Properties

Label 2646.2.e.q.2125.3
Level $2646$
Weight $2$
Character 2646.2125
Analytic conductor $21.128$
Analytic rank $0$
Dimension $8$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2646,2,Mod(1549,2646)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2646, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([2, 2])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2646.1549"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 2646 = 2 \cdot 3^{3} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2646.e (of order \(3\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,-8,0,8,0,0,0,-8,0,0,-8,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(13)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(21.1284163748\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\Q(\zeta_{24})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - x^{4} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{17}]\)
Coefficient ring index: \( 3^{2} \)
Twist minimal: no (minimal twist has level 882)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 2125.3
Root \(-0.258819 + 0.965926i\) of defining polynomial
Character \(\chi\) \(=\) 2646.2125
Dual form 2646.2.e.q.1549.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000 q^{2} +1.00000 q^{4} +(0.517638 - 0.896575i) q^{5} -1.00000 q^{8} +(-0.517638 + 0.896575i) q^{10} +(-0.133975 - 0.232051i) q^{11} +(0.896575 + 1.55291i) q^{13} +1.00000 q^{16} +(3.41542 - 5.91567i) q^{17} +(2.19067 + 3.79435i) q^{19} +(0.517638 - 0.896575i) q^{20} +(0.133975 + 0.232051i) q^{22} +(2.73205 - 4.73205i) q^{23} +(1.96410 + 3.40192i) q^{25} +(-0.896575 - 1.55291i) q^{26} +(-2.00000 + 3.46410i) q^{29} -6.69213 q^{31} -1.00000 q^{32} +(-3.41542 + 5.91567i) q^{34} +(-3.73205 - 6.46410i) q^{37} +(-2.19067 - 3.79435i) q^{38} +(-0.517638 + 0.896575i) q^{40} +(4.31199 + 7.46859i) q^{41} +(-0.133975 + 0.232051i) q^{43} +(-0.133975 - 0.232051i) q^{44} +(-2.73205 + 4.73205i) q^{46} +0.757875 q^{47} +(-1.96410 - 3.40192i) q^{50} +(0.896575 + 1.55291i) q^{52} +(5.46410 - 9.46410i) q^{53} -0.277401 q^{55} +(2.00000 - 3.46410i) q^{58} -1.27551 q^{59} +12.6264 q^{61} +6.69213 q^{62} +1.00000 q^{64} +1.85641 q^{65} +12.4641 q^{67} +(3.41542 - 5.91567i) q^{68} -9.46410 q^{71} +(2.70831 - 4.69093i) q^{73} +(3.73205 + 6.46410i) q^{74} +(2.19067 + 3.79435i) q^{76} +8.92820 q^{79} +(0.517638 - 0.896575i) q^{80} +(-4.31199 - 7.46859i) q^{82} +(-3.29530 + 5.70762i) q^{83} +(-3.53590 - 6.12436i) q^{85} +(0.133975 - 0.232051i) q^{86} +(0.133975 + 0.232051i) q^{88} +(-3.53553 - 6.12372i) q^{89} +(2.73205 - 4.73205i) q^{92} -0.757875 q^{94} +4.53590 q^{95} +(-9.07227 + 15.7136i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 8 q^{2} + 8 q^{4} - 8 q^{8} - 8 q^{11} + 8 q^{16} + 8 q^{22} + 8 q^{23} - 12 q^{25} - 16 q^{29} - 8 q^{32} - 16 q^{37} - 8 q^{43} - 8 q^{44} - 8 q^{46} + 12 q^{50} + 16 q^{53} + 16 q^{58} + 8 q^{64}+ \cdots + 64 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2646\mathbb{Z}\right)^\times\).

\(n\) \(785\) \(1081\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.00000 −0.707107
\(3\) 0 0
\(4\) 1.00000 0.500000
\(5\) 0.517638 0.896575i 0.231495 0.400961i −0.726753 0.686898i \(-0.758972\pi\)
0.958248 + 0.285938i \(0.0923050\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) −1.00000 −0.353553
\(9\) 0 0
\(10\) −0.517638 + 0.896575i −0.163692 + 0.283522i
\(11\) −0.133975 0.232051i −0.0403949 0.0699660i 0.845121 0.534575i \(-0.179528\pi\)
−0.885516 + 0.464609i \(0.846195\pi\)
\(12\) 0 0
\(13\) 0.896575 + 1.55291i 0.248665 + 0.430701i 0.963156 0.268944i \(-0.0866747\pi\)
−0.714490 + 0.699645i \(0.753341\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 1.00000 0.250000
\(17\) 3.41542 5.91567i 0.828360 1.43476i −0.0709642 0.997479i \(-0.522608\pi\)
0.899324 0.437283i \(-0.144059\pi\)
\(18\) 0 0
\(19\) 2.19067 + 3.79435i 0.502574 + 0.870484i 0.999996 + 0.00297513i \(0.000947015\pi\)
−0.497421 + 0.867509i \(0.665720\pi\)
\(20\) 0.517638 0.896575i 0.115747 0.200480i
\(21\) 0 0
\(22\) 0.133975 + 0.232051i 0.0285635 + 0.0494734i
\(23\) 2.73205 4.73205i 0.569672 0.986701i −0.426926 0.904286i \(-0.640404\pi\)
0.996598 0.0824143i \(-0.0262631\pi\)
\(24\) 0 0
\(25\) 1.96410 + 3.40192i 0.392820 + 0.680385i
\(26\) −0.896575 1.55291i −0.175833 0.304552i
\(27\) 0 0
\(28\) 0 0
\(29\) −2.00000 + 3.46410i −0.371391 + 0.643268i −0.989780 0.142605i \(-0.954452\pi\)
0.618389 + 0.785872i \(0.287786\pi\)
\(30\) 0 0
\(31\) −6.69213 −1.20194 −0.600971 0.799271i \(-0.705219\pi\)
−0.600971 + 0.799271i \(0.705219\pi\)
\(32\) −1.00000 −0.176777
\(33\) 0 0
\(34\) −3.41542 + 5.91567i −0.585739 + 1.01453i
\(35\) 0 0
\(36\) 0 0
\(37\) −3.73205 6.46410i −0.613545 1.06269i −0.990638 0.136516i \(-0.956409\pi\)
0.377092 0.926176i \(-0.376924\pi\)
\(38\) −2.19067 3.79435i −0.355374 0.615525i
\(39\) 0 0
\(40\) −0.517638 + 0.896575i −0.0818458 + 0.141761i
\(41\) 4.31199 + 7.46859i 0.673420 + 1.16640i 0.976928 + 0.213569i \(0.0685087\pi\)
−0.303508 + 0.952829i \(0.598158\pi\)
\(42\) 0 0
\(43\) −0.133975 + 0.232051i −0.0204309 + 0.0353874i −0.876060 0.482202i \(-0.839837\pi\)
0.855629 + 0.517589i \(0.173170\pi\)
\(44\) −0.133975 0.232051i −0.0201974 0.0349830i
\(45\) 0 0
\(46\) −2.73205 + 4.73205i −0.402819 + 0.697703i
\(47\) 0.757875 0.110547 0.0552737 0.998471i \(-0.482397\pi\)
0.0552737 + 0.998471i \(0.482397\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) −1.96410 3.40192i −0.277766 0.481105i
\(51\) 0 0
\(52\) 0.896575 + 1.55291i 0.124333 + 0.215350i
\(53\) 5.46410 9.46410i 0.750552 1.29999i −0.197003 0.980403i \(-0.563121\pi\)
0.947555 0.319592i \(-0.103546\pi\)
\(54\) 0 0
\(55\) −0.277401 −0.0374048
\(56\) 0 0
\(57\) 0 0
\(58\) 2.00000 3.46410i 0.262613 0.454859i
\(59\) −1.27551 −0.166058 −0.0830288 0.996547i \(-0.526459\pi\)
