Properties

Label 882.2.f.q.589.4
Level $882$
Weight $2$
Character 882.589
Analytic conductor $7.043$
Analytic rank $0$
Dimension $8$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [882,2,Mod(295,882)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(882, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([4, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("882.295"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 882 = 2 \cdot 3^{2} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 882.f (of order \(3\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,-4,0,-4,0,0,0,8,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(9)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.04280545828\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\Q(\zeta_{24})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - x^{4} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 3^{2} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 589.4
Root \(0.258819 - 0.965926i\) of defining polynomial
Character \(\chi\) \(=\) 882.589
Dual form 882.2.f.q.295.4

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.500000 - 0.866025i) q^{2} +(1.67303 + 0.448288i) q^{3} +(-0.500000 + 0.866025i) q^{4} +(-0.517638 + 0.896575i) q^{5} +(-0.448288 - 1.67303i) q^{6} +1.00000 q^{8} +(2.59808 + 1.50000i) q^{9} +1.03528 q^{10} +(0.133975 + 0.232051i) q^{11} +(-1.22474 + 1.22474i) q^{12} +(0.896575 - 1.55291i) q^{13} +(-1.26795 + 1.26795i) q^{15} +(-0.500000 - 0.866025i) q^{16} +6.83083 q^{17} -3.00000i q^{18} -4.38134 q^{19} +(-0.517638 - 0.896575i) q^{20} +(0.133975 - 0.232051i) q^{22} +(-2.73205 + 4.73205i) q^{23} +(1.67303 + 0.448288i) q^{24} +(1.96410 + 3.40192i) q^{25} -1.79315 q^{26} +(3.67423 + 3.67423i) q^{27} +(2.00000 + 3.46410i) q^{29} +(1.73205 + 0.464102i) q^{30} +(3.34607 - 5.79555i) q^{31} +(-0.500000 + 0.866025i) q^{32} +(0.120118 + 0.448288i) q^{33} +(-3.41542 - 5.91567i) q^{34} +(-2.59808 + 1.50000i) q^{36} +7.46410 q^{37} +(2.19067 + 3.79435i) q^{38} +(2.19615 - 2.19615i) q^{39} +(-0.517638 + 0.896575i) q^{40} +(-4.31199 + 7.46859i) q^{41} +(-0.133975 - 0.232051i) q^{43} -0.267949 q^{44} +(-2.68973 + 1.55291i) q^{45} +5.46410 q^{46} +(0.378937 + 0.656339i) q^{47} +(-0.448288 - 1.67303i) q^{48} +(1.96410 - 3.40192i) q^{50} +(11.4282 + 3.06218i) q^{51} +(0.896575 + 1.55291i) q^{52} +10.9282 q^{53} +(1.34486 - 5.01910i) q^{54} -0.277401 q^{55} +(-7.33013 - 1.96410i) q^{57} +(2.00000 - 3.46410i) q^{58} +(-0.637756 + 1.10463i) q^{59} +(-0.464102 - 1.73205i) q^{60} +(-6.31319 - 10.9348i) q^{61} -6.69213 q^{62} +1.00000 q^{64} +(0.928203 + 1.60770i) q^{65} +(0.328169 - 0.328169i) q^{66} +(-6.23205 + 10.7942i) q^{67} +(-3.41542 + 5.91567i) q^{68} +(-6.69213 + 6.69213i) q^{69} +9.46410 q^{71} +(2.59808 + 1.50000i) q^{72} -5.41662 q^{73} +(-3.73205 - 6.46410i) q^{74} +(1.76097 + 6.57201i) q^{75} +(2.19067 - 3.79435i) q^{76} +(-3.00000 - 0.803848i) q^{78} +(-4.46410 - 7.73205i) q^{79} +1.03528 q^{80} +(4.50000 + 7.79423i) q^{81} +8.62398 q^{82} +(3.29530 + 5.70762i) q^{83} +(-3.53590 + 6.12436i) q^{85} +(-0.133975 + 0.232051i) q^{86} +(1.79315 + 6.69213i) q^{87} +(0.133975 + 0.232051i) q^{88} -7.07107 q^{89} +(2.68973 + 1.55291i) q^{90} +(-2.73205 - 4.73205i) q^{92} +(8.19615 - 8.19615i) q^{93} +(0.378937 - 0.656339i) q^{94} +(2.26795 - 3.92820i) q^{95} +(-1.22474 + 1.22474i) q^{96} +(-9.07227 - 15.7136i) q^{97} +0.803848i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 4 q^{2} - 4 q^{4} + 8 q^{8} + 8 q^{11} - 24 q^{15} - 4 q^{16} + 8 q^{22} - 8 q^{23} - 12 q^{25} + 16 q^{29} - 4 q^{32} + 32 q^{37} - 24 q^{39} - 8 q^{43} - 16 q^{44} + 16 q^{46} - 12 q^{50} + 36 q^{51}+ \cdots + 32 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/882\mathbb{Z}\right)^\times\).

\(n\) \(199\) \(785\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.500000 0.866025i −0.353553 0.612372i
\(3\) 1.67303 + 0.448288i 0.965926 + 0.258819i
\(4\) −0.500000 + 0.866025i −0.250000 + 0.433013i
\(5\) −0.517638 + 0.896575i −0.231495 + 0.400961i −0.958248 0.285938i \(-0.907695\pi\)
0.726753 + 0.686898i \(0.241028\pi\)
\(6\) −0.448288 1.67303i −0.183013 0.683013i
\(7\) 0 0
\(8\) 1.00000 0.353553
\(9\) 2.59808 + 1.50000i 0.866025 + 0.500000i
\(10\) 1.03528 0.327383
\(11\) 0.133975 + 0.232051i 0.0403949 + 0.0699660i 0.885516 0.464609i \(-0.153805\pi\)
−0.845121 + 0.534575i \(0.820472\pi\)
\(12\) −1.22474 + 1.22474i −0.353553 + 0.353553i
\(13\) 0.896575 1.55291i 0.248665 0.430701i −0.714490 0.699645i \(-0.753341\pi\)
0.963156 + 0.268944i \(0.0866747\pi\)
\(14\) 0 0
\(15\) −1.26795 + 1.26795i −0.327383 + 0.327383i
\(16\) −0.500000 0.866025i −0.125000 0.216506i
\(17\) 6.83083 1.65672 0.828360 0.560196i \(-0.189274\pi\)
0.828360 + 0.560196i \(0.189274\pi\)
\(18\) 3.00000i 0.707107i
\(19\) −4.38134 −1.00515 −0.502574 0.864534i \(-0.667614\pi\)
−0.502574 + 0.864534i \(0.667614\pi\)
\(20\) −0.517638 0.896575i −0.115747 0.200480i
\(21\) 0 0
\(22\) 0.133975 0.232051i 0.0285635 0.0494734i
\(23\) −2.73205 + 4.73205i −0.569672 + 0.986701i 0.426926 + 0.904286i \(0.359596\pi\)
−0.996598 + 0.0824143i \(0.973737\pi\)
\(24\) 1.67303 + 0.448288i 0.341506 + 0.0915064i
\(25\) 1.96410 + 3.40192i 0.392820 + 0.680385i
\(26\) −1.79315 −0.351666
\(27\) 3.67423 + 3.67423i 0.707107 + 0.707107i
\(28\) 0 0
\(29\) 2.00000 + 3.46410i 0.371391 + 0.643268i 0.989780 0.142605i \(-0.0455477\pi\)
−0.618389 + 0.785872i \(0.712214\pi\)
\(30\) 1.73205 + 0.464102i 0.316228 + 0.0847330i
\(31\) 3.34607 5.79555i 0.600971 1.04091i −0.391703 0.920092i \(-0.628114\pi\)
0.992674 0.120821i \(-0.0385526\pi\)
\(32\) −0.500000 + 0.866025i −0.0883883 + 0.153093i
\(33\) 0.120118 + 0.448288i 0.0209099 + 0.0780369i
\(34\) −3.41542 5.91567i −0.585739 1.01453i
\(35\) 0 0
\(36\) −2.59808 + 1.50000i −0.433013 + 0.250000i
\(37\) 7.46410 1.22709 0.613545 0.789659i \(-0.289743\pi\)
0.613545 + 0.789659i \(0.289743\pi\)
\(38\) 2.19067 + 3.79435i 0.355374 + 0.615525i
\(39\) 2.19615 2.19615i 0.351666 0.351666i
\(40\) −0.517638 + 0.896575i −0.0818458 + 0.141761i
\(41\) −4.31199 + 7.46859i −0.673420 + 1.16640i 0.303508 + 0.952829i \(0.401842\pi\)
−0.976928 + 0.213569i \(0.931491\pi\)
\(42\) 0 0
\(43\) −0.133975 0.232051i −0.0204309 0.0353874i 0.855629 0.517589i \(-0.173170\pi\)
−0.876060 + 0.482202i \(0.839837\pi\)
\(44\) −0.267949 −0.0403949
\(45\) −2.68973 + 1.55291i −0.400961 + 0.231495i
\(46\) 5.46410 0.805638
\(47\) 0.378937 + 0.656339i 0.0552737 + 0.0957369i 0.892338 0.451367i \(-0.149064\pi\)
−0.837065 + 0.547104i \(0.815730\pi\)
\(48\) −0.448288 1.67303i −0.0647048 0.241481i
\(49\) 0 0
\(50\) 1.96410 3.40192i 0.277766 0.481105i
\(51\) 11.4282 + 3.06218i 1.60027 + 0.428791i
\(52\) 0.896575 + 1.55291i 0.124333 + 0.215350i
\(53\) 10.9282 1.50110 0.750552 0.660811i \(-0.229788\pi\)
0.750552 + 0.660811i \(0.229788\pi\)
\(54\) 1.34486 5.01910i 0.183013 0.683013i
\(55\) −0.277401 −0.0374048
\(56\) 0 0
\(57\) −7.33013 1.96410i −0.970899 0.260152i
\(58\) 2.00000 3.46410i 0.262613 0.454859i
