + 0.979461i \(0.435376\pi\)
−0.949054 + 0.315112i \(0.897958\pi\)
\(500\) 9.24316 0.413367
\(501\) −2.53590 + 0.679492i −0.113296 + 0.0303575i
\(502\) 0.795040 0.0354843
\(503\) −12.3490 −0.550614 −0.275307 0.961356i \(-0.588780\pi\)
−0.275307 + 0.961356i \(0.588780\pi\)
\(504\) 0 0
\(505\) 5.07180 0.225692
\(506\) −1.46410 −0.0650873
\(507\) −11.9837 11.9837i −0.532213 0.532213i
\(508\) 13.4641 0.597373
\(509\) −10.7961 + 18.6993i −0.478527 + 0.828834i −0.999697 0.0246194i \(-0.992163\pi\)
0.521169 + 0.853453i \(0.325496\pi\)
\(510\) −11.8313 + 3.17020i −0.523901 + 0.140379i
\(511\) 0 0
\(512\) 1.00000 0.0441942
\(513\) 21.9904 + 5.89230i 0.970899 + 0.260152i
\(514\) −5.01910 + 8.69333i −0.221383 + 0.383446i
\(515\) 6.39230 + 11.0718i 0.281679 + 0.487882i
\(516\) 0.328169 + 0.328169i 0.0144469 + 0.0144469i
\(517\) 0.101536 + 0.175865i 0.00446555 + 0.00773455i
\(518\) 0 0
\(519\) 3.00000 11.1962i 0.131685 0.491457i
\(520\) −1.85641 −0.0814088
\(521\) 16.8876 29.2502i 0.739860 1.28147i −0.212699 0.977118i \(-0.568225\pi\)
0.952558 0.304357i \(-0.0984414\pi\)
\(522\) −10.3923 + 6.00000i −0.454859 + 0.262613i
\(523\) −10.3664 17.9551i −0.453289 0.785120i 0.545299 0.838242i \(-0.316416\pi\)
−0.998588 + 0.0531215i \(0.983083\pi\)
\(524\) −5.46739 + 9.46979i −0.238844 + 0.413690i
\(525\) 0 0
\(526\) 4.26795 + 7.39230i 0.186091 + 0.322320i
\(527\) 22.8564 39.5885i 0.995641 1.72450i
\(528\) 0.448288 0.120118i 0.0195092 0.00522748i
\(529\) −3.42820 5.93782i −0.149052 0.258166i
\(530\) 5.65685 + 9.79796i 0.245718 + 0.425596i
\(531\) 3.31388 + 1.91327i 0.143810 + 0.0830288i
\(532\) 0 0
\(533\) 7.73205 13.3923i 0.334912 0.580085i
\(534\) −11.8301 + 3.16987i −0.511940 + 0.137174i
\(535\) 18.0058 0.778460
\(536\) 12.4641 0.538367
\(537\) 6.21166 + 6.21166i 0.268053 + 0.268053i
\(538\) 2.82843 4.89898i 0.121942 0.211210i
\(539\) 0 0
\(540\) 1.39230 + 5.19615i 0.0599153 + 0.223607i
\(541\) −7.66025 13.2679i −0.329340 0.570434i 0.653041 0.757323i \(-0.273493\pi\)
−0.982381 + 0.186889i \(0.940160\pi\)
\(542\) −6.55343 11.3509i −0.281494 0.487562i
\(543\) −7.60770 + 28.3923i −0.326477 + 1.21843i
\(544\) 3.41542 5.91567i 0.146435 0.253632i
\(545\) 2.55103 + 4.41851i 0.109274 + 0.189268i
\(546\) 0 0
\(547\) −17.1865 + 29.7679i −0.734843 + 1.27279i 0.219949 + 0.975511i \(0.429411\pi\)
−0.954792 + 0.297274i \(0.903922\pi\)
\(548\) −4.33013 7.50000i −0.184974 0.320384i
\(549\) 32.8043 + 18.9396i 1.40005 + 0.808322i
\(550\) −0.526279 + 0.911543i −0.0224406 + 0.0388683i
\(551\) −17.5254 −0.746606
\(552\) 6.69213 + 6.69213i 0.284836 + 0.284836i
\(553\) 0 0
\(554\) −15.7321 27.2487i −0.668391 1.15769i
\(555\) −3.46410 + 12.9282i −0.147043 + 0.548772i
\(556\) −0.397520 0.688524i −0.0168586 0.0291999i
\(557\) 3.46410 6.00000i 0.146779 0.254228i −0.783256 0.621699i \(-0.786443\pi\)
0.930035 + 0.367471i \(0.119776\pi\)
\(558\) −17.3867 10.0382i −0.736036 0.424951i
\(559\) 0.480473 0.0203219
\(560\) 0 0
\(561\) 0.820508 3.06218i 0.0346419 0.129285i
\(562\) −8.92820 + 15.4641i −0.376614 + 0.652314i
\(563\) −18.2461 −0.768980 −0.384490 0.923129i \(-0.625623\pi\)
−0.384490 + 0.923129i \(0.625623\pi\)
\(564\) 0.339746 1.26795i 0.0143059 0.0533903i
\(565\) 7.17260 0.301754
\(566\) −15.0759 −0.633686
\(567\) 0 0
\(568\) 9.46410 0.397105