−0.0830288 + 0.996547i \(0.526459\pi\)
\(60\) 0 0
\(61\) 12.6264 1.61664 0.808322 0.588741i \(-0.200376\pi\)
0.808322 + 0.588741i \(0.200376\pi\)
\(62\) 6.69213 0.849901
\(63\) 0 0
\(64\) 1.00000 0.125000
\(65\) 1.85641 0.230259
\(66\) 0 0
\(67\) 12.4641 1.52273 0.761366 0.648322i \(-0.224529\pi\)
0.761366 + 0.648322i \(0.224529\pi\)
\(68\) 3.41542 5.91567i 0.414180 0.717381i
\(69\) 0 0
\(70\) 0 0
\(71\) −9.46410 −1.12318 −0.561591 0.827415i \(-0.689811\pi\)
−0.561591 + 0.827415i \(0.689811\pi\)
\(72\) 0 0
\(73\) 2.70831 4.69093i 0.316984 0.549032i −0.662874 0.748731i \(-0.730663\pi\)
0.979857 + 0.199700i \(0.0639967\pi\)
\(74\) 3.73205 + 6.46410i 0.433842 + 0.751437i
\(75\) 0 0
\(76\) 2.19067 + 3.79435i 0.251287 + 0.435242i
\(77\) 0 0
\(78\) 0 0
\(79\) 8.92820 1.00450 0.502251 0.864722i \(-0.332505\pi\)
0.502251 + 0.864722i \(0.332505\pi\)
\(80\) 0.517638 0.896575i 0.0578737 0.100240i
\(81\) 0 0
\(82\) −4.31199 7.46859i −0.476180 0.824768i
\(83\) −3.29530 + 5.70762i −0.361706 + 0.626493i −0.988242 0.152900i \(-0.951139\pi\)
0.626536 + 0.779393i \(0.284472\pi\)
\(84\) 0 0
\(85\) −3.53590 6.12436i −0.383522 0.664280i
\(86\) 0.133975 0.232051i 0.0144469 0.0250227i
\(87\) 0 0
\(88\) 0.133975 + 0.232051i 0.0142817 + 0.0247367i
\(89\) −3.53553 6.12372i −0.374766 0.649113i 0.615526 0.788116i \(-0.288944\pi\)
−0.990292 + 0.139003i \(0.955610\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 2.73205 4.73205i 0.284836 0.493350i
\(93\) 0 0
\(94\) −0.757875 −0.0781688
\(95\) 4.53590 0.465373
\(96\) 0 0
\(97\) −9.07227 + 15.7136i −0.921149 + 1.59548i −0.123510 + 0.992343i \(0.539415\pi\)
−0.797640 + 0.603134i \(0.793918\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 1.96410 + 3.40192i 0.196410 + 0.340192i
\(101\) 2.44949 + 4.24264i 0.243733 + 0.422159i 0.961775 0.273842i \(-0.0882945\pi\)
−0.718041 + 0.696000i \(0.754961\pi\)
\(102\) 0 0
\(103\) 6.17449 10.6945i 0.608391 1.05376i −0.383115 0.923701i \(-0.625149\pi\)
0.991506 0.130063i \(-0.0415180\pi\)
\(104\) −0.896575 1.55291i −0.0879165 0.152276i
\(105\) 0 0
\(106\) −5.46410 + 9.46410i −0.530720 + 0.919235i
\(107\) −8.69615 15.0622i −0.840689 1.45612i −0.889313 0.457299i \(-0.848817\pi\)
0.0486244 0.998817i \(-0.484516\pi\)
\(108\) 0 0
\(109\) −2.46410 + 4.26795i −0.236018 + 0.408795i −0.959568 0.281477i \(-0.909176\pi\)
0.723550 + 0.690272i \(0.242509\pi\)
\(110\) 0.277401 0.0264492
\(111\) 0 0
\(112\) 0 0
\(113\) −3.46410 6.00000i −0.325875 0.564433i 0.655814 0.754923i \(-0.272326\pi\)
−0.981689 + 0.190490i \(0.938992\pi\)
\(114\) 0 0
\(115\) −2.82843 4.89898i −0.263752 0.456832i
\(116\) −2.00000 + 3.46410i −0.185695 + 0.321634i
\(117\) 0 0
\(118\) 1.27551 0.117420
\(119\) 0 0
\(120\) 0 0
\(121\) 5.46410 9.46410i 0.496737 0.860373i
\(122\) −12.6264 −1.14314
\(123\) 0 0
\(124\) −6.69213 −0.600971
\(125\) 9.24316 0.826733
\(126\) 0 0
\(127\) 13.4641 1.19475 0.597373 0.801964i \(-0.296211\pi\)
0.597373 + 0.801964i \(0.296211\pi\)
\(128\) −1.00000 −0.0883883
\(129\) 0 0
\(130\) −1.85641 −0.162818
\(131\) −5.46739 + 9.46979i −0.477688 + 0.827379i −0.999673 0.0255752i \(-0.991858\pi\)
0.521985 + 0.852955i \(0.325192\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) −12.4641 −1.07673
\(135\) 0 0
\(136\) −3.41542 + 5.91567i −0.292869 + 0.507265i
\(137\) 4.33013 + 7.50000i 0.369948 + 0.640768i 0.989557 0.144142i \(-0.0460423\pi\)
−0.619609 + 0.784910i \(0.712709\pi\)
\(138\) 0 0
\(139\) 0.397520 + 0.688524i 0.0337172 + 0.0583999i 0.882392 0.470516i \(-0.155932\pi\)
−0.848674 + 0.528916i \(0.822599\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 9.46410 0.794210
\(143\) 0.240237 0.416102i 0.0200896 0.0347962i
\(144\) 0 0
\(145\) 2.07055 + 3.58630i 0.171950 + 0.297826i
\(146\) −2.70831 + 4.69093i −0.224141 + 0.388224i
\(147\) 0 0
\(148\) −3.73205 6.46410i −0.306773 0.531346i
\(149\) 11.4641 19.8564i 0.939176 1.62670i 0.172163 0.985068i \(-0.444924\pi\)
0.767013 0.641632i \(-0.221742\pi\)
\(150\) 0 0
\(151\) −9.19615 15.9282i −0.748372 1.29622i −0.948603 0.316470i \(-0.897502\pi\)
0.200230 0.979749i \(-0.435831\pi\)
\(152\) −2.19067 3.79435i −0.177687 0.307763i
\(153\) 0 0
\(154\) 0 0
\(155\) −3.46410 + 6.00000i −0.278243 + 0.481932i
\(156\) 0 0
\(157\) −9.52056 −0.759823 −0.379912 0.925023i \(-0.624046\pi\)
−0.379912 + 0.925023i \(0.624046\pi\)
\(158\) −8.92820 −0.710290
\(159\) 0 0
\(160\) −0.517638 + 0.896575i −0.0409229 + 0.0708805i
\(161\) 0 0
\(162\) 0 0
\(163\) 6.66025 + 11.5359i 0.521671 + 0.903561i 0.999682 + 0.0252074i \(0.00802461\pi\)
−0.478011 + 0.878354i \(0.658642\pi\)
\(164\) 4.31199 + 7.46859i 0.336710 + 0.583199i
\(165\) 0 0
\(166\) 3.29530 5.70762i 0.255765 0.442997i
\(167\) −0.757875 1.31268i −0.0586461 0.101578i 0.835212 0.549928i \(-0.185345\pi\)
−0.893858 + 0.448350i \(0.852012\pi\)
\(168\) 0 0
\(169\) 4.89230 8.47372i 0.376331 0.651825i
\(170\) 3.53590 + 6.12436i 0.271191 + 0.469717i
\(171\) 0 0
\(172\) −0.133975 + 0.232051i −0.0102155 + 0.0176937i
\(173\) 6.69213 0.508793 0.254397 0.967100i \(-0.418123\pi\)
0.254397 + 0.967100i \(0.418123\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) −0.133975 0.232051i −0.0100987 0.0174915i
\(177\) 0 0
\(178\) 3.53553 + 6.12372i 0.264999 + 0.458993i
\(179\) 2.53590 4.39230i 0.189542 0.328296i −0.755556 0.655084i \(-0.772633\pi\)
0.945098 + 0.326788i \(0.105966\pi\)
\(180\) 0 0
\(181\) 16.9706 1.26141 0.630706 0.776022i \(-0.282765\pi\)
0.630706 + 0.776022i \(0.282765\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) −2.73205 + 4.73205i −0.201409 + 0.348851i
\(185\) −7.72741 −0.568130
\(186\) 0 0
\(187\) −1.83032 −0.133846
\(188\) 0.757875 0.0552737
\(189\) 0 0
\(190\) −4.53590 −0.329069
\(191\) −14.9282 −1.08017 −0.540083 0.841611i \(-0.681607\pi\)
−0.540083 + 0.841611i \(0.681607\pi\)