\(59\) −0.637756 + 1.10463i −0.0830288 + 0.143810i −0.904550 0.426369i \(-0.859793\pi\)
0.821521 + 0.570179i \(0.193126\pi\)
\(60\) −0.464102 1.73205i −0.0599153 0.223607i
\(61\) −6.31319 10.9348i −0.808322 1.40005i −0.914026 0.405656i \(-0.867043\pi\)
0.105704 0.994398i \(-0.466290\pi\)
\(62\) −6.69213 −0.849901
\(63\) 0 0
\(64\) 1.00000 0.125000
\(65\) 0.928203 + 1.60770i 0.115129 + 0.199410i
\(66\) 0.328169 0.328169i 0.0403949 0.0403949i
\(67\) −6.23205 + 10.7942i −0.761366 + 1.31872i 0.180780 + 0.983524i \(0.442138\pi\)
−0.942146 + 0.335201i \(0.891196\pi\)
\(68\) −3.41542 + 5.91567i −0.414180 + 0.717381i
\(69\) −6.69213 + 6.69213i −0.805638 + 0.805638i
\(70\) 0 0
\(71\) 9.46410 1.12318 0.561591 0.827415i \(-0.310189\pi\)
0.561591 + 0.827415i \(0.310189\pi\)
\(72\) 2.59808 + 1.50000i 0.306186 + 0.176777i
\(73\) −5.41662 −0.633967 −0.316984 0.948431i \(-0.602670\pi\)
−0.316984 + 0.948431i \(0.602670\pi\)
\(74\) −3.73205 6.46410i −0.433842 0.751437i
\(75\) 1.76097 + 6.57201i 0.203339 + 0.758871i
\(76\) 2.19067 3.79435i 0.251287 0.435242i
\(77\) 0 0
\(78\) −3.00000 0.803848i −0.339683 0.0910178i
\(79\) −4.46410 7.73205i −0.502251 0.869924i −0.999997 0.00260080i \(-0.999172\pi\)
0.497746 0.867323i \(-0.334161\pi\)
\(80\) 1.03528 0.115747
\(81\) 4.50000 + 7.79423i 0.500000 + 0.866025i
\(82\) 8.62398 0.952360
\(83\) 3.29530 + 5.70762i 0.361706 + 0.626493i 0.988242 0.152900i \(-0.0488611\pi\)
−0.626536 + 0.779393i \(0.715528\pi\)
\(84\) 0 0
\(85\) −3.53590 + 6.12436i −0.383522 + 0.664280i
\(86\) −0.133975 + 0.232051i −0.0144469 + 0.0250227i
\(87\) 1.79315 + 6.69213i 0.192246 + 0.717472i
\(88\) 0.133975 + 0.232051i 0.0142817 + 0.0247367i
\(89\) −7.07107 −0.749532 −0.374766 0.927119i \(-0.622277\pi\)
−0.374766 + 0.927119i \(0.622277\pi\)
\(90\) 2.68973 + 1.55291i 0.283522 + 0.163692i
\(91\) 0 0
\(92\) −2.73205 4.73205i −0.284836 0.493350i
\(93\) 8.19615 8.19615i 0.849901 0.849901i
\(94\) 0.378937 0.656339i 0.0390844 0.0676962i
\(95\) 2.26795 3.92820i 0.232687 0.403025i
\(96\) −1.22474 + 1.22474i −0.125000 + 0.125000i
\(97\) −9.07227 15.7136i −0.921149 1.59548i −0.797640 0.603134i \(-0.793918\pi\)
−0.123510 0.992343i \(-0.539415\pi\)
\(98\) 0 0
\(99\) 0.803848i 0.0807897i
\(100\) −3.92820 −0.392820
\(101\) −2.44949 4.24264i −0.243733 0.422159i 0.718041 0.696000i \(-0.245039\pi\)
−0.961775 + 0.273842i \(0.911706\pi\)
\(102\) −3.06218 11.4282i −0.303201 1.13156i
\(103\) 6.17449 10.6945i 0.608391 1.05376i −0.383115 0.923701i \(-0.625149\pi\)
0.991506 0.130063i \(-0.0415180\pi\)
\(104\) 0.896575 1.55291i 0.0879165 0.152276i
\(105\) 0 0
\(106\) −5.46410 9.46410i −0.530720 0.919235i
\(107\) −17.3923 −1.68138 −0.840689 0.541519i \(-0.817850\pi\)
−0.840689 + 0.541519i \(0.817850\pi\)
\(108\) −5.01910 + 1.34486i −0.482963 + 0.129410i
\(109\) 4.92820 0.472036 0.236018 0.971749i \(-0.424158\pi\)
0.236018 + 0.971749i \(0.424158\pi\)
\(110\) 0.138701 + 0.240237i 0.0132246 + 0.0229057i
\(111\) 12.4877 + 3.34607i 1.18528 + 0.317594i
\(112\) 0 0
\(113\) 3.46410 6.00000i 0.325875 0.564433i −0.655814 0.754923i \(-0.727674\pi\)
0.981689 + 0.190490i \(0.0610077\pi\)
\(114\) 1.96410 + 7.33013i 0.183955 + 0.686529i
\(115\) −2.82843 4.89898i −0.263752 0.456832i
\(116\) −4.00000 −0.371391
\(117\) 4.65874 2.68973i 0.430701 0.248665i
\(118\) 1.27551 0.117420
\(119\) 0 0
\(120\) −1.26795 + 1.26795i −0.115747 + 0.115747i
\(121\) 5.46410 9.46410i 0.496737 0.860373i
\(122\) −6.31319 + 10.9348i −0.571570 + 0.989988i
\(123\) −10.5622 + 10.5622i −0.952360 + 0.952360i
\(124\) 3.34607 + 5.79555i 0.300486 + 0.520456i
\(125\) −9.24316 −0.826733
\(126\) 0 0
\(127\) 13.4641 1.19475 0.597373 0.801964i \(-0.296211\pi\)
0.597373 + 0.801964i \(0.296211\pi\)
\(128\) −0.500000 0.866025i −0.0441942 0.0765466i
\(129\) −0.120118 0.448288i −0.0105758 0.0394695i
\(130\) 0.928203 1.60770i 0.0814088 0.141004i
\(131\) 5.46739 9.46979i 0.477688 0.827379i −0.521985 0.852955i \(-0.674808\pi\)
0.999673 + 0.0255752i \(0.00814172\pi\)
\(132\) −0.448288 0.120118i −0.0390184 0.0104550i
\(133\) 0 0
\(134\) 12.4641 1.07673
\(135\) −5.19615 + 1.39230i −0.447214 + 0.119831i
\(136\) 6.83083 0.585739
\(137\) −4.33013 7.50000i −0.369948 0.640768i 0.619609 0.784910i \(-0.287291\pi\)
−0.989557 + 0.144142i \(0.953958\pi\)
\(138\) 9.14162 + 2.44949i 0.778186 + 0.208514i
\(139\) 0.397520 0.688524i 0.0337172 0.0583999i −0.848674 0.528916i \(-0.822599\pi\)
0.882392 + 0.470516i \(0.155932\pi\)
\(140\) 0 0
\(141\) 0.339746 + 1.26795i 0.0286118 + 0.106781i
\(142\) −4.73205 8.19615i −0.397105 0.687806i
\(143\) 0.480473 0.0401792
\(144\) 3.00000i 0.250000i
\(145\) −4.14110 −0.343900
\(146\) 2.70831 + 4.69093i 0.224141 + 0.388224i
\(147\) 0 0
\(148\) −3.73205 + 6.46410i −0.306773 + 0.531346i
\(149\) −11.4641 + 19.8564i −0.939176 + 1.62670i −0.172163 + 0.985068i \(0.555076\pi\)
−0.767013 + 0.641632i \(0.778258\pi\)
\(150\) 4.81105 4.81105i 0.392820 0.392820i
\(151\) −9.19615 15.9282i −0.748372 1.29622i −0.948603 0.316470i \(-0.897502\pi\)
0.200230 0.979749i \(-0.435831\pi\)
\(152\) −4.38134 −0.355374
\(153\) 17.7470 + 10.2462i 1.43476 + 0.828360i
\(154\) 0 0
\(155\) 3.46410 + 6.00000i 0.278243 + 0.481932i
\(156\) 0.803848 + 3.00000i 0.0643593 + 0.240192i
\(157\) 4.76028 8.24504i 0.379912 0.658026i −0.611137 0.791524i \(-0.709288\pi\)
0.991049 + 0.133498i \(0.0426211\pi\)
\(158\) −4.46410 + 7.73205i −0.355145 + 0.615129i
\(159\) 18.2832 + 4.89898i 1.44996 + 0.388514i
\(160\) −0.517638 0.896575i −0.0409229 0.0708805i
\(161\) 0 0
\(162\) 4.50000 7.79423i 0.353553 0.612372i
\(163\) −13.3205 −1.04334 −0.521671 0.853147i \(-0.674691\pi\)
−0.521671 + 0.853147i \(0.674691\pi\)
\(164\) −4.31199 7.46859i −0.336710 0.583199i
\(165\) −0.464102 0.124356i −0.0361303 0.00968107i
\(166\) 3.29530 5.70762i 0.255765 0.442997i
\(167\) 0.757875 1.31268i 0.0586461 0.101578i −0.835212 0.549928i \(-0.814655\pi\)
0.893858 + 0.448350i \(0.147988\pi\)
\(168\) 0 0
\(169\) 4.89230 + 8.47372i 0.376331 + 0.651825i
\(170\) 7.07180 0.542382
\(171\) −11.3831 6.57201i −0.870484 0.502574i
\(172\) 0.267949 0.0204309
\(173\) 3.34607 + 5.79555i 0.254397 + 0.440628i 0.964731 0.263236i \(-0.0847898\pi\)
−0.710335 + 0.703864i \(0.751456\pi\)
\(174\) 4.89898 4.89898i 0.371391 0.371391i
\(175\) 0 0
\(176\) 0.133975 0.232051i 0.0100987 0.0174915i
\(177\) −1.56218 + 1.56218i −0.117420 + 0.117420i
\(178\) 3.53553 + 6.12372i 0.264999 + 0.458993i
\(179\) 5.07180 0.379084 0.189542 0.981873i \(-0.439300\pi\)
0.189542 + 0.981873i \(0.439300\pi\)
\(180\) 3.10583i 0.231495i
\(181\) 16.9706 1.26141 0.630706 0.776022i \(-0.282765\pi\)
0.630706 + 0.776022i \(0.282765\pi\)
\(182\) 0 0
\(183\) −5.66025 21.1244i −0.418418 1.56156i
\(184\) −2.73205 + 4.73205i −0.201409 + 0.348851i
\(185\) −3.86370 + 6.69213i −0.284065 + 0.492015i
\(186\) −11.1962 3.00000i −0.820942 0.219971i
\(187\) 0.915158 + 1.58510i 0.0669230 + 0.115914i
\(188\) −0.757875 −0.0552737
\(189\) 0 0
\(190\) −4.53590 −0.329069
\(191\) −7.46410 12.9282i −0.540083 0.935452i −0.998899 0.0469202i \(-0.985059\pi\)
0.458815 0.888532i \(-0.348274\pi\)