\(569\) −25.7846 −1.08095 −0.540474 0.841361i \(-0.681755\pi\)
−0.540474 + 0.841361i \(0.681755\pi\)
\(570\) −2.03339 + 7.58871i −0.0851692 + 0.317856i
\(571\) −33.0526 −1.38321 −0.691603 0.722278i \(-0.743095\pi\)
−0.691603 + 0.722278i \(0.743095\pi\)
\(572\) 0.240237 0.416102i 0.0100448 0.0173981i
\(573\) 6.69213 24.9754i 0.279568 1.04336i
\(574\) 0 0
\(575\) −21.4641 −0.895115
\(576\) −2.59808 1.50000i −0.108253 0.0625000i
\(577\) 13.7446 23.8064i 0.572196 0.991072i −0.424144 0.905595i \(-0.639425\pi\)
0.996340 0.0854776i \(-0.0272416\pi\)
\(578\) −14.8301 25.6865i −0.616852 1.06842i
\(579\) 6.74788 25.1834i 0.280432 1.04659i
\(580\) −2.07055 3.58630i −0.0859750 0.148913i
\(581\) 0 0
\(582\) −22.2224 22.2224i −0.921149 0.921149i
\(583\) −2.92820 −0.121274
\(584\) −2.70831 + 4.69093i −0.112071 + 0.194112i
\(585\) 4.82309 + 2.78461i 0.199410 + 0.115129i
\(586\) 4.62158 + 8.00481i 0.190916 + 0.330676i
\(587\) 20.9408 36.2705i 0.864319 1.49704i −0.00340370 0.999994i \(-0.501083\pi\)
0.867722 0.497049i \(-0.165583\pi\)
\(588\) 0 0
\(589\) −14.6603 25.3923i −0.604065 1.04627i
\(590\) −0.660254 + 1.14359i −0.0271822 + 0.0470810i
\(591\) −7.58871 + 28.3214i −0.312158 + 1.16499i
\(592\) −3.73205 6.46410i −0.153386 0.265673i
\(593\) −8.43451 14.6090i −0.346364 0.599920i 0.639237 0.769010i \(-0.279250\pi\)
−0.985601 + 0.169090i \(0.945917\pi\)
\(594\) −1.34486 0.360355i −0.0551804 0.0147855i
\(595\) 0 0
\(596\) −11.4641 + 19.8564i −0.469588 + 0.813350i
\(597\) 32.1962 + 32.1962i 1.31770 + 1.31770i
\(598\) 9.79796 0.400668
\(599\) 4.78461 0.195494 0.0977469 0.995211i \(-0.468836\pi\)
0.0977469 + 0.995211i \(0.468836\pi\)
\(600\) 6.57201 1.76097i 0.268301 0.0718911i
\(601\) 1.67303 2.89778i 0.0682444 0.118203i −0.829884 0.557936i \(-0.811594\pi\)
0.898129 + 0.439733i \(0.144927\pi\)
\(602\) 0 0
\(603\) −32.3827 18.6962i −1.31872 0.761366i
\(604\) −9.19615 15.9282i −0.374186 0.648109i
\(605\) −5.65685 9.79796i −0.229984 0.398344i
\(606\) 8.19615 2.19615i 0.332946 0.0892126i
\(607\) 1.13681 1.96902i 0.0461418 0.0799199i −0.842032 0.539427i \(-0.818641\pi\)
0.888174 + 0.459507i \(0.151974\pi\)
\(608\) −2.19067 3.79435i −0.0888434 0.153881i
\(609\) 0 0
\(610\) −6.53590 + 11.3205i −0.264631 + 0.458354i
\(611\) −0.679492 1.17691i −0.0274893 0.0476129i
\(612\) −17.7470 + 10.2462i −0.717381 + 0.414180i
\(613\) −12.4641 + 21.5885i −0.503420 + 0.871950i 0.496572 + 0.867996i \(0.334592\pi\)
−0.999992 + 0.00395396i \(0.998741\pi\)
\(614\) 1.17398 0.0473779
\(615\) 4.00240 14.9372i 0.161393 0.602325i
\(616\) 0 0
\(617\) 1.57180 + 2.72243i 0.0632782 + 0.109601i 0.895929 0.444197i \(-0.146511\pi\)
−0.832651 + 0.553798i \(0.813178\pi\)
\(618\) 15.1244 + 15.1244i 0.608391 + 0.608391i
\(619\) 15.8523 + 27.4570i 0.637159 + 1.10359i 0.986053 + 0.166430i \(0.0532239\pi\)
−0.348894 + 0.937162i \(0.613443\pi\)
\(620\) 3.46410 6.00000i 0.139122 0.240966i
\(621\) −7.34847 27.4249i −0.294884 1.10052i
\(622\) −7.45001 −0.298718
\(623\) 0 0
\(624\) −3.00000 + 0.803848i −0.120096 + 0.0321797i
\(625\) −5.03590 + 8.72243i −0.201436 + 0.348897i
\(626\) 6.27603 0.250841
\(627\) −1.43782 1.43782i −0.0574211 0.0574211i
\(628\) 9.52056 0.379912
\(629\) −50.9860 −2.03295
\(630\) 0 0
\(631\) −19.7128 −0.784755 −0.392377 0.919804i \(-0.628347\pi\)
−0.392377 + 0.919804i \(0.628347\pi\)
\(632\) 8.92820 0.355145