\(192\) 0 0
\(193\) 15.0526 1.08351 0.541753 0.840537i \(-0.317761\pi\)
0.541753 + 0.840537i \(0.317761\pi\)
\(194\) 9.07227 15.7136i 0.651351 1.12817i
\(195\) 0 0
\(196\) 0 0
\(197\) 16.9282 1.20608 0.603042 0.797709i \(-0.293955\pi\)
0.603042 + 0.797709i \(0.293955\pi\)
\(198\) 0 0
\(199\) 13.1440 22.7661i 0.931755 1.61385i 0.151435 0.988467i \(-0.451611\pi\)
0.780320 0.625380i \(-0.215056\pi\)
\(200\) −1.96410 3.40192i −0.138883 0.240552i
\(201\) 0 0
\(202\) −2.44949 4.24264i −0.172345 0.298511i
\(203\) 0 0
\(204\) 0 0
\(205\) 8.92820 0.623573
\(206\) −6.17449 + 10.6945i −0.430197 + 0.745124i
\(207\) 0 0
\(208\) 0.896575 + 1.55291i 0.0621663 + 0.107675i
\(209\) 0.586988 1.01669i 0.0406028 0.0703262i
\(210\) 0 0
\(211\) −9.46410 16.3923i −0.651536 1.12849i −0.982750 0.184937i \(-0.940792\pi\)
0.331215 0.943555i \(-0.392542\pi\)
\(212\) 5.46410 9.46410i 0.375276 0.649997i
\(213\) 0 0
\(214\) 8.69615 + 15.0622i 0.594457 + 1.02963i
\(215\) 0.138701 + 0.240237i 0.00945931 + 0.0163840i
\(216\) 0 0
\(217\) 0 0
\(218\) 2.46410 4.26795i 0.166890 0.289062i
\(219\) 0 0
\(220\) −0.277401 −0.0187024
\(221\) 12.2487 0.823937
\(222\) 0 0
\(223\) −3.58630 + 6.21166i −0.240157 + 0.415963i −0.960759 0.277385i \(-0.910532\pi\)
0.720602 + 0.693349i \(0.243865\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 3.46410 + 6.00000i 0.230429 + 0.399114i
\(227\) 13.8325 + 23.9587i 0.918098 + 1.59019i 0.802300 + 0.596920i \(0.203609\pi\)
0.115798 + 0.993273i \(0.463057\pi\)
\(228\) 0 0
\(229\) 0.240237 0.416102i 0.0158753 0.0274968i −0.857979 0.513685i \(-0.828280\pi\)
0.873854 + 0.486189i \(0.161613\pi\)
\(230\) 2.82843 + 4.89898i 0.186501 + 0.323029i
\(231\) 0 0
\(232\) 2.00000 3.46410i 0.131306 0.227429i
\(233\) 0.0621778 + 0.107695i 0.00407340 + 0.00705534i 0.868055 0.496468i \(-0.165370\pi\)
−0.863982 + 0.503524i \(0.832037\pi\)
\(234\) 0 0
\(235\) 0.392305 0.679492i 0.0255911 0.0443252i
\(236\) −1.27551 −0.0830288
\(237\) 0 0
\(238\) 0 0
\(239\) 0.464102 + 0.803848i 0.0300202 + 0.0519966i 0.880645 0.473776i \(-0.157109\pi\)
−0.850625 + 0.525773i \(0.823776\pi\)
\(240\) 0 0
\(241\) 3.13801 + 5.43520i 0.202137 + 0.350112i 0.949217 0.314623i \(-0.101878\pi\)
−0.747080 + 0.664735i \(0.768545\pi\)
\(242\) −5.46410 + 9.46410i −0.351246 + 0.608375i
\(243\) 0 0
\(244\) 12.6264 0.808322
\(245\) 0 0
\(246\) 0 0
\(247\) −3.92820 + 6.80385i −0.249946 + 0.432918i
\(248\) 6.69213 0.424951
\(249\) 0 0
\(250\) −9.24316 −0.584589
\(251\) 0.795040 0.0501824 0.0250912 0.999685i \(-0.492012\pi\)
0.0250912 + 0.999685i \(0.492012\pi\)
\(252\) 0 0
\(253\) −1.46410 −0.0920473
\(254\) −13.4641 −0.844813
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) −5.01910 + 8.69333i −0.313083 + 0.542275i −0.979028 0.203725i \(-0.934695\pi\)
0.665945 + 0.746001i \(0.268028\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 1.85641 0.115129
\(261\) 0 0
\(262\) 5.46739 9.46979i 0.337776 0.585046i
\(263\) −4.26795 7.39230i −0.263173 0.455829i 0.703910 0.710289i \(-0.251436\pi\)
−0.967083 + 0.254460i \(0.918102\pi\)
\(264\) 0 0
\(265\) −5.65685 9.79796i −0.347498 0.601884i
\(266\) 0 0
\(267\) 0 0
\(268\) 12.4641 0.761366
\(269\) 2.82843 4.89898i 0.172452 0.298696i −0.766824 0.641857i \(-0.778164\pi\)
0.939277 + 0.343161i \(0.111498\pi\)
\(270\) 0 0
\(271\) 6.55343 + 11.3509i 0.398093 + 0.689516i 0.993491 0.113914i \(-0.0363390\pi\)
−0.595398 + 0.803431i \(0.703006\pi\)
\(272\) 3.41542 5.91567i 0.207090 0.358690i
\(273\) 0 0
\(274\) −4.33013 7.50000i −0.261593 0.453092i
\(275\) 0.526279 0.911543i 0.0317358 0.0549681i
\(276\) 0 0
\(277\) −15.7321 27.2487i −0.945247 1.63722i −0.755255 0.655431i \(-0.772487\pi\)
−0.189992 0.981786i \(-0.560846\pi\)
\(278\) −0.397520 0.688524i −0.0238417 0.0412949i
\(279\) 0 0
\(280\) 0 0
\(281\) 8.92820 15.4641i 0.532612 0.922511i −0.466663 0.884435i \(-0.654544\pi\)
0.999275 0.0380757i \(-0.0121228\pi\)
\(282\) 0 0
\(283\) 15.0759 0.896168 0.448084 0.893992i \(-0.352107\pi\)
0.448084 + 0.893992i \(0.352107\pi\)
\(284\) −9.46410 −0.561591
\(285\) 0 0
\(286\) −0.240237 + 0.416102i −0.0142055 + 0.0246046i
\(287\) 0 0
\(288\) 0 0
\(289\) −14.8301 25.6865i −0.872360 1.51097i
\(290\) −2.07055 3.58630i −0.121587 0.210595i
\(291\) 0 0
\(292\) 2.70831 4.69093i 0.158492 0.274516i
\(293\) 4.62158 + 8.00481i 0.269995 + 0.467646i 0.968860 0.247608i \(-0.0796445\pi\)
−0.698865 + 0.715254i \(0.746311\pi\)
\(294\) 0 0
\(295\) −0.660254 + 1.14359i −0.0384415 + 0.0665826i
\(296\) 3.73205 + 6.46410i 0.216921 + 0.375718i
\(297\) 0 0
\(298\) −11.4641 + 19.8564i −0.664098 + 1.15025i
\(299\) 9.79796 0.566631
\(300\) 0 0
\(301\) 0 0
\(302\) 9.19615 + 15.9282i 0.529179 + 0.916565i
\(303\) 0 0
\(304\) 2.19067 + 3.79435i 0.125644 + 0.217621i
\(305\) 6.53590 11.3205i 0.374244 0.648210i
\(306\) 0 0
\(307\) −1.17398 −0.0670024 −0.0335012 0.999439i \(-0.510666\pi\)
−0.0335012 + 0.999439i \(0.510666\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 3.46410 6.00000i 0.196748 0.340777i
\(311\) −7.45001 −0.422451 −0.211226 0.977437i \(-0.567745\pi\)
−0.211226 + 0.977437i \(0.567745\pi\)
\(312\) 0 0
\(313\) −6.27603 −0.354742 −0.177371 0.984144i \(-0.556759\pi\)
−0.177371 + 0.984144i \(0.556759\pi\)
\(314\) 9.52056 0.537276
\(315\) 0 0
\(316\) 8.92820 0.502251
\(317\) 26.0000 1.46031 0.730153 0.683284i \(-0.239449\pi\)
0.730153 + 0.683284i \(0.239449\pi\)
\(318\) 0 0
\(319\) 1.07180 0.0600091
\(320\) 0.517638 0.896575i 0.0289368 0.0501201i
\(321\) 0 0
\(322\) 0 0
\(323\) 29.9282 1.66525
\(324\) 0 0
\(325\) −3.52193 + 6.10016i −0.195362 + 0.338376i
\(326\) −6.66025 11.5359i −0.368877 0.638914i
\(327\) 0 0
\(328\) −4.31199 7.46859i −0.238090 0.412384i
\(329\) 0 0
\(330\) 0 0
\(331\) −11.4641 −0.630124 −0.315062 0.949071i \(-0.602025\pi\)
−0.315062 + 0.949071i \(0.602025\pi\)