\(192\) 1.67303 + 0.448288i 0.120741 + 0.0323524i
\(193\) −7.52628 + 13.0359i −0.541753 + 0.938344i 0.457050 + 0.889441i \(0.348906\pi\)
−0.998804 + 0.0489035i \(0.984427\pi\)
\(194\) −9.07227 + 15.7136i −0.651351 + 1.12817i
\(195\) 0.832204 + 3.10583i 0.0595954 + 0.222413i
\(196\) 0 0
\(197\) −16.9282 −1.20608 −0.603042 0.797709i \(-0.706045\pi\)
−0.603042 + 0.797709i \(0.706045\pi\)
\(198\) 0.696152 0.401924i 0.0494734 0.0285635i
\(199\) −26.2880 −1.86351 −0.931755 0.363087i \(-0.881723\pi\)
−0.931755 + 0.363087i \(0.881723\pi\)
\(200\) 1.96410 + 3.40192i 0.138883 + 0.240552i
\(201\) −15.2653 + 15.2653i −1.07673 + 1.07673i
\(202\) −2.44949 + 4.24264i −0.172345 + 0.298511i
\(203\) 0 0
\(204\) −8.36603 + 8.36603i −0.585739 + 0.585739i
\(205\) −4.46410 7.73205i −0.311786 0.540030i
\(206\) −12.3490 −0.860395
\(207\) −14.1962 + 8.19615i −0.986701 + 0.569672i
\(208\) −1.79315 −0.124333
\(209\) −0.586988 1.01669i −0.0406028 0.0703262i
\(210\) 0 0
\(211\) −9.46410 + 16.3923i −0.651536 + 1.12849i 0.331215 + 0.943555i \(0.392542\pi\)
−0.982750 + 0.184937i \(0.940792\pi\)
\(212\) −5.46410 + 9.46410i −0.375276 + 0.649997i
\(213\) 15.8338 + 4.24264i 1.08491 + 0.290701i
\(214\) 8.69615 + 15.0622i 0.594457 + 1.02963i
\(215\) 0.277401 0.0189186
\(216\) 3.67423 + 3.67423i 0.250000 + 0.250000i
\(217\) 0 0
\(218\) −2.46410 4.26795i −0.166890 0.289062i
\(219\) −9.06218 2.42820i −0.612365 0.164083i
\(220\) 0.138701 0.240237i 0.00935120 0.0161968i
\(221\) 6.12436 10.6077i 0.411969 0.713551i
\(222\) −3.34607 12.4877i −0.224573 0.838119i
\(223\) −3.58630 6.21166i −0.240157 0.415963i 0.720602 0.693349i \(-0.243865\pi\)
−0.960759 + 0.277385i \(0.910532\pi\)
\(224\) 0 0
\(225\) 11.7846i 0.785641i
\(226\) −6.92820 −0.460857
\(227\) −13.8325 23.9587i −0.918098 1.59019i −0.802300 0.596920i \(-0.796391\pi\)
−0.115798 0.993273i \(-0.536943\pi\)
\(228\) 5.36603 5.36603i 0.355374 0.355374i
\(229\) 0.240237 0.416102i 0.0158753 0.0274968i −0.857979 0.513685i \(-0.828280\pi\)
0.873854 + 0.486189i \(0.161613\pi\)
\(230\) −2.82843 + 4.89898i −0.186501 + 0.323029i
\(231\) 0 0
\(232\) 2.00000 + 3.46410i 0.131306 + 0.227429i
\(233\) 0.124356 0.00814681 0.00407340 0.999992i \(-0.498703\pi\)
0.00407340 + 0.999992i \(0.498703\pi\)
\(234\) −4.65874 2.68973i −0.304552 0.175833i
\(235\) −0.784610 −0.0511823
\(236\) −0.637756 1.10463i −0.0415144 0.0719051i
\(237\) −4.00240 14.9372i −0.259984 0.970274i
\(238\) 0 0
\(239\) −0.464102 + 0.803848i −0.0300202 + 0.0519966i −0.880645 0.473776i \(-0.842891\pi\)
0.850625 + 0.525773i \(0.176224\pi\)
\(240\) 1.73205 + 0.464102i 0.111803 + 0.0299576i
\(241\) 3.13801 + 5.43520i 0.202137 + 0.350112i 0.949217 0.314623i \(-0.101878\pi\)
−0.747080 + 0.664735i \(0.768545\pi\)
\(242\) −10.9282 −0.702492
\(243\) 4.03459 + 15.0573i 0.258819 + 0.965926i
\(244\) 12.6264 0.808322
\(245\) 0 0
\(246\) 14.4282 + 3.86603i 0.919909 + 0.246489i
\(247\) −3.92820 + 6.80385i −0.249946 + 0.432918i
\(248\) 3.34607 5.79555i 0.212475 0.368018i
\(249\) 2.95448 + 11.0263i 0.187233 + 0.698762i
\(250\) 4.62158 + 8.00481i 0.292294 + 0.506269i
\(251\) −0.795040 −0.0501824 −0.0250912 0.999685i \(-0.507988\pi\)
−0.0250912 + 0.999685i \(0.507988\pi\)
\(252\) 0 0
\(253\) −1.46410 −0.0920473
\(254\) −6.73205 11.6603i −0.422406 0.731629i
\(255\) −8.66115 + 8.66115i −0.542382 + 0.542382i
\(256\) −0.500000 + 0.866025i −0.0312500 + 0.0541266i
\(257\) 5.01910 8.69333i 0.313083 0.542275i −0.665945 0.746001i \(-0.731972\pi\)
0.979028 + 0.203725i \(0.0653050\pi\)
\(258\) −0.328169 + 0.328169i −0.0204309 + 0.0204309i
\(259\) 0 0
\(260\) −1.85641 −0.115129
\(261\) 12.0000i 0.742781i
\(262\) −10.9348 −0.675552
\(263\) 4.26795 + 7.39230i 0.263173 + 0.455829i 0.967083 0.254460i \(-0.0818977\pi\)
−0.703910 + 0.710289i \(0.748564\pi\)
\(264\) 0.120118 + 0.448288i 0.00739277 + 0.0275902i
\(265\) −5.65685 + 9.79796i −0.347498 + 0.601884i
\(266\) 0 0
\(267\) −11.8301 3.16987i −0.723992 0.193993i
\(268\) −6.23205 10.7942i −0.380683 0.659362i
\(269\) 5.65685 0.344904 0.172452 0.985018i \(-0.444831\pi\)
0.172452 + 0.985018i \(0.444831\pi\)
\(270\) 3.80385 + 3.80385i 0.231495 + 0.231495i
\(271\) −13.1069 −0.796185 −0.398093 0.917345i \(-0.630328\pi\)
−0.398093 + 0.917345i \(0.630328\pi\)
\(272\) −3.41542 5.91567i −0.207090 0.358690i
\(273\) 0 0
\(274\) −4.33013 + 7.50000i −0.261593 + 0.453092i
\(275\) −0.526279 + 0.911543i −0.0317358 + 0.0549681i
\(276\) −2.44949 9.14162i −0.147442 0.550261i
\(277\) −15.7321 27.2487i −0.945247 1.63722i −0.755255 0.655431i \(-0.772487\pi\)
−0.189992 0.981786i \(-0.560846\pi\)
\(278\) −0.795040 −0.0476833
\(279\) 17.3867 10.0382i 1.04091 0.600971i
\(280\) 0 0
\(281\) −8.92820 15.4641i −0.532612 0.922511i −0.999275 0.0380757i \(-0.987877\pi\)
0.466663 0.884435i \(-0.345456\pi\)
\(282\) 0.928203 0.928203i 0.0552737 0.0552737i
\(283\) −7.53794 + 13.0561i −0.448084 + 0.776104i −0.998261 0.0589437i \(-0.981227\pi\)
0.550177 + 0.835048i \(0.314560\pi\)
\(284\) −4.73205 + 8.19615i −0.280796 + 0.486352i
\(285\) 5.55532 5.55532i 0.329069 0.329069i
\(286\) −0.240237 0.416102i −0.0142055 0.0246046i
\(287\) 0 0
\(288\) −2.59808 + 1.50000i −0.153093 + 0.0883883i
\(289\) 29.6603 1.74472
\(290\) 2.07055 + 3.58630i 0.121587 + 0.210595i
\(291\) −8.13397 30.3564i −0.476822 1.77952i
\(292\) 2.70831 4.69093i 0.158492 0.274516i
\(293\) −4.62158 + 8.00481i −0.269995 + 0.467646i −0.968860 0.247608i \(-0.920356\pi\)
0.698865 + 0.715254i \(0.253689\pi\)
\(294\) 0 0
\(295\) −0.660254 1.14359i −0.0384415 0.0665826i
\(296\) 7.46410 0.433842
\(297\) −0.360355 + 1.34486i −0.0209099 + 0.0780369i
\(298\) 22.9282 1.32820
\(299\) 4.89898 + 8.48528i 0.283315 + 0.490716i
\(300\) −6.57201 1.76097i −0.379435 0.101669i
\(301\) 0 0
\(302\) −9.19615 + 15.9282i −0.529179 + 0.916565i
\(303\) −2.19615 8.19615i −0.126166 0.470857i
\(304\) 2.19067 + 3.79435i 0.125644 + 0.217621i
\(305\) 13.0718 0.748489
\(306\) 20.4925i 1.17148i
\(307\) −1.17398 −0.0670024 −0.0335012 0.999439i \(-0.510666\pi\)
−0.0335012 + 0.999439i \(0.510666\pi\)
\(308\) 0 0
\(309\) 15.1244 15.1244i 0.860395 0.860395i
\(310\) 3.46410 6.00000i 0.196748 0.340777i
\(311\) −3.72500 + 6.45189i −0.211226 + 0.365853i −0.952098 0.305792i \(-0.901079\pi\)
0.740873 + 0.671645i \(0.234412\pi\)
\(312\) 2.19615 2.19615i 0.124333 0.124333i
\(313\) 3.13801 + 5.43520i 0.177371 + 0.307216i 0.940979 0.338464i \(-0.109907\pi\)
−0.763608 + 0.645680i \(0.776574\pi\)
\(314\) −9.52056 −0.537276
\(315\) 0 0
\(316\) 8.92820 0.502251
\(317\) 13.0000 + 22.5167i 0.730153 + 1.26466i 0.956818 + 0.290689i \(0.0938844\pi\)
−0.226665 + 0.973973i \(0.572782\pi\)
\(318\) −4.89898 18.2832i −0.274721 1.02527i
\(319\) −0.535898 + 0.928203i −0.0300045 + 0.0519694i
\(320\) −0.517638 + 0.896575i −0.0289368 + 0.0501201i
\(321\) −29.0979 7.79676i −1.62409 0.435173i
\(322\) 0 0
\(323\) −29.9282 −1.66525
\(324\) −9.00000 −0.500000
\(325\) 7.04386 0.390723
\(326\) 6.66025 + 11.5359i 0.368877 + 0.638914i
\(327\) 8.24504 + 2.20925i 0.455952 + 0.122172i
\(328\) −4.31199 + 7.46859i −0.238090 + 0.412384i
