Properties

Label 882.2.h.q.79.1
Level $882$
Weight $2$
Character 882.79
Analytic conductor $7.043$
Analytic rank $0$
Dimension $8$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [882,2,Mod(67,882)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(882, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([2, 4])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("882.67"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 882 = 2 \cdot 3^{2} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 882.h (of order \(3\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,-4,0,-4,0,0,0,8,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(9)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.04280545828\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\Q(\zeta_{24})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - x^{4} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 3^{2} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 79.1
Root \(-0.258819 - 0.965926i\) of defining polynomial
Character \(\chi\) \(=\) 882.79
Dual form 882.2.h.q.67.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.500000 - 0.866025i) q^{2} +(-1.22474 - 1.22474i) q^{3} +(-0.500000 + 0.866025i) q^{4} +1.03528 q^{5} +(-0.448288 + 1.67303i) q^{6} +1.00000 q^{8} +3.00000i q^{9} +(-0.517638 - 0.896575i) q^{10} -0.267949 q^{11} +(1.67303 - 0.448288i) q^{12} +(0.896575 + 1.55291i) q^{13} +(-1.26795 - 1.26795i) q^{15} +(-0.500000 - 0.866025i) q^{16} +(-3.41542 - 5.91567i) q^{17} +(2.59808 - 1.50000i) q^{18} +(2.19067 - 3.79435i) q^{19} +(-0.517638 + 0.896575i) q^{20} +(0.133975 + 0.232051i) q^{22} +5.46410 q^{23} +(-1.22474 - 1.22474i) q^{24} -3.92820 q^{25} +(0.896575 - 1.55291i) q^{26} +(3.67423 - 3.67423i) q^{27} +(2.00000 - 3.46410i) q^{29} +(-0.464102 + 1.73205i) q^{30} +(3.34607 - 5.79555i) q^{31} +(-0.500000 + 0.866025i) q^{32} +(0.328169 + 0.328169i) q^{33} +(-3.41542 + 5.91567i) q^{34} +(-2.59808 - 1.50000i) q^{36} +(-3.73205 + 6.46410i) q^{37} -4.38134 q^{38} +(0.803848 - 3.00000i) q^{39} +1.03528 q^{40} +(-4.31199 - 7.46859i) q^{41} +(-0.133975 + 0.232051i) q^{43} +(0.133975 - 0.232051i) q^{44} +3.10583i q^{45} +(-2.73205 - 4.73205i) q^{46} +(0.378937 + 0.656339i) q^{47} +(-0.448288 + 1.67303i) q^{48} +(1.96410 + 3.40192i) q^{50} +(-3.06218 + 11.4282i) q^{51} -1.79315 q^{52} +(-5.46410 - 9.46410i) q^{53} +(-5.01910 - 1.34486i) q^{54} -0.277401 q^{55} +(-7.33013 + 1.96410i) q^{57} -4.00000 q^{58} +(-0.637756 + 1.10463i) q^{59} +(1.73205 - 0.464102i) q^{60} +(-6.31319 - 10.9348i) q^{61} -6.69213 q^{62} +1.00000 q^{64} +(0.928203 + 1.60770i) q^{65} +(0.120118 - 0.448288i) q^{66} +(-6.23205 + 10.7942i) q^{67} +6.83083 q^{68} +(-6.69213 - 6.69213i) q^{69} +9.46410 q^{71} +3.00000i q^{72} +(2.70831 + 4.69093i) q^{73} +7.46410 q^{74} +(4.81105 + 4.81105i) q^{75} +(2.19067 + 3.79435i) q^{76} +(-3.00000 + 0.803848i) q^{78} +(-4.46410 - 7.73205i) q^{79} +(-0.517638 - 0.896575i) q^{80} -9.00000 q^{81} +(-4.31199 + 7.46859i) q^{82} +(3.29530 - 5.70762i) q^{83} +(-3.53590 - 6.12436i) q^{85} +0.267949 q^{86} +(-6.69213 + 1.79315i) q^{87} -0.267949 q^{88} +(3.53553 - 6.12372i) q^{89} +(2.68973 - 1.55291i) q^{90} +(-2.73205 + 4.73205i) q^{92} +(-11.1962 + 3.00000i) q^{93} +(0.378937 - 0.656339i) q^{94} +(2.26795 - 3.92820i) q^{95} +(1.67303 - 0.448288i) q^{96} +(-9.07227 + 15.7136i) q^{97} -0.803848i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 4 q^{2} - 4 q^{4} + 8 q^{8} - 16 q^{11} - 24 q^{15} - 4 q^{16} + 8 q^{22} + 16 q^{23} + 24 q^{25} + 16 q^{29} + 24 q^{30} - 4 q^{32} - 16 q^{37} + 48 q^{39} - 8 q^{43} + 8 q^{44} - 8 q^{46} - 12 q^{50}+ \cdots + 32 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/882\mathbb{Z}\right)^\times\).

\(n\) \(199\) \(785\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.500000 0.866025i −0.353553 0.612372i
\(3\) −1.22474 1.22474i −0.707107 0.707107i
\(4\) −0.500000 + 0.866025i −0.250000 + 0.433013i
\(5\) 1.03528 0.462990 0.231495 0.972836i \(-0.425638\pi\)
0.231495 + 0.972836i \(0.425638\pi\)
\(6\) −0.448288 + 1.67303i −0.183013 + 0.683013i
\(7\) 0 0
\(8\) 1.00000 0.353553
\(9\) 3.00000i 1.00000i
\(10\) −0.517638 0.896575i −0.163692 0.283522i
\(11\) −0.267949 −0.0807897 −0.0403949 0.999184i \(-0.512862\pi\)
−0.0403949 + 0.999184i \(0.512862\pi\)
\(12\) 1.67303 0.448288i 0.482963 0.129410i
\(13\) 0.896575 + 1.55291i 0.248665 + 0.430701i 0.963156 0.268944i \(-0.0866747\pi\)
−0.714490 + 0.699645i \(0.753341\pi\)
\(14\) 0 0
\(15\) −1.26795 1.26795i −0.327383 0.327383i
\(16\) −0.500000 0.866025i −0.125000 0.216506i
\(17\) −3.41542 5.91567i −0.828360 1.43476i −0.899324 0.437283i \(-0.855941\pi\)
0.0709642 0.997479i \(-0.477392\pi\)
\(18\) 2.59808 1.50000i 0.612372 0.353553i
\(19\) 2.19067 3.79435i 0.502574 0.870484i −0.497421 0.867509i \(-0.665720\pi\)
0.999996 0.00297513i \(-0.000947015\pi\)
\(20\) −0.517638 + 0.896575i −0.115747 + 0.200480i
\(21\) 0 0
\(22\) 0.133975 + 0.232051i 0.0285635 + 0.0494734i
\(23\) 5.46410 1.13934 0.569672 0.821872i \(-0.307070\pi\)
0.569672 + 0.821872i \(0.307070\pi\)
\(24\) −1.22474 1.22474i −0.250000 0.250000i
\(25\) −3.92820 −0.785641
\(26\) 0.896575 1.55291i 0.175833 0.304552i
\(27\) 3.67423 3.67423i 0.707107 0.707107i
\(28\) 0 0
\(29\) 2.00000 3.46410i 0.371391 0.643268i −0.618389 0.785872i \(-0.712214\pi\)
0.989780 + 0.142605i \(0.0455477\pi\)
\(30\) −0.464102 + 1.73205i −0.0847330 + 0.316228i
\(31\) 3.34607 5.79555i 0.600971 1.04091i −0.391703 0.920092i \(-0.628114\pi\)
0.992674 0.120821i \(-0.0385526\pi\)
\(32\) −0.500000 + 0.866025i −0.0883883 + 0.153093i
\(33\) 0.328169 + 0.328169i 0.0571270 + 0.0571270i
\(34\) −3.41542 + 5.91567i −0.585739 + 1.01453i
\(35\) 0 0
\(36\) −2.59808 1.50000i −0.433013 0.250000i
\(37\) −3.73205 + 6.46410i −0.613545 + 1.06269i 0.377092 + 0.926176i \(0.376924\pi\)
−0.990638 + 0.136516i \(0.956409\pi\)
\(38\) −4.38134 −0.710747
\(39\) 0.803848 3.00000i 0.128719 0.480384i
\(40\) 1.03528 0.163692
\(41\) −4.31199 7.46859i −0.673420 1.16640i −0.976928 0.213569i \(-0.931491\pi\)
0.303508 0.952829i \(-0.401842\pi\)
\(42\) 0 0
\(43\) −0.133975 + 0.232051i −0.0204309 + 0.0353874i −0.876060 0.482202i \(-0.839837\pi\)
0.855629 + 0.517589i \(0.173170\pi\)
\(44\) 0.133975 0.232051i 0.0201974 0.0349830i
\(45\) 3.10583i 0.462990i
\(46\) −2.73205 4.73205i −0.402819 0.697703i
\(47\) 0.378937 + 0.656339i 0.0552737 + 0.0957369i 0.892338 0.451367i \(-0.149064\pi\)
−0.837065 + 0.547104i \(0.815730\pi\)
\(48\) −0.448288 + 1.67303i −0.0647048 + 0.241481i
\(49\) 0 0
\(50\) 1.96410 + 3.40192i 0.277766 + 0.481105i
\(51\) −3.06218 + 11.4282i −0.428791 + 1.60027i
\(52\) −1.79315 −0.248665
\(53\) −5.46410 9.46410i −0.750552 1.29999i −0.947555 0.319592i \(-0.896454\pi\)
0.197003 0.980403i \(-0.436879\pi\)
\(54\) −5.01910 1.34486i −0.683013 0.183013i
\(55\) −0.277401 −0.0374048
\(56\) 0 0
\(57\) −7.33013 + 1.96410i −0.970899 + 0.260152i
\(58\) −4.00000 −0.525226
\(59\) −0.637756 + 1.10463i −0.0830288 + 0.143810i −0.904550 0.426369i \(-0.859793\pi\)