\(332\) −3.29530 + 5.70762i −0.180853 + 0.313246i
\(333\) 0 0
\(334\) 0.757875 + 1.31268i 0.0414691 + 0.0718265i
\(335\) 6.45189 11.1750i 0.352505 0.610556i
\(336\) 0 0
\(337\) 3.50000 + 6.06218i 0.190657 + 0.330228i 0.945468 0.325714i \(-0.105605\pi\)
−0.754811 + 0.655942i \(0.772271\pi\)
\(338\) −4.89230 + 8.47372i −0.266106 + 0.460910i
\(339\) 0 0
\(340\) −3.53590 6.12436i −0.191761 0.332140i
\(341\) 0.896575 + 1.55291i 0.0485523 + 0.0840950i
\(342\) 0 0
\(343\) 0 0
\(344\) 0.133975 0.232051i 0.00722343 0.0125113i
\(345\) 0 0
\(346\) −6.69213 −0.359771
\(347\) 9.58846 0.514735 0.257368 0.966314i \(-0.417145\pi\)
0.257368 + 0.966314i \(0.417145\pi\)
\(348\) 0 0
\(349\) −4.00240 + 6.93237i −0.214244 + 0.371081i −0.953038 0.302850i \(-0.902062\pi\)
0.738795 + 0.673931i \(0.235395\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0.133975 + 0.232051i 0.00714087 + 0.0123683i
\(353\) −12.5063 21.6615i −0.665641 1.15292i −0.979111 0.203327i \(-0.934825\pi\)
0.313470 0.949598i \(-0.398509\pi\)
\(354\) 0 0
\(355\) −4.89898 + 8.48528i −0.260011 + 0.450352i
\(356\) −3.53553 6.12372i −0.187383 0.324557i
\(357\) 0 0
\(358\) −2.53590 + 4.39230i −0.134026 + 0.232141i
\(359\) 3.73205 + 6.46410i 0.196970 + 0.341162i 0.947545 0.319624i \(-0.103556\pi\)
−0.750574 + 0.660786i \(0.770223\pi\)
\(360\) 0 0
\(361\) −0.0980762 + 0.169873i −0.00516191 + 0.00894068i
\(362\) −16.9706 −0.891953
\(363\) 0 0
\(364\) 0 0
\(365\) −2.80385 4.85641i −0.146760 0.254196i
\(366\) 0 0
\(367\) 9.28032 + 16.0740i 0.484429 + 0.839055i 0.999840 0.0178877i \(-0.00569413\pi\)
−0.515411 + 0.856943i \(0.672361\pi\)
\(368\) 2.73205 4.73205i 0.142418 0.246675i
\(369\) 0 0
\(370\) 7.72741 0.401729
\(371\) 0 0
\(372\) 0 0
\(373\) 5.39230 9.33975i 0.279203 0.483594i −0.691984 0.721913i \(-0.743263\pi\)
0.971187 + 0.238319i \(0.0765964\pi\)
\(374\) 1.83032 0.0946434
\(375\) 0 0
\(376\) −0.757875 −0.0390844
\(377\) −7.17260 −0.369408
\(378\) 0 0
\(379\) 13.5885 0.697992 0.348996 0.937124i \(-0.386523\pi\)
0.348996 + 0.937124i \(0.386523\pi\)
\(380\) 4.53590 0.232687
\(381\) 0 0
\(382\) 14.9282 0.763793
\(383\) −13.6617 + 23.6627i −0.698078 + 1.20911i 0.271054 + 0.962564i \(0.412628\pi\)
−0.969132 + 0.246543i \(0.920705\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) −15.0526 −0.766155
\(387\) 0 0
\(388\) −9.07227 + 15.7136i −0.460575 + 0.797739i
\(389\) 4.00000 + 6.92820i 0.202808 + 0.351274i 0.949432 0.313972i \(-0.101660\pi\)
−0.746624 + 0.665246i \(0.768327\pi\)
\(390\) 0 0
\(391\) −18.6622 32.3238i −0.943787 1.63469i
\(392\) 0 0
\(393\) 0 0
\(394\) −16.9282 −0.852831
\(395\) 4.62158 8.00481i 0.232537 0.402766i
\(396\) 0 0
\(397\) 6.55343 + 11.3509i 0.328907 + 0.569684i 0.982295 0.187339i \(-0.0599863\pi\)
−0.653388 + 0.757023i \(0.726653\pi\)
\(398\) −13.1440 + 22.7661i −0.658850 + 1.14116i
\(399\) 0 0
\(400\) 1.96410 + 3.40192i 0.0982051 + 0.170096i
\(401\) −11.8923 + 20.5981i −0.593873 + 1.02862i 0.399831 + 0.916589i \(0.369069\pi\)
−0.993705 + 0.112030i \(0.964265\pi\)
\(402\) 0 0
\(403\) −6.00000 10.3923i −0.298881 0.517678i
\(404\) 2.44949 + 4.24264i 0.121867 + 0.211079i
\(405\) 0 0
\(406\) 0 0
\(407\) −1.00000 + 1.73205i −0.0495682 + 0.0858546i
\(408\) 0 0
\(409\) −4.48288 −0.221664 −0.110832 0.993839i \(-0.535352\pi\)
−0.110832 + 0.993839i \(0.535352\pi\)
\(410\) −8.92820 −0.440933
\(411\) 0 0
\(412\) 6.17449 10.6945i 0.304195 0.526882i
\(413\) 0 0
\(414\) 0 0
\(415\) 3.41154 + 5.90897i 0.167466 + 0.290060i
\(416\) −0.896575 1.55291i −0.0439582 0.0761379i
\(417\) 0 0
\(418\) −0.586988 + 1.01669i −0.0287105 + 0.0497281i
\(419\) −18.0938 31.3393i −0.883939 1.53103i −0.846925 0.531712i \(-0.821549\pi\)
−0.0370132 0.999315i \(-0.511784\pi\)
\(420\) 0 0
\(421\) −3.80385 + 6.58846i −0.185388 + 0.321102i −0.943707 0.330782i \(-0.892688\pi\)
0.758319 + 0.651884i \(0.226021\pi\)
\(422\) 9.46410 + 16.3923i 0.460705 + 0.797965i
\(423\) 0 0
\(424\) −5.46410 + 9.46410i −0.265360 + 0.459617i
\(425\) 26.8329 1.30159
\(426\) 0 0
\(427\) 0 0
\(428\) −8.69615 15.0622i −0.420344 0.728058i
\(429\) 0 0
\(430\) −0.138701 0.240237i −0.00668874 0.0115852i
\(431\) −5.07180 + 8.78461i −0.244300 + 0.423140i −0.961935 0.273280i \(-0.911891\pi\)
0.717635 + 0.696420i \(0.245225\pi\)
\(432\) 0 0
\(433\) 19.8362 0.953265 0.476632 0.879103i \(-0.341857\pi\)
0.476632 + 0.879103i \(0.341857\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) −2.46410 + 4.26795i −0.118009 + 0.204398i
\(437\) 23.9401 1.14521
\(438\) 0 0
\(439\) −19.5959 −0.935262 −0.467631 0.883924i \(-0.654892\pi\)
−0.467631 + 0.883924i \(0.654892\pi\)
\(440\) 0.277401 0.0132246
\(441\) 0 0
\(442\) −12.2487 −0.582612
\(443\) −16.3205 −0.775411 −0.387705 0.921783i \(-0.626732\pi\)
−0.387705 + 0.921783i \(0.626732\pi\)
\(444\) 0 0
\(445\) −7.32051 −0.347025
\(446\) 3.58630 6.21166i 0.169816 0.294130i
\(447\) 0 0
\(448\) 0 0
\(449\) −23.7846 −1.12247 −0.561233 0.827658i \(-0.689673\pi\)
−0.561233 + 0.827658i \(0.689673\pi\)
\(450\) 0 0
\(451\) 1.15539 2.00120i 0.0544054 0.0942329i
\(452\) −3.46410 6.00000i −0.162938 0.282216i
\(453\) 0 0
\(454\) −13.8325 23.9587i −0.649194 1.12444i
\(455\) 0 0
\(456\) 0 0
\(457\) −31.0526 −1.45258 −0.726289 0.687390i \(-0.758756\pi\)
−0.726289 + 0.687390i \(0.758756\pi\)
\(458\) −0.240237 + 0.416102i −0.0112255 + 0.0194432i
\(459\) 0 0
\(460\) −2.82843 4.89898i −0.131876 0.228416i
\(461\) 5.51815 9.55772i 0.257006 0.445148i −0.708432 0.705779i \(-0.750597\pi\)
0.965438 + 0.260631i \(0.0839306\pi\)
\(462\) 0 0
\(463\) 15.3205 + 26.5359i 0.712004 + 1.23323i 0.964104 + 0.265526i \(0.0855457\pi\)
−0.252099 + 0.967701i \(0.581121\pi\)
\(464\) −2.00000 + 3.46410i −0.0928477 + 0.160817i
\(465\) 0 0
\(466\) −0.0621778 0.107695i −0.00288033 0.00498888i
\(467\) −4.58939 7.94906i −0.212372 0.367839i 0.740085 0.672514i \(-0.234785\pi\)