\(329\) 0 0
\(330\) 0.124356 + 0.464102i 0.00684555 + 0.0255480i
\(331\) 5.73205 + 9.92820i 0.315062 + 0.545703i 0.979451 0.201684i \(-0.0646413\pi\)
−0.664389 + 0.747387i \(0.731308\pi\)
\(332\) −6.59059 −0.361706
\(333\) 19.3923 + 11.1962i 1.06269 + 0.613545i
\(334\) −1.51575 −0.0829381
\(335\) −6.45189 11.1750i −0.352505 0.610556i
\(336\) 0 0
\(337\) 3.50000 6.06218i 0.190657 0.330228i −0.754811 0.655942i \(-0.772271\pi\)
0.945468 + 0.325714i \(0.105605\pi\)
\(338\) 4.89230 8.47372i 0.266106 0.460910i
\(339\) 8.48528 8.48528i 0.460857 0.460857i
\(340\) −3.53590 6.12436i −0.191761 0.332140i
\(341\) 1.79315 0.0971046
\(342\) 13.1440i 0.710747i
\(343\) 0 0
\(344\) −0.133975 0.232051i −0.00722343 0.0125113i
\(345\) −2.53590 9.46410i −0.136528 0.509530i
\(346\) 3.34607 5.79555i 0.179886 0.311571i
\(347\) 4.79423 8.30385i 0.257368 0.445774i −0.708168 0.706044i \(-0.750478\pi\)
0.965536 + 0.260270i \(0.0838115\pi\)
\(348\) −6.69213 1.79315i −0.358736 0.0961230i
\(349\) −4.00240 6.93237i −0.214244 0.371081i 0.738795 0.673931i \(-0.235395\pi\)
−0.953038 + 0.302850i \(0.902062\pi\)
\(350\) 0 0
\(351\) 9.00000 2.41154i 0.480384 0.128719i
\(352\) −0.267949 −0.0142817
\(353\) 12.5063 + 21.6615i 0.665641 + 1.15292i 0.979111 + 0.203327i \(0.0651753\pi\)
−0.313470 + 0.949598i \(0.601491\pi\)
\(354\) 2.13397 + 0.571797i 0.113419 + 0.0303907i
\(355\) −4.89898 + 8.48528i −0.260011 + 0.450352i
\(356\) 3.53553 6.12372i 0.187383 0.324557i
\(357\) 0 0
\(358\) −2.53590 4.39230i −0.134026 0.232141i
\(359\) 7.46410 0.393940 0.196970 0.980409i \(-0.436890\pi\)
0.196970 + 0.980409i \(0.436890\pi\)
\(360\) −2.68973 + 1.55291i −0.141761 + 0.0818458i
\(361\) 0.196152 0.0103238
\(362\) −8.48528 14.6969i −0.445976 0.772454i
\(363\) 13.3843 13.3843i 0.702492 0.702492i
\(364\) 0 0
\(365\) 2.80385 4.85641i 0.146760 0.254196i
\(366\) −15.4641 + 15.4641i −0.808322 + 0.808322i
\(367\) 9.28032 + 16.0740i 0.484429 + 0.839055i 0.999840 0.0178877i \(-0.00569413\pi\)
−0.515411 + 0.856943i \(0.672361\pi\)
\(368\) 5.46410 0.284836
\(369\) −22.4058 + 12.9360i −1.16640 + 0.673420i
\(370\) 7.72741 0.401729
\(371\) 0 0
\(372\) 3.00000 + 11.1962i 0.155543 + 0.580493i
\(373\) 5.39230 9.33975i 0.279203 0.483594i −0.691984 0.721913i \(-0.743263\pi\)
0.971187 + 0.238319i \(0.0765964\pi\)
\(374\) 0.915158 1.58510i 0.0473217 0.0819636i
\(375\) −15.4641 4.14359i −0.798563 0.213974i
\(376\) 0.378937 + 0.656339i 0.0195422 + 0.0338481i
\(377\) 7.17260 0.369408
\(378\) 0 0
\(379\) 13.5885 0.697992 0.348996 0.937124i \(-0.386523\pi\)
0.348996 + 0.937124i \(0.386523\pi\)
\(380\) 2.26795 + 3.92820i 0.116343 + 0.201513i
\(381\) 22.5259 + 6.03579i 1.15404 + 0.309223i
\(382\) −7.46410 + 12.9282i −0.381897 + 0.661464i
\(383\) 13.6617 23.6627i 0.698078 1.20911i −0.271054 0.962564i \(-0.587372\pi\)
0.969132 0.246543i \(-0.0792946\pi\)
\(384\) −0.448288 1.67303i −0.0228766 0.0853766i
\(385\) 0 0
\(386\) 15.0526 0.766155
\(387\) 0.803848i 0.0408619i
\(388\) 18.1445 0.921149
\(389\) −4.00000 6.92820i −0.202808 0.351274i 0.746624 0.665246i \(-0.231673\pi\)
−0.949432 + 0.313972i \(0.898340\pi\)
\(390\) 2.27362 2.27362i 0.115129 0.115129i
\(391\) −18.6622 + 32.3238i −0.943787 + 1.63469i
\(392\) 0 0
\(393\) 13.3923 13.3923i 0.675552 0.675552i
\(394\) 8.46410 + 14.6603i 0.426415 + 0.738573i
\(395\) 9.24316 0.465074
\(396\) −0.696152 0.401924i −0.0349830 0.0201974i
\(397\) −13.1069 −0.657814 −0.328907 0.944362i \(-0.606680\pi\)
−0.328907 + 0.944362i \(0.606680\pi\)
\(398\) 13.1440 + 22.7661i 0.658850 + 1.14116i
\(399\) 0 0
\(400\) 1.96410 3.40192i 0.0982051 0.170096i
\(401\) 11.8923 20.5981i 0.593873 1.02862i −0.399831 0.916589i \(-0.630931\pi\)
0.993705 0.112030i \(-0.0357353\pi\)
\(402\) 20.8528 + 5.58750i 1.04005 + 0.278679i
\(403\) −6.00000 10.3923i −0.298881 0.517678i
\(404\) 4.89898 0.243733
\(405\) −9.31749 −0.462990
\(406\) 0 0
\(407\) 1.00000 + 1.73205i 0.0495682 + 0.0858546i
\(408\) 11.4282 + 3.06218i 0.565780 + 0.151600i
\(409\) 2.24144 3.88229i 0.110832 0.191967i −0.805274 0.592903i \(-0.797982\pi\)
0.916106 + 0.400936i \(0.131315\pi\)
\(410\) −4.46410 + 7.73205i −0.220466 + 0.381859i
\(411\) −3.88229 14.4889i −0.191499 0.714684i
\(412\) 6.17449 + 10.6945i 0.304195 + 0.526882i
\(413\) 0 0
\(414\) 14.1962 + 8.19615i 0.697703 + 0.402819i
\(415\) −6.82309 −0.334932
\(416\) 0.896575 + 1.55291i 0.0439582 + 0.0761379i
\(417\) 0.973721 0.973721i 0.0476833 0.0476833i
\(418\) −0.586988 + 1.01669i −0.0287105 + 0.0497281i
\(419\) 18.0938 31.3393i 0.883939 1.53103i 0.0370132 0.999315i \(-0.488216\pi\)
0.846925 0.531712i \(-0.178451\pi\)
\(420\) 0 0
\(421\) −3.80385 6.58846i −0.185388 0.321102i 0.758319 0.651884i \(-0.226021\pi\)
−0.943707 + 0.330782i \(0.892688\pi\)
\(422\) 18.9282 0.921411
\(423\) 2.27362i 0.110547i
\(424\) 10.9282 0.530720
\(425\) 13.4164 + 23.2380i 0.650793 + 1.12721i
\(426\) −4.24264 15.8338i −0.205557 0.767148i
\(427\) 0 0
\(428\) 8.69615 15.0622i 0.420344 0.728058i
\(429\) 0.803848 + 0.215390i 0.0388101 + 0.0103991i
\(430\) −0.138701 0.240237i −0.00668874 0.0115852i
\(431\) −10.1436 −0.488600 −0.244300 0.969700i \(-0.578558\pi\)
−0.244300 + 0.969700i \(0.578558\pi\)
\(432\) 1.34486 5.01910i 0.0647048 0.241481i
\(433\) 19.8362 0.953265 0.476632 0.879103i \(-0.341857\pi\)
0.476632 + 0.879103i \(0.341857\pi\)
\(434\) 0 0
\(435\) −6.92820 1.85641i −0.332182 0.0890079i
\(436\) −2.46410 + 4.26795i −0.118009 + 0.204398i
\(437\) 11.9700 20.7327i 0.572605 0.991781i
\(438\) 2.42820 + 9.06218i 0.116024 + 0.433008i
\(439\) 9.79796 + 16.9706i 0.467631 + 0.809961i 0.999316 0.0369815i \(-0.0117743\pi\)
−0.531685 + 0.846942i \(0.678441\pi\)
\(440\) −0.277401 −0.0132246
\(441\) 0 0
\(442\) −12.2487 −0.582612
\(443\) −8.16025 14.1340i −0.387705 0.671525i 0.604435 0.796654i \(-0.293399\pi\)
−0.992140 + 0.125129i \(0.960066\pi\)
\(444\) −9.14162 + 9.14162i −0.433842 + 0.433842i
\(445\) 3.66025 6.33975i 0.173513 0.300533i
\(446\) −3.58630 + 6.21166i −0.169816 + 0.294130i
\(447\) −28.0812 + 28.0812i −1.32820 + 1.32820i
\(448\) 0 0
\(449\) 23.7846 1.12247 0.561233 0.827658i \(-0.310327\pi\)
0.561233 + 0.827658i \(0.310327\pi\)
\(450\) 10.2058 5.89230i 0.481105 0.277766i
\(451\) −2.31079 −0.108811
\(452\) 3.46410 + 6.00000i 0.162938 + 0.282216i
\(453\) −8.24504 30.7709i −0.387386 1.44574i
\(454\) −13.8325 + 23.9587i −0.649194 + 1.12444i
\(455\) 0 0
\(456\) −7.33013 1.96410i −0.343265 0.0919775i
\(457\) 15.5263 + 26.8923i 0.726289 + 1.25797i 0.958441 + 0.285290i \(0.0920898\pi\)
−0.232153 + 0.972679i \(0.574577\pi\)
\(458\) −0.480473 −0.0224510
\(459\) 25.0981 + 25.0981i 1.17148 + 1.17148i
\(460\) 5.65685 0.263752
\(461\) −5.51815 9.55772i −0.257006 0.445148i 0.708432 0.705779i \(-0.249403\pi\)
−0.965438 + 0.260631i \(0.916069\pi\)
\(462\) 0 0
\(463\) 15.3205 26.5359i 0.712004 1.23323i −0.252099 0.967701i \(-0.581121\pi\)
0.964104 0.265526i \(-0.0855457\pi\)
\(464\) 2.00000 3.46410i 0.0928477 0.160817i
\(465\) 3.10583 + 11.5911i 0.144029 + 0.537525i
\(466\) −0.0621778 0.107695i −0.00288033 0.00498888i