\(633\) −31.6675 + 8.48528i −1.25867 + 0.337260i
\(634\) −26.0000 −1.03259
\(635\) 6.96953 12.0716i 0.276577 0.479046i
\(636\) 13.3843 + 13.3843i 0.530720 + 0.530720i
\(637\) 0 0
\(638\) 1.07180 0.0424328
\(639\) −24.5885 14.1962i −0.972704 0.561591i
\(640\) 0.517638 0.896575i 0.0204614 0.0354403i
\(641\) −2.03590 3.52628i −0.0804132 0.139280i 0.823014 0.568021i \(-0.192291\pi\)
−0.903427 + 0.428741i \(0.858957\pi\)
\(642\) 29.0979 7.79676i 1.14840 0.307713i
\(643\) 22.4565 + 38.8959i 0.885599 + 1.53390i 0.845025 + 0.534726i \(0.179585\pi\)
0.0405737 + 0.999177i \(0.487081\pi\)
\(644\) 0 0
\(645\) 0.464102 0.124356i 0.0182740 0.00489650i
\(646\) −29.9282 −1.17751
\(647\) −10.9348 + 18.9396i −0.429890 + 0.744592i −0.996863 0.0791447i \(-0.974781\pi\)
0.566973 + 0.823736i \(0.308114\pi\)
\(648\) 4.50000 + 7.79423i 0.176777 + 0.306186i
\(649\) −0.170886 0.295984i −0.00670787 0.0116184i
\(650\) 3.52193 6.10016i 0.138141 0.239268i
\(651\) 0 0
\(652\) 6.66025 + 11.5359i 0.260836 + 0.451781i
\(653\) −3.00000 + 5.19615i −0.117399 + 0.203341i −0.918736 0.394872i \(-0.870789\pi\)
0.801337 + 0.598213i \(0.204122\pi\)
\(654\) 6.03579 + 6.03579i 0.236018 + 0.236018i
\(655\) 5.66025 + 9.80385i 0.221164 + 0.383068i
\(656\) 4.31199 + 7.46859i 0.168355 + 0.291599i
\(657\) 14.0728 8.12493i 0.549032 0.316984i
\(658\) 0 0
\(659\) 24.1244 41.7846i 0.939751 1.62770i 0.173818 0.984778i \(-0.444390\pi\)
0.765934 0.642919i \(-0.222277\pi\)
\(660\) 0.124356 0.464102i 0.00484054 0.0180651i
\(661\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(662\) −11.4641 −0.445565
\(663\) −5.49095 + 20.4925i −0.213251 + 0.795862i
\(664\) −3.29530 + 5.70762i −0.127882 + 0.221499i
\(665\) 0 0
\(666\) 22.3923i 0.867684i
\(667\) 10.9282 + 18.9282i 0.423142 + 0.732903i
\(668\) −0.757875 1.31268i −0.0293231 0.0507890i
\(669\) −8.78461 8.78461i −0.339633 0.339633i
\(670\) 6.45189 11.1750i 0.249258 0.431728i
\(671\) −1.69161 2.92996i −0.0653041 0.113110i
\(672\) 0 0
\(673\) −20.7846 + 36.0000i −0.801188 + 1.38770i 0.117647 + 0.993055i \(0.462465\pi\)
−0.918835 + 0.394643i \(0.870868\pi\)
\(674\) 3.50000 + 6.06218i 0.134815 + 0.233506i
\(675\) −19.7160 5.28290i −0.758871 0.203339i
\(676\) 4.89230 8.47372i 0.188166 0.325912i
\(677\) −5.37945 −0.206749 −0.103375 0.994642i \(-0.532964\pi\)
−0.103375 + 0.994642i \(0.532964\pi\)
\(678\) 11.5911 3.10583i 0.445154 0.119279i
\(679\) 0 0
\(680\) −3.53590 6.12436i −0.135596 0.234858i
\(681\) 46.2846 12.4019i 1.77363 0.475243i
\(682\) 0.896575 + 1.55291i 0.0343316 + 0.0594642i
\(683\) 19.1603 33.1865i 0.733147 1.26985i −0.222385 0.974959i \(-0.571384\pi\)
0.955532 0.294888i \(-0.0952825\pi\)
\(684\) 13.1440i 0.502574i
\(685\) −8.96575 −0.342564
\(686\) 0 0
\(687\) 0.588457 + 0.588457i 0.0224510 + 0.0224510i
\(688\) −0.133975 + 0.232051i −0.00510773 + 0.00884685i
\(689\) 19.5959 0.746545
\(690\) 9.46410 2.53590i 0.360292 0.0965400i
\(691\) 24.3190 0.925140 0.462570 0.886583i \(-0.346927\pi\)
0.462570 + 0.886583i \(0.346927\pi\)
\(692\) 6.69213 0.254397
\(693\) 0 0
\(694\) −9.58846 −0.363973
\(695\) −0.823085 −0.0312214
\(696\) −4.89898 4.89898i −0.185695 0.185695i
\(697\) 58.9090 2.23134
\(698\) 4.00240 6.93237i 0.151493 0.262394i
\(699\) −0.208051 + 0.0557471i −0.00786921 + 0.00210855i
\(700\) 0 0