−0.952456 + 0.304675i \(0.901452\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) −0.392305 + 0.679492i −0.0180957 + 0.0313426i
\(471\) 0 0
\(472\) 1.27551 0.0587102
\(473\) 0.0717968 0.00330122
\(474\) 0 0
\(475\) −8.60540 + 14.9050i −0.394843 + 0.683888i
\(476\) 0 0
\(477\) 0 0
\(478\) −0.464102 0.803848i −0.0212275 0.0367671i
\(479\) 2.07055 + 3.58630i 0.0946060 + 0.163862i 0.909444 0.415826i \(-0.136508\pi\)
−0.814838 + 0.579689i \(0.803174\pi\)
\(480\) 0 0
\(481\) 6.69213 11.5911i 0.305135 0.528509i
\(482\) −3.13801 5.43520i −0.142933 0.247567i
\(483\) 0 0
\(484\) 5.46410 9.46410i 0.248368 0.430186i
\(485\) 9.39230 + 16.2679i 0.426483 + 0.738690i
\(486\) 0 0
\(487\) 1.39230 2.41154i 0.0630914 0.109277i −0.832754 0.553643i \(-0.813237\pi\)
0.895846 + 0.444365i \(0.146571\pi\)
\(488\) −12.6264 −0.571570
\(489\) 0 0
\(490\) 0 0
\(491\) 9.69615 + 16.7942i 0.437581 + 0.757913i 0.997502 0.0706330i \(-0.0225019\pi\)
−0.559921 + 0.828546i \(0.689169\pi\)
\(492\) 0 0
\(493\) 13.6617 + 23.6627i 0.615290 + 1.06571i
\(494\) 3.92820 6.80385i 0.176738 0.306120i
\(495\) 0 0
\(496\) −6.69213 −0.300486
\(497\) 0 0
\(498\) 0 0
\(499\) −16.6962 + 28.9186i −0.747422 + 1.29457i 0.201632 + 0.979461i \(0.435376\pi\)
−0.949054 + 0.315112i \(0.897958\pi\)
\(500\) 9.24316 0.413367
\(501\) 0 0
\(502\) −0.795040 −0.0354843
\(503\) −12.3490 −0.550614 −0.275307 0.961356i \(-0.588780\pi\)
−0.275307 + 0.961356i \(0.588780\pi\)
\(504\) 0 0
\(505\) 5.07180 0.225692
\(506\) 1.46410 0.0650873
\(507\) 0 0
\(508\) 13.4641 0.597373
\(509\) −10.7961 + 18.6993i −0.478527 + 0.828834i −0.999697 0.0246194i \(-0.992163\pi\)
0.521169 + 0.853453i \(0.325496\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) −1.00000 −0.0441942
\(513\) 0 0
\(514\) 5.01910 8.69333i 0.221383 0.383446i
\(515\) −6.39230 11.0718i −0.281679 0.487882i
\(516\) 0 0
\(517\) −0.101536 0.175865i −0.00446555 0.00773455i
\(518\) 0 0
\(519\) 0 0
\(520\) −1.85641 −0.0814088
\(521\) 16.8876 29.2502i 0.739860 1.28147i −0.212699 0.977118i \(-0.568225\pi\)
0.952558 0.304357i \(-0.0984414\pi\)
\(522\) 0 0
\(523\) 10.3664 + 17.9551i 0.453289 + 0.785120i 0.998588 0.0531215i \(-0.0169170\pi\)
−0.545299 + 0.838242i \(0.683584\pi\)
\(524\) −5.46739 + 9.46979i −0.238844 + 0.413690i
\(525\) 0 0
\(526\) 4.26795 + 7.39230i 0.186091 + 0.322320i
\(527\) −22.8564 + 39.5885i −0.995641 + 1.72450i
\(528\) 0 0
\(529\) −3.42820 5.93782i −0.149052 0.258166i
\(530\) 5.65685 + 9.79796i 0.245718 + 0.425596i
\(531\) 0 0
\(532\) 0 0
\(533\) −7.73205 + 13.3923i −0.334912 + 0.580085i
\(534\) 0 0
\(535\) −18.0058 −0.778460
\(536\) −12.4641 −0.538367
\(537\) 0 0
\(538\) −2.82843 + 4.89898i −0.121942 + 0.211210i
\(539\) 0 0
\(540\) 0 0
\(541\) −7.66025 13.2679i −0.329340 0.570434i 0.653041 0.757323i \(-0.273493\pi\)
−0.982381 + 0.186889i \(0.940160\pi\)
\(542\) −6.55343 11.3509i −0.281494 0.487562i
\(543\) 0 0
\(544\) −3.41542 + 5.91567i −0.146435 + 0.253632i
\(545\) 2.55103 + 4.41851i 0.109274 + 0.189268i
\(546\) 0 0
\(547\) −17.1865 + 29.7679i −0.734843 + 1.27279i 0.219949 + 0.975511i \(0.429411\pi\)
−0.954792 + 0.297274i \(0.903922\pi\)
\(548\) 4.33013 + 7.50000i 0.184974 + 0.320384i
\(549\) 0 0
\(550\) −0.526279 + 0.911543i −0.0224406 + 0.0388683i
\(551\) −17.5254 −0.746606
\(552\) 0 0
\(553\) 0 0
\(554\) 15.7321 + 27.2487i 0.668391 + 1.15769i
\(555\) 0 0
\(556\) 0.397520 + 0.688524i 0.0168586 + 0.0291999i
\(557\) −3.46410 + 6.00000i −0.146779 + 0.254228i −0.930035 0.367471i \(-0.880224\pi\)
0.783256 + 0.621699i \(0.213557\pi\)
\(558\) 0 0
\(559\) −0.480473 −0.0203219
\(560\) 0 0
\(561\) 0 0
\(562\) −8.92820 + 15.4641i −0.376614 + 0.652314i
\(563\) −18.2461 −0.768980 −0.384490 0.923129i \(-0.625623\pi\)
−0.384490 + 0.923129i \(0.625623\pi\)
\(564\) 0 0
\(565\) −7.17260 −0.301754
\(566\) −15.0759 −0.633686
\(567\) 0 0
\(568\) 9.46410 0.397105
\(569\) 25.7846 1.08095 0.540474 0.841361i \(-0.318245\pi\)
0.540474 + 0.841361i \(0.318245\pi\)
\(570\) 0 0
\(571\) −33.0526 −1.38321 −0.691603 0.722278i \(-0.743095\pi\)
−0.691603 + 0.722278i \(0.743095\pi\)
\(572\) 0.240237 0.416102i 0.0100448 0.0173981i
\(573\) 0 0
\(574\) 0 0
\(575\) 21.4641 0.895115
\(576\) 0 0
\(577\) −13.7446 + 23.8064i −0.572196 + 0.991072i 0.424144 + 0.905595i \(0.360575\pi\)
−0.996340 + 0.0854776i \(0.972758\pi\)
\(578\) 14.8301 + 25.6865i 0.616852 + 1.06842i
\(579\) 0 0
\(580\) 2.07055 + 3.58630i 0.0859750 + 0.148913i
\(581\) 0 0
\(582\) 0 0
\(583\) −2.92820 −0.121274
\(584\) −2.70831 + 4.69093i −0.112071 + 0.194112i
\(585\) 0 0
\(586\) −4.62158 8.00481i −0.190916 0.330676i
\(587\) 20.9408 36.2705i 0.864319 1.49704i −0.00340370 0.999994i \(-0.501083\pi\)
0.867722 0.497049i \(-0.165583\pi\)
\(588\) 0 0
\(589\) −14.6603 25.3923i −0.604065 1.04627i
\(590\) 0.660254 1.14359i 0.0271822 0.0470810i
\(591\) 0 0
\(592\) −3.73205 6.46410i −0.153386 0.265673i
\(593\) −8.43451 14.6090i −0.346364 0.599920i 0.639237 0.769010i \(-0.279250\pi\)
−0.985601 + 0.169090i \(0.945917\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 11.4641 19.8564i 0.469588 0.813350i
\(597\) 0 0
\(598\) −9.79796 −0.400668
\(599\) −4.78461 −0.195494 −0.0977469 0.995211i \(-0.531164\pi\)
−0.0977469 + 0.995211i \(0.531164\pi\)
\(600\) 0 0
\(601\) −1.67303 + 2.89778i −0.0682444 + 0.118203i −0.898129 0.439733i \(-0.855073\pi\)
0.829884 + 0.557936i \(0.188406\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) −9.19615 15.9282i −0.374186 0.648109i
\(605\) −5.65685 9.79796i −0.229984 0.398344i
\(606\) 0 0
\(607\) −1.13681 + 1.96902i −0.0461418 + 0.0799199i −0.888174 0.459507i \(-0.848026\pi\)
0.842032 + 0.539427i \(0.181359\pi\)
\(608\) −2.19067 3.79435i −0.0888434 0.153881i
\(609\) 0 0
\(610\) −6.53590 + 11.3205i −0.264631 + 0.458354i
\(611\) 0.679492 + 1.17691i 0.0274893 + 0.0476129i