\(467\) −9.17878 −0.424744 −0.212372 0.977189i \(-0.568119\pi\)
−0.212372 + 0.977189i \(0.568119\pi\)
\(468\) 5.37945i 0.248665i
\(469\) 0 0
\(470\) 0.392305 + 0.679492i 0.0180957 + 0.0313426i
\(471\) 11.6603 11.6603i 0.537276 0.537276i
\(472\) −0.637756 + 1.10463i −0.0293551 + 0.0508446i
\(473\) 0.0358984 0.0621778i 0.00165061 0.00285894i
\(474\) −10.9348 + 10.9348i −0.502251 + 0.502251i
\(475\) −8.60540 14.9050i −0.394843 0.683888i
\(476\) 0 0
\(477\) 28.3923 + 16.3923i 1.29999 + 0.750552i
\(478\) 0.928203 0.0424550
\(479\) −2.07055 3.58630i −0.0946060 0.163862i 0.814838 0.579689i \(-0.196826\pi\)
−0.909444 + 0.415826i \(0.863492\pi\)
\(480\) −0.464102 1.73205i −0.0211832 0.0790569i
\(481\) 6.69213 11.5911i 0.305135 0.528509i
\(482\) 3.13801 5.43520i 0.142933 0.247567i
\(483\) 0 0
\(484\) 5.46410 + 9.46410i 0.248368 + 0.430186i
\(485\) 18.7846 0.852965
\(486\) 11.0227 11.0227i 0.500000 0.500000i
\(487\) −2.78461 −0.126183 −0.0630914 0.998008i \(-0.520096\pi\)
−0.0630914 + 0.998008i \(0.520096\pi\)
\(488\) −6.31319 10.9348i −0.285785 0.494994i
\(489\) −22.2856 5.97142i −1.00779 0.270037i
\(490\) 0 0
\(491\) −9.69615 + 16.7942i −0.437581 + 0.757913i −0.997502 0.0706330i \(-0.977498\pi\)
0.559921 + 0.828546i \(0.310831\pi\)
\(492\) −3.86603 14.4282i −0.174294 0.650474i
\(493\) 13.6617 + 23.6627i 0.615290 + 1.06571i
\(494\) 7.85641 0.353476
\(495\) −0.720710 0.416102i −0.0323935 0.0187024i
\(496\) −6.69213 −0.300486
\(497\) 0 0
\(498\) 8.07180 8.07180i 0.361706 0.361706i
\(499\) −16.6962 + 28.9186i −0.747422 + 1.29457i 0.201632 + 0.979461i \(0.435376\pi\)
−0.949054 + 0.315112i \(0.897958\pi\)
\(500\) 4.62158 8.00481i 0.206683 0.357986i
\(501\) 1.85641 1.85641i 0.0829381 0.0829381i
\(502\) 0.397520 + 0.688524i 0.0177422 + 0.0307303i
\(503\) 12.3490 0.550614 0.275307 0.961356i \(-0.411220\pi\)
0.275307 + 0.961356i \(0.411220\pi\)
\(504\) 0 0
\(505\) 5.07180 0.225692
\(506\) 0.732051 + 1.26795i 0.0325436 + 0.0563672i
\(507\) 4.38632 + 16.3700i 0.194803 + 0.727016i
\(508\) −6.73205 + 11.6603i −0.298686 + 0.517340i
\(509\) 10.7961 18.6993i 0.478527 0.828834i −0.521169 0.853453i \(-0.674504\pi\)
0.999697 + 0.0246194i \(0.00783740\pi\)
\(510\) 11.8313 + 3.17020i 0.523901 + 0.140379i
\(511\) 0 0
\(512\) 1.00000 0.0441942
\(513\) −16.0981 16.0981i −0.710747 0.710747i
\(514\) −10.0382 −0.442766
\(515\) 6.39230 + 11.0718i 0.281679 + 0.487882i
\(516\) 0.448288 + 0.120118i 0.0197348 + 0.00528791i
\(517\) −0.101536 + 0.175865i −0.00446555 + 0.00773455i
\(518\) 0 0
\(519\) 3.00000 + 11.1962i 0.131685 + 0.491457i
\(520\) 0.928203 + 1.60770i 0.0407044 + 0.0705021i
\(521\) 33.7752 1.47972 0.739860 0.672761i \(-0.234892\pi\)
0.739860 + 0.672761i \(0.234892\pi\)
\(522\) 10.3923 6.00000i 0.454859 0.262613i
\(523\) −20.7327 −0.906579 −0.453289 0.891363i \(-0.649750\pi\)
−0.453289 + 0.891363i \(0.649750\pi\)
\(524\) 5.46739 + 9.46979i 0.238844 + 0.413690i
\(525\) 0 0
\(526\) 4.26795 7.39230i 0.186091 0.322320i
\(527\) 22.8564 39.5885i 0.995641 1.72450i
\(528\) 0.328169 0.328169i 0.0142817 0.0142817i
\(529\) −3.42820 5.93782i −0.149052 0.258166i
\(530\) 11.3137 0.491436
\(531\) −3.31388 + 1.91327i −0.143810 + 0.0830288i
\(532\) 0 0
\(533\) 7.73205 + 13.3923i 0.334912 + 0.580085i
\(534\) 3.16987 + 11.8301i 0.137174 + 0.511940i
\(535\) 9.00292 15.5935i 0.389230 0.674166i
\(536\) −6.23205 + 10.7942i −0.269184 + 0.466240i
\(537\) 8.48528 + 2.27362i 0.366167 + 0.0981141i
\(538\) −2.82843 4.89898i −0.121942 0.211210i
\(539\) 0 0
\(540\) 1.39230 5.19615i 0.0599153 0.223607i
\(541\) 15.3205 0.658680 0.329340 0.944211i \(-0.393174\pi\)
0.329340 + 0.944211i \(0.393174\pi\)
\(542\) 6.55343 + 11.3509i 0.281494 + 0.487562i
\(543\) 28.3923 + 7.60770i 1.21843 + 0.326477i
\(544\) −3.41542 + 5.91567i −0.146435 + 0.253632i
\(545\) −2.55103 + 4.41851i −0.109274 + 0.189268i
\(546\) 0 0
\(547\) −17.1865 29.7679i −0.734843 1.27279i −0.954792 0.297274i \(-0.903922\pi\)
0.219949 0.975511i \(-0.429411\pi\)
\(548\) 8.66025 0.369948
\(549\) 37.8792i 1.61664i
\(550\) 1.05256 0.0448813
\(551\) −8.76268 15.1774i −0.373303 0.646579i
\(552\) −6.69213 + 6.69213i −0.284836 + 0.284836i
\(553\) 0 0
\(554\) −15.7321 + 27.2487i −0.668391 + 1.15769i
\(555\) −9.46410 + 9.46410i −0.401729 + 0.401729i
\(556\) 0.397520 + 0.688524i 0.0168586 + 0.0291999i
\(557\) −6.92820 −0.293557 −0.146779 0.989169i \(-0.546891\pi\)
−0.146779 + 0.989169i \(0.546891\pi\)
\(558\) −17.3867 10.0382i −0.736036 0.424951i
\(559\) −0.480473 −0.0203219
\(560\) 0 0
\(561\) 0.820508 + 3.06218i 0.0346419 + 0.129285i
\(562\) −8.92820 + 15.4641i −0.376614 + 0.652314i
\(563\) −9.12304 + 15.8016i −0.384490 + 0.665957i −0.991698 0.128586i \(-0.958956\pi\)
0.607208 + 0.794543i \(0.292289\pi\)
\(564\) −1.26795 0.339746i −0.0533903 0.0143059i
\(565\) 3.58630 + 6.21166i 0.150877 + 0.261326i
\(566\) 15.0759 0.633686
\(567\) 0 0
\(568\) 9.46410 0.397105
\(569\) 12.8923 + 22.3301i 0.540474 + 0.936128i 0.998877 + 0.0473833i \(0.0150882\pi\)
−0.458403 + 0.888744i \(0.651578\pi\)
\(570\) −7.58871 2.03339i −0.317856 0.0851692i
\(571\) 16.5263 28.6244i 0.691603 1.19789i −0.279709 0.960085i \(-0.590238\pi\)
0.971312 0.237807i \(-0.0764286\pi\)
\(572\) −0.240237 + 0.416102i −0.0100448 + 0.0173981i
\(573\) −6.69213 24.9754i −0.279568 1.04336i
\(574\) 0 0
\(575\) −21.4641 −0.895115
\(576\) 2.59808 + 1.50000i 0.108253 + 0.0625000i
\(577\) 27.4892 1.14439 0.572196 0.820117i \(-0.306092\pi\)
0.572196 + 0.820117i \(0.306092\pi\)
\(578\) −14.8301 25.6865i −0.616852 1.06842i
\(579\) −18.4355 + 18.4355i −0.766155 + 0.766155i
\(580\) 2.07055 3.58630i 0.0859750 0.148913i
\(581\) 0 0
\(582\) −22.2224 + 22.2224i −0.921149 + 0.921149i
\(583\) 1.46410 + 2.53590i 0.0606369 + 0.105026i
\(584\) −5.41662 −0.224141
\(585\) 5.56922i 0.230259i
\(586\) 9.24316 0.381831
\(587\) −20.9408 36.2705i −0.864319 1.49704i −0.867722 0.497049i \(-0.834417\pi\)
0.00340370 0.999994i \(-0.498917\pi\)
\(588\) 0 0
\(589\) −14.6603 + 25.3923i −0.604065 + 1.04627i
\(590\) −0.660254 + 1.14359i −0.0271822 + 0.0470810i
\(591\) −28.3214 7.58871i −1.16499 0.312158i
\(592\) −3.73205 6.46410i −0.153386 0.265673i
\(593\) −16.8690 −0.692728 −0.346364 0.938100i \(-0.612584\pi\)
−0.346364 + 0.938100i \(0.612584\pi\)
\(594\) 1.34486 0.360355i 0.0551804 0.0147855i
\(595\) 0 0
\(596\) −11.4641 19.8564i −0.469588 0.813350i
\(597\) −43.9808 11.7846i −1.80001 0.482312i
\(598\) 4.89898 8.48528i 0.200334 0.346989i
\(599\) −2.39230 + 4.14359i −0.0977469 + 0.169303i −0.910752 0.412954i \(-0.864497\pi\)
0.813005 + 0.582257i \(0.197830\pi\)
\(600\) 1.76097 + 6.57201i 0.0718911 + 0.268301i
\(601\) −1.67303 2.89778i −0.0682444 0.118203i 0.829884 0.557936i \(-0.188406\pi\)
−0.898129 + 0.439733i \(0.855073\pi\)
\(602\) 0 0
\(603\) −32.3827 + 18.6962i −1.31872 + 0.761366i
\(604\) 18.3923 0.748372
\(605\) 5.65685 + 9.79796i 0.229984 + 0.398344i
\(606\) −6.00000 + 6.00000i −0.243733 + 0.243733i
\(607\) −1.13681 + 1.96902i −0.0461418 + 0.0799199i −0.888174 0.459507i \(-0.848026\pi\)
0.842032 + 0.539427i \(0.181359\pi\)