0.821521 + 0.570179i \(0.193126\pi\)
\(60\) 1.73205 0.464102i 0.223607 0.0599153i
\(61\) −6.31319 10.9348i −0.808322 1.40005i −0.914026 0.405656i \(-0.867043\pi\)
0.105704 0.994398i \(-0.466290\pi\)
\(62\) −6.69213 −0.849901
\(63\) 0 0
\(64\) 1.00000 0.125000
\(65\) 0.928203 + 1.60770i 0.115129 + 0.199410i
\(66\) 0.120118 0.448288i 0.0147855 0.0551804i
\(67\) −6.23205 + 10.7942i −0.761366 + 1.31872i 0.180780 + 0.983524i \(0.442138\pi\)
−0.942146 + 0.335201i \(0.891196\pi\)
\(68\) 6.83083 0.828360
\(69\) −6.69213 6.69213i −0.805638 0.805638i
\(70\) 0 0
\(71\) 9.46410 1.12318 0.561591 0.827415i \(-0.310189\pi\)
0.561591 + 0.827415i \(0.310189\pi\)
\(72\) 3.00000i 0.353553i
\(73\) 2.70831 + 4.69093i 0.316984 + 0.549032i 0.979857 0.199700i \(-0.0639967\pi\)
−0.662874 + 0.748731i \(0.730663\pi\)
\(74\) 7.46410 0.867684
\(75\) 4.81105 + 4.81105i 0.555532 + 0.555532i
\(76\) 2.19067 + 3.79435i 0.251287 + 0.435242i
\(77\) 0 0
\(78\) −3.00000 + 0.803848i −0.339683 + 0.0910178i
\(79\) −4.46410 7.73205i −0.502251 0.869924i −0.999997 0.00260080i \(-0.999172\pi\)
0.497746 0.867323i \(-0.334161\pi\)
\(80\) −0.517638 0.896575i −0.0578737 0.100240i
\(81\) −9.00000 −1.00000
\(82\) −4.31199 + 7.46859i −0.476180 + 0.824768i
\(83\) 3.29530 5.70762i 0.361706 0.626493i −0.626536 0.779393i \(-0.715528\pi\)
0.988242 + 0.152900i \(0.0488611\pi\)
\(84\) 0 0
\(85\) −3.53590 6.12436i −0.383522 0.664280i
\(86\) 0.267949 0.0288937
\(87\) −6.69213 + 1.79315i −0.717472 + 0.192246i
\(88\) −0.267949 −0.0285635
\(89\) 3.53553 6.12372i 0.374766 0.649113i −0.615526 0.788116i \(-0.711056\pi\)
0.990292 + 0.139003i \(0.0443898\pi\)
\(90\) 2.68973 1.55291i 0.283522 0.163692i
\(91\) 0 0
\(92\) −2.73205 + 4.73205i −0.284836 + 0.493350i
\(93\) −11.1962 + 3.00000i −1.16099 + 0.311086i
\(94\) 0.378937 0.656339i 0.0390844 0.0676962i
\(95\) 2.26795 3.92820i 0.232687 0.403025i
\(96\) 1.67303 0.448288i 0.170753 0.0457532i
\(97\) −9.07227 + 15.7136i −0.921149 + 1.59548i −0.123510 + 0.992343i \(0.539415\pi\)
−0.797640 + 0.603134i \(0.793918\pi\)
\(98\) 0 0
\(99\) 0.803848i 0.0807897i
\(100\) 1.96410 3.40192i 0.196410 0.340192i
\(101\) 4.89898 0.487467 0.243733 0.969842i \(-0.421628\pi\)
0.243733 + 0.969842i \(0.421628\pi\)
\(102\) 11.4282 3.06218i 1.13156 0.303201i
\(103\) −12.3490 −1.21678 −0.608391 0.793638i \(-0.708185\pi\)
−0.608391 + 0.793638i \(0.708185\pi\)
\(104\) 0.896575 + 1.55291i 0.0879165 + 0.152276i
\(105\) 0 0
\(106\) −5.46410 + 9.46410i −0.530720 + 0.919235i
\(107\) 8.69615 15.0622i 0.840689 1.45612i −0.0486244 0.998817i \(-0.515484\pi\)
0.889313 0.457299i \(-0.151183\pi\)
\(108\) 1.34486 + 5.01910i 0.129410 + 0.482963i
\(109\) −2.46410 4.26795i −0.236018 0.408795i 0.723550 0.690272i \(-0.242509\pi\)
−0.959568 + 0.281477i \(0.909176\pi\)
\(110\) 0.138701 + 0.240237i 0.0132246 + 0.0229057i
\(111\) 12.4877 3.34607i 1.18528 0.317594i
\(112\) 0 0
\(113\) 3.46410 + 6.00000i 0.325875 + 0.564433i 0.981689 0.190490i \(-0.0610077\pi\)
−0.655814 + 0.754923i \(0.727674\pi\)
\(114\) 5.36603 + 5.36603i 0.502574 + 0.502574i
\(115\) 5.65685 0.527504
\(116\) 2.00000 + 3.46410i 0.185695 + 0.321634i
\(117\) −4.65874 + 2.68973i −0.430701 + 0.248665i
\(118\) 1.27551 0.117420
\(119\) 0 0
\(120\) −1.26795 1.26795i −0.115747 0.115747i
\(121\) −10.9282 −0.993473
\(122\) −6.31319 + 10.9348i −0.571570 + 0.989988i
\(123\) −3.86603 + 14.4282i −0.348588 + 1.30095i
\(124\) 3.34607 + 5.79555i 0.300486 + 0.520456i
\(125\) −9.24316 −0.826733
\(126\) 0 0
\(127\) 13.4641 1.19475 0.597373 0.801964i \(-0.296211\pi\)
0.597373 + 0.801964i \(0.296211\pi\)
\(128\) −0.500000 0.866025i −0.0441942 0.0765466i
\(129\) 0.448288 0.120118i 0.0394695 0.0105758i
\(130\) 0.928203 1.60770i 0.0814088 0.141004i
\(131\) −10.9348 −0.955375 −0.477688 0.878530i \(-0.658525\pi\)
−0.477688 + 0.878530i \(0.658525\pi\)
\(132\) −0.448288 + 0.120118i −0.0390184 + 0.0104550i
\(133\) 0 0
\(134\) 12.4641 1.07673
\(135\) 3.80385 3.80385i 0.327383 0.327383i
\(136\) −3.41542 5.91567i −0.292869 0.507265i
\(137\) 8.66025 0.739895 0.369948 0.929053i \(-0.379376\pi\)
0.369948 + 0.929053i \(0.379376\pi\)
\(138\) −2.44949 + 9.14162i −0.208514 + 0.778186i
\(139\) 0.397520 + 0.688524i 0.0337172 + 0.0583999i 0.882392 0.470516i \(-0.155932\pi\)
−0.848674 + 0.528916i \(0.822599\pi\)
\(140\) 0 0
\(141\) 0.339746 1.26795i 0.0286118 0.106781i
\(142\) −4.73205 8.19615i −0.397105 0.687806i
\(143\) −0.240237 0.416102i −0.0200896 0.0347962i
\(144\) 2.59808 1.50000i 0.216506 0.125000i
\(145\) 2.07055 3.58630i 0.171950 0.297826i
\(146\) 2.70831 4.69093i 0.224141 0.388224i
\(147\) 0 0
\(148\) −3.73205 6.46410i −0.306773 0.531346i
\(149\) 22.9282 1.87835 0.939176 0.343437i \(-0.111591\pi\)
0.939176 + 0.343437i \(0.111591\pi\)
\(150\) 1.76097 6.57201i 0.143782 0.536603i
\(151\) 18.3923 1.49674 0.748372 0.663279i \(-0.230836\pi\)
0.748372 + 0.663279i \(0.230836\pi\)
\(152\) 2.19067 3.79435i 0.177687 0.307763i
\(153\) 17.7470 10.2462i 1.43476 0.828360i
\(154\) 0 0
\(155\) 3.46410 6.00000i 0.278243 0.481932i
\(156\) 2.19615 + 2.19615i 0.175833 + 0.175833i
\(157\) 4.76028 8.24504i 0.379912 0.658026i −0.611137 0.791524i \(-0.709288\pi\)
0.991049 + 0.133498i \(0.0426211\pi\)
\(158\) −4.46410 + 7.73205i −0.355145 + 0.615129i
\(159\) −4.89898 + 18.2832i −0.388514 + 1.44996i
\(160\) −0.517638 + 0.896575i −0.0409229 + 0.0708805i
\(161\) 0 0
\(162\) 4.50000 + 7.79423i 0.353553 + 0.612372i
\(163\) 6.66025 11.5359i 0.521671 0.903561i −0.478011 0.878354i \(-0.658642\pi\)
0.999682 0.0252074i \(-0.00802461\pi\)
\(164\) 8.62398 0.673420
\(165\) 0.339746 + 0.339746i 0.0264492 + 0.0264492i
\(166\) −6.59059 −0.511529
\(167\) 0.757875 + 1.31268i 0.0586461 + 0.101578i 0.893858 0.448350i \(-0.147988\pi\)
−0.835212 + 0.549928i \(0.814655\pi\)
\(168\) 0 0
\(169\) 4.89230 8.47372i 0.376331 0.651825i
\(170\) −3.53590 + 6.12436i −0.271191 + 0.469717i
\(171\) 11.3831 + 6.57201i 0.870484 + 0.502574i
\(172\) −0.133975 0.232051i −0.0102155 0.0176937i
\(173\) 3.34607 + 5.79555i 0.254397 + 0.440628i 0.964731 0.263236i \(-0.0847898\pi\)
−0.710335 + 0.703864i \(0.751456\pi\)
\(174\) 4.89898 + 4.89898i 0.371391 + 0.371391i
\(175\) 0 0
\(176\) 0.133975 + 0.232051i 0.0100987 + 0.0174915i
\(177\) 2.13397 0.571797i 0.160399 0.0429789i
\(178\) −7.07107 −0.529999
\(179\) −2.53590 4.39230i −0.189542 0.328296i 0.755556 0.655084i \(-0.227367\pi\)
−0.945098 + 0.326788i \(0.894034\pi\)
\(180\) −2.68973 1.55291i −0.200480 0.115747i
\(181\) 16.9706 1.26141 0.630706 0.776022i \(-0.282765\pi\)
0.630706 + 0.776022i \(0.282765\pi\)
\(182\) 0 0
\(183\) −5.66025 + 21.1244i −0.418418 + 1.56156i
\(184\) 5.46410 0.402819
\(185\) −3.86370 + 6.69213i −0.284065 + 0.492015i
\(186\) 8.19615 + 8.19615i 0.600971 + 0.600971i
\(187\) 0.915158 + 1.58510i 0.0669230 + 0.115914i
\(188\) −0.757875 −0.0552737
\(189\) 0 0
\(190\) −4.53590 −0.329069
\(191\) −7.46410 12.9282i −0.540083 0.935452i −0.998899 0.0469202i \(-0.985059\pi\)
0.458815 0.888532i \(-0.348274\pi\)
\(192\) −1.22474 1.22474i −0.0883883 0.0883883i