\(701\) −20.7846 −0.785024 −0.392512 0.919747i \(-0.628394\pi\)
−0.392512 + 0.919747i \(0.628394\pi\)
\(702\) 9.00000 + 2.41154i 0.339683 + 0.0910178i
\(703\) −16.3514 + 28.3214i −0.616704 + 1.06816i
\(704\) 0.133975 + 0.232051i 0.00504936 + 0.00874574i
\(705\) −0.960947 0.960947i −0.0361913 0.0361913i
\(706\) −12.5063 21.6615i −0.470680 0.815241i
\(707\) 0 0
\(708\) −0.571797 + 2.13397i −0.0214894 + 0.0801997i
\(709\) −12.3923 −0.465403 −0.232701 0.972548i \(-0.574756\pi\)
−0.232701 + 0.972548i \(0.574756\pi\)
\(710\) 4.89898 8.48528i 0.183855 0.318447i
\(711\) −23.1962 13.3923i −0.869924 0.502251i
\(712\) −3.53553 6.12372i −0.132500 0.229496i
\(713\) −18.2832 + 31.6675i −0.684713 + 1.18596i
\(714\) 0 0
\(715\) −0.248711 0.430781i −0.00930128 0.0161103i
\(716\) −2.53590 + 4.39230i −0.0947710 + 0.164148i
\(717\) −1.55291 + 0.416102i −0.0579946 + 0.0155396i
\(718\) −3.73205 6.46410i −0.139279 0.241238i
\(719\) 24.8367 + 43.0184i 0.926251 + 1.60431i 0.789536 + 0.613704i \(0.210321\pi\)
0.136716 + 0.990610i \(0.456345\pi\)
\(720\) −2.68973 + 1.55291i −0.100240 + 0.0578737i
\(721\) 0 0
\(722\) −0.0980762 + 0.169873i −0.00365002 + 0.00632202i
\(723\) −10.5000 + 2.81347i −0.390499 + 0.104634i
\(724\) −16.9706 −0.630706
\(725\) 15.7128 0.583559
\(726\) −13.3843 13.3843i −0.496737 0.496737i
\(727\) −16.3514 + 28.3214i −0.606439 + 1.05038i 0.385383 + 0.922757i \(0.374069\pi\)
−0.991822 + 0.127627i \(0.959264\pi\)
\(728\) 0 0
\(729\) 27.0000i 1.00000i
\(730\) 2.80385 + 4.85641i 0.103775 + 0.179744i
\(731\) 0.915158 + 1.58510i 0.0338483 + 0.0586270i
\(732\) −5.66025 + 21.1244i −0.209209 + 0.780779i
\(733\) −4.00240 + 6.93237i −0.147832 + 0.256053i −0.930426 0.366480i \(-0.880563\pi\)
0.782594 + 0.622533i \(0.213896\pi\)
\(734\) −9.28032 16.0740i −0.342543 0.593302i
\(735\) 0 0
\(736\) −2.73205 + 4.73205i −0.100705 + 0.174426i
\(737\) 1.66987 + 2.89230i 0.0615106 + 0.106539i
\(738\) 25.8719i 0.952360i
\(739\) −3.06218 + 5.30385i −0.112644 + 0.195105i −0.916836 0.399265i \(-0.869265\pi\)
0.804191 + 0.594370i \(0.202599\pi\)
\(740\) −7.72741 −0.284065
\(741\) 9.62209 + 9.62209i 0.353476 + 0.353476i
\(742\) 0 0
\(743\) 15.7846 + 27.3397i 0.579081 + 1.00300i 0.995585 + 0.0938641i \(0.0299219\pi\)
−0.416504 + 0.909134i \(0.636745\pi\)
\(744\) 3.00000 11.1962i 0.109985 0.410471i
\(745\) 11.8685 + 20.5569i 0.434829 + 0.753145i
\(746\) 5.39230 9.33975i 0.197426 0.341952i
\(747\) 17.1229 9.88589i 0.626493 0.361706i
\(748\) 1.83032 0.0669230
\(749\) 0 0
\(750\) 4.14359 15.4641i 0.151303 0.564669i
\(751\) −17.3923 + 30.1244i −0.634654 + 1.09925i 0.351934 + 0.936025i \(0.385524\pi\)
−0.986588 + 0.163229i \(0.947809\pi\)
\(752\) 0.757875 0.0276368
\(753\) 0.356406 1.33013i 0.0129882 0.0484725i
\(754\) −7.17260 −0.261211
\(755\) −19.0411 −0.692977
\(756\) 0 0
\(757\) 19.3205 0.702216 0.351108 0.936335i \(-0.385805\pi\)
0.351108 + 0.936335i \(0.385805\pi\)
\(758\) 13.5885 0.493555
\(759\) −0.656339 + 2.44949i −0.0238236 + 0.0889108i
\(760\) −4.53590 −0.164534
\(761\) 20.1272 34.8613i 0.729609 1.26372i −0.227440 0.973792i \(-0.573035\pi\)
0.957049 0.289928i \(-0.0936312\pi\)
\(762\) 6.03579 22.5259i 0.218654 0.816027i
\(763\) 0 0
\(764\) 14.9282 0.540083
\(765\) 21.2154i 0.767044i
\(766\) −13.6617 + 23.6627i −0.493616 + 0.854968i
\(767\) 1.14359 + 1.98076i 0.0412928 + 0.0715212i