\(608\) 2.19067 3.79435i 0.0888434 0.153881i
\(609\) 0 0
\(610\) −6.53590 11.3205i −0.264631 0.458354i
\(611\) 1.35898 0.0549786
\(612\) −17.7470 + 10.2462i −0.717381 + 0.414180i
\(613\) 24.9282 1.00684 0.503420 0.864042i \(-0.332075\pi\)
0.503420 + 0.864042i \(0.332075\pi\)
\(614\) 0.586988 + 1.01669i 0.0236889 + 0.0410304i
\(615\) −4.00240 14.9372i −0.161393 0.602325i
\(616\) 0 0
\(617\) 1.57180 2.72243i 0.0632782 0.109601i −0.832651 0.553798i \(-0.813178\pi\)
0.895929 + 0.444197i \(0.146511\pi\)
\(618\) −20.6603 5.53590i −0.831077 0.222686i
\(619\) −15.8523 27.4570i −0.637159 1.10359i −0.986053 0.166430i \(-0.946776\pi\)
0.348894 0.937162i \(-0.386557\pi\)
\(620\) −6.92820 −0.278243
\(621\) −27.4249 + 7.34847i −1.10052 + 0.294884i
\(622\) 7.45001 0.298718
\(623\) 0 0
\(624\) −3.00000 0.803848i −0.120096 0.0321797i
\(625\) −5.03590 + 8.72243i −0.201436 + 0.348897i
\(626\) 3.13801 5.43520i 0.125420 0.217234i
\(627\) −0.526279 1.96410i −0.0210176 0.0784387i
\(628\) 4.76028 + 8.24504i 0.189956 + 0.329013i
\(629\) 50.9860 2.03295
\(630\) 0 0
\(631\) −19.7128 −0.784755 −0.392377 0.919804i \(-0.628347\pi\)
−0.392377 + 0.919804i \(0.628347\pi\)
\(632\) −4.46410 7.73205i −0.177572 0.307564i
\(633\) −23.1822 + 23.1822i −0.921411 + 0.921411i
\(634\) 13.0000 22.5167i 0.516296 0.894251i
\(635\) −6.96953 + 12.0716i −0.276577 + 0.479046i
\(636\) −13.3843 + 13.3843i −0.530720 + 0.530720i
\(637\) 0 0
\(638\) 1.07180 0.0424328
\(639\) 24.5885 + 14.1962i 0.972704 + 0.561591i
\(640\) 1.03528 0.0409229
\(641\) −2.03590 3.52628i −0.0804132 0.139280i 0.823014 0.568021i \(-0.192291\pi\)
−0.903427 + 0.428741i \(0.858957\pi\)
\(642\) 7.79676 + 29.0979i 0.307713 + 1.14840i
\(643\) −22.4565 + 38.8959i −0.885599 + 1.53390i −0.0405737 + 0.999177i \(0.512919\pi\)
−0.845025 + 0.534726i \(0.820415\pi\)
\(644\) 0 0
\(645\) 0.464102 + 0.124356i 0.0182740 + 0.00489650i
\(646\) 14.9641 + 25.9186i 0.588755 + 1.01975i
\(647\) −21.8695 −0.859780 −0.429890 0.902881i \(-0.641448\pi\)
−0.429890 + 0.902881i \(0.641448\pi\)
\(648\) 4.50000 + 7.79423i 0.176777 + 0.306186i
\(649\) −0.341773 −0.0134157
\(650\) −3.52193 6.10016i −0.138141 0.239268i
\(651\) 0 0
\(652\) 6.66025 11.5359i 0.260836 0.451781i
\(653\) −3.00000 + 5.19615i −0.117399 + 0.203341i −0.918736 0.394872i \(-0.870789\pi\)
0.801337 + 0.598213i \(0.204122\pi\)
\(654\) −2.20925 8.24504i −0.0863886 0.322407i
\(655\) 5.66025 + 9.80385i 0.221164 + 0.383068i
\(656\) 8.62398 0.336710
\(657\) −14.0728 8.12493i −0.549032 0.316984i
\(658\) 0 0
\(659\) 24.1244 + 41.7846i 0.939751 + 1.62770i 0.765934 + 0.642919i \(0.222277\pi\)
0.173818 + 0.984778i \(0.444390\pi\)
\(660\) 0.339746 0.339746i 0.0132246 0.0132246i
\(661\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(662\) 5.73205 9.92820i 0.222782 0.385871i
\(663\) 15.0015 15.0015i 0.582612 0.582612i
\(664\) 3.29530 + 5.70762i 0.127882 + 0.221499i
\(665\) 0 0
\(666\) 22.3923i 0.867684i
\(667\) −21.8564 −0.846283
\(668\) 0.757875 + 1.31268i 0.0293231 + 0.0507890i
\(669\) −3.21539 12.0000i −0.124314 0.463947i
\(670\) −6.45189 + 11.1750i −0.249258 + 0.431728i
\(671\) 1.69161 2.92996i 0.0653041 0.113110i
\(672\) 0 0
\(673\) −20.7846 36.0000i −0.801188 1.38770i −0.918835 0.394643i \(-0.870868\pi\)
0.117647 0.993055i \(-0.462465\pi\)
\(674\) −7.00000 −0.269630
\(675\) −5.28290 + 19.7160i −0.203339 + 0.758871i
\(676\) −9.78461 −0.376331
\(677\) −2.68973 4.65874i −0.103375 0.179050i 0.809698 0.586846i \(-0.199631\pi\)
−0.913073 + 0.407796i \(0.866297\pi\)
\(678\) −11.5911 3.10583i −0.445154 0.119279i
\(679\) 0 0
\(680\) −3.53590 + 6.12436i −0.135596 + 0.234858i
\(681\) −12.4019 46.2846i −0.475243 1.77363i
\(682\) −0.896575 1.55291i −0.0343316 0.0594642i
\(683\) −38.3205 −1.46629 −0.733147 0.680070i \(-0.761949\pi\)
−0.733147 + 0.680070i \(0.761949\pi\)
\(684\) 11.3831 6.57201i 0.435242 0.251287i
\(685\) 8.96575 0.342564
\(686\) 0 0
\(687\) 0.588457 0.588457i 0.0224510 0.0224510i
\(688\) −0.133975 + 0.232051i −0.00510773 + 0.00884685i
\(689\) 9.79796 16.9706i 0.373273 0.646527i
\(690\) −6.92820 + 6.92820i −0.263752 + 0.263752i
\(691\) 12.1595 + 21.0609i 0.462570 + 0.801194i 0.999088 0.0426942i \(-0.0135941\pi\)
−0.536518 + 0.843889i \(0.680261\pi\)
\(692\) −6.69213 −0.254397
\(693\) 0 0
\(694\) −9.58846 −0.363973
\(695\) 0.411543 + 0.712813i 0.0156107 + 0.0270385i
\(696\) 1.79315 + 6.69213i 0.0679692 + 0.253665i
\(697\) −29.4545 + 51.0167i −1.11567 + 1.93239i
\(698\) −4.00240 + 6.93237i −0.151493 + 0.262394i
\(699\) 0.208051 + 0.0557471i 0.00786921 + 0.00210855i
\(700\) 0 0
\(701\) −20.7846 −0.785024 −0.392512 0.919747i \(-0.628394\pi\)
−0.392512 + 0.919747i \(0.628394\pi\)
\(702\) −6.58846 6.58846i −0.248665 0.248665i
\(703\) −32.7028 −1.23341
\(704\) 0.133975 + 0.232051i 0.00504936 + 0.00874574i
\(705\) −1.31268 0.351731i −0.0494383 0.0132470i
\(706\) 12.5063 21.6615i 0.470680 0.815241i
\(707\) 0 0
\(708\) −0.571797 2.13397i −0.0214894 0.0801997i
\(709\) 6.19615 + 10.7321i 0.232701 + 0.403051i 0.958602 0.284749i \(-0.0919102\pi\)
−0.725901 + 0.687799i \(0.758577\pi\)
\(710\) 9.79796 0.367711
\(711\) 26.7846i 1.00450i
\(712\) −7.07107 −0.264999
\(713\) 18.2832 + 31.6675i 0.684713 + 1.18596i
\(714\) 0 0
\(715\) −0.248711 + 0.430781i −0.00930128 + 0.0161103i
\(716\) −2.53590 + 4.39230i −0.0947710 + 0.164148i
\(717\) −1.13681 + 1.13681i −0.0424550 + 0.0424550i
\(718\) −3.73205 6.46410i −0.139279 0.241238i
\(719\) 49.6733 1.85250 0.926251 0.376906i \(-0.123012\pi\)
0.926251 + 0.376906i \(0.123012\pi\)
\(720\) 2.68973 + 1.55291i 0.100240 + 0.0578737i
\(721\) 0 0
\(722\) −0.0980762 0.169873i −0.00365002 0.00632202i
\(723\) 2.81347 + 10.5000i 0.104634 + 0.390499i
\(724\) −8.48528 + 14.6969i −0.315353 + 0.546207i
\(725\) −7.85641 + 13.6077i −0.291780 + 0.505377i
\(726\) −18.2832 4.89898i −0.678555 0.181818i
\(727\) 16.3514 + 28.3214i 0.606439 + 1.05038i 0.991822 + 0.127627i \(0.0407361\pi\)
−0.385383 + 0.922757i \(0.625931\pi\)
\(728\) 0 0
\(729\) 27.0000i 1.00000i
\(730\) −5.60770 −0.207550
\(731\) −0.915158 1.58510i −0.0338483 0.0586270i
\(732\) 21.1244 + 5.66025i 0.780779 + 0.209209i
\(733\) 4.00240 6.93237i 0.147832 0.256053i −0.782594 0.622533i \(-0.786104\pi\)
0.930426 + 0.366480i \(0.119437\pi\)
\(734\) 9.28032 16.0740i 0.342543 0.593302i
\(735\) 0 0
\(736\) −2.73205 4.73205i −0.100705 0.174426i
\(737\) −3.33975 −0.123021
\(738\) 22.4058 + 12.9360i 0.824768 + 0.476180i
\(739\) 6.12436 0.225288 0.112644 0.993635i \(-0.464068\pi\)
0.112644 + 0.993635i \(0.464068\pi\)
\(740\) −3.86370 6.69213i −0.142033 0.246008i
\(741\) −9.62209 + 9.62209i −0.353476 + 0.353476i
\(742\) 0 0
\(743\) 15.7846 27.3397i 0.579081 1.00300i −0.416504 0.909134i \(-0.636745\pi\)
0.995585 0.0938641i \(-0.0299219\pi\)
\(744\) 8.19615 8.19615i 0.300486 0.300486i
\(745\) −11.8685 20.5569i −0.434829 0.753145i
\(746\) −10.7846 −0.394853
\(747\) 19.7718i 0.723412i
\(748\) −1.83032 −0.0669230
\(749\) 0 0
\(750\) 4.14359 + 15.4641i 0.151303 + 0.564669i
\(751\) −17.3923 + 30.1244i −0.634654 + 1.09925i 0.351934 + 0.936025i \(0.385524\pi\)