\(193\) −7.52628 + 13.0359i −0.541753 + 0.938344i 0.457050 + 0.889441i \(0.348906\pi\)
−0.998804 + 0.0489035i \(0.984427\pi\)
\(194\) 18.1445 1.30270
\(195\) 0.832204 3.10583i 0.0595954 0.222413i
\(196\) 0 0
\(197\) −16.9282 −1.20608 −0.603042 0.797709i \(-0.706045\pi\)
−0.603042 + 0.797709i \(0.706045\pi\)
\(198\) −0.696152 + 0.401924i −0.0494734 + 0.0285635i
\(199\) 13.1440 + 22.7661i 0.931755 + 1.61385i 0.780320 + 0.625380i \(0.215056\pi\)
0.151435 + 0.988467i \(0.451611\pi\)
\(200\) −3.92820 −0.277766
\(201\) 20.8528 5.58750i 1.47085 0.394112i
\(202\) −2.44949 4.24264i −0.172345 0.298511i
\(203\) 0 0
\(204\) −8.36603 8.36603i −0.585739 0.585739i
\(205\) −4.46410 7.73205i −0.311786 0.540030i
\(206\) 6.17449 + 10.6945i 0.430197 + 0.745124i
\(207\) 16.3923i 1.13934i
\(208\) 0.896575 1.55291i 0.0621663 0.107675i
\(209\) −0.586988 + 1.01669i −0.0406028 + 0.0703262i
\(210\) 0 0
\(211\) −9.46410 16.3923i −0.651536 1.12849i −0.982750 0.184937i \(-0.940792\pi\)
0.331215 0.943555i \(-0.392542\pi\)
\(212\) 10.9282 0.750552
\(213\) −11.5911 11.5911i −0.794210 0.794210i
\(214\) −17.3923 −1.18891
\(215\) −0.138701 + 0.240237i −0.00945931 + 0.0163840i
\(216\) 3.67423 3.67423i 0.250000 0.250000i
\(217\) 0 0
\(218\) −2.46410 + 4.26795i −0.166890 + 0.289062i
\(219\) 2.42820 9.06218i 0.164083 0.612365i
\(220\) 0.138701 0.240237i 0.00935120 0.0161968i
\(221\) 6.12436 10.6077i 0.411969 0.713551i
\(222\) −9.14162 9.14162i −0.613545 0.613545i
\(223\) −3.58630 + 6.21166i −0.240157 + 0.415963i −0.960759 0.277385i \(-0.910532\pi\)
0.720602 + 0.693349i \(0.243865\pi\)
\(224\) 0 0
\(225\) 11.7846i 0.785641i
\(226\) 3.46410 6.00000i 0.230429 0.399114i
\(227\) 27.6651 1.83620 0.918098 0.396352i \(-0.129724\pi\)
0.918098 + 0.396352i \(0.129724\pi\)
\(228\) 1.96410 7.33013i 0.130076 0.485450i
\(229\) −0.480473 −0.0317506 −0.0158753 0.999874i \(-0.505053\pi\)
−0.0158753 + 0.999874i \(0.505053\pi\)
\(230\) −2.82843 4.89898i −0.186501 0.323029i
\(231\) 0 0
\(232\) 2.00000 3.46410i 0.131306 0.227429i
\(233\) −0.0621778 + 0.107695i −0.00407340 + 0.00705534i −0.868055 0.496468i \(-0.834630\pi\)
0.863982 + 0.503524i \(0.167963\pi\)
\(234\) 4.65874 + 2.68973i 0.304552 + 0.175833i
\(235\) 0.392305 + 0.679492i 0.0255911 + 0.0443252i
\(236\) −0.637756 1.10463i −0.0415144 0.0719051i
\(237\) −4.00240 + 14.9372i −0.259984 + 0.970274i
\(238\) 0 0
\(239\) −0.464102 0.803848i −0.0300202 0.0519966i 0.850625 0.525773i \(-0.176224\pi\)
−0.880645 + 0.473776i \(0.842891\pi\)
\(240\) −0.464102 + 1.73205i −0.0299576 + 0.111803i
\(241\) −6.27603 −0.404275 −0.202137 0.979357i \(-0.564789\pi\)
−0.202137 + 0.979357i \(0.564789\pi\)
\(242\) 5.46410 + 9.46410i 0.351246 + 0.608375i
\(243\) 11.0227 + 11.0227i 0.707107 + 0.707107i
\(244\) 12.6264 0.808322
\(245\) 0 0
\(246\) 14.4282 3.86603i 0.919909 0.246489i
\(247\) 7.85641 0.499891
\(248\) 3.34607 5.79555i 0.212475 0.368018i
\(249\) −11.0263 + 2.95448i −0.698762 + 0.187233i
\(250\) 4.62158 + 8.00481i 0.292294 + 0.506269i
\(251\) −0.795040 −0.0501824 −0.0250912 0.999685i \(-0.507988\pi\)
−0.0250912 + 0.999685i \(0.507988\pi\)
\(252\) 0 0
\(253\) −1.46410 −0.0920473
\(254\) −6.73205 11.6603i −0.422406 0.731629i
\(255\) −3.17020 + 11.8313i −0.198526 + 0.740908i
\(256\) −0.500000 + 0.866025i −0.0312500 + 0.0541266i
\(257\) −10.0382 −0.626165 −0.313083 0.949726i \(-0.601362\pi\)
−0.313083 + 0.949726i \(0.601362\pi\)
\(258\) −0.328169 0.328169i −0.0204309 0.0204309i
\(259\) 0 0
\(260\) −1.85641 −0.115129
\(261\) 10.3923 + 6.00000i 0.643268 + 0.371391i
\(262\) 5.46739 + 9.46979i 0.337776 + 0.585046i
\(263\) −8.53590 −0.526346 −0.263173 0.964749i \(-0.584769\pi\)
−0.263173 + 0.964749i \(0.584769\pi\)
\(264\) 0.328169 + 0.328169i 0.0201974 + 0.0201974i
\(265\) −5.65685 9.79796i −0.347498 0.601884i
\(266\) 0 0
\(267\) −11.8301 + 3.16987i −0.723992 + 0.193993i
\(268\) −6.23205 10.7942i −0.380683 0.659362i
\(269\) −2.82843 4.89898i −0.172452 0.298696i 0.766824 0.641857i \(-0.221836\pi\)
−0.939277 + 0.343161i \(0.888502\pi\)
\(270\) −5.19615 1.39230i −0.316228 0.0847330i
\(271\) 6.55343 11.3509i 0.398093 0.689516i −0.595398 0.803431i \(-0.703006\pi\)
0.993491 + 0.113914i \(0.0363390\pi\)
\(272\) −3.41542 + 5.91567i −0.207090 + 0.358690i
\(273\) 0 0
\(274\) −4.33013 7.50000i −0.261593 0.453092i
\(275\) 1.05256 0.0634717
\(276\) 9.14162 2.44949i 0.550261 0.147442i
\(277\) 31.4641 1.89049 0.945247 0.326355i \(-0.105820\pi\)
0.945247 + 0.326355i \(0.105820\pi\)
\(278\) 0.397520 0.688524i 0.0238417 0.0412949i
\(279\) 17.3867 + 10.0382i 1.04091 + 0.600971i
\(280\) 0 0
\(281\) −8.92820 + 15.4641i −0.532612 + 0.922511i 0.466663 + 0.884435i \(0.345456\pi\)
−0.999275 + 0.0380757i \(0.987877\pi\)
\(282\) −1.26795 + 0.339746i −0.0755053 + 0.0202316i
\(283\) −7.53794 + 13.0561i −0.448084 + 0.776104i −0.998261 0.0589437i \(-0.981227\pi\)
0.550177 + 0.835048i \(0.314560\pi\)
\(284\) −4.73205 + 8.19615i −0.280796 + 0.486352i
\(285\) −7.58871 + 2.03339i −0.449516 + 0.120447i
\(286\) −0.240237 + 0.416102i −0.0142055 + 0.0246046i
\(287\) 0 0
\(288\) −2.59808 1.50000i −0.153093 0.0883883i
\(289\) −14.8301 + 25.6865i −0.872360 + 1.51097i
\(290\) −4.14110 −0.243174
\(291\) 30.3564 8.13397i 1.77952 0.476822i
\(292\) −5.41662 −0.316984
\(293\) −4.62158 8.00481i −0.269995 0.467646i 0.698865 0.715254i \(-0.253689\pi\)
−0.968860 + 0.247608i \(0.920356\pi\)
\(294\) 0 0
\(295\) −0.660254 + 1.14359i −0.0384415 + 0.0665826i
\(296\) −3.73205 + 6.46410i −0.216921 + 0.375718i
\(297\) −0.984508 + 0.984508i −0.0571270 + 0.0571270i
\(298\) −11.4641 19.8564i −0.664098 1.15025i
\(299\) 4.89898 + 8.48528i 0.283315 + 0.490716i
\(300\) −6.57201 + 1.76097i −0.379435 + 0.101669i
\(301\) 0 0
\(302\) −9.19615 15.9282i −0.529179 0.916565i
\(303\) −6.00000 6.00000i −0.344691 0.344691i
\(304\) −4.38134 −0.251287
\(305\) −6.53590 11.3205i −0.374244 0.648210i
\(306\) −17.7470 10.2462i −1.01453 0.585739i
\(307\) −1.17398 −0.0670024 −0.0335012 0.999439i \(-0.510666\pi\)
−0.0335012 + 0.999439i \(0.510666\pi\)
\(308\) 0 0
\(309\) 15.1244 + 15.1244i 0.860395 + 0.860395i
\(310\) −6.92820 −0.393496
\(311\) −3.72500 + 6.45189i −0.211226 + 0.365853i −0.952098 0.305792i \(-0.901079\pi\)
0.740873 + 0.671645i \(0.234412\pi\)
\(312\) 0.803848 3.00000i 0.0455089 0.169842i
\(313\) 3.13801 + 5.43520i 0.177371 + 0.307216i 0.940979 0.338464i \(-0.109907\pi\)
−0.763608 + 0.645680i \(0.776574\pi\)
\(314\) −9.52056 −0.537276
\(315\) 0 0
\(316\) 8.92820 0.502251
\(317\) 13.0000 + 22.5167i 0.730153 + 1.26466i 0.956818 + 0.290689i \(0.0938844\pi\)
−0.226665 + 0.973973i \(0.572782\pi\)
\(318\) 18.2832 4.89898i 1.02527 0.274721i
\(319\) −0.535898 + 0.928203i −0.0300045 + 0.0519694i
\(320\) 1.03528 0.0578737
\(321\) −29.0979 + 7.79676i −1.62409 + 0.435173i
\(322\) 0 0
\(323\) −29.9282 −1.66525
\(324\) 4.50000 7.79423i 0.250000 0.433013i
\(325\) −3.52193 6.10016i −0.195362 0.338376i
\(326\) −13.3205 −0.737755
\(327\) −2.20925 + 8.24504i −0.122172 + 0.455952i
\(328\) −4.31199 7.46859i −0.238090 0.412384i
\(329\) 0 0
\(330\) 0.124356 0.464102i 0.00684555 0.0255480i