\(768\) 0.448288 1.67303i 0.0161762 0.0603704i
\(769\) −19.0919 33.0681i −0.688471 1.19247i −0.972332 0.233601i \(-0.924949\pi\)
0.283862 0.958865i \(-0.408384\pi\)
\(770\) 0 0
\(771\) 12.2942 + 12.2942i 0.442766 + 0.442766i
\(772\) 15.0526 0.541753
\(773\) −19.6975 + 34.1170i −0.708468 + 1.22710i 0.256957 + 0.966423i \(0.417280\pi\)
−0.965425 + 0.260680i \(0.916053\pi\)
\(774\) 0.696152 0.401924i 0.0250227 0.0144469i
\(775\) 13.1440 + 22.7661i 0.472147 + 0.817783i
\(776\) 9.07227 15.7136i 0.325676 0.564087i
\(777\) 0 0
\(778\) −4.00000 6.92820i −0.143407 0.248388i
\(779\) 18.8923 32.7224i 0.676887 1.17240i
\(780\) −0.832204 + 3.10583i −0.0297977 + 0.111207i
\(781\) 1.26795 + 2.19615i 0.0453708 + 0.0785845i
\(782\) 18.6622 + 32.3238i 0.667358 + 1.15590i
\(783\) 5.37945 + 20.0764i 0.192246 + 0.717472i
\(784\) 0 0
\(785\) 4.92820 8.53590i 0.175895 0.304659i
\(786\) 13.3923 + 13.3923i 0.477688 + 0.477688i
\(787\) 7.14540 0.254706 0.127353 0.991857i \(-0.459352\pi\)
0.127353 + 0.991857i \(0.459352\pi\)
\(788\) −16.9282 −0.603042
\(789\) 14.2808 3.82654i 0.508411 0.136228i
\(790\) 4.62158 8.00481i 0.164428 0.284798i
\(791\) 0 0
\(792\) 0.803848i 0.0285635i
\(793\) 11.3205 + 19.6077i 0.402003 + 0.696290i
\(794\) −6.55343 11.3509i −0.232573 0.402827i
\(795\) 18.9282 5.07180i 0.671314 0.179878i
\(796\) −13.1440 + 22.7661i −0.465878 + 0.806924i
\(797\) 18.9396 + 32.8043i 0.670874 + 1.16199i 0.977657 + 0.210209i \(0.0674143\pi\)
−0.306782 + 0.951780i \(0.599252\pi\)
\(798\) 0 0
\(799\) 2.58846 4.48334i 0.0915730 0.158609i
\(800\) 1.96410 + 3.40192i 0.0694415 + 0.120276i
\(801\) 21.2132i 0.749532i
\(802\) 11.8923 20.5981i 0.419932 0.727343i
\(803\) −1.45138 −0.0512180
\(804\) 5.58750 20.8528i 0.197056 0.735423i
\(805\) 0 0
\(806\) −6.00000 10.3923i −0.211341 0.366053i
\(807\) −6.92820 6.92820i −0.243884 0.243884i
\(808\) 2.44949 + 4.24264i 0.0861727 + 0.149256i
\(809\) 14.8660 25.7487i 0.522662 0.905276i −0.476991 0.878908i \(-0.658272\pi\)
0.999652 0.0263681i \(-0.00839421\pi\)
\(810\) 9.31749 0.327383
\(811\) −24.9110 −0.874744 −0.437372 0.899281i \(-0.644091\pi\)
−0.437372 + 0.899281i \(0.644091\pi\)
\(812\) 0 0
\(813\) −21.9282 + 5.87564i −0.769056 + 0.206068i
\(814\) 1.00000 1.73205i 0.0350500 0.0607083i
\(815\) 13.7904 0.483057
\(816\) −8.36603 8.36603i −0.292869 0.292869i
\(817\) 1.17398 0.0410723
\(818\) 4.48288 0.156740
\(819\) 0 0
\(820\) 8.92820 0.311786
\(821\) 10.3923 0.362694 0.181347 0.983419i \(-0.441954\pi\)
0.181347 + 0.983419i \(0.441954\pi\)
\(822\) −14.4889 + 3.88229i −0.505358 + 0.135410i
\(823\) −10.7846 −0.375928 −0.187964 0.982176i \(-0.560189\pi\)
−0.187964 + 0.982176i \(0.560189\pi\)
\(824\) −6.17449 + 10.6945i −0.215099 + 0.372562i
\(825\) 1.28912 + 1.28912i 0.0448813 + 0.0448813i
\(826\) 0 0
\(827\) −12.0000 −0.417281 −0.208640 0.977992i \(-0.566904\pi\)
−0.208640 + 0.977992i \(0.566904\pi\)
\(828\) 14.1962 8.19615i 0.493350 0.284836i
\(829\) −3.96524 + 6.86800i −0.137718 + 0.238535i −0.926633 0.375968i \(-0.877310\pi\)
0.788914 + 0.614503i \(0.210644\pi\)
\(830\) 3.41154 + 5.90897i 0.118416 + 0.205103i
\(831\) −52.6405 + 14.1050i −1.82608 + 0.489296i
\(832\) −0.896575 1.55291i −0.0310832 0.0538376i
\(833\) 0 0
\(834\) −1.33013 + 0.356406i −0.0460585 + 0.0123413i
\(835\) −1.56922 −0.0543051