−0.986588 + 0.163229i \(0.947809\pi\)
\(752\) 0.378937 0.656339i 0.0138184 0.0239342i
\(753\) −1.33013 0.356406i −0.0484725 0.0129882i
\(754\) −3.58630 6.21166i −0.130605 0.226215i
\(755\) 19.0411 0.692977
\(756\) 0 0
\(757\) 19.3205 0.702216 0.351108 0.936335i \(-0.385805\pi\)
0.351108 + 0.936335i \(0.385805\pi\)
\(758\) −6.79423 11.7679i −0.246777 0.427431i
\(759\) −2.44949 0.656339i −0.0889108 0.0238236i
\(760\) 2.26795 3.92820i 0.0822672 0.142491i
\(761\) −20.1272 + 34.8613i −0.729609 + 1.26372i 0.227440 + 0.973792i \(0.426965\pi\)
−0.957049 + 0.289928i \(0.906369\pi\)
\(762\) −6.03579 22.5259i −0.218654 0.816027i
\(763\) 0 0
\(764\) 14.9282 0.540083
\(765\) −18.3731 + 10.6077i −0.664280 + 0.383522i
\(766\) −27.3233 −0.987232
\(767\) 1.14359 + 1.98076i 0.0412928 + 0.0715212i
\(768\) −1.22474 + 1.22474i −0.0441942 + 0.0441942i
\(769\) 19.0919 33.0681i 0.688471 1.19247i −0.283862 0.958865i \(-0.591616\pi\)
0.972332 0.233601i \(-0.0750511\pi\)
\(770\) 0 0
\(771\) 12.2942 12.2942i 0.442766 0.442766i
\(772\) −7.52628 13.0359i −0.270877 0.469172i
\(773\) −39.3949 −1.41694 −0.708468 0.705743i \(-0.750613\pi\)
−0.708468 + 0.705743i \(0.750613\pi\)
\(774\) −0.696152 + 0.401924i −0.0250227 + 0.0144469i
\(775\) 26.2880 0.944295
\(776\) −9.07227 15.7136i −0.325676 0.564087i
\(777\) 0 0
\(778\) −4.00000 + 6.92820i −0.143407 + 0.248388i
\(779\) 18.8923 32.7224i 0.676887 1.17240i
\(780\) −3.10583 0.832204i −0.111207 0.0297977i
\(781\) 1.26795 + 2.19615i 0.0453708 + 0.0785845i
\(782\) 37.3244 1.33472
\(783\) −5.37945 + 20.0764i −0.192246 + 0.717472i
\(784\) 0 0
\(785\) 4.92820 + 8.53590i 0.175895 + 0.304659i
\(786\) −18.2942 4.90192i −0.652534 0.174846i
\(787\) 3.57270 6.18810i 0.127353 0.220582i −0.795297 0.606220i \(-0.792685\pi\)
0.922650 + 0.385638i \(0.126019\pi\)
\(788\) 8.46410 14.6603i 0.301521 0.522250i
\(789\) 3.82654 + 14.2808i 0.136228 + 0.508411i
\(790\) −4.62158 8.00481i −0.164428 0.284798i
\(791\) 0 0
\(792\) 0.803848i 0.0285635i
\(793\) −22.6410 −0.804006
\(794\) 6.55343 + 11.3509i 0.232573 + 0.402827i
\(795\) −13.8564 + 13.8564i −0.491436 + 0.491436i
\(796\) 13.1440 22.7661i 0.465878 0.806924i
\(797\) −18.9396 + 32.8043i −0.670874 + 1.16199i 0.306782 + 0.951780i \(0.400748\pi\)
−0.977657 + 0.210209i \(0.932586\pi\)
\(798\) 0 0
\(799\) 2.58846 + 4.48334i 0.0915730 + 0.158609i
\(800\) −3.92820 −0.138883
\(801\) −18.3712 10.6066i −0.649113 0.374766i
\(802\) −23.7846 −0.839864
\(803\) −0.725689 1.25693i −0.0256090 0.0443561i
\(804\) −5.58750 20.8528i −0.197056 0.735423i
\(805\) 0 0
\(806\) −6.00000 + 10.3923i −0.211341 + 0.366053i
\(807\) 9.46410 + 2.53590i 0.333152 + 0.0892679i
\(808\) −2.44949 4.24264i −0.0861727 0.149256i
\(809\) −29.7321 −1.04532 −0.522662 0.852540i \(-0.675061\pi\)
−0.522662 + 0.852540i \(0.675061\pi\)
\(810\) 4.65874 + 8.06918i 0.163692 + 0.283522i
\(811\) 24.9110 0.874744 0.437372 0.899281i \(-0.355909\pi\)
0.437372 + 0.899281i \(0.355909\pi\)
\(812\) 0 0
\(813\) −21.9282 5.87564i −0.769056 0.206068i
\(814\) 1.00000 1.73205i 0.0350500 0.0607083i
\(815\) 6.89520 11.9428i 0.241528 0.418339i
\(816\) −3.06218 11.4282i −0.107198 0.400067i
\(817\) 0.586988 + 1.01669i 0.0205361 + 0.0355696i
\(818\) −4.48288 −0.156740
\(819\) 0 0
\(820\) 8.92820 0.311786
\(821\) −5.19615 9.00000i −0.181347 0.314102i 0.760993 0.648761i \(-0.224712\pi\)
−0.942339 + 0.334659i \(0.891379\pi\)
\(822\) −10.6066 + 10.6066i −0.369948 + 0.369948i
\(823\) 5.39230 9.33975i 0.187964 0.325563i −0.756607 0.653870i \(-0.773145\pi\)
0.944571 + 0.328306i \(0.106478\pi\)
\(824\) 6.17449 10.6945i 0.215099 0.372562i
\(825\) −1.28912 + 1.28912i −0.0448813 + 0.0448813i
\(826\) 0 0
\(827\) −12.0000 −0.417281 −0.208640 0.977992i \(-0.566904\pi\)
−0.208640 + 0.977992i \(0.566904\pi\)
\(828\) 16.3923i 0.569672i
\(829\) −7.93048 −0.275437 −0.137718 0.990471i \(-0.543977\pi\)
−0.137718 + 0.990471i \(0.543977\pi\)
\(830\) 3.41154 + 5.90897i 0.118416 + 0.205103i
\(831\) −14.1050 52.6405i −0.489296 1.82608i
\(832\) 0.896575 1.55291i 0.0310832 0.0538376i
\(833\) 0 0
\(834\) −1.33013 0.356406i −0.0460585 0.0123413i
\(835\) 0.784610 + 1.35898i 0.0271525 + 0.0470296i
\(836\) 1.17398 0.0406028
\(837\) 33.5885 9.00000i 1.16099 0.311086i
\(838\) −36.1875 −1.25008
\(839\) 11.3137 + 19.5959i 0.390593 + 0.676526i 0.992528 0.122019i \(-0.0389368\pi\)
−0.601935 + 0.798545i \(0.705603\pi\)
\(840\) 0 0
\(841\) 6.50000 11.2583i 0.224138 0.388218i
\(842\) −3.80385 + 6.58846i −0.131089 + 0.227053i
\(843\) −8.00481 29.8744i −0.275700 1.02893i
\(844\) −9.46410 16.3923i −0.325768 0.564246i
\(845\) −10.1298 −0.348475
\(846\) 1.96902 1.13681i 0.0676962 0.0390844i
\(847\) 0 0
\(848\) −5.46410 9.46410i −0.187638 0.324999i
\(849\) −18.4641 + 18.4641i −0.633686 + 0.633686i
\(850\) 13.4164 23.2380i 0.460180 0.797056i
\(851\) −20.3923 + 35.3205i −0.699039 + 1.21077i
\(852\) −11.5911 + 11.5911i −0.397105 + 0.397105i
\(853\) 16.4901 + 28.5617i 0.564610 + 0.977933i 0.997086 + 0.0762876i \(0.0243067\pi\)
−0.432476 + 0.901645i \(0.642360\pi\)
\(854\) 0 0
\(855\) 11.7846 6.80385i 0.403025 0.232687i
\(856\) −17.3923 −0.594457
\(857\) −5.60609 9.71003i −0.191500 0.331688i 0.754247 0.656590i \(-0.228002\pi\)
−0.945748 + 0.324902i \(0.894669\pi\)
\(858\) −0.215390 0.803848i −0.00735330 0.0274429i
\(859\) −20.8021 + 36.0303i −0.709758 + 1.22934i 0.255189 + 0.966891i \(0.417862\pi\)
−0.964947 + 0.262445i \(0.915471\pi\)
\(860\) −0.138701 + 0.240237i −0.00472965 + 0.00819200i
\(861\) 0 0
\(862\) 5.07180 + 8.78461i 0.172746 + 0.299205i
\(863\) −54.1051 −1.84176 −0.920880 0.389847i \(-0.872528\pi\)
−0.920880 + 0.389847i \(0.872528\pi\)
\(864\) −5.01910 + 1.34486i −0.170753 + 0.0457532i
\(865\) −6.92820 −0.235566
\(866\) −9.91808 17.1786i −0.337030 0.583753i
\(867\) 49.6226 + 13.2963i 1.68527 + 0.451567i
\(868\) 0 0
\(869\) 1.19615 2.07180i 0.0405767 0.0702809i
\(870\) 1.85641 + 6.92820i 0.0629381 + 0.234888i
\(871\) 11.1750 + 19.3557i 0.378651 + 0.655842i
\(872\) 4.92820 0.166890
\(873\) 54.4336i 1.84230i
\(874\) −23.9401 −0.809786
\(875\) 0 0
\(876\) 6.63397 6.63397i 0.224141 0.224141i
\(877\) 14.5885 25.2679i 0.492617 0.853238i −0.507347 0.861742i \(-0.669374\pi\)
0.999964 + 0.00850405i \(0.00270695\pi\)
\(878\) 9.79796 16.9706i 0.330665 0.572729i
\(879\) −11.3205 + 11.3205i −0.381831 + 0.381831i
\(880\) 0.138701 + 0.240237i 0.00467560 + 0.00809838i
\(881\) 12.7279 0.428815 0.214407 0.976744i \(-0.431218\pi\)
0.214407 + 0.976744i \(0.431218\pi\)
\(882\) 0 0
\(883\) 14.4641 0.486756 0.243378 0.969932i \(-0.421744\pi\)
0.243378 + 0.969932i \(0.421744\pi\)
\(884\) 6.12436 + 10.6077i 0.205984 + 0.356775i
\(885\) −0.591968 2.20925i −0.0198988 0.0742632i
\(886\) −8.16025 + 14.1340i −0.274149 + 0.474840i
\(887\) 26.6298 46.1242i 0.894142 1.54870i 0.0592788 0.998241i \(-0.481120\pi\)
0.834863 0.550458i \(-0.185547\pi\)
\(888\) 12.4877 + 3.34607i 0.419059 + 0.112287i
\(889\) 0 0
\(890\) −7.32051 −0.245384
\(891\) −1.20577 + 2.08846i −0.0403949 + 0.0699660i
\(892\) 7.17260 0.240157