\(331\) 5.73205 + 9.92820i 0.315062 + 0.545703i 0.979451 0.201684i \(-0.0646413\pi\)
−0.664389 + 0.747387i \(0.731308\pi\)
\(332\) 3.29530 + 5.70762i 0.180853 + 0.313246i
\(333\) −19.3923 11.1962i −1.06269 0.613545i
\(334\) 0.757875 1.31268i 0.0414691 0.0718265i
\(335\) −6.45189 + 11.1750i −0.352505 + 0.610556i
\(336\) 0 0
\(337\) 3.50000 + 6.06218i 0.190657 + 0.330228i 0.945468 0.325714i \(-0.105605\pi\)
−0.754811 + 0.655942i \(0.772271\pi\)
\(338\) −9.78461 −0.532213
\(339\) 3.10583 11.5911i 0.168685 0.629543i
\(340\) 7.07180 0.383522
\(341\) −0.896575 + 1.55291i −0.0485523 + 0.0840950i
\(342\) 13.1440i 0.710747i
\(343\) 0 0
\(344\) −0.133975 + 0.232051i −0.00722343 + 0.0125113i
\(345\) −6.92820 6.92820i −0.373002 0.373002i
\(346\) 3.34607 5.79555i 0.179886 0.311571i
\(347\) 4.79423 8.30385i 0.257368 0.445774i −0.708168 0.706044i \(-0.750478\pi\)
0.965536 + 0.260270i \(0.0838115\pi\)
\(348\) 1.79315 6.69213i 0.0961230 0.358736i
\(349\) −4.00240 + 6.93237i −0.214244 + 0.371081i −0.953038 0.302850i \(-0.902062\pi\)
0.738795 + 0.673931i \(0.235395\pi\)
\(350\) 0 0
\(351\) 9.00000 + 2.41154i 0.480384 + 0.128719i
\(352\) 0.133975 0.232051i 0.00714087 0.0123683i
\(353\) −25.0125 −1.33128 −0.665641 0.746272i \(-0.731842\pi\)
−0.665641 + 0.746272i \(0.731842\pi\)
\(354\) −1.56218 1.56218i −0.0830288 0.0830288i
\(355\) 9.79796 0.520022
\(356\) 3.53553 + 6.12372i 0.187383 + 0.324557i
\(357\) 0 0
\(358\) −2.53590 + 4.39230i −0.134026 + 0.232141i
\(359\) −3.73205 + 6.46410i −0.196970 + 0.341162i −0.947545 0.319624i \(-0.896444\pi\)
0.750574 + 0.660786i \(0.229777\pi\)
\(360\) 3.10583i 0.163692i
\(361\) −0.0980762 0.169873i −0.00516191 0.00894068i
\(362\) −8.48528 14.6969i −0.445976 0.772454i
\(363\) 13.3843 + 13.3843i 0.702492 + 0.702492i
\(364\) 0 0
\(365\) 2.80385 + 4.85641i 0.146760 + 0.254196i
\(366\) 21.1244 5.66025i 1.10419 0.295866i
\(367\) −18.5606 −0.968858 −0.484429 0.874831i \(-0.660973\pi\)
−0.484429 + 0.874831i \(0.660973\pi\)
\(368\) −2.73205 4.73205i −0.142418 0.246675i
\(369\) 22.4058 12.9360i 1.16640 0.673420i
\(370\) 7.72741 0.401729
\(371\) 0 0
\(372\) 3.00000 11.1962i 0.155543 0.580493i
\(373\) −10.7846 −0.558406 −0.279203 0.960232i \(-0.590070\pi\)
−0.279203 + 0.960232i \(0.590070\pi\)
\(374\) 0.915158 1.58510i 0.0473217 0.0819636i
\(375\) 11.3205 + 11.3205i 0.584589 + 0.584589i
\(376\) 0.378937 + 0.656339i 0.0195422 + 0.0338481i
\(377\) 7.17260 0.369408
\(378\) 0 0
\(379\) 13.5885 0.697992 0.348996 0.937124i \(-0.386523\pi\)
0.348996 + 0.937124i \(0.386523\pi\)
\(380\) 2.26795 + 3.92820i 0.116343 + 0.201513i
\(381\) −16.4901 16.4901i −0.844813 0.844813i
\(382\) −7.46410 + 12.9282i −0.381897 + 0.661464i
\(383\) −27.3233 −1.39616 −0.698078 0.716021i \(-0.745961\pi\)
−0.698078 + 0.716021i \(0.745961\pi\)
\(384\) −0.448288 + 1.67303i −0.0228766 + 0.0853766i
\(385\) 0 0
\(386\) 15.0526 0.766155
\(387\) −0.696152 0.401924i −0.0353874 0.0204309i
\(388\) −9.07227 15.7136i −0.460575 0.797739i
\(389\) 8.00000 0.405616 0.202808 0.979219i \(-0.434993\pi\)
0.202808 + 0.979219i \(0.434993\pi\)
\(390\) −3.10583 + 0.832204i −0.157270 + 0.0421403i
\(391\) −18.6622 32.3238i −0.943787 1.63469i
\(392\) 0 0
\(393\) 13.3923 + 13.3923i 0.675552 + 0.675552i
\(394\) 8.46410 + 14.6603i 0.426415 + 0.738573i
\(395\) −4.62158 8.00481i −0.232537 0.402766i
\(396\) 0.696152 + 0.401924i 0.0349830 + 0.0201974i
\(397\) 6.55343 11.3509i 0.328907 0.569684i −0.653388 0.757023i \(-0.726653\pi\)
0.982295 + 0.187339i \(0.0599863\pi\)
\(398\) 13.1440 22.7661i 0.658850 1.14116i
\(399\) 0 0
\(400\) 1.96410 + 3.40192i 0.0982051 + 0.170096i
\(401\) −23.7846 −1.18775 −0.593873 0.804559i \(-0.702402\pi\)
−0.593873 + 0.804559i \(0.702402\pi\)
\(402\) −15.2653 15.2653i −0.761366 0.761366i
\(403\) 12.0000 0.597763
\(404\) −2.44949 + 4.24264i −0.121867 + 0.211079i
\(405\) −9.31749 −0.462990
\(406\) 0 0
\(407\) 1.00000 1.73205i 0.0495682 0.0858546i
\(408\) −3.06218 + 11.4282i −0.151600 + 0.565780i
\(409\) 2.24144 3.88229i 0.110832 0.191967i −0.805274 0.592903i \(-0.797982\pi\)
0.916106 + 0.400936i \(0.131315\pi\)
\(410\) −4.46410 + 7.73205i −0.220466 + 0.381859i
\(411\) −10.6066 10.6066i −0.523185 0.523185i
\(412\) 6.17449 10.6945i 0.304195 0.526882i
\(413\) 0 0
\(414\) 14.1962 8.19615i 0.697703 0.402819i
\(415\) 3.41154 5.90897i 0.167466 0.290060i
\(416\) −1.79315 −0.0879165
\(417\) 0.356406 1.33013i 0.0174533 0.0651366i
\(418\) 1.17398 0.0574211
\(419\) 18.0938 + 31.3393i 0.883939 + 1.53103i 0.846925 + 0.531712i \(0.178451\pi\)
0.0370132 + 0.999315i \(0.488216\pi\)
\(420\) 0 0
\(421\) −3.80385 + 6.58846i −0.185388 + 0.321102i −0.943707 0.330782i \(-0.892688\pi\)
0.758319 + 0.651884i \(0.226021\pi\)
\(422\) −9.46410 + 16.3923i −0.460705 + 0.797965i
\(423\) −1.96902 + 1.13681i −0.0957369 + 0.0552737i
\(424\) −5.46410 9.46410i −0.265360 0.459617i
\(425\) 13.4164 + 23.2380i 0.650793 + 1.12721i
\(426\) −4.24264 + 15.8338i −0.205557 + 0.767148i
\(427\) 0 0
\(428\) 8.69615 + 15.0622i 0.420344 + 0.728058i
\(429\) −0.215390 + 0.803848i −0.0103991 + 0.0388101i
\(430\) 0.277401 0.0133775
\(431\) 5.07180 + 8.78461i 0.244300 + 0.423140i 0.961935 0.273280i \(-0.0881085\pi\)
−0.717635 + 0.696420i \(0.754775\pi\)
\(432\) −5.01910 1.34486i −0.241481 0.0647048i
\(433\) 19.8362 0.953265 0.476632 0.879103i \(-0.341857\pi\)
0.476632 + 0.879103i \(0.341857\pi\)
\(434\) 0 0
\(435\) −6.92820 + 1.85641i −0.332182 + 0.0890079i
\(436\) 4.92820 0.236018
\(437\) 11.9700 20.7327i 0.572605 0.991781i
\(438\) −9.06218 + 2.42820i −0.433008 + 0.116024i
\(439\) 9.79796 + 16.9706i 0.467631 + 0.809961i 0.999316 0.0369815i \(-0.0117743\pi\)
−0.531685 + 0.846942i \(0.678441\pi\)
\(440\) −0.277401 −0.0132246
\(441\) 0 0
\(442\) −12.2487 −0.582612
\(443\) −8.16025 14.1340i −0.387705 0.671525i 0.604435 0.796654i \(-0.293399\pi\)
−0.992140 + 0.125129i \(0.960066\pi\)
\(444\) −3.34607 + 12.4877i −0.158797 + 0.592639i
\(445\) 3.66025 6.33975i 0.173513 0.300533i
\(446\) 7.17260 0.339633
\(447\) −28.0812 28.0812i −1.32820 1.32820i
\(448\) 0 0
\(449\) 23.7846 1.12247 0.561233 0.827658i \(-0.310327\pi\)
0.561233 + 0.827658i \(0.310327\pi\)
\(450\) −10.2058 + 5.89230i −0.481105 + 0.277766i
\(451\) 1.15539 + 2.00120i 0.0544054 + 0.0942329i
\(452\) −6.92820 −0.325875
\(453\) −22.5259 22.5259i −1.05836 1.05836i
\(454\) −13.8325 23.9587i −0.649194 1.12444i
\(455\) 0 0
\(456\) −7.33013 + 1.96410i −0.343265 + 0.0919775i
\(457\) 15.5263 + 26.8923i 0.726289 + 1.25797i 0.958441 + 0.285290i \(0.0920898\pi\)
−0.232153 + 0.972679i \(0.574577\pi\)
\(458\) 0.240237 + 0.416102i 0.0112255 + 0.0194432i
\(459\) −34.2846 9.18653i −1.60027 0.428791i
\(460\) −2.82843 + 4.89898i −0.131876 + 0.228416i
\(461\) −5.51815 + 9.55772i −0.257006 + 0.445148i −0.965438 0.260631i \(-0.916069\pi\)
0.708432 + 0.705779i \(0.249403\pi\)
\(462\) 0 0
\(463\) 15.3205 + 26.5359i 0.712004 + 1.23323i 0.964104 + 0.265526i \(0.0855457\pi\)
−0.252099 + 0.967701i \(0.581121\pi\)
\(464\) −4.00000 −0.185695
\(465\) −11.5911 + 3.10583i −0.537525 + 0.144029i