\(836\) 0.586988 1.01669i 0.0203014 0.0351631i
\(837\) −24.5885 + 24.5885i −0.849901 + 0.849901i
\(838\) −18.0938 31.3393i −0.625039 1.08260i
\(839\) −11.3137 + 19.5959i −0.390593 + 0.676526i −0.992528 0.122019i \(-0.961063\pi\)
0.601935 + 0.798545i \(0.294397\pi\)
\(840\) 0 0
\(841\) 6.50000 + 11.2583i 0.224138 + 0.388218i
\(842\) −3.80385 + 6.58846i −0.131089 + 0.227053i
\(843\) 21.8695 + 21.8695i 0.753227 + 0.753227i
\(844\) −9.46410 16.3923i −0.325768 0.564246i
\(845\) −5.06489 8.77264i −0.174237 0.301788i
\(846\) −1.96902 1.13681i −0.0676962 0.0390844i
\(847\) 0 0
\(848\) −5.46410 + 9.46410i −0.187638 + 0.324999i
\(849\) −6.75833 + 25.2224i −0.231945 + 0.865632i
\(850\) 26.8329 0.920361
\(851\) 40.7846 1.39808
\(852\) 4.24264 15.8338i 0.145350 0.542455i
\(853\) −16.4901 + 28.5617i −0.564610 + 0.977933i 0.432476 + 0.901645i \(0.357640\pi\)
−0.997086 + 0.0762876i \(0.975693\pi\)
\(854\) 0 0
\(855\) 11.7846 + 6.80385i 0.403025 + 0.232687i
\(856\) 8.69615 + 15.0622i 0.297228 + 0.514815i
\(857\) 5.60609 + 9.71003i 0.191500 + 0.331688i 0.945748 0.324902i \(-0.105331\pi\)
−0.754247 + 0.656590i \(0.771998\pi\)
\(858\) −0.588457 0.588457i −0.0200896 0.0200896i
\(859\) 20.8021 36.0303i 0.709758 1.22934i −0.255189 0.966891i \(-0.582138\pi\)
0.964947 0.262445i \(-0.0845290\pi\)
\(860\) 0.138701 + 0.240237i 0.00472965 + 0.00819200i
\(861\) 0 0
\(862\) 5.07180 8.78461i 0.172746 0.299205i
\(863\) 27.0526 + 46.8564i 0.920880 + 1.59501i 0.798057 + 0.602582i \(0.205861\pi\)
0.122823 + 0.992429i \(0.460805\pi\)
\(864\) −3.67423 + 3.67423i −0.125000 + 0.125000i
\(865\) 3.46410 6.00000i 0.117783 0.204006i
\(866\) −19.8362 −0.674060
\(867\) −49.6226 + 13.2963i −1.68527 + 0.451567i
\(868\) 0 0
\(869\) 1.19615 + 2.07180i 0.0405767 + 0.0702809i
\(870\) −6.92820 + 1.85641i −0.234888 + 0.0629381i
\(871\) −11.1750 19.3557i −0.378651 0.655842i
\(872\) −2.46410 + 4.26795i −0.0834450 + 0.144531i
\(873\) −47.1409 + 27.2168i −1.59548 + 0.921149i
\(874\) 23.9401 0.809786
\(875\) 0 0
\(876\) 6.63397 + 6.63397i 0.224141 + 0.224141i
\(877\) 14.5885 25.2679i 0.492617 0.853238i −0.507347 0.861742i \(-0.669374\pi\)
0.999964 + 0.00850405i \(0.00270695\pi\)
\(878\) 19.5959 0.661330
\(879\) 15.4641 4.14359i 0.521591 0.139760i
\(880\) 0.277401 0.00935120
\(881\) −12.7279 −0.428815 −0.214407 0.976744i \(-0.568782\pi\)
−0.214407 + 0.976744i \(0.568782\pi\)
\(882\) 0 0
\(883\) 14.4641 0.486756 0.243378 0.969932i \(-0.421744\pi\)
0.243378 + 0.969932i \(0.421744\pi\)
\(884\) −12.2487 −0.411969
\(885\) 1.61729 + 1.61729i 0.0543645 + 0.0543645i
\(886\) 16.3205 0.548298
\(887\) −26.6298 + 46.1242i −0.894142 + 1.54870i −0.0592788 + 0.998241i \(0.518880\pi\)
−0.834863 + 0.550458i \(0.814453\pi\)
\(888\) −12.4877 + 3.34607i −0.419059 + 0.112287i
\(889\) 0 0
\(890\) −7.32051 −0.245384
\(891\) −1.20577 + 2.08846i −0.0403949 + 0.0699660i
\(892\) 3.58630 6.21166i 0.120078 0.207982i
\(893\) −1.66025 2.87564i −0.0555583 0.0962298i
\(894\) 28.0812 + 28.0812i 0.939176 + 0.939176i
\(895\) 2.62536 + 4.54725i 0.0877559 + 0.151998i
\(896\) 0 0
\(897\) 4.39230 16.3923i 0.146655 0.547323i
\(898\) 23.7846 0.793703
\(899\) 13.3843 23.1822i 0.446390 0.773170i
\(900\) 11.7846i 0.392820i
\(901\) 37.3244 + 64.6477i 1.24345 + 2.15373i
\(902\) −1.15539 + 2.00120i −0.0384704 + 0.0666327i
\(903\) 0 0