\(612\) 0 0
\(613\) −12.4641 + 21.5885i −0.503420 + 0.871950i 0.496572 + 0.867996i \(0.334592\pi\)
−0.999992 + 0.00395396i \(0.998741\pi\)
\(614\) 1.17398 0.0473779
\(615\) 0 0
\(616\) 0 0
\(617\) −1.57180 2.72243i −0.0632782 0.109601i 0.832651 0.553798i \(-0.186822\pi\)
−0.895929 + 0.444197i \(0.853489\pi\)
\(618\) 0 0
\(619\) −15.8523 27.4570i −0.637159 1.10359i −0.986053 0.166430i \(-0.946776\pi\)
0.348894 0.937162i \(-0.386557\pi\)
\(620\) −3.46410 + 6.00000i −0.139122 + 0.240966i
\(621\) 0 0
\(622\) 7.45001 0.298718
\(623\) 0 0
\(624\) 0 0
\(625\) −5.03590 + 8.72243i −0.201436 + 0.348897i
\(626\) 6.27603 0.250841
\(627\) 0 0
\(628\) −9.52056 −0.379912
\(629\) −50.9860 −2.03295
\(630\) 0 0
\(631\) −19.7128 −0.784755 −0.392377 0.919804i \(-0.628347\pi\)
−0.392377 + 0.919804i \(0.628347\pi\)
\(632\) −8.92820 −0.355145
\(633\) 0 0
\(634\) −26.0000 −1.03259
\(635\) 6.96953 12.0716i 0.276577 0.479046i
\(636\) 0 0
\(637\) 0 0
\(638\) −1.07180 −0.0424328
\(639\) 0 0
\(640\) −0.517638 + 0.896575i −0.0204614 + 0.0354403i
\(641\) 2.03590 + 3.52628i 0.0804132 + 0.139280i 0.903427 0.428741i \(-0.141043\pi\)
−0.823014 + 0.568021i \(0.807709\pi\)
\(642\) 0 0
\(643\) −22.4565 38.8959i −0.885599 1.53390i −0.845025 0.534726i \(-0.820415\pi\)
−0.0405737 0.999177i \(-0.512919\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) −29.9282 −1.17751
\(647\) −10.9348 + 18.9396i −0.429890 + 0.744592i −0.996863 0.0791447i \(-0.974781\pi\)
0.566973 + 0.823736i \(0.308114\pi\)
\(648\) 0 0
\(649\) 0.170886 + 0.295984i 0.00670787 + 0.0116184i
\(650\) 3.52193 6.10016i 0.138141 0.239268i
\(651\) 0 0
\(652\) 6.66025 + 11.5359i 0.260836 + 0.451781i
\(653\) 3.00000 5.19615i 0.117399 0.203341i −0.801337 0.598213i \(-0.795878\pi\)
0.918736 + 0.394872i \(0.129211\pi\)
\(654\) 0 0
\(655\) 5.66025 + 9.80385i 0.221164 + 0.383068i
\(656\) 4.31199 + 7.46859i 0.168355 + 0.291599i
\(657\) 0 0
\(658\) 0 0
\(659\) −24.1244 + 41.7846i −0.939751 + 1.62770i −0.173818 + 0.984778i \(0.555610\pi\)
−0.765934 + 0.642919i \(0.777723\pi\)
\(660\) 0 0
\(661\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(662\) 11.4641 0.445565
\(663\) 0 0
\(664\) 3.29530 5.70762i 0.127882 0.221499i
\(665\) 0 0
\(666\) 0 0
\(667\) 10.9282 + 18.9282i 0.423142 + 0.732903i
\(668\) −0.757875 1.31268i −0.0293231 0.0507890i
\(669\) 0 0
\(670\) −6.45189 + 11.1750i −0.249258 + 0.431728i
\(671\) −1.69161 2.92996i −0.0653041 0.113110i
\(672\) 0 0
\(673\) −20.7846 + 36.0000i −0.801188 + 1.38770i 0.117647 + 0.993055i \(0.462465\pi\)
−0.918835 + 0.394643i \(0.870868\pi\)
\(674\) −3.50000 6.06218i −0.134815 0.233506i
\(675\) 0 0
\(676\) 4.89230 8.47372i 0.188166 0.325912i
\(677\) −5.37945 −0.206749 −0.103375 0.994642i \(-0.532964\pi\)
−0.103375 + 0.994642i \(0.532964\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 3.53590 + 6.12436i 0.135596 + 0.234858i
\(681\) 0 0
\(682\) −0.896575 1.55291i −0.0343316 0.0594642i
\(683\) −19.1603 + 33.1865i −0.733147 + 1.26985i 0.222385 + 0.974959i \(0.428616\pi\)
−0.955532 + 0.294888i \(0.904718\pi\)
\(684\) 0 0
\(685\) 8.96575 0.342564
\(686\) 0 0
\(687\) 0 0
\(688\) −0.133975 + 0.232051i −0.00510773 + 0.00884685i
\(689\) 19.5959 0.746545
\(690\) 0 0
\(691\) −24.3190 −0.925140 −0.462570 0.886583i \(-0.653073\pi\)
−0.462570 + 0.886583i \(0.653073\pi\)
\(692\) 6.69213 0.254397
\(693\) 0 0
\(694\) −9.58846 −0.363973
\(695\) 0.823085 0.0312214
\(696\) 0 0
\(697\) 58.9090 2.23134
\(698\) 4.00240 6.93237i 0.151493 0.262394i
\(699\) 0 0
\(700\) 0 0
\(701\) 20.7846 0.785024 0.392512 0.919747i \(-0.371606\pi\)
0.392512 + 0.919747i \(0.371606\pi\)
\(702\) 0 0
\(703\) 16.3514 28.3214i 0.616704 1.06816i
\(704\) −0.133975 0.232051i −0.00504936 0.00874574i
\(705\) 0 0
\(706\) 12.5063 + 21.6615i 0.470680 + 0.815241i
\(707\) 0 0
\(708\) 0 0
\(709\) −12.3923 −0.465403 −0.232701 0.972548i \(-0.574756\pi\)
−0.232701 + 0.972548i \(0.574756\pi\)
\(710\) 4.89898 8.48528i 0.183855 0.318447i
\(711\) 0 0
\(712\) 3.53553 + 6.12372i 0.132500 + 0.229496i
\(713\) −18.2832 + 31.6675i −0.684713 + 1.18596i
\(714\) 0 0
\(715\) −0.248711 0.430781i −0.00930128 0.0161103i
\(716\) 2.53590 4.39230i 0.0947710 0.164148i
\(717\) 0 0
\(718\) −3.73205 6.46410i −0.139279 0.241238i
\(719\) 24.8367 + 43.0184i 0.926251 + 1.60431i 0.789536 + 0.613704i \(0.210321\pi\)
0.136716 + 0.990610i \(0.456345\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0.0980762 0.169873i 0.00365002 0.00632202i
\(723\) 0 0
\(724\) 16.9706 0.630706
\(725\) −15.7128 −0.583559
\(726\) 0 0
\(727\) 16.3514 28.3214i 0.606439 1.05038i −0.385383 0.922757i \(-0.625931\pi\)
0.991822 0.127627i \(-0.0407361\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 2.80385 + 4.85641i 0.103775 + 0.179744i
\(731\) 0.915158 + 1.58510i 0.0338483 + 0.0586270i
\(732\) 0 0
\(733\) 4.00240 6.93237i 0.147832 0.256053i −0.782594 0.622533i \(-0.786104\pi\)
0.930426 + 0.366480i \(0.119437\pi\)
\(734\) −9.28032 16.0740i −0.342543 0.593302i
\(735\) 0 0
\(736\) −2.73205 + 4.73205i −0.100705 + 0.174426i
\(737\) −1.66987 2.89230i −0.0615106 0.106539i
\(738\) 0 0
\(739\) −3.06218 + 5.30385i −0.112644 + 0.195105i −0.916836 0.399265i \(-0.869265\pi\)
0.804191 + 0.594370i \(0.202599\pi\)
\(740\) −7.72741 −0.284065
\(741\) 0 0
\(742\) 0 0
\(743\) −15.7846 27.3397i −0.579081 1.00300i −0.995585 0.0938641i \(-0.970078\pi\)
0.416504 0.909134i \(-0.363255\pi\)
\(744\) 0 0
\(745\) −11.8685 20.5569i −0.434829 0.753145i
\(746\) −5.39230 + 9.33975i −0.197426 + 0.341952i
\(747\) 0 0
\(748\) −1.83032 −0.0669230
\(749\) 0 0
\(750\) 0 0
\(751\) −17.3923 + 30.1244i −0.634654 + 1.09925i 0.351934 + 0.936025i \(0.385524\pi\)
−0.986588 + 0.163229i \(0.947809\pi\)
\(752\) 0.757875 0.0276368
\(753\) 0 0
\(754\) 7.17260 0.261211
\(755\) −19.0411 −0.692977
\(756\) 0 0