\(466\) 0.124356 0.00576066
\(467\) 4.58939 7.94906i 0.212372 0.367839i −0.740085 0.672514i \(-0.765215\pi\)
0.952456 + 0.304675i \(0.0985479\pi\)
\(468\) 5.37945i 0.248665i
\(469\) 0 0
\(470\) 0.392305 0.679492i 0.0180957 0.0313426i
\(471\) −15.9282 + 4.26795i −0.733933 + 0.196657i
\(472\) −0.637756 + 1.10463i −0.0293551 + 0.0508446i
\(473\) 0.0358984 0.0621778i 0.00165061 0.00285894i
\(474\) 14.9372 4.00240i 0.686087 0.183837i
\(475\) −8.60540 + 14.9050i −0.394843 + 0.683888i
\(476\) 0 0
\(477\) 28.3923 16.3923i 1.29999 0.750552i
\(478\) −0.464102 + 0.803848i −0.0212275 + 0.0367671i
\(479\) 4.14110 0.189212 0.0946060 0.995515i \(-0.469841\pi\)
0.0946060 + 0.995515i \(0.469841\pi\)
\(480\) 1.73205 0.464102i 0.0790569 0.0211832i
\(481\) −13.3843 −0.610270
\(482\) 3.13801 + 5.43520i 0.142933 + 0.247567i
\(483\) 0 0
\(484\) 5.46410 9.46410i 0.248368 0.430186i
\(485\) −9.39230 + 16.2679i −0.426483 + 0.738690i
\(486\) 4.03459 15.0573i 0.183013 0.683013i
\(487\) 1.39230 + 2.41154i 0.0630914 + 0.109277i 0.895846 0.444365i \(-0.146571\pi\)
−0.832754 + 0.553643i \(0.813237\pi\)
\(488\) −6.31319 10.9348i −0.285785 0.494994i
\(489\) −22.2856 + 5.97142i −1.00779 + 0.270037i
\(490\) 0 0
\(491\) −9.69615 16.7942i −0.437581 0.757913i 0.559921 0.828546i \(-0.310831\pi\)
−0.997502 + 0.0706330i \(0.977498\pi\)
\(492\) −10.5622 10.5622i −0.476180 0.476180i
\(493\) −27.3233 −1.23058
\(494\) −3.92820 6.80385i −0.176738 0.306120i
\(495\) 0.832204i 0.0374048i
\(496\) −6.69213 −0.300486
\(497\) 0 0
\(498\) 8.07180 + 8.07180i 0.361706 + 0.361706i
\(499\) 33.3923 1.49484 0.747422 0.664349i \(-0.231291\pi\)
0.747422 + 0.664349i \(0.231291\pi\)
\(500\) 4.62158 8.00481i 0.206683 0.357986i
\(501\) 0.679492 2.53590i 0.0303575 0.113296i
\(502\) 0.397520 + 0.688524i 0.0177422 + 0.0307303i
\(503\) 12.3490 0.550614 0.275307 0.961356i \(-0.411220\pi\)
0.275307 + 0.961356i \(0.411220\pi\)
\(504\) 0 0
\(505\) 5.07180 0.225692
\(506\) 0.732051 + 1.26795i 0.0325436 + 0.0563672i
\(507\) −16.3700 + 4.38632i −0.727016 + 0.194803i
\(508\) −6.73205 + 11.6603i −0.298686 + 0.517340i
\(509\) −21.5921 −0.957055 −0.478527 0.878073i \(-0.658829\pi\)
−0.478527 + 0.878073i \(0.658829\pi\)
\(510\) 11.8313 3.17020i 0.523901 0.140379i
\(511\) 0 0
\(512\) 1.00000 0.0441942
\(513\) −5.89230 21.9904i −0.260152 0.970899i
\(514\) 5.01910 + 8.69333i 0.221383 + 0.383446i
\(515\) −12.7846 −0.563357
\(516\) −0.120118 + 0.448288i −0.00528791 + 0.0197348i
\(517\) −0.101536 0.175865i −0.00446555 0.00773455i
\(518\) 0 0
\(519\) 3.00000 11.1962i 0.131685 0.491457i
\(520\) 0.928203 + 1.60770i 0.0407044 + 0.0705021i
\(521\) −16.8876 29.2502i −0.739860 1.28147i −0.952558 0.304357i \(-0.901559\pi\)
0.212699 0.977118i \(-0.431775\pi\)
\(522\) 12.0000i 0.525226i
\(523\) 10.3664 17.9551i 0.453289 0.785120i −0.545299 0.838242i \(-0.683584\pi\)
0.998588 + 0.0531215i \(0.0169170\pi\)
\(524\) 5.46739 9.46979i 0.238844 0.413690i
\(525\) 0 0
\(526\) 4.26795 + 7.39230i 0.186091 + 0.322320i
\(527\) −45.7128 −1.99128
\(528\) 0.120118 0.448288i 0.00522748 0.0195092i
\(529\) 6.85641 0.298105
\(530\) −5.65685 + 9.79796i −0.245718 + 0.425596i
\(531\) −3.31388 1.91327i −0.143810 0.0830288i
\(532\) 0 0
\(533\) 7.73205 13.3923i 0.334912 0.580085i
\(534\) 8.66025 + 8.66025i 0.374766 + 0.374766i
\(535\) 9.00292 15.5935i 0.389230 0.674166i
\(536\) −6.23205 + 10.7942i −0.269184 + 0.466240i
\(537\) −2.27362 + 8.48528i −0.0981141 + 0.366167i
\(538\) −2.82843 + 4.89898i −0.121942 + 0.211210i
\(539\) 0 0
\(540\) 1.39230 + 5.19615i 0.0599153 + 0.223607i
\(541\) −7.66025 + 13.2679i −0.329340 + 0.570434i −0.982381 0.186889i \(-0.940160\pi\)
0.653041 + 0.757323i \(0.273493\pi\)
\(542\) −13.1069 −0.562988
\(543\) −20.7846 20.7846i −0.891953 0.891953i
\(544\) 6.83083 0.292869
\(545\) −2.55103 4.41851i −0.109274 0.189268i
\(546\) 0 0
\(547\) −17.1865 + 29.7679i −0.734843 + 1.27279i 0.219949 + 0.975511i \(0.429411\pi\)
−0.954792 + 0.297274i \(0.903922\pi\)
\(548\) −4.33013 + 7.50000i −0.184974 + 0.320384i
\(549\) 32.8043 18.9396i 1.40005 0.808322i
\(550\) −0.526279 0.911543i −0.0224406 0.0388683i
\(551\) −8.76268 15.1774i −0.373303 0.646579i
\(552\) −6.69213 6.69213i −0.284836 0.284836i
\(553\) 0 0
\(554\) −15.7321 27.2487i −0.668391 1.15769i
\(555\) 12.9282 3.46410i 0.548772 0.147043i
\(556\) −0.795040 −0.0337172
\(557\) 3.46410 + 6.00000i 0.146779 + 0.254228i 0.930035 0.367471i \(-0.119776\pi\)
−0.783256 + 0.621699i \(0.786443\pi\)
\(558\) 20.0764i 0.849901i
\(559\) −0.480473 −0.0203219
\(560\) 0 0
\(561\) 0.820508 3.06218i 0.0346419 0.129285i
\(562\) 17.8564 0.753227
\(563\) −9.12304 + 15.8016i −0.384490 + 0.665957i −0.991698 0.128586i \(-0.958956\pi\)
0.607208 + 0.794543i \(0.292289\pi\)
\(564\) 0.928203 + 0.928203i 0.0390844 + 0.0390844i
\(565\) 3.58630 + 6.21166i 0.150877 + 0.261326i
\(566\) 15.0759 0.633686
\(567\) 0 0
\(568\) 9.46410 0.397105
\(569\) 12.8923 + 22.3301i 0.540474 + 0.936128i 0.998877 + 0.0473833i \(0.0150882\pi\)
−0.458403 + 0.888744i \(0.651578\pi\)
\(570\) 5.55532 + 5.55532i 0.232687 + 0.232687i
\(571\) 16.5263 28.6244i 0.691603 1.19789i −0.279709 0.960085i \(-0.590238\pi\)
0.971312 0.237807i \(-0.0764286\pi\)
\(572\) 0.480473 0.0200896
\(573\) −6.69213 + 24.9754i −0.279568 + 1.04336i
\(574\) 0 0
\(575\) −21.4641 −0.895115
\(576\) 3.00000i 0.125000i
\(577\) −13.7446 23.8064i −0.572196 0.991072i −0.996340 0.0854776i \(-0.972758\pi\)
0.424144 0.905595i \(-0.360575\pi\)
\(578\) 29.6603 1.23370
\(579\) 25.1834 6.74788i 1.04659 0.280432i
\(580\) 2.07055 + 3.58630i 0.0859750 + 0.148913i
\(581\) 0 0
\(582\) −22.2224 22.2224i −0.921149 0.921149i
\(583\) 1.46410 + 2.53590i 0.0606369 + 0.105026i
\(584\) 2.70831 + 4.69093i 0.112071 + 0.194112i
\(585\) −4.82309 + 2.78461i −0.199410 + 0.115129i
\(586\) −4.62158 + 8.00481i −0.190916 + 0.330676i
\(587\) −20.9408 + 36.2705i −0.864319 + 1.49704i 0.00340370 + 0.999994i \(0.498917\pi\)
−0.867722 + 0.497049i \(0.834417\pi\)
\(588\) 0 0
\(589\) −14.6603 25.3923i −0.604065 1.04627i
\(590\) 1.32051 0.0543645
\(591\) 20.7327 + 20.7327i 0.852831 + 0.852831i
\(592\) 7.46410 0.306773
\(593\) 8.43451 14.6090i 0.346364 0.599920i −0.639237 0.769010i \(-0.720750\pi\)
0.985601 + 0.169090i \(0.0540829\pi\)
\(594\) 1.34486 + 0.360355i 0.0551804 + 0.0147855i
\(595\) 0 0
\(596\) −11.4641 + 19.8564i −0.469588 + 0.813350i
\(597\) 11.7846 43.9808i 0.482312 1.80001i
\(598\) 4.89898 8.48528i 0.200334 0.346989i
\(599\) −2.39230 + 4.14359i −0.0977469 + 0.169303i −0.910752 0.412954i \(-0.864497\pi\)
0.813005 + 0.582257i \(0.197830\pi\)
\(600\) 4.81105 + 4.81105i 0.196410 + 0.196410i
\(601\) −1.67303 + 2.89778i −0.0682444 + 0.118203i −0.898129 0.439733i \(-0.855073\pi\)
0.829884 + 0.557936i \(0.188406\pi\)
\(602\) 0 0
\(603\) −32.3827 18.6962i −1.31872 0.761366i
\(604\) −9.19615 + 15.9282i −0.374186 + 0.648109i
\(605\) −11.3137 −0.459968
\(606\) −2.19615 + 8.19615i −0.0892126 + 0.332946i
\(607\) 2.27362 0.0922836 0.0461418 0.998935i \(-0.485307\pi\)
0.0461418 + 0.998935i \(0.485307\pi\)