\(893\) −1.66025 2.87564i −0.0555583 0.0962298i
\(894\) 38.3596 + 10.2784i 1.28294 + 0.343762i
\(895\) −2.62536 + 4.54725i −0.0877559 + 0.151998i
\(896\) 0 0
\(897\) 4.39230 + 16.3923i 0.146655 + 0.547323i
\(898\) −11.8923 20.5981i −0.396851 0.687367i
\(899\) 26.7685 0.892780
\(900\) −10.2058 5.89230i −0.340192 0.196410i
\(901\) 74.6487 2.48691
\(902\) 1.15539 + 2.00120i 0.0384704 + 0.0666327i
\(903\) 0 0
\(904\) 3.46410 6.00000i 0.115214 0.199557i
\(905\) −8.78461 + 15.2154i −0.292010 + 0.505777i
\(906\) −22.5259 + 22.5259i −0.748372 + 0.748372i
\(907\) 2.62436 + 4.54552i 0.0871403 + 0.150931i 0.906301 0.422632i \(-0.138894\pi\)
−0.819161 + 0.573564i \(0.805560\pi\)
\(908\) 27.6651 0.918098
\(909\) 14.6969i 0.487467i
\(910\) 0 0
\(911\) 16.5359 + 28.6410i 0.547859 + 0.948919i 0.998421 + 0.0561742i \(0.0178902\pi\)
−0.450562 + 0.892745i \(0.648776\pi\)
\(912\) 1.96410 + 7.33013i 0.0650379 + 0.242725i
\(913\) −0.882972 + 1.52935i −0.0292221 + 0.0506142i
\(914\) 15.5263 26.8923i 0.513564 0.889518i
\(915\) 21.8695 + 5.85993i 0.722985 + 0.193723i
\(916\) 0.240237 + 0.416102i 0.00793764 + 0.0137484i
\(917\) 0 0
\(918\) 9.18653 34.2846i 0.303201 1.13156i
\(919\) 9.07180 0.299251 0.149625 0.988743i \(-0.452193\pi\)
0.149625 + 0.988743i \(0.452193\pi\)
\(920\) −2.82843 4.89898i −0.0932505 0.161515i
\(921\) −1.96410 0.526279i −0.0647193 0.0173415i
\(922\) −5.51815 + 9.55772i −0.181731 + 0.314767i
\(923\) 8.48528 14.6969i 0.279296 0.483756i
\(924\) 0 0
\(925\) 14.6603 + 25.3923i 0.482026 + 0.834894i
\(926\) −30.6410 −1.00693
\(927\) 32.0836 18.5235i 1.05376 0.608391i
\(928\) −4.00000 −0.131306
\(929\) 15.4040 + 26.6806i 0.505390 + 0.875362i 0.999981 + 0.00623544i \(0.00198482\pi\)
−0.494590 + 0.869126i \(0.664682\pi\)
\(930\) 8.48528 8.48528i 0.278243 0.278243i
\(931\) 0 0
\(932\) −0.0621778 + 0.107695i −0.00203670 + 0.00352767i
\(933\) −9.12436 + 9.12436i −0.298718 + 0.298718i
\(934\) 4.58939 + 7.94906i 0.150170 + 0.260101i
\(935\) −1.89488 −0.0619693
\(936\) 4.65874 2.68973i 0.152276 0.0879165i
\(937\) 9.89949 0.323402 0.161701 0.986840i \(-0.448302\pi\)
0.161701 + 0.986840i \(0.448302\pi\)
\(938\) 0 0
\(939\) 2.81347 + 10.5000i 0.0918140 + 0.342655i
\(940\) 0.392305 0.679492i 0.0127956 0.0221626i
\(941\) −23.9401 + 41.4655i −0.780425 + 1.35174i 0.151270 + 0.988493i \(0.451664\pi\)
−0.931694 + 0.363243i \(0.881670\pi\)
\(942\) −15.9282 4.26795i −0.518969 0.139057i
\(943\) −23.5612 40.8091i −0.767257 1.32893i
\(944\) 1.27551 0.0415144
\(945\) 0 0
\(946\) −0.0717968 −0.00233431
\(947\) 9.06218 + 15.6962i 0.294481 + 0.510056i 0.974864 0.222800i \(-0.0715198\pi\)
−0.680383 + 0.732857i \(0.738186\pi\)
\(948\) 14.9372 + 4.00240i 0.485137 + 0.129992i
\(949\) −4.85641 + 8.41154i −0.157646 + 0.273050i
\(950\) −8.60540 + 14.9050i −0.279196 + 0.483582i
\(951\) 11.6555 + 43.4988i 0.377955 + 1.41055i
\(952\) 0 0
\(953\) 19.0000 0.615470 0.307735 0.951472i \(-0.400429\pi\)
0.307735 + 0.951472i \(0.400429\pi\)
\(954\) 32.7846i 1.06144i
\(955\) 15.4548 0.500106
\(956\) −0.464102 0.803848i −0.0150101 0.0259983i
\(957\) −1.31268 + 1.31268i −0.0424328 + 0.0424328i
\(958\) −2.07055 + 3.58630i −0.0668965 + 0.115868i
\(959\) 0 0
\(960\) −1.26795 + 1.26795i −0.0409229 + 0.0409229i
\(961\) −6.89230 11.9378i −0.222332 0.385091i
\(962\) −13.3843 −0.431526
\(963\) −45.1865 26.0885i −1.45612 0.840689i
\(964\) −6.27603 −0.202137
\(965\) −7.79178 13.4958i −0.250826 0.434444i
\(966\) 0 0
\(967\) 23.7846 41.1962i 0.764861 1.32478i −0.175458 0.984487i \(-0.556141\pi\)
0.940320 0.340292i \(-0.110526\pi\)
\(968\) 5.46410 9.46410i 0.175623 0.304188i
\(969\) −50.0709 13.4164i −1.60851 0.430998i
\(970\) −9.39230 16.2679i −0.301569 0.522332i
\(971\) −31.2886 −1.00410 −0.502049 0.864839i \(-0.667420\pi\)
−0.502049 + 0.864839i \(0.667420\pi\)
\(972\) −15.0573 4.03459i −0.482963 0.129410i
\(973\) 0 0
\(974\) 1.39230 + 2.41154i 0.0446123 + 0.0772708i
\(975\) 11.7846 + 3.15768i 0.377410 + 0.101127i
\(976\) −6.31319 + 10.9348i −0.202080 + 0.350013i
\(977\) −0.990381 + 1.71539i −0.0316851 + 0.0548802i −0.881433 0.472309i \(-0.843421\pi\)
0.849748 + 0.527189i \(0.176754\pi\)
\(978\) 5.97142 + 22.2856i 0.190945 + 0.712616i
\(979\) −0.947343 1.64085i −0.0302772 0.0524417i
\(980\) 0 0
\(981\) 12.8038 + 7.39230i 0.408795 + 0.236018i
\(982\) 19.3923 0.618833
\(983\) 6.31319 + 10.9348i 0.201360 + 0.348765i 0.948967 0.315376i \(-0.102131\pi\)
−0.747607 + 0.664141i \(0.768797\pi\)
\(984\) −10.5622 + 10.5622i −0.336710 + 0.336710i
\(985\) 8.76268 15.1774i 0.279202 0.483593i
\(986\) 13.6617 23.6627i 0.435076 0.753574i
\(987\) 0 0
\(988\) −3.92820 6.80385i −0.124973 0.216459i
\(989\) 1.46410 0.0465557
\(990\) 0.832204i 0.0264492i
\(991\) 50.2487 1.59620 0.798101 0.602523i \(-0.205838\pi\)
0.798101 + 0.602523i \(0.205838\pi\)
\(992\) 3.34607 + 5.79555i 0.106238 + 0.184009i
\(993\) 5.13922 + 19.1798i 0.163088 + 0.608653i
\(994\) 0 0
\(995\) 13.6077 23.5692i 0.431393 0.747194i
\(996\) −11.0263 2.95448i −0.349381 0.0936164i
\(997\) −18.8009 32.5641i −0.595430 1.03131i −0.993486 0.113954i \(-0.963648\pi\)
0.398056 0.917361i \(-0.369685\pi\)
\(998\) 33.3923 1.05701
\(999\) 27.4249 + 27.4249i 0.867684 + 0.867684i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 882.2.f.q.589.4 yes 8
3.2 odd 2 2646.2.f.r.1765.3 8
7.2 even 3 882.2.h.q.67.2 8
7.3 odd 6 882.2.e.s.373.3 8
7.4 even 3 882.2.e.s.373.2 8
7.5 odd 6 882.2.h.q.67.3 8
7.6 odd 2 inner 882.2.f.q.589.1 yes 8
9.2 odd 6 2646.2.f.r.883.3 8
9.4 even 3 7938.2.a.cp.1.3 4
9.5 odd 6 7938.2.a.ci.1.2 4
9.7 even 3 inner 882.2.f.q.295.4 yes 8
21.2 odd 6 2646.2.h.t.361.2 8
21.5 even 6 2646.2.h.t.361.3 8
21.11 odd 6 2646.2.e.q.1549.3 8
21.17 even 6 2646.2.e.q.1549.2 8
21.20 even 2 2646.2.f.r.1765.2 8
63.2 odd 6 2646.2.e.q.2125.3 8
63.11 odd 6 2646.2.h.t.667.2 8
63.13 odd 6 7938.2.a.cp.1.2 4
63.16 even 3 882.2.e.s.655.2 8
63.20 even 6 2646.2.f.r.883.2 8
63.25 even 3 882.2.h.q.79.1 8
63.34 odd 6 inner 882.2.f.q.295.1 8
63.38 even 6 2646.2.h.t.667.3 8
63.41 even 6 7938.2.a.ci.1.3 4
63.47 even 6 2646.2.e.q.2125.2 8
63.52 odd 6 882.2.h.q.79.4 8
63.61 odd 6 882.2.e.s.655.3 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
882.2.e.s.373.2 8 7.4 even 3
882.2.e.s.373.3 8 7.3 odd 6
882.2.e.s.655.2 8 63.16 even 3
882.2.e.s.655.3 8 63.61 odd 6
882.2.f.q.295.1 8 63.34 odd 6 inner
882.2.f.q.295.4 yes 8 9.7 even 3 inner
882.2.f.q.589.1 yes 8 7.6 odd 2 inner
882.2.f.q.589.4 yes 8 1.1 even 1 trivial
882.2.h.q.67.2 8 7.2 even 3
882.2.h.q.67.3 8 7.5 odd 6
882.2.h.q.79.1 8 63.25 even 3
882.2.h.q.79.4 8 63.52 odd 6
2646.2.e.q.1549.2 8 21.17 even 6
2646.2.e.q.1549.3 8 21.11 odd 6
2646.2.e.q.2125.2 8 63.47 even 6
2646.2.e.q.2125.3 8 63.2 odd 6
2646.2.f.r.883.2 8 63.20 even 6
2646.2.f.r.883.3 8 9.2 odd 6
2646.2.f.r.1765.2 8 21.20 even 2
2646.2.f.r.1765.3 8 3.2 odd 2
2646.2.h.t.361.2 8 21.2 odd 6
2646.2.h.t.361.3 8 21.5 even 6
2646.2.h.t.667.2 8 63.11 odd 6
2646.2.h.t.667.3 8 63.38 even 6
7938.2.a.ci.1.2 4 9.5 odd 6
7938.2.a.ci.1.3 4 63.41 even 6
7938.2.a.cp.1.2 4 63.13 odd 6
7938.2.a.cp.1.3 4 9.4 even 3