Properties

Label 882.2.e
Level $882$
Weight $2$
Character orbit 882.e
Rep. character $\chi_{882}(373,\cdot)$
Character field $\Q(\zeta_{3})$
Dimension $80$
Newform subspaces $20$
Sturm bound $336$
Trace bound $9$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 882 = 2 \cdot 3^{2} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 882.e (of order \(3\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 63 \)
Character field: \(\Q(\zeta_{3})\)
Newform subspaces: \( 20 \)
Sturm bound: \(336\)
Trace bound: \(9\)
Distinguishing \(T_p\): \(5\), \(11\), \(13\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(882, [\chi])\).

Total New Old
Modular forms 368 80 288
Cusp forms 304 80 224
Eisenstein series 64 0 64

Trace form

\( 80 q + 80 q^{4} + 4 q^{5} + 4 q^{6} + 12 q^{9} - 8 q^{11} - 2 q^{13} - 14 q^{15} + 80 q^{16} + 14 q^{17} + 16 q^{18} + 4 q^{19} + 4 q^{20} - 2 q^{23} + 4 q^{24} - 40 q^{25} + 16 q^{26} + 18 q^{29} + 4 q^{31}+ \cdots + 34 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(882, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
882.2.e.a 882.e 63.h $2$ $7.043$ \(\Q(\sqrt{-3}) \) None 126.2.f.b \(-2\) \(-3\) \(-2\) \(0\) $\mathrm{SU}(2)[C_{3}]$ \(q-q^{2}+(-2+\zeta_{6})q^{3}+q^{4}+(-2+2\zeta_{6})q^{5}+\cdots\)
882.2.e.b 882.e 63.h $2$ $7.043$ \(\Q(\sqrt{-3}) \) None 126.2.f.a \(-2\) \(-3\) \(3\) \(0\) $\mathrm{SU}(2)[C_{3}]$ \(q-q^{2}+(-1-\zeta_{6})q^{3}+q^{4}+(3-3\zeta_{6})q^{5}+\cdots\)
882.2.e.c 882.e 63.h $2$ $7.043$ \(\Q(\sqrt{-3}) \) None 126.2.e.a \(-2\) \(0\) \(3\) \(0\) $\mathrm{SU}(2)[C_{3}]$ \(q-q^{2}+(1-2\zeta_{6})q^{3}+q^{4}+(3-3\zeta_{6})q^{5}+\cdots\)
882.2.e.d 882.e 63.h $2$ $7.043$ \(\Q(\sqrt{-3}) \) None 126.2.f.a \(-2\) \(3\) \(-3\) \(0\) $\mathrm{SU}(2)[C_{3}]$ \(q-q^{2}+(1+\zeta_{6})q^{3}+q^{4}+(-3+3\zeta_{6})q^{5}+\cdots\)
882.2.e.e 882.e 63.h $2$ $7.043$ \(\Q(\sqrt{-3}) \) None 126.2.f.b \(-2\) \(3\) \(2\) \(0\) $\mathrm{SU}(2)[C_{3}]$ \(q-q^{2}+(2-\zeta_{6})q^{3}+q^{4}+(2-2\zeta_{6})q^{5}+\cdots\)
882.2.e.f 882.e 63.h $2$ $7.043$ \(\Q(\sqrt{-3}) \) None 882.2.f.b \(2\) \(-3\) \(-1\) \(0\) $\mathrm{SU}(2)[C_{3}]$ \(q+q^{2}+(-1-\zeta_{6})q^{3}+q^{4}+(-1+\zeta_{6})q^{5}+\cdots\)
882.2.e.g 882.e 63.h $2$ $7.043$ \(\Q(\sqrt{-3}) \) None 18.2.c.a \(2\) \(-3\) \(0\) \(0\) $\mathrm{SU}(2)[C_{3}]$ \(q+q^{2}+(-2+\zeta_{6})q^{3}+q^{4}+(-2+\zeta_{6})q^{6}+\cdots\)
882.2.e.h 882.e 63.h $2$ $7.043$ \(\Q(\sqrt{-3}) \) None 126.2.e.b \(2\) \(0\) \(-3\) \(0\) $\mathrm{SU}(2)[C_{3}]$ \(q+q^{2}+(1-2\zeta_{6})q^{3}+q^{4}+(-3+3\zeta_{6})q^{5}+\cdots\)