\(608\) 2.19067 + 3.79435i 0.0888434 + 0.153881i
\(609\) 0 0
\(610\) −6.53590 + 11.3205i −0.264631 + 0.458354i
\(611\) −0.679492 + 1.17691i −0.0274893 + 0.0476129i
\(612\) 20.4925i 0.828360i
\(613\) −12.4641 21.5885i −0.503420 0.871950i −0.999992 0.00395396i \(-0.998741\pi\)
0.496572 0.867996i \(-0.334592\pi\)
\(614\) 0.586988 + 1.01669i 0.0236889 + 0.0410304i
\(615\) −4.00240 + 14.9372i −0.161393 + 0.602325i
\(616\) 0 0
\(617\) 1.57180 + 2.72243i 0.0632782 + 0.109601i 0.895929 0.444197i \(-0.146511\pi\)
−0.832651 + 0.553798i \(0.813178\pi\)
\(618\) 5.53590 20.6603i 0.222686 0.831077i
\(619\) 31.7047 1.27432 0.637159 0.770732i \(-0.280109\pi\)
0.637159 + 0.770732i \(0.280109\pi\)
\(620\) 3.46410 + 6.00000i 0.139122 + 0.240966i
\(621\) 20.0764 20.0764i 0.805638 0.805638i
\(622\) 7.45001 0.298718
\(623\) 0 0
\(624\) −3.00000 + 0.803848i −0.120096 + 0.0321797i
\(625\) 10.0718 0.402872
\(626\) 3.13801 5.43520i 0.125420 0.217234i
\(627\) 1.96410 0.526279i 0.0784387 0.0210176i
\(628\) 4.76028 + 8.24504i 0.189956 + 0.329013i
\(629\) 50.9860 2.03295
\(630\) 0 0
\(631\) −19.7128 −0.784755 −0.392377 0.919804i \(-0.628347\pi\)
−0.392377 + 0.919804i \(0.628347\pi\)
\(632\) −4.46410 7.73205i −0.177572 0.307564i
\(633\) −8.48528 + 31.6675i −0.337260 + 1.25867i
\(634\) 13.0000 22.5167i 0.516296 0.894251i
\(635\) 13.9391 0.553155
\(636\) −13.3843 13.3843i −0.530720 0.530720i
\(637\) 0 0
\(638\) 1.07180 0.0424328
\(639\) 28.3923i 1.12318i
\(640\) −0.517638 0.896575i −0.0204614 0.0354403i
\(641\) 4.07180 0.160826 0.0804132 0.996762i \(-0.474376\pi\)
0.0804132 + 0.996762i \(0.474376\pi\)
\(642\) 21.3011 + 21.3011i 0.840689 + 0.840689i
\(643\) −22.4565 38.8959i −0.885599 1.53390i −0.845025 0.534726i \(-0.820415\pi\)
−0.0405737 0.999177i \(-0.512919\pi\)
\(644\) 0 0
\(645\) 0.464102 0.124356i 0.0182740 0.00489650i
\(646\) 14.9641 + 25.9186i 0.588755 + 1.01975i
\(647\) 10.9348 + 18.9396i 0.429890 + 0.744592i 0.996863 0.0791447i \(-0.0252189\pi\)
−0.566973 + 0.823736i \(0.691886\pi\)
\(648\) −9.00000 −0.353553
\(649\) 0.170886 0.295984i 0.00670787 0.0116184i
\(650\) −3.52193 + 6.10016i −0.138141 + 0.239268i
\(651\) 0 0
\(652\) 6.66025 + 11.5359i 0.260836 + 0.451781i
\(653\) 6.00000 0.234798 0.117399 0.993085i \(-0.462544\pi\)
0.117399 + 0.993085i \(0.462544\pi\)
\(654\) 8.24504 2.20925i 0.322407 0.0863886i
\(655\) −11.3205 −0.442329
\(656\) −4.31199 + 7.46859i −0.168355 + 0.291599i
\(657\) −14.0728 + 8.12493i −0.549032 + 0.316984i
\(658\) 0 0
\(659\) 24.1244 41.7846i 0.939751 1.62770i 0.173818 0.984778i \(-0.444390\pi\)
0.765934 0.642919i \(-0.222277\pi\)
\(660\) −0.464102 + 0.124356i −0.0180651 + 0.00484054i
\(661\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(662\) 5.73205 9.92820i 0.222782 0.385871i
\(663\) −20.4925 + 5.49095i −0.795862 + 0.213251i
\(664\) 3.29530 5.70762i 0.127882 0.221499i
\(665\) 0 0
\(666\) 22.3923i 0.867684i
\(667\) 10.9282 18.9282i 0.423142 0.732903i
\(668\) −1.51575 −0.0586461
\(669\) 12.0000 3.21539i 0.463947 0.124314i
\(670\) 12.9038 0.498517
\(671\) 1.69161 + 2.92996i 0.0653041 + 0.113110i
\(672\) 0 0
\(673\) −20.7846 + 36.0000i −0.801188 + 1.38770i 0.117647 + 0.993055i \(0.462465\pi\)
−0.918835 + 0.394643i \(0.870868\pi\)
\(674\) 3.50000 6.06218i 0.134815 0.233506i
\(675\) −14.4331 + 14.4331i −0.555532 + 0.555532i
\(676\) 4.89230 + 8.47372i 0.188166 + 0.325912i
\(677\) −2.68973 4.65874i −0.103375 0.179050i 0.809698 0.586846i \(-0.199631\pi\)
−0.913073 + 0.407796i \(0.866297\pi\)
\(678\) −11.5911 + 3.10583i −0.445154 + 0.119279i
\(679\) 0 0
\(680\) −3.53590 6.12436i −0.135596 0.234858i
\(681\) −33.8827 33.8827i −1.29839 1.29839i
\(682\) 1.79315 0.0686633
\(683\) 19.1603 + 33.1865i 0.733147 + 1.26985i 0.955532 + 0.294888i \(0.0952825\pi\)
−0.222385 + 0.974959i \(0.571384\pi\)
\(684\) −11.3831 + 6.57201i −0.435242 + 0.251287i
\(685\) 8.96575 0.342564
\(686\) 0 0
\(687\) 0.588457 + 0.588457i 0.0224510 + 0.0224510i
\(688\) 0.267949 0.0102155
\(689\) 9.79796 16.9706i 0.373273 0.646527i
\(690\) −2.53590 + 9.46410i −0.0965400 + 0.360292i
\(691\) 12.1595 + 21.0609i 0.462570 + 0.801194i 0.999088 0.0426942i \(-0.0135941\pi\)
−0.536518 + 0.843889i \(0.680261\pi\)
\(692\) −6.69213 −0.254397
\(693\) 0 0
\(694\) −9.58846 −0.363973
\(695\) 0.411543 + 0.712813i 0.0156107 + 0.0270385i
\(696\) −6.69213 + 1.79315i −0.253665 + 0.0679692i
\(697\) −29.4545 + 51.0167i −1.11567 + 1.93239i
\(698\) 8.00481 0.302986
\(699\) 0.208051 0.0557471i 0.00786921 0.00210855i
\(700\) 0 0
\(701\) −20.7846 −0.785024 −0.392512 0.919747i \(-0.628394\pi\)
−0.392512 + 0.919747i \(0.628394\pi\)
\(702\) −2.41154 9.00000i −0.0910178 0.339683i
\(703\) 16.3514 + 28.3214i 0.616704 + 1.06816i
\(704\) −0.267949 −0.0100987
\(705\) 0.351731 1.31268i 0.0132470 0.0494383i
\(706\) 12.5063 + 21.6615i 0.470680 + 0.815241i
\(707\) 0 0
\(708\) −0.571797 + 2.13397i −0.0214894 + 0.0801997i
\(709\) 6.19615 + 10.7321i 0.232701 + 0.403051i 0.958602 0.284749i \(-0.0919102\pi\)
−0.725901 + 0.687799i \(0.758577\pi\)
\(710\) −4.89898 8.48528i −0.183855 0.318447i
\(711\) 23.1962 13.3923i 0.869924 0.502251i
\(712\) 3.53553 6.12372i 0.132500 0.229496i
\(713\) 18.2832 31.6675i 0.684713 1.18596i
\(714\) 0 0
\(715\) −0.248711 0.430781i −0.00930128 0.0161103i
\(716\) 5.07180 0.189542
\(717\) −0.416102 + 1.55291i −0.0155396 + 0.0579946i
\(718\) 7.46410 0.278558
\(719\) −24.8367 + 43.0184i −0.926251 + 1.60431i −0.136716 + 0.990610i \(0.543655\pi\)
−0.789536 + 0.613704i \(0.789679\pi\)
\(720\) 2.68973 1.55291i 0.100240 0.0578737i
\(721\) 0 0
\(722\) −0.0980762 + 0.169873i −0.00365002 + 0.00632202i
\(723\) 7.68653 + 7.68653i 0.285865 + 0.285865i
\(724\) −8.48528 + 14.6969i −0.315353 + 0.546207i
\(725\) −7.85641 + 13.6077i −0.291780 + 0.505377i
\(726\) 4.89898 18.2832i 0.181818 0.678555i
\(727\) 16.3514 28.3214i 0.606439 1.05038i −0.385383 0.922757i \(-0.625931\pi\)
0.991822 0.127627i \(-0.0407361\pi\)
\(728\) 0 0
\(729\) 27.0000i 1.00000i
\(730\) 2.80385 4.85641i 0.103775 0.179744i
\(731\) 1.83032 0.0676967
\(732\) −15.4641 15.4641i −0.571570 0.571570i
\(733\) −8.00481 −0.295664 −0.147832 0.989012i \(-0.547230\pi\)
−0.147832 + 0.989012i \(0.547230\pi\)
\(734\) 9.28032 + 16.0740i 0.342543 + 0.593302i
\(735\) 0 0
\(736\) −2.73205 + 4.73205i −0.100705 + 0.174426i
\(737\) 1.66987 2.89230i 0.0615106 0.106539i
\(738\) −22.4058 12.9360i −0.824768 0.476180i
\(739\) −3.06218 5.30385i −0.112644 0.195105i 0.804191 0.594370i \(-0.202599\pi\)
−0.916836 + 0.399265i \(0.869265\pi\)
\(740\) −3.86370 6.69213i −0.142033 0.246008i
\(741\) −9.62209 9.62209i −0.353476 0.353476i
\(742\) 0 0
\(743\) 15.7846 + 27.3397i 0.579081 + 1.00300i 0.995585 + 0.0938641i \(0.0299219\pi\)
−0.416504 + 0.909134i \(0.636745\pi\)
\(744\) −11.1962 + 3.00000i −0.410471 + 0.109985i
\(745\) 23.7370 0.869657
\(746\) 5.39230 + 9.33975i 0.197426 + 0.341952i
\(747\) 17.1229 + 9.88589i 0.626493 + 0.361706i
\(748\) −1.83032 −0.0669230
\(749\) 0 0
\(750\) 4.14359 15.4641i 0.151303 0.564669i
\(751\) 34.7846 1.26931 0.634654 0.772796i \(-0.281143\pi\)