\(757\) 19.3205 0.702216 0.351108 0.936335i \(-0.385805\pi\)
0.351108 + 0.936335i \(0.385805\pi\)
\(758\) −13.5885 −0.493555
\(759\) 0 0
\(760\) −4.53590 −0.164534
\(761\) 20.1272 34.8613i 0.729609 1.26372i −0.227440 0.973792i \(-0.573035\pi\)
0.957049 0.289928i \(-0.0936312\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) −14.9282 −0.540083
\(765\) 0 0
\(766\) 13.6617 23.6627i 0.493616 0.854968i
\(767\) −1.14359 1.98076i −0.0412928 0.0715212i
\(768\) 0 0
\(769\) 19.0919 + 33.0681i 0.688471 + 1.19247i 0.972332 + 0.233601i \(0.0750511\pi\)
−0.283862 + 0.958865i \(0.591616\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 15.0526 0.541753
\(773\) −19.6975 + 34.1170i −0.708468 + 1.22710i 0.256957 + 0.966423i \(0.417280\pi\)
−0.965425 + 0.260680i \(0.916053\pi\)
\(774\) 0 0
\(775\) −13.1440 22.7661i −0.472147 0.817783i
\(776\) 9.07227 15.7136i 0.325676 0.564087i
\(777\) 0 0
\(778\) −4.00000 6.92820i −0.143407 0.248388i
\(779\) −18.8923 + 32.7224i −0.676887 + 1.17240i
\(780\) 0 0
\(781\) 1.26795 + 2.19615i 0.0453708 + 0.0785845i
\(782\) 18.6622 + 32.3238i 0.667358 + 1.15590i
\(783\) 0 0
\(784\) 0 0
\(785\) −4.92820 + 8.53590i −0.175895 + 0.304659i
\(786\) 0 0
\(787\) −7.14540 −0.254706 −0.127353 0.991857i \(-0.540648\pi\)
−0.127353 + 0.991857i \(0.540648\pi\)
\(788\) 16.9282 0.603042
\(789\) 0 0
\(790\) −4.62158 + 8.00481i −0.164428 + 0.284798i
\(791\) 0 0
\(792\) 0 0
\(793\) 11.3205 + 19.6077i 0.402003 + 0.696290i
\(794\) −6.55343 11.3509i −0.232573 0.402827i
\(795\) 0 0
\(796\) 13.1440 22.7661i 0.465878 0.806924i
\(797\) 18.9396 + 32.8043i 0.670874 + 1.16199i 0.977657 + 0.210209i \(0.0674143\pi\)
−0.306782 + 0.951780i \(0.599252\pi\)
\(798\) 0 0
\(799\) 2.58846 4.48334i 0.0915730 0.158609i
\(800\) −1.96410 3.40192i −0.0694415 0.120276i
\(801\) 0 0
\(802\) 11.8923 20.5981i 0.419932 0.727343i
\(803\) −1.45138 −0.0512180
\(804\) 0 0
\(805\) 0 0
\(806\) 6.00000 + 10.3923i 0.211341 + 0.366053i
\(807\) 0 0
\(808\) −2.44949 4.24264i −0.0861727 0.149256i
\(809\) −14.8660 + 25.7487i −0.522662 + 0.905276i 0.476991 + 0.878908i \(0.341728\pi\)
−0.999652 + 0.0263681i \(0.991606\pi\)
\(810\) 0 0
\(811\) 24.9110 0.874744 0.437372 0.899281i \(-0.355909\pi\)
0.437372 + 0.899281i \(0.355909\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 1.00000 1.73205i 0.0350500 0.0607083i
\(815\) 13.7904 0.483057
\(816\) 0 0
\(817\) −1.17398 −0.0410723
\(818\) 4.48288 0.156740
\(819\) 0 0
\(820\) 8.92820 0.311786
\(821\) −10.3923 −0.362694 −0.181347 0.983419i \(-0.558046\pi\)
−0.181347 + 0.983419i \(0.558046\pi\)
\(822\) 0 0
\(823\) −10.7846 −0.375928 −0.187964 0.982176i \(-0.560189\pi\)
−0.187964 + 0.982176i \(0.560189\pi\)
\(824\) −6.17449 + 10.6945i −0.215099 + 0.372562i
\(825\) 0 0
\(826\) 0 0
\(827\) 12.0000 0.417281 0.208640 0.977992i \(-0.433096\pi\)
0.208640 + 0.977992i \(0.433096\pi\)
\(828\) 0 0
\(829\) 3.96524 6.86800i 0.137718 0.238535i −0.788914 0.614503i \(-0.789356\pi\)
0.926633 + 0.375968i \(0.122690\pi\)
\(830\) −3.41154 5.90897i −0.118416 0.205103i
\(831\) 0 0
\(832\) 0.896575 + 1.55291i 0.0310832 + 0.0538376i
\(833\) 0 0
\(834\) 0 0
\(835\) −1.56922 −0.0543051
\(836\) 0.586988 1.01669i 0.0203014 0.0351631i
\(837\) 0 0
\(838\) 18.0938 + 31.3393i 0.625039 + 1.08260i
\(839\) −11.3137 + 19.5959i −0.390593 + 0.676526i −0.992528 0.122019i \(-0.961063\pi\)
0.601935 + 0.798545i \(0.294397\pi\)
\(840\) 0 0
\(841\) 6.50000 + 11.2583i 0.224138 + 0.388218i
\(842\) 3.80385 6.58846i 0.131089 0.227053i
\(843\) 0 0
\(844\) −9.46410 16.3923i −0.325768 0.564246i
\(845\) −5.06489 8.77264i −0.174237 0.301788i
\(846\) 0 0
\(847\) 0 0
\(848\) 5.46410 9.46410i 0.187638 0.324999i
\(849\) 0 0
\(850\) −26.8329 −0.920361
\(851\) −40.7846 −1.39808
\(852\) 0 0
\(853\) 16.4901 28.5617i 0.564610 0.977933i −0.432476 0.901645i \(-0.642360\pi\)
0.997086 0.0762876i \(-0.0243067\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 8.69615 + 15.0622i 0.297228 + 0.514815i
\(857\) 5.60609 + 9.71003i 0.191500 + 0.331688i 0.945748 0.324902i \(-0.105331\pi\)
−0.754247 + 0.656590i \(0.771998\pi\)
\(858\) 0 0
\(859\) −20.8021 + 36.0303i −0.709758 + 1.22934i 0.255189 + 0.966891i \(0.417862\pi\)
−0.964947 + 0.262445i \(0.915471\pi\)
\(860\) 0.138701 + 0.240237i 0.00472965 + 0.00819200i
\(861\) 0 0
\(862\) 5.07180 8.78461i 0.172746 0.299205i
\(863\) −27.0526 46.8564i −0.920880 1.59501i −0.798057 0.602582i \(-0.794139\pi\)
−0.122823 0.992429i \(-0.539195\pi\)
\(864\) 0 0
\(865\) 3.46410 6.00000i 0.117783 0.204006i
\(866\) −19.8362 −0.674060
\(867\) 0 0
\(868\) 0 0
\(869\) −1.19615 2.07180i −0.0405767 0.0702809i
\(870\) 0 0
\(871\) 11.1750 + 19.3557i 0.378651 + 0.655842i
\(872\) 2.46410 4.26795i 0.0834450 0.144531i
\(873\) 0 0
\(874\) −23.9401 −0.809786
\(875\) 0 0
\(876\) 0 0
\(877\) 14.5885 25.2679i 0.492617 0.853238i −0.507347 0.861742i \(-0.669374\pi\)
0.999964 + 0.00850405i \(0.00270695\pi\)
\(878\) 19.5959 0.661330
\(879\) 0 0
\(880\) −0.277401 −0.00935120
\(881\) −12.7279 −0.428815 −0.214407 0.976744i \(-0.568782\pi\)
−0.214407 + 0.976744i \(0.568782\pi\)
\(882\) 0 0
\(883\) 14.4641 0.486756 0.243378 0.969932i \(-0.421744\pi\)
0.243378 + 0.969932i \(0.421744\pi\)
\(884\) 12.2487 0.411969
\(885\) 0 0
\(886\) 16.3205 0.548298
\(887\) −26.6298 + 46.1242i −0.894142 + 1.54870i −0.0592788 + 0.998241i \(0.518880\pi\)
−0.834863 + 0.550458i \(0.814453\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 7.32051 0.245384
\(891\) 0 0
\(892\) −3.58630 + 6.21166i −0.120078 + 0.207982i
\(893\) 1.66025 + 2.87564i 0.0555583 + 0.0962298i
\(894\) 0 0
\(895\) −2.62536 4.54725i −0.0877559 0.151998i
\(896\) 0 0
\(897\) 0 0
\(898\) 23.7846 0.793703
\(899\) 13.3843 23.1822i 0.446390 0.773170i
\(900\) 0 0
\(901\) −37.3244 64.6477i −1.24345 2.15373i
\(902\) −1.15539 + 2.00120i −0.0384704 + 0.0666327i