\(904\) 3.46410 + 6.00000i 0.115214 + 0.199557i
\(905\) −8.78461 + 15.2154i −0.292010 + 0.505777i
\(906\) −30.7709 + 8.24504i −1.02230 + 0.273923i
\(907\) 2.62436 + 4.54552i 0.0871403 + 0.150931i 0.906301 0.422632i \(-0.138894\pi\)
−0.819161 + 0.573564i \(0.805560\pi\)
\(908\) 13.8325 + 23.9587i 0.459049 + 0.795097i
\(909\) 14.6969i 0.487467i
\(910\) 0 0
\(911\) 16.5359 28.6410i 0.547859 0.948919i −0.450562 0.892745i \(-0.648776\pi\)
0.998421 0.0561742i \(-0.0178902\pi\)
\(912\) −7.33013 + 1.96410i −0.242725 + 0.0650379i
\(913\) −1.76594 −0.0584442
\(914\) −31.0526 −1.02713
\(915\) 16.0096 + 16.0096i 0.529262 + 0.529262i
\(916\) −0.240237 + 0.416102i −0.00793764 + 0.0137484i
\(917\) 0 0
\(918\) 9.18653 + 34.2846i 0.303201 + 1.13156i
\(919\) −4.53590 7.85641i −0.149625 0.259159i 0.781464 0.623951i \(-0.214473\pi\)
−0.931089 + 0.364792i \(0.881140\pi\)
\(920\) 2.82843 + 4.89898i 0.0932505 + 0.161515i
\(921\) 0.526279 1.96410i 0.0173415 0.0647193i
\(922\) 5.51815 9.55772i 0.181731 0.314767i
\(923\) −8.48528 14.6969i −0.279296 0.483756i
\(924\) 0 0
\(925\) 14.6603 25.3923i 0.482026 0.834894i
\(926\) 15.3205 + 26.5359i 0.503463 + 0.872024i
\(927\) 32.0836 18.5235i 1.05376 0.608391i
\(928\) 2.00000 3.46410i 0.0656532 0.113715i
\(929\) 30.8081 1.01078 0.505390 0.862891i \(-0.331349\pi\)
0.505390 + 0.862891i \(0.331349\pi\)
\(930\) −8.48528 8.48528i −0.278243 0.278243i
\(931\) 0 0
\(932\) −0.0621778 0.107695i −0.00203670 0.00352767i
\(933\) −3.33975 + 12.4641i −0.109338 + 0.408056i
\(934\) −4.58939 7.94906i −0.150170 0.260101i
\(935\) 0.947441 1.64102i 0.0309846 0.0536670i
\(936\) 5.37945i 0.175833i
\(937\) −9.89949 −0.323402 −0.161701 0.986840i \(-0.551698\pi\)
−0.161701 + 0.986840i \(0.551698\pi\)
\(938\) 0 0
\(939\) 2.81347 10.5000i 0.0918140 0.342655i
\(940\) 0.392305 0.679492i 0.0127956 0.0221626i
\(941\) −47.8802 −1.56085 −0.780425 0.625250i \(-0.784997\pi\)
−0.780425 + 0.625250i \(0.784997\pi\)
\(942\) 4.26795 15.9282i 0.139057 0.518969i
\(943\) −47.1223 −1.53451
\(944\) −1.27551 −0.0415144
\(945\) 0 0
\(946\) −0.0717968 −0.00233431
\(947\) −18.1244 −0.588962 −0.294481 0.955657i \(-0.595147\pi\)
−0.294481 + 0.955657i \(0.595147\pi\)
\(948\) 4.00240 14.9372i 0.129992 0.485137i
\(949\) 9.71281 0.315291
\(950\) 8.60540 14.9050i 0.279196 0.483582i
\(951\) −11.6555 + 43.4988i −0.377955 + 1.41055i
\(952\) 0 0
\(953\) 19.0000 0.615470 0.307735 0.951472i \(-0.400429\pi\)
0.307735 + 0.951472i \(0.400429\pi\)
\(954\) 28.3923 16.3923i 0.919235 0.530720i
\(955\) 7.72741 13.3843i 0.250053 0.433105i
\(956\) −0.464102 0.803848i −0.0150101 0.0259983i
\(957\) 0.480473 1.79315i 0.0155315 0.0579643i
\(958\) 2.07055 + 3.58630i 0.0668965 + 0.115868i
\(959\) 0 0
\(960\) −1.26795 1.26795i −0.0409229 0.0409229i
\(961\) 13.7846 0.444665
\(962\) −6.69213 + 11.5911i −0.215763 + 0.373712i
\(963\) 52.1769i 1.68138i
\(964\) −3.13801 5.43520i −0.101069 0.175056i
\(965\) 7.79178 13.4958i 0.250826 0.434444i
\(966\) 0 0
\(967\) 23.7846 + 41.1962i 0.764861 + 1.32478i 0.940320 + 0.340292i \(0.110526\pi\)
−0.175458 + 0.984487i \(0.556141\pi\)
\(968\) 5.46410 9.46410i 0.175623 0.304188i
\(969\) −13.4164 + 50.0709i −0.430998 + 1.60851i
\(970\) −9.39230 16.2679i −0.301569 0.522332i
\(971\) −15.6443 27.0967i −0.502049 0.869574i −0.999997 0.00236748i \(-0.999246\pi\)
0.497948 0.867207i \(-0.334087\pi\)