0.634654 + 0.772796i \(0.281143\pi\)
\(752\) 0.378937 0.656339i 0.0138184 0.0239342i
\(753\) 0.973721 + 0.973721i 0.0354843 + 0.0354843i
\(754\) −3.58630 6.21166i −0.130605 0.226215i
\(755\) 19.0411 0.692977
\(756\) 0 0
\(757\) 19.3205 0.702216 0.351108 0.936335i \(-0.385805\pi\)
0.351108 + 0.936335i \(0.385805\pi\)
\(758\) −6.79423 11.7679i −0.246777 0.427431i
\(759\) 1.79315 + 1.79315i 0.0650873 + 0.0650873i
\(760\) 2.26795 3.92820i 0.0822672 0.142491i
\(761\) 40.2543 1.45922 0.729609 0.683865i \(-0.239702\pi\)
0.729609 + 0.683865i \(0.239702\pi\)
\(762\) −6.03579 + 22.5259i −0.218654 + 0.816027i
\(763\) 0 0
\(764\) 14.9282 0.540083
\(765\) 18.3731 10.6077i 0.664280 0.383522i
\(766\) 13.6617 + 23.6627i 0.493616 + 0.854968i
\(767\) −2.28719 −0.0825855
\(768\) 1.67303 0.448288i 0.0603704 0.0161762i
\(769\) 19.0919 + 33.0681i 0.688471 + 1.19247i 0.972332 + 0.233601i \(0.0750511\pi\)
−0.283862 + 0.958865i \(0.591616\pi\)
\(770\) 0 0
\(771\) 12.2942 + 12.2942i 0.442766 + 0.442766i
\(772\) −7.52628 13.0359i −0.270877 0.469172i
\(773\) 19.6975 + 34.1170i 0.708468 + 1.22710i 0.965425 + 0.260680i \(0.0839468\pi\)
−0.256957 + 0.966423i \(0.582720\pi\)
\(774\) 0.803848i 0.0288937i
\(775\) −13.1440 + 22.7661i −0.472147 + 0.817783i
\(776\) −9.07227 + 15.7136i −0.325676 + 0.564087i
\(777\) 0 0
\(778\) −4.00000 6.92820i −0.143407 0.248388i
\(779\) −37.7846 −1.35377
\(780\) 2.27362 + 2.27362i 0.0814088 + 0.0814088i
\(781\) −2.53590 −0.0907416
\(782\) −18.6622 + 32.3238i −0.667358 + 1.15590i
\(783\) −5.37945 20.0764i −0.192246 0.717472i
\(784\) 0 0
\(785\) 4.92820 8.53590i 0.175895 0.304659i
\(786\) 4.90192 18.2942i 0.174846 0.652534i
\(787\) 3.57270 6.18810i 0.127353 0.220582i −0.795297 0.606220i \(-0.792685\pi\)
0.922650 + 0.385638i \(0.126019\pi\)
\(788\) 8.46410 14.6603i 0.301521 0.522250i
\(789\) 10.4543 + 10.4543i 0.372183 + 0.372183i
\(790\) −4.62158 + 8.00481i −0.164428 + 0.284798i
\(791\) 0 0
\(792\) 0.803848i 0.0285635i
\(793\) 11.3205 19.6077i 0.402003 0.696290i
\(794\) −13.1069 −0.465145
\(795\) −5.07180 + 18.9282i −0.179878 + 0.671314i
\(796\) −26.2880 −0.931755
\(797\) −18.9396 32.8043i −0.670874 1.16199i −0.977657 0.210209i \(-0.932586\pi\)
0.306782 0.951780i \(-0.400748\pi\)
\(798\) 0 0
\(799\) 2.58846 4.48334i 0.0915730 0.158609i
\(800\) 1.96410 3.40192i 0.0694415 0.120276i
\(801\) 18.3712 + 10.6066i 0.649113 + 0.374766i
\(802\) 11.8923 + 20.5981i 0.419932 + 0.727343i
\(803\) −0.725689 1.25693i −0.0256090 0.0443561i
\(804\) −5.58750 + 20.8528i −0.197056 + 0.735423i
\(805\) 0 0
\(806\) −6.00000 10.3923i −0.211341 0.366053i
\(807\) −2.53590 + 9.46410i −0.0892679 + 0.333152i
\(808\) 4.89898 0.172345
\(809\) 14.8660 + 25.7487i 0.522662 + 0.905276i 0.999652 + 0.0263681i \(0.00839421\pi\)
−0.476991 + 0.878908i \(0.658272\pi\)
\(810\) 4.65874 + 8.06918i 0.163692 + 0.283522i
\(811\) 24.9110 0.874744 0.437372 0.899281i \(-0.355909\pi\)
0.437372 + 0.899281i \(0.355909\pi\)
\(812\) 0 0
\(813\) −21.9282 + 5.87564i −0.769056 + 0.206068i
\(814\) −2.00000 −0.0701000
\(815\) 6.89520 11.9428i 0.241528 0.418339i
\(816\) 11.4282 3.06218i 0.400067 0.107198i
\(817\) 0.586988 + 1.01669i 0.0205361 + 0.0355696i
\(818\) −4.48288 −0.156740
\(819\) 0 0
\(820\) 8.92820 0.311786
\(821\) −5.19615 9.00000i −0.181347 0.314102i 0.760993 0.648761i \(-0.224712\pi\)
−0.942339 + 0.334659i \(0.891379\pi\)
\(822\) −3.88229 + 14.4889i −0.135410 + 0.505358i
\(823\) 5.39230 9.33975i 0.187964 0.325563i −0.756607 0.653870i \(-0.773145\pi\)
0.944571 + 0.328306i \(0.106478\pi\)
\(824\) −12.3490 −0.430197
\(825\) −1.28912 1.28912i −0.0448813 0.0448813i
\(826\) 0 0
\(827\) −12.0000 −0.417281 −0.208640 0.977992i \(-0.566904\pi\)
−0.208640 + 0.977992i \(0.566904\pi\)
\(828\) −14.1962 8.19615i −0.493350 0.284836i
\(829\) 3.96524 + 6.86800i 0.137718 + 0.238535i 0.926633 0.375968i \(-0.122690\pi\)
−0.788914 + 0.614503i \(0.789356\pi\)
\(830\) −6.82309 −0.236833
\(831\) −38.5355 38.5355i −1.33678 1.33678i
\(832\) 0.896575 + 1.55291i 0.0310832 + 0.0538376i
\(833\) 0 0
\(834\) −1.33013 + 0.356406i −0.0460585 + 0.0123413i
\(835\) 0.784610 + 1.35898i 0.0271525 + 0.0470296i
\(836\) −0.586988 1.01669i −0.0203014 0.0351631i
\(837\) −9.00000 33.5885i −0.311086 1.16099i
\(838\) 18.0938 31.3393i 0.625039 1.08260i
\(839\) 11.3137 19.5959i 0.390593 0.676526i −0.601935 0.798545i \(-0.705603\pi\)
0.992528 + 0.122019i \(0.0389368\pi\)
\(840\) 0 0
\(841\) 6.50000 + 11.2583i 0.224138 + 0.388218i
\(842\) 7.60770 0.262178
\(843\) 29.8744 8.00481i 1.02893 0.275700i
\(844\) 18.9282 0.651536
\(845\) 5.06489 8.77264i 0.174237 0.301788i
\(846\) 1.96902 + 1.13681i 0.0676962 + 0.0390844i
\(847\) 0 0
\(848\) −5.46410 + 9.46410i −0.187638 + 0.324999i
\(849\) 25.2224 6.75833i 0.865632 0.231945i
\(850\) 13.4164 23.2380i 0.460180 0.797056i
\(851\) −20.3923 + 35.3205i −0.699039 + 1.21077i
\(852\) 15.8338 4.24264i 0.542455 0.145350i
\(853\) 16.4901 28.5617i 0.564610 0.977933i −0.432476 0.901645i \(-0.642360\pi\)
0.997086 0.0762876i \(-0.0243067\pi\)
\(854\) 0 0
\(855\) 11.7846 + 6.80385i 0.403025 + 0.232687i
\(856\) 8.69615 15.0622i 0.297228 0.514815i
\(857\) 11.2122 0.383001 0.191500 0.981493i \(-0.438665\pi\)
0.191500 + 0.981493i \(0.438665\pi\)
\(858\) 0.803848 0.215390i 0.0274429 0.00735330i
\(859\) 41.6042 1.41952 0.709758 0.704446i \(-0.248804\pi\)
0.709758 + 0.704446i \(0.248804\pi\)
\(860\) −0.138701 0.240237i −0.00472965 0.00819200i
\(861\) 0 0
\(862\) 5.07180 8.78461i 0.172746 0.299205i
\(863\) 27.0526 46.8564i 0.920880 1.59501i 0.122823 0.992429i \(-0.460805\pi\)
0.798057 0.602582i \(-0.205861\pi\)
\(864\) 1.34486 + 5.01910i 0.0457532 + 0.170753i
\(865\) 3.46410 + 6.00000i 0.117783 + 0.204006i
\(866\) −9.91808 17.1786i −0.337030 0.583753i
\(867\) 49.6226 13.2963i 1.68527 0.451567i
\(868\) 0 0
\(869\) 1.19615 + 2.07180i 0.0405767 + 0.0702809i
\(870\) 5.07180 + 5.07180i 0.171950 + 0.171950i
\(871\) −22.3500 −0.757301
\(872\) −2.46410 4.26795i −0.0834450 0.144531i
\(873\) −47.1409 27.2168i −1.59548 0.921149i
\(874\) −23.9401 −0.809786
\(875\) 0 0
\(876\) 6.63397 + 6.63397i 0.224141 + 0.224141i
\(877\) −29.1769 −0.985234 −0.492617 0.870246i \(-0.663960\pi\)
−0.492617 + 0.870246i \(0.663960\pi\)
\(878\) 9.79796 16.9706i 0.330665 0.572729i
\(879\) −4.14359 + 15.4641i −0.139760 + 0.521591i
\(880\) 0.138701 + 0.240237i 0.00467560 + 0.00809838i
\(881\) 12.7279 0.428815 0.214407 0.976744i \(-0.431218\pi\)
0.214407 + 0.976744i \(0.431218\pi\)
\(882\) 0 0
\(883\) 14.4641 0.486756 0.243378 0.969932i \(-0.421744\pi\)
0.243378 + 0.969932i \(0.421744\pi\)
\(884\) 6.12436 + 10.6077i 0.205984 + 0.356775i
\(885\) 2.20925 0.591968i 0.0742632 0.0198988i
\(886\) −8.16025 + 14.1340i −0.274149 + 0.474840i
\(887\) −53.2596 −1.78828 −0.894142 0.447784i \(-0.852213\pi\)
−0.894142 + 0.447784i \(0.852213\pi\)
\(888\) 12.4877 3.34607i 0.419059 0.112287i
\(889\) 0 0
\(890\) −7.32051 −0.245384
\(891\) 2.41154 0.0807897
\(892\) −3.58630 6.21166i −0.120078 0.207982i
\(893\) 3.32051 0.111117
\(894\) −10.2784 + 38.3596i −0.343762 + 1.28294i
