Properties

Label 850.2.c.i
Level $850$
Weight $2$
Character orbit 850.c
Analytic conductor $6.787$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [850,2,Mod(749,850)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(850, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("850.749"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 850 = 2 \cdot 5^{2} \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 850.c (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,0,-4,0,-2,0,0,-6,0,-16] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.78728417181\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(i, \sqrt{17})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 9x^{2} + 16 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 170)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - \beta_{2} q^{2} + \beta_1 q^{3} - q^{4} + (\beta_{3} - 1) q^{6} + 2 \beta_1 q^{7} + \beta_{2} q^{8} + (\beta_{3} - 2) q^{9} - 4 q^{11} - \beta_1 q^{12} + (2 \beta_{2} - \beta_1) q^{13} + (2 \beta_{3} - 2) q^{14}+ \cdots + ( - 4 \beta_{3} + 8) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 4 q^{4} - 2 q^{6} - 6 q^{9} - 16 q^{11} - 4 q^{14} + 4 q^{16} + 2 q^{19} - 36 q^{21} + 2 q^{24} + 10 q^{26} - 2 q^{29} - 18 q^{31} - 4 q^{34} + 6 q^{36} + 22 q^{39} - 16 q^{41} + 16 q^{44} - 4 q^{46}+ \cdots + 24 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} + 9x^{2} + 16 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( \nu^{3} + 5\nu ) / 4 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( \nu^{2} + 5 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{3} - 5 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( 4\beta_{2} - 5\beta_1 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/850\mathbb{Z}\right)^\times\).

\(n\) \(477\) \(751\)
\(\chi(n)\) \(-1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
749.1
2.56155i
1.56155i
1.56155i
2.56155i
1.00000i 2.56155i −1.00000 0 −2.56155 5.12311i 1.00000i −3.56155 0
749.2 1.00000i 1.56155i −1.00000 0 1.56155 3.12311i 1.00000i 0.561553 0
749.3 1.00000i 1.56155i −1.00000 0 1.56155 3.12311i 1.00000i 0.561553 0
749.4 1.00000i 2.56155i −1.00000 0 −2.56155 5.12311i 1.00000i −3.56155 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 850.2.c.i 4
5.b even 2 1 inner 850.2.c.i 4
5.c odd 4 1 170.2.a.f 2
5.c odd 4 1 850.2.a.n 2
15.e even 4 1 1530.2.a.r 2
15.e even 4 1 7650.2.a.de 2
20.e even 4 1 1360.2.a.m 2
20.e even 4 1 6800.2.a.be 2
35.f even 4 1 8330.2.a.bq 2
40.i odd 4 1 5440.2.a.bj 2
40.k even 4 1 5440.2.a.bd 2
85.f odd 4 1 2890.2.b.i 4
85.g odd 4 1 2890.2.a.u 2
85.i odd 4 1 2890.2.b.i 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
170.2.a.f 2 5.c odd 4 1
850.2.a.n 2 5.c odd 4 1
850.2.c.i 4 1.a even 1 1 trivial
850.2.c.i 4 5.b even 2 1 inner
1360.2.a.m 2 20.e even 4 1
1530.2.a.r 2 15.e even 4 1
2890.2.a.u 2 85.g odd 4 1
2890.2.b.i 4 85.f odd 4 1
2890.2.b.i 4 85.i odd 4 1
5440.2.a.bd 2 40.k even 4 1
5440.2.a.bj 2 40.i odd 4 1
6800.2.a.be 2 20.e even 4 1
7650.2.a.de 2 15.e even 4 1
8330.2.a.bq 2 35.f even 4 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(850, [\chi])\):

\( T_{3}^{4} + 9T_{3}^{2} + 16 \) Copy content Toggle raw display
\( T_{7}^{4} + 36T_{7}^{2} + 256 \) Copy content Toggle raw display
\( T_{11} + 4 \) Copy content Toggle raw display
\( T_{13}^{4} + 21T_{13}^{2} + 4 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T^{2} + 1)^{2} \) Copy content Toggle raw display
$3$ \( T^{4} + 9T^{2} + 16 \) Copy content Toggle raw display
$5$ \( T^{4} \) Copy content Toggle raw display
$7$ \( T^{4} + 36T^{2} + 256 \) Copy content Toggle raw display
$11$ \( (T + 4)^{4} \) Copy content Toggle raw display
$13$ \( T^{4} + 21T^{2} + 4 \) Copy content Toggle raw display
$17$ \( (T^{2} + 1)^{2} \) Copy content Toggle raw display
$19$ \( (T^{2} - T - 4)^{2} \) Copy content Toggle raw display
$23$ \( T^{4} + 36T^{2} + 256 \) Copy content Toggle raw display
$29$ \( (T^{2} + T - 38)^{2} \) Copy content Toggle raw display
$31$ \( (T^{2} + 9 T + 16)^{2} \) Copy content Toggle raw display
$37$ \( T^{4} + 52T^{2} + 64 \) Copy content Toggle raw display
$41$ \( (T^{2} + 8 T - 52)^{2} \) Copy content Toggle raw display
$43$ \( T^{4} + 52T^{2} + 64 \) Copy content Toggle raw display
$47$ \( T^{4} + 49T^{2} + 256 \) Copy content Toggle raw display
$53$ \( T^{4} + 13T^{2} + 4 \) Copy content Toggle raw display
$59$ \( (T^{2} - 13 T + 4)^{2} \) Copy content Toggle raw display
$61$ \( (T^{2} - 19 T + 86)^{2} \) Copy content Toggle raw display
$67$ \( T^{4} + 84T^{2} + 64 \) Copy content Toggle raw display
$71$ \( (T^{2} + 21 T + 72)^{2} \) Copy content Toggle raw display
$73$ \( T^{4} + 237T^{2} + 8836 \) Copy content Toggle raw display
$79$ \( T^{4} \) Copy content Toggle raw display
$83$ \( T^{4} + 144T^{2} + 4096 \) Copy content Toggle raw display
$89$ \( (T^{2} - 7 T - 26)^{2} \) Copy content Toggle raw display
$97$ \( T^{4} + 117T^{2} + 324 \) Copy content Toggle raw display
show more
show less