\(972\) 15.0573 4.03459i 0.482963 0.129410i
\(973\) 0 0
\(974\) 1.39230 2.41154i 0.0446123 0.0772708i
\(975\) −8.62693 8.62693i −0.276283 0.276283i
\(976\) −12.6264 −0.404161
\(977\) 1.98076 0.0633702 0.0316851 0.999498i \(-0.489913\pi\)
0.0316851 + 0.999498i \(0.489913\pi\)
\(978\) 22.2856 5.97142i 0.712616 0.190945i
\(979\) 0.947343 1.64085i 0.0302772 0.0524417i
\(980\) 0 0
\(981\) 12.8038 7.39230i 0.408795 0.236018i
\(982\) −9.69615 16.7942i −0.309417 0.535925i
\(983\) −6.31319 10.9348i −0.201360 0.348765i 0.747607 0.664141i \(-0.231203\pi\)
−0.948967 + 0.315376i \(0.897869\pi\)
\(984\) 14.4282 3.86603i 0.459954 0.123244i
\(985\) −8.76268 + 15.1774i −0.279202 + 0.483593i
\(986\) −13.6617 23.6627i −0.435076 0.753574i
\(987\) 0 0
\(988\) −3.92820 + 6.80385i −0.124973 + 0.216459i
\(989\) −0.732051 1.26795i −0.0232779 0.0403184i
\(990\) −0.720710 0.416102i −0.0229057 0.0132246i
\(991\) −25.1244 + 43.5167i −0.798101 + 1.38235i 0.122750 + 0.992438i \(0.460829\pi\)
−0.920851 + 0.389915i \(0.872505\pi\)
\(992\) 6.69213 0.212475
\(993\) −5.13922 + 19.1798i −0.163088 + 0.608653i
\(994\) 0 0
\(995\) 13.6077 + 23.5692i 0.431393 + 0.747194i
\(996\) 8.07180 + 8.07180i 0.255765 + 0.255765i
\(997\) 18.8009 + 32.5641i 0.595430 + 1.03131i 0.993486 + 0.113954i \(0.0363515\pi\)
−0.398056 + 0.917361i \(0.630315\pi\)
\(998\) −16.6962 + 28.9186i −0.528507 + 0.915402i
\(999\) 37.4631 + 10.0382i 1.18528 + 0.317594i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 882.2.e.s.655.3 8
3.2 odd 2 2646.2.e.q.2125.2 8
7.2 even 3 882.2.h.q.79.4 8
7.3 odd 6 882.2.f.q.295.4 yes 8
7.4 even 3 882.2.f.q.295.1 8
7.5 odd 6 882.2.h.q.79.1 8
7.6 odd 2 inner 882.2.e.s.655.2 8
9.4 even 3 882.2.h.q.67.3 8
9.5 odd 6 2646.2.h.t.361.3 8
21.2 odd 6 2646.2.h.t.667.3 8
21.5 even 6 2646.2.h.t.667.2 8
21.11 odd 6 2646.2.f.r.883.2 8
21.17 even 6 2646.2.f.r.883.3 8
21.20 even 2 2646.2.e.q.2125.3 8
63.4 even 3 882.2.f.q.589.1 yes 8
63.5 even 6 2646.2.e.q.1549.3 8
63.11 odd 6 7938.2.a.ci.1.3 4
63.13 odd 6 882.2.h.q.67.2 8
63.23 odd 6 2646.2.e.q.1549.2 8
63.25 even 3 7938.2.a.cp.1.2 4
63.31 odd 6 882.2.f.q.589.4 yes 8
63.32 odd 6 2646.2.f.r.1765.2 8
63.38 even 6 7938.2.a.ci.1.2 4
63.40 odd 6 inner 882.2.e.s.373.2 8
63.41 even 6 2646.2.h.t.361.2 8
63.52 odd 6 7938.2.a.cp.1.3 4
63.58 even 3 inner 882.2.e.s.373.3 8
63.59 even 6 2646.2.f.r.1765.3 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
882.2.e.s.373.2 8 63.40 odd 6 inner
882.2.e.s.373.3 8 63.58 even 3 inner
882.2.e.s.655.2 8 7.6 odd 2 inner
882.2.e.s.655.3 8 1.1 even 1 trivial
882.2.f.q.295.1 8 7.4 even 3
882.2.f.q.295.4 yes 8 7.3 odd 6
882.2.f.q.589.1 yes 8 63.4 even 3
882.2.f.q.589.4 yes 8 63.31 odd 6
882.2.h.q.67.2 8 63.13 odd 6
882.2.h.q.67.3 8 9.4 even 3
882.2.h.q.79.1 8 7.5 odd 6
882.2.h.q.79.4 8 7.2 even 3
2646.2.e.q.1549.2 8 63.23 odd 6
2646.2.e.q.1549.3 8 63.5 even 6
2646.2.e.q.2125.2 8 3.2 odd 2
2646.2.e.q.2125.3 8 21.20 even 2
2646.2.f.r.883.2 8 21.11 odd 6
2646.2.f.r.883.3 8 21.17 even 6
2646.2.f.r.1765.2 8 63.32 odd 6
2646.2.f.r.1765.3 8 63.59 even 6
2646.2.h.t.361.2 8 63.41 even 6
2646.2.h.t.361.3 8 9.5 odd 6
2646.2.h.t.667.2 8 21.5 even 6
2646.2.h.t.667.3 8 21.2 odd 6
7938.2.a.ci.1.2 4 63.38 even 6
7938.2.a.ci.1.3 4 63.11 odd 6
7938.2.a.cp.1.2 4 63.25 even 3
7938.2.a.cp.1.3 4 63.52 odd 6