882.2.e.i 882.e 63.h $2$ $7.043$ \(\Q(\sqrt{-3}) \) None 18.2.c.a \(2\) \(3\) \(0\) \(0\) $\mathrm{SU}(2)[C_{3}]$ \(q+q^{2}+(2-\zeta_{6})q^{3}+q^{4}+(2-\zeta_{6})q^{6}+\cdots\)
882.2.e.j 882.e 63.h $2$ $7.043$ \(\Q(\sqrt{-3}) \) None 882.2.f.b \(2\) \(3\) \(1\) \(0\) $\mathrm{SU}(2)[C_{3}]$ \(q+q^{2}+(1+\zeta_{6})q^{3}+q^{4}+(1-\zeta_{6})q^{5}+\cdots\)
882.2.e.k 882.e 63.h $4$ $7.043$ \(\Q(\sqrt{-3}, \sqrt{-11})\) None 126.2.f.d \(-4\) \(-2\) \(3\) \(0\) $\mathrm{SU}(2)[C_{3}]$ \(q-q^{2}+(-\beta _{1}+\beta _{3})q^{3}+q^{4}+(-1+\cdots)q^{5}+\cdots\)
882.2.e.l 882.e 63.h $4$ $7.043$ \(\Q(\sqrt{-3}, \sqrt{-11})\) None 126.2.f.d \(-4\) \(2\) \(-3\) \(0\) $\mathrm{SU}(2)[C_{3}]$ \(q-q^{2}+(\beta _{1}-\beta _{3})q^{3}+q^{4}+(1-2\beta _{1}+\cdots)q^{5}+\cdots\)
882.2.e.m 882.e 63.h $4$ $7.043$ \(\Q(\sqrt{-2}, \sqrt{-3})\) None 126.2.f.c \(4\) \(-2\) \(-2\) \(0\) $\mathrm{SU}(2)[C_{3}]$ \(q+q^{2}+(-\beta _{1}-\beta _{2}+\beta _{3})q^{3}+q^{4}+\cdots\)
882.2.e.n 882.e 63.h $4$ $7.043$ \(\Q(\sqrt{-2}, \sqrt{-3})\) None 126.2.f.c \(4\) \(2\) \(2\) \(0\) $\mathrm{SU}(2)[C_{3}]$ \(q+q^{2}+(\beta _{1}+\beta _{2}-\beta _{3})q^{3}+q^{4}+(-\beta _{1}+\cdots)q^{5}+\cdots\)
882.2.e.o 882.e 63.h $6$ $7.043$ 6.0.309123.1 None 126.2.e.c \(-6\) \(-2\) \(-1\) \(0\) $\mathrm{SU}(2)[C_{3}]$ \(q-q^{2}+(\beta _{2}+\beta _{4})q^{3}+q^{4}+(-1+\beta _{1}+\cdots)q^{5}+\cdots\)
882.2.e.p 882.e 63.h $6$ $7.043$ 6.0.309123.1 None 126.2.e.d \(6\) \(2\) \(5\) \(0\) $\mathrm{SU}(2)[C_{3}]$ \(q+q^{2}+(-\beta _{3}+\beta _{4}+\beta _{5})q^{3}+q^{4}+\cdots\)
882.2.e.q 882.e 63.h $8$ $7.043$ \(\Q(\zeta_{24})\) None 882.2.f.s \(-8\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{3}]$ \(q-q^{2}+(\beta_{7}+\beta_{3})q^{3}+q^{4}-\beta_{7} q^{5}+\cdots\)
882.2.e.r 882.e 63.h $8$ $7.043$ 8.0.\(\cdots\).2 None 882.2.f.r \(-8\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{3}]$ \(q-q^{2}-\beta _{3}q^{3}+q^{4}+(-\beta _{5}-\beta _{6})q^{5}+\cdots\)
882.2.e.s 882.e 63.h $8$ $7.043$ \(\Q(\zeta_{24})\) None 882.2.f.q \(8\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{3}]$ \(q+q^{2}+(-\beta_{7}+\beta_{6}+\cdots-\beta_{3})q^{3}+\cdots\)
882.2.e.t 882.e 63.h $8$ $7.043$ 8.0.3317760000.3 None 882.2.f.p \(8\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{3}]$ \(q+q^{2}+(\beta _{5}-\beta _{6})q^{3}+q^{4}+(2\beta _{1}-\beta _{3}+\cdots)q^{5}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(882, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(882, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(63, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(126, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(441, [\chi])\)\(^{\oplus 2}\)