Properties

Label 2-850-5.4-c1-0-20
Degree $2$
Conductor $850$
Sign $-0.447 + 0.894i$
Analytic cond. $6.78728$
Root an. cond. $2.60524$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + i·2-s − 1.56i·3-s − 4-s + 1.56·6-s − 3.12i·7-s i·8-s + 0.561·9-s − 4·11-s + 1.56i·12-s − 0.438i·13-s + 3.12·14-s + 16-s + i·17-s + 0.561i·18-s − 1.56·19-s + ⋯
L(s)  = 1  + 0.707i·2-s − 0.901i·3-s − 0.5·4-s + 0.637·6-s − 1.18i·7-s − 0.353i·8-s + 0.187·9-s − 1.20·11-s + 0.450i·12-s − 0.121i·13-s + 0.834·14-s + 0.250·16-s + 0.242i·17-s + 0.132i·18-s − 0.358·19-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 850 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.447 + 0.894i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 850 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.447 + 0.894i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(850\)    =    \(2 \cdot 5^{2} \cdot 17\)
Sign: $-0.447 + 0.894i$
Analytic conductor: \(6.78728\)
Root analytic conductor: \(2.60524\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{850} (749, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 850,\ (\ :1/2),\ -0.447 + 0.894i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.472473 - 0.764477i\)
\(L(\frac12)\) \(\approx\) \(0.472473 - 0.764477i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 - iT \)
5 \( 1 \)
17 \( 1 - iT \)
good3 \( 1 + 1.56iT - 3T^{2} \)
7 \( 1 + 3.12iT - 7T^{2} \)
11 \( 1 + 4T + 11T^{2} \)
13 \( 1 + 0.438iT - 13T^{2} \)
19 \( 1 + 1.56T + 19T^{2} \)
23 \( 1 + 3.12iT - 23T^{2} \)
29 \( 1 + 6.68T + 29T^{2} \)
31 \( 1 + 2.43T + 31T^{2} \)
37 \( 1 - 1.12iT - 37T^{2} \)
41 \( 1 + 12.2T + 41T^{2} \)
43 \( 1 + 7.12iT - 43T^{2} \)
47 \( 1 - 2.43iT - 47T^{2} \)
53 \( 1 + 3.56iT - 53T^{2} \)
59 \( 1 - 12.6T + 59T^{2} \)
61 \( 1 - 11.5T + 61T^{2} \)
67 \( 1 + 0.876iT - 67T^{2} \)
71 \( 1 + 16.6T + 71T^{2} \)
73 \( 1 + 13.8iT - 73T^{2} \)
79 \( 1 + 79T^{2} \)
83 \( 1 + 10.2iT - 83T^{2} \)
89 \( 1 + 2.68T + 89T^{2} \)
97 \( 1 - 10.6iT - 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.13707671640464827841804855676, −8.740251846585727882982387455954, −7.929341942481105509557404724322, −7.29140338375142982622832240796, −6.74929042748835889138657864642, −5.66923789787085704032810633207, −4.64533597781767906258719247013, −3.58575278116087150754053511930, −1.96410154343783385734264831723, −0.42247611161915083596435617575, 1.95809256434979639500389585690, 3.01503767476057869584094690851, 4.04045539871305934225924780676, 5.15649114311591850240191736452, 5.59465057718043016443589477415, 7.12237449955511959619547328927, 8.252642972966322267530851180805, 9.008954312670953977626615633101, 9.767022107862450685381129200024, 10.34644517047357967337263294183

Graph of the $Z$-function along the critical line