\(903\) 0 0
\(904\) 3.46410 + 6.00000i 0.115214 + 0.199557i
\(905\) 8.78461 15.2154i 0.292010 0.505777i
\(906\) 0 0
\(907\) 2.62436 + 4.54552i 0.0871403 + 0.150931i 0.906301 0.422632i \(-0.138894\pi\)
−0.819161 + 0.573564i \(0.805560\pi\)
\(908\) 13.8325 + 23.9587i 0.459049 + 0.795097i
\(909\) 0 0
\(910\) 0 0
\(911\) −16.5359 + 28.6410i −0.547859 + 0.948919i 0.450562 + 0.892745i \(0.351224\pi\)
−0.998421 + 0.0561742i \(0.982110\pi\)
\(912\) 0 0
\(913\) 1.76594 0.0584442
\(914\) 31.0526 1.02713
\(915\) 0 0
\(916\) 0.240237 0.416102i 0.00793764 0.0137484i
\(917\) 0 0
\(918\) 0 0
\(919\) −4.53590 7.85641i −0.149625 0.259159i 0.781464 0.623951i \(-0.214473\pi\)
−0.931089 + 0.364792i \(0.881140\pi\)
\(920\) 2.82843 + 4.89898i 0.0932505 + 0.161515i
\(921\) 0 0
\(922\) −5.51815 + 9.55772i −0.181731 + 0.314767i
\(923\) −8.48528 14.6969i −0.279296 0.483756i
\(924\) 0 0
\(925\) 14.6603 25.3923i 0.482026 0.834894i
\(926\) −15.3205 26.5359i −0.503463 0.872024i
\(927\) 0 0
\(928\) 2.00000 3.46410i 0.0656532 0.113715i
\(929\) 30.8081 1.01078 0.505390 0.862891i \(-0.331349\pi\)
0.505390 + 0.862891i \(0.331349\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0.0621778 + 0.107695i 0.00203670 + 0.00352767i
\(933\) 0 0
\(934\) 4.58939 + 7.94906i 0.150170 + 0.260101i
\(935\) −0.947441 + 1.64102i −0.0309846 + 0.0536670i
\(936\) 0 0
\(937\) 9.89949 0.323402 0.161701 0.986840i \(-0.448302\pi\)
0.161701 + 0.986840i \(0.448302\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0.392305 0.679492i 0.0127956 0.0221626i
\(941\) −47.8802 −1.56085 −0.780425 0.625250i \(-0.784997\pi\)
−0.780425 + 0.625250i \(0.784997\pi\)
\(942\) 0 0
\(943\) 47.1223 1.53451
\(944\) −1.27551 −0.0415144
\(945\) 0 0
\(946\) −0.0717968 −0.00233431
\(947\) 18.1244 0.588962 0.294481 0.955657i \(-0.404853\pi\)
0.294481 + 0.955657i \(0.404853\pi\)
\(948\) 0 0
\(949\) 9.71281 0.315291
\(950\) 8.60540 14.9050i 0.279196 0.483582i
\(951\) 0 0
\(952\) 0 0
\(953\) −19.0000 −0.615470 −0.307735 0.951472i \(-0.599571\pi\)
−0.307735 + 0.951472i \(0.599571\pi\)
\(954\) 0 0
\(955\) −7.72741 + 13.3843i −0.250053 + 0.433105i
\(956\) 0.464102 + 0.803848i 0.0150101 + 0.0259983i
\(957\) 0 0
\(958\) −2.07055 3.58630i −0.0668965 0.115868i
\(959\) 0 0
\(960\) 0 0
\(961\) 13.7846 0.444665
\(962\) −6.69213 + 11.5911i −0.215763 + 0.373712i
\(963\) 0 0
\(964\) 3.13801 + 5.43520i 0.101069 + 0.175056i
\(965\) 7.79178 13.4958i 0.250826 0.434444i
\(966\) 0 0
\(967\) 23.7846 + 41.1962i 0.764861 + 1.32478i 0.940320 + 0.340292i \(0.110526\pi\)
−0.175458 + 0.984487i \(0.556141\pi\)
\(968\) −5.46410 + 9.46410i −0.175623 + 0.304188i
\(969\) 0 0
\(970\) −9.39230 16.2679i −0.301569 0.522332i
\(971\) −15.6443 27.0967i −0.502049 0.869574i −0.999997 0.00236748i \(-0.999246\pi\)
0.497948 0.867207i \(-0.334087\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) −1.39230 + 2.41154i −0.0446123 + 0.0772708i
\(975\) 0 0
\(976\) 12.6264 0.404161
\(977\) −1.98076 −0.0633702 −0.0316851 0.999498i \(-0.510087\pi\)
−0.0316851 + 0.999498i \(0.510087\pi\)
\(978\) 0 0
\(979\) −0.947343 + 1.64085i −0.0302772 + 0.0524417i
\(980\) 0 0
\(981\) 0 0
\(982\) −9.69615 16.7942i −0.309417 0.535925i
\(983\) −6.31319 10.9348i −0.201360 0.348765i 0.747607 0.664141i \(-0.231203\pi\)
−0.948967 + 0.315376i \(0.897869\pi\)
\(984\) 0 0
\(985\) 8.76268 15.1774i 0.279202 0.483593i
\(986\) −13.6617 23.6627i −0.435076 0.753574i
\(987\) 0 0
\(988\) −3.92820 + 6.80385i −0.124973 + 0.216459i
\(989\) 0.732051 + 1.26795i 0.0232779 + 0.0403184i
\(990\) 0 0
\(991\) −25.1244 + 43.5167i −0.798101 + 1.38235i 0.122750 + 0.992438i \(0.460829\pi\)
−0.920851 + 0.389915i \(0.872505\pi\)
\(992\) 6.69213 0.212475
\(993\) 0 0
\(994\) 0 0
\(995\) −13.6077 23.5692i −0.431393 0.747194i
\(996\) 0 0
\(997\) −18.8009 32.5641i −0.595430 1.03131i −0.993486 0.113954i \(-0.963648\pi\)
0.398056 0.917361i \(-0.369685\pi\)
\(998\) 16.6962 28.9186i 0.528507 0.915402i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2646.2.e.q.2125.3 8
3.2 odd 2 882.2.e.s.655.2 8
7.2 even 3 2646.2.h.t.667.2 8
7.3 odd 6 2646.2.f.r.883.2 8
7.4 even 3 2646.2.f.r.883.3 8
7.5 odd 6 2646.2.h.t.667.3 8
7.6 odd 2 inner 2646.2.e.q.2125.2 8
9.4 even 3 2646.2.h.t.361.2 8
9.5 odd 6 882.2.h.q.67.2 8
21.2 odd 6 882.2.h.q.79.1 8
21.5 even 6 882.2.h.q.79.4 8
21.11 odd 6 882.2.f.q.295.4 yes 8
21.17 even 6 882.2.f.q.295.1 8
21.20 even 2 882.2.e.s.655.3 8
63.4 even 3 2646.2.f.r.1765.3 8
63.5 even 6 882.2.e.s.373.3 8
63.11 odd 6 7938.2.a.cp.1.3 4
63.13 odd 6 2646.2.h.t.361.3 8
63.23 odd 6 882.2.e.s.373.2 8
63.25 even 3 7938.2.a.ci.1.2 4
63.31 odd 6 2646.2.f.r.1765.2 8
63.32 odd 6 882.2.f.q.589.4 yes 8
63.38 even 6 7938.2.a.cp.1.2 4
63.40 odd 6 inner 2646.2.e.q.1549.2 8
63.41 even 6 882.2.h.q.67.3 8
63.52 odd 6 7938.2.a.ci.1.3 4
63.58 even 3 inner 2646.2.e.q.1549.3 8
63.59 even 6 882.2.f.q.589.1 yes 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
882.2.e.s.373.2 8 63.23 odd 6
882.2.e.s.373.3 8 63.5 even 6
882.2.e.s.655.2 8 3.2 odd 2
882.2.e.s.655.3 8 21.20 even 2
882.2.f.q.295.1 8 21.17 even 6
882.2.f.q.295.4 yes 8 21.11 odd 6
882.2.f.q.589.1 yes 8 63.59 even 6
882.2.f.q.589.4 yes 8 63.32 odd 6
882.2.h.q.67.2 8 9.5 odd 6
882.2.h.q.67.3 8 63.41 even 6
882.2.h.q.79.1 8 21.2 odd 6
882.2.h.q.79.4 8 21.5 even 6
2646.2.e.q.1549.2 8 63.40 odd 6 inner
2646.2.e.q.1549.3 8 63.58 even 3 inner
2646.2.e.q.2125.2 8 7.6 odd 2 inner
2646.2.e.q.2125.3 8 1.1 even 1 trivial
2646.2.f.r.883.2 8 7.3 odd 6
2646.2.f.r.883.3 8 7.4 even 3
2646.2.f.r.1765.2 8 63.31 odd 6
2646.2.f.r.1765.3 8 63.4 even 3
2646.2.h.t.361.2 8 9.4 even 3
2646.2.h.t.361.3 8 63.13 odd 6
2646.2.h.t.667.2 8 7.2 even 3
2646.2.h.t.667.3 8 7.5 odd 6
7938.2.a.ci.1.2 4 63.25 even 3
7938.2.a.ci.1.3 4 63.52 odd 6
7938.2.a.cp.1.2 4 63.38 even 6
7938.2.a.cp.1.3 4 63.11 odd 6