\(895\) −2.62536 4.54725i −0.0877559 0.151998i
\(896\) 0 0
\(897\) 4.39230 16.3923i 0.146655 0.547323i
\(898\) −11.8923 20.5981i −0.396851 0.687367i
\(899\) −13.3843 23.1822i −0.446390 0.773170i
\(900\) 10.2058 + 5.89230i 0.340192 + 0.196410i
\(901\) −37.3244 + 64.6477i −1.24345 + 2.15373i
\(902\) 1.15539 2.00120i 0.0384704 0.0666327i
\(903\) 0 0
\(904\) 3.46410 + 6.00000i 0.115214 + 0.199557i
\(905\) 17.5692 0.584021
\(906\) −8.24504 + 30.7709i −0.273923 + 1.02230i
\(907\) −5.24871 −0.174281 −0.0871403 0.996196i \(-0.527773\pi\)
−0.0871403 + 0.996196i \(0.527773\pi\)
\(908\) −13.8325 + 23.9587i −0.459049 + 0.795097i
\(909\) 14.6969i 0.487467i
\(910\) 0 0
\(911\) 16.5359 28.6410i 0.547859 0.948919i −0.450562 0.892745i \(-0.648776\pi\)
0.998421 0.0561742i \(-0.0178902\pi\)
\(912\) 5.36603 + 5.36603i 0.177687 + 0.177687i
\(913\) −0.882972 + 1.52935i −0.0292221 + 0.0506142i
\(914\) 15.5263 26.8923i 0.513564 0.889518i
\(915\) −5.85993 + 21.8695i −0.193723 + 0.722985i
\(916\) 0.240237 0.416102i 0.00793764 0.0137484i
\(917\) 0 0
\(918\) 9.18653 + 34.2846i 0.303201 + 1.13156i
\(919\) −4.53590 + 7.85641i −0.149625 + 0.259159i −0.931089 0.364792i \(-0.881140\pi\)
0.781464 + 0.623951i \(0.214473\pi\)
\(920\) 5.65685 0.186501
\(921\) 1.43782 + 1.43782i 0.0473779 + 0.0473779i
\(922\) 11.0363 0.363461
\(923\) 8.48528 + 14.6969i 0.279296 + 0.483756i
\(924\) 0 0
\(925\) 14.6603 25.3923i 0.482026 0.834894i
\(926\) 15.3205 26.5359i 0.503463 0.872024i
\(927\) 37.0470i 1.21678i
\(928\) 2.00000 + 3.46410i 0.0656532 + 0.113715i
\(929\) 15.4040 + 26.6806i 0.505390 + 0.875362i 0.999981 + 0.00623544i \(0.00198482\pi\)
−0.494590 + 0.869126i \(0.664682\pi\)
\(930\) 8.48528 + 8.48528i 0.278243 + 0.278243i
\(931\) 0 0
\(932\) −0.0621778 0.107695i −0.00203670 0.00352767i
\(933\) 12.4641 3.33975i 0.408056 0.109338i
\(934\) −9.17878 −0.300339
\(935\) 0.947441 + 1.64102i 0.0309846 + 0.0536670i
\(936\) −4.65874 + 2.68973i −0.152276 + 0.0879165i
\(937\) 9.89949 0.323402 0.161701 0.986840i \(-0.448302\pi\)
0.161701 + 0.986840i \(0.448302\pi\)
\(938\) 0 0
\(939\) 2.81347 10.5000i 0.0918140 0.342655i
\(940\) −0.784610 −0.0255911
\(941\) −23.9401 + 41.4655i −0.780425 + 1.35174i 0.151270 + 0.988493i \(0.451664\pi\)
−0.931694 + 0.363243i \(0.881670\pi\)
\(942\) 11.6603 + 11.6603i 0.379912 + 0.379912i
\(943\) −23.5612 40.8091i −0.767257 1.32893i
\(944\) 1.27551 0.0415144
\(945\) 0 0
\(946\) −0.0717968 −0.00233431
\(947\) 9.06218 + 15.6962i 0.294481 + 0.510056i 0.974864 0.222800i \(-0.0715198\pi\)
−0.680383 + 0.732857i \(0.738186\pi\)
\(948\) −10.9348 10.9348i −0.355145 0.355145i
\(949\) −4.85641 + 8.41154i −0.157646 + 0.273050i
\(950\) 17.2108 0.558392
\(951\) 11.6555 43.4988i 0.377955 1.41055i
\(952\) 0 0
\(953\) 19.0000 0.615470 0.307735 0.951472i \(-0.400429\pi\)
0.307735 + 0.951472i \(0.400429\pi\)
\(954\) −28.3923 16.3923i −0.919235 0.530720i
\(955\) −7.72741 13.3843i −0.250053 0.433105i
\(956\) 0.928203 0.0300202
\(957\) 1.79315 0.480473i 0.0579643 0.0155315i
\(958\) −2.07055 3.58630i −0.0668965 0.115868i
\(959\) 0 0
\(960\) −1.26795 1.26795i −0.0409229 0.0409229i
\(961\) −6.89230 11.9378i −0.222332 0.385091i
\(962\) 6.69213 + 11.5911i 0.215763 + 0.373712i
\(963\) 45.1865 + 26.0885i 1.45612 + 0.840689i
\(964\) 3.13801 5.43520i 0.101069 0.175056i
\(965\) −7.79178 + 13.4958i −0.250826 + 0.434444i
\(966\) 0 0
\(967\) 23.7846 + 41.1962i 0.764861 + 1.32478i 0.940320 + 0.340292i \(0.110526\pi\)
−0.175458 + 0.984487i \(0.556141\pi\)
\(968\) −10.9282 −0.351246
\(969\) 36.6544 + 36.6544i 1.17751 + 1.17751i
\(970\) 18.7846 0.603137
\(971\) 15.6443 27.0967i 0.502049 0.869574i −0.497948 0.867207i \(-0.665913\pi\)
0.999997 0.00236748i \(-0.000753594\pi\)
\(972\) −15.0573 + 4.03459i −0.482963 + 0.129410i
\(973\) 0 0
\(974\) 1.39230 2.41154i 0.0446123 0.0772708i
\(975\) −3.15768 + 11.7846i −0.101127 + 0.377410i
\(976\) −6.31319 + 10.9348i −0.202080 + 0.350013i
\(977\) −0.990381 + 1.71539i −0.0316851 + 0.0548802i −0.881433 0.472309i \(-0.843421\pi\)
0.849748 + 0.527189i \(0.176754\pi\)
\(978\) 16.3142 + 16.3142i 0.521671 + 0.521671i
\(979\) −0.947343 + 1.64085i −0.0302772 + 0.0524417i
\(980\) 0 0
\(981\) 12.8038 7.39230i 0.408795 0.236018i
\(982\) −9.69615 + 16.7942i −0.309417 + 0.535925i
\(983\) −12.6264 −0.402719 −0.201360 0.979517i \(-0.564536\pi\)
−0.201360 + 0.979517i \(0.564536\pi\)
\(984\) −3.86603 + 14.4282i −0.123244 + 0.459954i
\(985\) −17.5254 −0.558405
\(986\) 13.6617 + 23.6627i 0.435076 + 0.753574i
\(987\) 0 0
\(988\) −3.92820 + 6.80385i −0.124973 + 0.216459i
\(989\) −0.732051 + 1.26795i −0.0232779 + 0.0403184i
\(990\) −0.720710 + 0.416102i −0.0229057 + 0.0132246i
\(991\) −25.1244 43.5167i −0.798101 1.38235i −0.920851 0.389915i \(-0.872505\pi\)
0.122750 0.992438i \(-0.460829\pi\)
\(992\) 3.34607 + 5.79555i 0.106238 + 0.184009i
\(993\) 5.13922 19.1798i 0.163088 0.608653i
\(994\) 0 0
\(995\) 13.6077 + 23.5692i 0.431393 + 0.747194i
\(996\) 2.95448 11.0263i 0.0936164 0.349381i
\(997\) 37.6018 1.19086 0.595430 0.803407i \(-0.296982\pi\)
0.595430 + 0.803407i \(0.296982\pi\)
\(998\) −16.6962 28.9186i −0.528507 0.915402i
\(999\) 10.0382 + 37.4631i 0.317594 + 1.18528i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 882.2.h.q.79.1 8
3.2 odd 2 2646.2.h.t.667.2 8
7.2 even 3 882.2.f.q.295.4 yes 8
7.3 odd 6 882.2.e.s.655.3 8
7.4 even 3 882.2.e.s.655.2 8
7.5 odd 6 882.2.f.q.295.1 8
7.6 odd 2 inner 882.2.h.q.79.4 8
9.4 even 3 882.2.e.s.373.2 8
9.5 odd 6 2646.2.e.q.1549.3 8
21.2 odd 6 2646.2.f.r.883.3 8
21.5 even 6 2646.2.f.r.883.2 8
21.11 odd 6 2646.2.e.q.2125.3 8
21.17 even 6 2646.2.e.q.2125.2 8
21.20 even 2 2646.2.h.t.667.3 8
63.2 odd 6 7938.2.a.ci.1.2 4
63.4 even 3 inner 882.2.h.q.67.2 8
63.5 even 6 2646.2.f.r.1765.2 8
63.13 odd 6 882.2.e.s.373.3 8
63.16 even 3 7938.2.a.cp.1.3 4
63.23 odd 6 2646.2.f.r.1765.3 8
63.31 odd 6 inner 882.2.h.q.67.3 8
63.32 odd 6 2646.2.h.t.361.2 8
63.40 odd 6 882.2.f.q.589.1 yes 8
63.41 even 6 2646.2.e.q.1549.2 8
63.47 even 6 7938.2.a.ci.1.3 4
63.58 even 3 882.2.f.q.589.4 yes 8
63.59 even 6 2646.2.h.t.361.3 8
63.61 odd 6 7938.2.a.cp.1.2 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
882.2.e.s.373.2 8 9.4 even 3
882.2.e.s.373.3 8 63.13 odd 6
882.2.e.s.655.2 8 7.4 even 3
882.2.e.s.655.3 8 7.3 odd 6
882.2.f.q.295.1 8 7.5 odd 6
882.2.f.q.295.4 yes 8 7.2 even 3
882.2.f.q.589.1 yes 8 63.40 odd 6
882.2.f.q.589.4 yes 8 63.58 even 3
882.2.h.q.67.2 8 63.4 even 3 inner
882.2.h.q.67.3 8 63.31 odd 6 inner
882.2.h.q.79.1 8 1.1 even 1 trivial
882.2.h.q.79.4 8 7.6 odd 2 inner
2646.2.e.q.1549.2 8 63.41 even 6
2646.2.e.q.1549.3 8 9.5 odd 6
2646.2.e.q.2125.2 8 21.17 even 6
2646.2.e.q.2125.3 8 21.11 odd 6
2646.2.f.r.883.2 8 21.5 even 6
2646.2.f.r.883.3 8 21.2 odd 6
2646.2.f.r.1765.2 8 63.5 even 6
2646.2.f.r.1765.3 8 63.23 odd 6
2646.2.h.t.361.2 8 63.32 odd 6
2646.2.h.t.361.3 8 63.59 even 6
2646.2.h.t.667.2 8 3.2 odd 2
2646.2.h.t.667.3 8 21.20 even 2
7938.2.a.ci.1.2 4 63.2 odd 6
7938.2.a.ci.1.3 4 63.47 even 6
7938.2.a.cp.1.2 4 63.61 odd 6
7938.2.a.cp.1.3 4 63.16 even 3